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ON THE HOMOGENIZATION OF A SCALAR SCATTERING
PROBLEM FOR HIGHLY OSCILLATING ANISOTROPIC MEDIA∗

FIORALBA CAKONI† , BOJAN B. GUZINA‡ , AND SHARI MOSKOW§

Abstract. We study the homogenization of a transmission problem arising in the scattering
theory for bounded inhomogeneities with periodic coefficients modeled by the anisotropic Helmholtz
equation. The coefficients are assumed to be periodic functions of the fast variable, specified over the
unit cell with characteristic size ε. By way of multiple scales expansion, we focus on the O(εk), k =
1, 2, bulk and boundary corrections of the leading-order (O(1)) homogenized transmission problem.
The analysis in particular provides the H1 and L2 estimates of the error committed by the first-
order-corrected solution considering (i) bulk correction only and (ii) boundary and bulk correction.
We treat explicitly the O(ε) boundary correction for the transmission problem when the scatterer
is a unit square and show it has an L2-limit as ε → 0, provided that the boundary cutoff of cells
is fixed. We also establish the O(ε2) bulk correction describing the mean wave motion inside the
scatterer. The analysis also highlights a previously established, yet scarcely recognized, fact that the
O(ε) bulk correction of the mean motion vanishes identically.

Key words. periodic inhomogeneities, scattering, two-scale homogenization, higher-order ex-
pansion
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1. Introduction. Thanks to a broad range of affiliated wave phenomena such
as dispersion, anisotropy, and band gaps [7, 16], periodic structures have found
use in numerous facets of science and technology, including photonics [28], solid-
state physics [22], sound filtering [24], subwavelength imaging [31], design of acoustic
lenses [34], cloaking [4, 5], and slow light [6]. In situations when kε � 1, where k
is the wave number and ε is the characteristic size of a periodic cell, the problem is
amenable to a long-wavelength approximation [1, 10] that, on including higher-order
terms, may capture the incipient wave dispersion and anisotropy due to microstruc-
ture. While significant progress has been made on this front considering unbounded
periodic media [8, 29, 33], however, little is known about the long-wavelength scat-
tering by periodic structures of finite extent.

To help bridge the gap, we consider the homogenization of a scattering problem
for periodic anisotropic anomalies of compact support embedded in a homogeneous
background. More precisely, the goal is to obtain a sequence of boundary value
problems for the unit cell (resp., scatterer) governing the bulk (resp., boundary) cor-
rections of the multiple-scale asymptotic solution, expanded in powers of ε — the
characteristic size of the unit cell. While both bulk [2, 8, 17, 20, 21, 25, 29, 33] and
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2533

boundary [1, 10, 19, 26, 27] corrections of the homogenized solution have been consid-
ered before, our study focuses on (i) formal boundary correctors of the transmission
(as opposed to the Neumann or Dirichlet) problem — including rigorous convergence
estimates, (ii) higher-order boundary corrections, and (iii) higher-order bulk correc-
tions for the transmission problem for the anisotropic Helmholtz equation, none of
which have been analyzed rigorously before. See also [32] for related work.

Our work is organized as follows. In section 2 we introduce the transmission prob-
lem and neccesary notation. Section 3 recalls the two-scale asymptotic expansion [10]
used to tackle the problem and establishes the leading-order bulk and boundary cor-
rections of the homogenized solution, including formal convergence estimates. In
section 4 we focus on the higher-order boundary and bulk corrections by providing
an explicit treatment of the second-order terms, and by establishing a clear inductive
pathway by which third- and higher-order corrections can also be obtained. In do-
ing so, we highlight the previously obtained — yet scarcely recognized — result that
the mean of the first-order bulk correction vanishes identically [26, 30]. Given the
fact that the limit as ε → 0 of the boundary corrector is generally difficult to obtain
and in fact may not even exist, in section 5 we provide an explicit example of the
boundary corrector limit for the transmission problem assuming the inhomogeneity
to be a unit square. For completeness, our analysis concludes by formally deriv-
ing a fourth-order, constant-coefficient PDE governing the mean of the second-order
bulk corrector, which extends the previous analyses [8, 29, 33] to anisotropic periodic
media.

2. Preliminaries. Let D ⊂ Rd be a bounded simply connected open set with
piecewise-smooth boundary ∂D representing the support of a periodic inhomogeneity.
When ∂D is not smooth, we will in addition assume that D is convex [14, 15]. Next,
let ε > 0 be the characteristic size of a periodic unit cell — assumed to be small both
relative to the size of D and the wavelength of the incident field, and let Y = [0, 1]d

be the rescaled unit cell. We assume that the physical properties of an obstacle
are given by a positive-definite, symmetric, tensor-valued function aε := a(x/ε) ∈
C∞

(
D,Rd×d

)
and a positive scalar function nε := n(x/ε) ∈ C∞ (D), related (in

the context of acoustics) to the mass density and refractive index, respectively. By
premise, both coefficients are periodic in y = x/ε with period Y . Note that the
featured regularity restrictions on aε and nε are imposed primarily for the sake of
simplicity, and can be drastically relaxed. In what follows, x ∈ D is referred to as
the slow variable, while y = x/ε ∈ Y denotes the so-called fast variable [10]. We
remark that our convergence analysis applies equally to absorbing media, i.e., to
complex valued aε and nε; for simplicity, however, we focus our presentation on the
case of real-valued coefficients. We further assume that infy∈Y inf |ξ|=1 ξ ·a(y)ξ > 0
and infy∈Y n(y) > 0. In this setting, the scattering of a time-harmonic incident field
ui by a periodic inhomogeneity D (see Figure 1) can be mathematically formulated
for the total field, u = us + ui, as

∇ ·
(
a(x/ε)∇u

)
+ k2n(x/ε)u = 0 in D,

∆us + k2us = 0 in Rd \D,
(us + ui) = u on ∂D,(1)

∇(us + ui) · ν = a(x/ε)∇u · ν on ∂D,
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2534 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

where us denotes the scattered field; the Sommerfeld radiation condition

(2) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|,

is satisfied uniformly with respect to x̂ := x/r, and ν is the unit outward normal on
∂D. In what follows we provide an asymptotic expansion for the above problem,
including rigorous convergence estimates. The expansion will require boundary cor-
rector functions, which are difficult to analyze. We also characterize the limit of the
boundary corrector functions for the case that the scatterer is a square. In this case
the limit depends on how the sequence ε approaches zero, and the limiting boundary
values are described in terms of a boundary cell function on a doubly infinite strip.

D

ui

us

u = u✏
Rd\D

✏

Fig. 1. Scattering by an obstacle with periodic coefficients.

3. Leading-order asymptotic expansion of the transmission problem.
The above scattering problem for an inhomogeneous obstacle D with periodically
varying coefficients can be conveniently formulated as a transmission problem for
uε := u in D and uε := us in Rd \D, namely,

∇ ·
(
a(x/ε)∇uε

)
+ k2n(x/ε)uε = 0 in D,

∆uε + k2uε = 0 in Rd \D,
u+ε − u−ε = f on ∂D,

(∇uε · ν)+ − (a(x/ε)∇uε · ν)− = g on ∂D,(3)

where uε satisfies the Sommerfeld radiation condition (2) at infinity. Here f := ui

and g := ν · ∇ui on ∂D, and the superscripts “+” and “−” denote the respective
limits on ∂D from the exterior and interior of D. We are interested in developing the
asymptotic theory for this problem as ε→ 0, as was done for Dirichlet and Neumann
problems on bounded domains [1, 10, 19, 26, 27]. One expects the homogenized or
limiting problem to read

∇ · (A∇u0) + k2nu0 = 0 in D,

∆u0 + k2u0 = 0 in Rd \D,
u+0 − u−0 = f on ∂D,(4)

(∇u0 · ν)+ − (A∇u0 · ν)− = g on ∂D,

where u0 satisfies the Sommerfeld radiation condition (2) at infinity, n denotes the
unit cell average of n, i.e.,

n =

∫
Y

n(y)dy,
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2535

and A is a constant-valued matrix given by the weighted averages

(5) Aij =

∫
Y

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
dy,

which make use of Einstein’s summation convention. Here the χj(y) are the so-called
cell functions which represent the Y -periodic solutions to

(6)
∂

∂yi

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
= 0.

The additive constant for χj is always chosen so that∫
Y

χj dy = 0,

whereby the solutions to (6) are unique in H1
#(Y ), the space of H1 functions on the

d-dimensional torus, and are themselves C∞ due to the smoothness of a. To derive
this asymptotic limit and prove convergence, we will use the standard technique which
regards the solution as that depending on a “slow” variable x, and a “fast” variable
y = x/ε [10]. As was done in [26, 27], we write the equation for uε inside of D as a
first-order system

a(x/ε)∇uε − vε = 0,

∇ · vε + k2n(x/ε)uε = 0,(7)

which allows us to obtain (lower regularity) L2-based estimates of the error. In this
setting, an ansatz for the bulk expansions inside of D can be written as

uε = u0(x, x/ε) + εu(1)(x, x/ε) + ε2u(2)(x, x/ε) + · · · ,
vε = v0(x, x/ε) + εv(1)(x, x/ε) + ε2v(2)(x, x/ε) + · · · .(8)

For the bulk expansion in Rd\D, on the other hand, it suffices to use

uε = u0(x), vε = v0(x),

because there is no microstructure in the exterior. Indeed, one can begin with an
expansion as in (8) to show that all terms in the series except the first are zero.
We note however that the boundary corrector functions are a completely different
story and, as is frequently the case with homogenization problems involving compact
support, the boundary corrector functions must be accounted for if one wants to obtain
higher-order convergence estimates. These corrector functions solve problems which
are substantially more difficult than our original; nonetheless, they are necessary for
a full understanding of the behavior of the solution, even in the interior [10, 26]. In
fact, the formulation of the boundary corrector for transmission problem (3) is one of
the main contributions of this paper, and we pursue this issue in section 5. For now,
following the usual procedure, we use the chain rule to write

∇ = ∇x +
1

ε
∇y,

substitute (8) into (7), and equate the like powers of ε to obtain

(9) a(y)∇yu0 = 0,
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2536 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

(10) ∇y · v0 = 0,

(11) a(y)∇yu(1) + a(y)∇xu0 − v0 = 0,

and

(12) ∇y · v(1) +∇x · v0 + k2n(y)u0 = 0.

From (9), one concludes that u0 is independent of y. Equations (10) and (11) then
yield the formula (6) for χj and the bulk correction

(13) u(1) = −χj(y)
∂u0
∂xj

,

while (11) and taking the Y -average of (12) yield the homogenized PDE in the interior
of D (4). We also find the ith component of v0 to read

(v0(x, y))i =
(
a(y)∇xu0(x) + a(y)∇yu(1)(x, y)

)
i

=

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
∂u0
∂xj

,(14)

whereby the average of v0 reduces to

v0 =

∫
Y

v0 dy = A∇u0.

From this result and (10), we can derive a candidate for v(1). For the purposes of the
first-order analysis, we have some freedom in how we select v(1). We will denote our
first choice by v̂(1), to make a distinction from its companion used later for higher-
order expansions. To specify v̂(1), let q(x, y) ∈ H1

#(Y ) solve

(15) roty(q) = v0 −A∇u0,

which exists since the right-hand side has Y -average zero and zero y-divergence. Note
that in dimension d = 2, q is a scalar and rot(·) denotes a π/2 clockwise rotation of
the gradient while for d = 3, q is a vector and rot(·) represents the curl operator.
Then, we define

(16) v̂(1) = rotx (q) + k2a(y)∇yβ(y)u0,

where β is the unique zero-mean Y -periodic solution to

(17) ∇y · (a∇yβ(y)) = n− n(y),

which ensures that v̂(1) satisfies (12). To summarize, we have formally derived that

uε ≈ u0(x) + εu(1)(x, x/ε),

vε ≈ v0(x, x/ε) + εv̂(1)(x, x/ε),

where u0, u(1), v0, and v̂(1) in D are given, respectively, by (4), (13), (14), and (16),
while u(1) and v̂(1) are zero in the exterior of D. We also naturally choose v0 = ∇u0
in the exterior of D. We note again that our choice of v̂(1) will not be the one to
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2537

yield the higher-order estimates; however, this particular form will be convenient for
proving Theorem 2.1.

When we consider the proposed approximation for uε, we see the that the correct
Dirichlet-type transmission conditions are satisfied by u0, but that these are now
disturbed by the bulk correction u(1). Furthermore, the Neumann-type transmission
conditions, which can be viewed as conditions on vε, are not quite exact due to the
variable coefficient a(x/ε), and these are further disturbed by the presence of v̂(1).

This motivates the following definition of our boundary corrector function θ̂ε:

∇ ·
(
a(x/ε)∇θ̂ε

)
+ k2n(x/ε)θ̂ε = 0 in D,

∆θ̂ε + k2θ̂ε = 0 in Rd \D,
θ̂+ε − θ̂−ε = u(1) on ∂D,

(∇θ̂ε · ν)+ − (a(x/ε)∇θ̂ε · ν)− =
(v0 − v0

ε
+ v̂(1)

)
· ν on ∂D,(18)

complemented by the Sommerfeld radiation condition (2) at infinity. By way of (13)
and (16), the featured transmission conditions can be rewritten as

θ̂+ε − θ̂−ε = −χj(x/ε)∂u0
∂xj

on ∂D,

(∇θ̂ε · ν)+ − (a(x/ε)∇θ̂ε · ν)− = (rot(q) + k2a∇yβ(y)u0) · ν on ∂D.(19)

Here, the rot derivative on q denotes the full derivative; for instance in three dimen-
sions (d = 3), one has

rot = ∇× =
1

ε
∇y ×+∇x×,

which is O(ε−1) since q = q(x, y).

Lemma 1. Let uε be the solution to (3), u0 the solution to (4), and let the bulk

and boundary corrections u(1) and θ̂ε be given, respectively, by (13) and (18), recalling
that u(1) = 0 outside D. Then for any ball BR of radius R > 0 which contains D,

‖uε − (u0 + εu(1) + εθ̂ε)‖H1(BR) ≤ CR ε‖u0‖H2(D),

where CR is a constant independent of ε and u0.

Proof. Introducing the auxiliary error functions in D as

(20) zε = uε − u0 − εu(1)

and

(21) ηε = a(x/ε)∇uε − v0 − εv̂(1),

we find that

(22) a(x/ε)∇zε − ηε = ε(v̂(1) − a(y)∇xu(1))

and

−∇ · ηε = k2n(y)(uε − u0) + εk2∇x ·(a∇yβ u0)(23)

= k2n(y)zε + εk2
(
n(y)u(1) + a∇yβ · ∇u0

)
.(24)
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2538 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

This shows that the error pair (zε, ηε) satisfies the first-order version of the PDEs
with O(ε) residual in the bulk. Outside of D we simply define zε = uε − u0 and ηε =
∇zε, whereby

−∇ · ηε = k2zε.

Now consider, for any φ ∈ C∞0 (BR), the integral∫
BR

(zε − εθ̂ε)φdx =

∫
D

(
uε − (u0 + εu(1) + εθ̂ε)

)
φdx

+

∫
BR\D

(
uε − (u0 + εθ̂ε)

)
φdx,(25)

and define the auxiliary function Wε ∈ H1
loc(Rd) to solve

∇ · a(x/ε)∇Wε + k2n(x/ε)Wε = φ in D,

∆Wε + k2Wε = φ in Rd \D,
W+
ε −W−ε = 0 on ∂D,

(∇Wε · ν)+ − (a(x/ε)∇Wε · ν)− = 0 on ∂D,(26)

together with the Sommerfeld radiation condition (2) at infinity. Note that this means
that Wε also satisfies the elliptic PDEs across ∂D with jumps in the coefficients. Then
we have∫

BR

(zε − εθ̂ε)φdx =

∫
D

(zε − εθ̂ε)
(
∇ · a(x/ε)∇Wε + k2n(x/ε)Wε

)
dx

+

∫
BR\D

(zε − εθ̂ε)
(
∆Wε + k2Wε

)
dx

= −
∫
D

a(x/ε)∇zε∇Wε dx+ ε

∫
D

a(x/ε)∇θ̂ε∇Wε dx

+

∫
D

(zε − εθ̂ε)k2n(x/ε)Wε dx+

∫
∂D

∇(zε − εθ̂ε)+ · νWε dsx

+

∫
∂BR

(zε − εθ̂ε)
∂Wε

∂ν
dsx−

∫
∂BR

∂(zε − εθ̂ε)
∂ν

Wε dsx,

where we have integrated by parts once on the inside and twice on the exterior, using
the fact that (zε− εθ̂ε) exhibits no jump across ∂D. We also note that, by a standard
argument, one can show that the last two terms on the outer boundary ∂BR actually
sum to zero since both zε − εθ̂ε and Wε satisfy Sommerfeld radiation condition (2)
at infinity. Indeed, all of the functions in the integrand satisfy the same Helmholtz
equation in the exterior, so the last two terms can be integrated over a larger surface
at some further radius R1, on which the Sommerfeld condition can be used to show
that the value of these integrals goes to zero as R1 →∞. Since no other terms depend
on R1, the original integrals must be zero [11]. Hence we have∫

BR

(zε − εθ̂ε)φdx = −
∫
D

a(x/ε)∇zε∇Wεdx+ ε

∫
D

a(x/ε)∇θ̂ε∇Wε dx

+

∫
D

(zε − εθ̂ε)k2n(x/ε)Wε dx+

∫
∂D

∇(zε − εθ̂ε)+ · ν Wε dsx.
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2539

Now we use the differential equation for θ̂ε in the interior to obtain∫
BR

(zε − εθ̂ε)φdx = −
∫
D

a(x/ε)∇zε∇Wε dx+ ε

∫
∂D

(a(x/ε)∇θ̂ε)− · ν Wε dx

+

∫
D

zεk
2n(x/ε)Wε dx+

∫
∂D

∇(zε − εθ̂ε)+ · ν Wε dsx,

and apply (22) together with the normal jump for θ̂ε to obtain∫
BR

(zε − εθ̂ε)φdx

= −
∫
D

ηε∇Wε dx+

∫
D

zεk
2n(x/ε)Wε dx+

∫
∂D

(∇zε)+ · ν Wε dsx

+ ε

∫
D

(
−v̂(1) + a∇xu(1)

)
∇Wε dx+

∫
∂D

(
v0 − v0 − εv̂(1)

)
· ν Wε dsx

= −ε
∫
D

k2
(
nu(1)+a∇yβ · ∇u0

)
Wε dx+ε

∫
D

(
−v̂(1) + a∇xu(1)

)
∇Wε dx

+

∫
∂D

(
(v0 − v0 − εv̂(1))− · ν − (ηε)

− · ν + (∇zε)+ · ν
)
Wε dsx,

where in the last step we integrated by parts and used (24). Now, using (21) and
the normal jump conditions in (3) and (4), we see that the last boundary term above

cancels (note that the boundary correction θ̂ε was precisely chosen so that this would
happen). Hence∫

BR

(zε − εθ̂ε)φdx = −ε
∫
D

k2
(
nu(1) + a∇yβ · ∇u0

)
Wε dx

+ε

∫
D

(−v̂(1) + a∇u(1))∇Wε dx(27)

for any φ ∈ C∞0 (BR). Since q is defined (15) by solving a PDE in the y-variable only,
we can clearly choose q such that

(28) sup
y∈Y
|v̂(1)| ≤ C

(∑
i,j

2| ∂u0
∂xi∂xj

|+ |u0|
)

for some C independent of ε. Furthermore, from definition (13), one obtains the
bounds

‖nu(1) + a∇yβ · ∇u0‖L2(D) ≤ C‖u0‖H2(D), ‖a∇xu(1)‖L2(D) ≤ C‖u0‖H2(D).

Using the Cauchy–Schwartz inequality in (27) demonstrates that there exists a con-
stant C such that

(29)

∣∣∣∣∫
BR

(zε − εθ̂ε)φdx
∣∣∣∣ ≤ Cε‖u0‖H2(D)‖Wε‖H1(D).

We certainly have from standard elliptic estimates that

‖Wε‖H1(D) ≤ CR ‖φ‖H−1(BR),

where CR depends only on the bounds on the coefficients, from which we obtain
the desired result by inserting this into (29) and taking the supremum over all φ ∈
H−1(BR).

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

65
.2

30
.2

24
.1

62
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2540 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

The H1 a priori estimate for the solution of the transmission problem (18) (see,
e.g., Theorem 5.24 of [11]), implies that

‖θ̂ε‖H1(D) + ‖θ̂ε‖H1(BR\D)

≤ CR

(
‖u(1)‖H1/2(∂D) +

∥∥∥(v0 − v0
ε

− v̂(1)
)
· ν
∥∥∥
H−1/2(∂D)

)
.(30)

Since u(1) contains the oscillating terms χj(x/ε), its H1/2(∂D) norm is not bounded
with respect to ε. By a standard argument, we can see that its H1(∂D) norm is
O(ε−1) while its L2(∂D) norm is bounded; interpolation between the two yields

(31) ‖u(1)‖H1/2(∂D) ≤ Cε−1/2‖u0‖H2(D).

Also, thanks to our choice of v̂(1), the boundary condition in (18) contains a rot
operator (see (19)); so we can eliminate the ε−1 factor by integrating by parts. In
particular for any test function φ ∈ H1(∂D), one has∫

∂D

rot(q) · ν φ dsx = −
∫
∂D

q rot(φ) · ν dsx

in two dimensions, and∫
∂D

rot(q) · ν φ dsx = −
∫
∂D

(q ×∇φ) · ν dsx

in three dimensions. In either case one obtains from (16) and (28) that for fixed y, q
is at least in H1(D) and bounded by the H2(D)-norm of u0, which implies that its
L2(∂D)-norm is bounded (independently of ε) by ‖u0‖H2(D). On the other hand, it
follows from (15), the fact that q ∈ H1

#(Y ), and the trace theorem that the L2(∂D)-
norm of q (as a function of y) is likewise bounded by ‖u0‖H2(D). By invoking the
standard duality argument, one obtains

(32)
∥∥∥(v0 − v0

ε
− v̂(1)

)
· ν
∥∥∥
H−1(∂D)

≤ C‖u0‖H2(D).

We also have

(33)
∥∥∥(v0 − v0

ε
− v̂(1)

)
· ν
∥∥∥
L2(∂D)

≤ Cε−1‖u0‖H2(D).

Note that the bound for the leading term in (33), namely, ε−1rotyq, follows from the
definition (15), which in particular implies that the L2(∂D)-norm of rotyq is bounded
by ‖u0‖H2(D) independently of ε. Considering the second term rotxq (whose x-
divergence is zero for fixed y), its normal trace on the boundary is defined and bounded
in L2(∂D) by the L2(D)-norm of rotxq, which is in turn bounded by ‖u0‖H2(D) thanks
to (28). By interpolating between the two estimates (32) and (33) and inserting into
(30), we find

(34) ‖θ̂ε‖H1(D) + ‖θ̂ε‖H1(BR\D) ≤ CR ε
−1/2‖u0‖H2(D)

for some constant CR independent of ε. In the appendix we show that the above trans-
mission boundary layer is locally bounded in L2 independently of ε; more precisely,
we show that

(35) ‖θ̂ε‖L2(BR) ≤ CR ‖u0‖H2(D).

From the above bounds we can obtain our first result which truly validates the asymp-
totic expansion.
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2541

Theorem 2. Let uε be the solution to (3), u0 the solution to (4), and let the bulk
correction u(1) be given by (13) in the interior of D and zero on the exterior of D.
Then for any ball BR of radius R > 0 which contains D,

‖uε − (u0 + εu(1))‖H1(D) + ‖uε − u0‖H1(BR\D) ≤ CR ε
1/2

and
‖uε − u0‖L2(BR) ≤ CR ε,

where CR is a constant independent of ε.

Remark 3. While the bulk correction is necessary to obtain the H1 convergence,
it does not in general improve upon the L2 estimate. That is, unless the boundary
correction approaches zero (which is generally not the case), or is somehow otherwise
accounted for,

‖uε − (u0 + εu(1))‖L2(BR) ≤ CR ε

is the best that one can obtain.

4. Higher-order terms. In this section we pursue the asymptotic expansion
further. We find the next terms in the bulk expansion, and in the process we present
a proof that the first-order mean field correction discussed in [3, 10] vanishes in general.
This was previously shown for problems with no lower-order terms [30, 26]; however,
we reproduce the calculation both for emphasis and consider the more general case of
nonzero refraction index n . We also present the equation for the important first-order
transmission boundary correction. This boundary layer, or some approximation to it,
is necessary to obtain an approximation that is correct up to O(ε2).

To clearly demonstrate that we account for all necessary terms in the expansion,
we will from the beginning assume a more general form of u(1), namely,

(36) u(1) = −χj(y)
∂u0
∂xj

+ û(x),

in place of (13). Note that the introduction of û does not affect (9)–(12), nor does
it affect the estimates in the previous section since it is a term of order ε in H1(D).
However, we will indeed show that û = 0 during the derivation of higher-order esti-
mates. Continuing with our ansatz and equating the like powers of ε in (7), we further
obtain

a∇xu(1) + a∇yu(2) = v(1),(37)

−∇x · v(1) −∇y · v(2) = k2n(y)u(1).(38)

If we apply a divergence operator ∇y· to (37), we obtain

(39) ∇y ·
(
a∇xu(1) + a∇yu(2)

)
= −∇x · v0 − k2n(y)u0,

thanks to (12). Using the homogenized equation for u0, (39) yields

(40) ∇y ·
(
a∇xu(1) + a∇yu(2)

)
= −∇x · v0 +∇ ·A∇u0 + k2(n− n(y))u0,

which, along with (36) and (14), provides the equation for u(2), i.e.,

∇y ·
(
a∇yu(2)

)
=
(
− aij + aik

∂χj

yk
+

∂

∂yk
(akiχ

j) +Aij

) ∂u0
∂xi∂xj

(41)

− ∂aij
∂yi

∂û

∂xj
+ k2(n− n(y))u0,
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2542 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

since all other terms are known. To construct a solution to (41), we conveniently set

(42) bij(y) = −aij + aik
∂χj

∂yk
+

∂

∂yk
(akiχ

j),

and note that bij = −Aij . We then introduce higher-order cell functions χij to be
the Y -periodic solutions to

(43) ∇y ·
(
a∇yχij

)
= bij(y)− bij ,

and recall the cell function (17) corresponding to the lower-order term n−n(y). With
such definitions, one verifies that

(44) u(2)(x, y) = χij(y)
∂2u0
∂xi∂xj

− χj(y)
∂û

∂xj
+ k2β(y)u0 + ū(2)(x)

indeed satisfies (39). Note that we have added the (not yet determined) mean field
ū(2)(x) here for completeness; its value does not affect the estimates in this section.
Now, instead of v̂(1), we define the first-order correction v(1) of vε by way of (37), i.e.,

(45) v(1) = a∇xu(1) + a∇yu(2).
Note that (12) is still satisfied, and that

∇x · v(1) =

(
−akiχj + akl

∂χij

∂yl

)
∂3u0

∂xi∂xj∂xk
(46)

+ k2aki
∂β

∂yi

∂u0
∂xk

+ (aij − aik
∂χj

∂yk
)
∂2û

∂xi∂xj
.

On averaging (38) with respect to y, the term with the y derivative of v(2) becomes
zero and we obtain the equation for û, namely,

(47) ∇·A∇û+k2nû+

(
−akiχj +akl

∂χij

∂yl

)
∂3u0

∂xi∂xj∂xk
+k2(aki

∂β

∂yi
−nχk)

∂u0
∂xk

= 0.

For the case of k = 0, the above equation for the mean field was derived, for example,
in [10] and discussed again in [3]. It was shown in [26, 30], however, that the source
term

(48)

(
− akiχj + akl

∂χij

∂yl

)
∂3u0

∂xi∂xj∂xk
= 0.

To demonstrate this, we integrate by parts∫
Y

akl
∂χij

∂yl
dy = −

∫
Y

∂alk
∂yl

χijdy = −
∫
y

(∇y · a∇yχk)χijdy(49)

= −
∫
Y

χk∇y · a∇yχijdy.

Now we can use the equation for χij to obtain∫
Y

akl
∂χij

∂yl
=

∫
y

aijχ
kdy −

∫
Y

ailχ
k ∂χ

j

∂yl
−
∫
Y

χk
∂

∂yl
(aliχ

j)dy −
∫
Y

χkAijdy(50)

=

∫
y

aijχ
kdy −

∫
Y

ailχ
k ∂χ

j

∂yl
+

∫
Y

aliχ
j ∂χ

k

∂yl
dy,
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2543

whereby

(51)

(
− akiχj + akl

∂χij

∂yl

)
∂3u0

∂xi∂xj∂xk

=

(
−aikχj + aijχk − ailχk

∂χj

∂yl
+ ailχj

∂χk

∂yl

)
∂3u0

∂xi∂xj∂xk
.

For each fixed i, the terms are skew symmetric in j and k, hence the sum is zero due
to the symmetry in the third-order derivatives — which proves (48). Furthermore,
one easily obtains via the equation for β and integration by parts that

(52) aik
∂β

∂yi
= −∂aik

∂yi
β = −∇y ·(a∇yχk)β = −χk∇y ·(a∇yβ) = −χk(n− n) = χkn

so that the entire source term for û in (47) cancels. Accordingly, it suffices to take
û = 0 since we account for the perturbation in the transmission condition with our
boundary layer θε. Note, however, that this is generally not the case with the higher-
order mean fields — those carry the well-known dispersive properties of periodic
media [29, 33] — a subject that we discuss further in section 6.

We now find v(2) which satisfies (38). To this end, consider the auxiliary functions
χijk and βk as the Y -periodic and zero-mean solutions to

(53) ∇y ·
(
a∇yχijk

)
= cijk(y)− c̄ijk

and

(54) ∇y ·
(
a∇yβk

)
= nχk − aki

∂β

∂yi
,

where

(55) cijk(y) = akiχ
j − akl

∂χij

∂yl
.

Then, if we take

(56) v(2) = a∇yχijk
∂3u0

∂xi∂xj∂xk
+ k2a∇yβk

∂u0
∂xk

and recall (48), we indeed have that the pair v(2), v(1) satisfies (38). We are now
ready to define the first- and second-order boundary layers, which we denote by θε
and φε, respectively. Note that our first-order boundary corrector function is close to
θ̂ε from (18); in fact, it differs only in that it now uses a more appropriate choice of
v(1). With reference to (18), the first-order boundary corrector function now satisfies

∇ ·
(
a(x/ε)∇θε

)
+ k2n(x/ε)θε = 0 in D,

∆θε + k2θε = 0 in Rd \D,
θ+ε − θ−ε = u(1) on ∂D,

(∇θε · ν)+ − (a(x/ε)∇θε · ν)− =

(
v0 − v0

ε
+ v(1)

)
· ν on ∂D,(57)
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2544 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

while its second-order counterpart solves

∇ ·
(
a(x/ε)∇φε

)
+ k2n(x/ε)φε = 0 in D,

∆φε + k2φε = 0 in Rd \D,
φ+ε − φ−ε = u(2) on ∂D,

(∇φε · ν)+ − (a(x/ε)∇φε · ν)− = v(2) · ν on ∂D,(58)

noting for clarity that

(59) a∇xu(2) + a∇yu(3) = v(2)

due to (7). For convenience, let us also summarize the other terms we use in our
expansion:

u(1) = −χj(y)
∂u0
∂xj

,(60)

u(2) = χij(y)
∂2u0
∂xi∂xj

+ k2β(y)u0 + ū(2)(x),(61)

v0 = a(y)∇xu0(x)− a(y)∇yχj
∂u0
∂xj

,(62)

v(1) = −aχj∇x
∂u0
∂xj

+ a∇yχij
∂u0

∂xi∂xj
+ k2a∇yβ u0.(63)

The following theorem gives us a true second-order estimate of a solution to the
transmission problem (3), assuming we have H4 (as opposed to merely H2) regularity
on the homogenized solution.

Lemma 4. Let uε be the solution to (3), u0 the solution to (4), and let the bulk
and boundary corrections u(1), u(2), θε, and φε be given, respectively, by (60), (61),
(57), and (58). Then for any ball BR of radius R > 0 which contains D,

‖uε − (u0 + εu(1) + εθε + ε2u(2) + ε2φε)‖H1(BR) ≤ CR ε
2‖u0‖H4(D),

where CR is a constant independent of ε and u0.

Proof. The proof is very similar to the proof of Lemma 1. We again define the
error functions in D, but this time include the second-order bulk corrections

(64) zε = uε − u0 − εu(1) − ε2u(2),

(65) ηε = a(x/ε)∇uε − v0 − εv(1) − ε2v(2).

In this case, one finds that

(66) a(x/ε)∇zε − ηε = ε2(v(2) − a(y)∇xu(2))

and

−∇ · ηε = k2n(y)(uε − u0 − εu(1)) + ε2∇x ·v(2)(67)

= k2n(y)zε + ε2
(
k2n(y)u(2) +∇x ·v(2)

)
.(68)
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2545

This shows that the error pair (zε, ηε) now satisfies the first order version of the PDE
with an O(ε2) residual in the bulk. Outside of D we simply define zε = uε − u0
and ηε = ∇zε, whereby

−∇ · ηε = k2zε.

Again consider, for any φ ∈ C∞0 (BR), the integral∫
BR

(zε − εθε − ε2φε)φdx =

∫
D

(
uε − (u0 + εu(1) + ε2u(2) + εθε + ε2φε)

)
φdx

+

∫
BR\D

(
uε − (u0 + εθε + ε2φε)

)
φdx,(69)

and define the auxiliary function Wε ∈ H1
loc(Rd) to solve (26) as before. Then, using

the Sommerfeld radiation conditions to eliminate the outer boundary and the fact
that zε − εθε − ε2φε has no jump on ∂D, we find that∫

BR

(zε − εθε − ε2φε)φdx = −
∫
D

a(x/ε)∇zε∇Wε dx+ ε

∫
D

a(x/ε)∇θε∇Wε dx

+ ε2
∫
D

a(x/ε)∇φε∇Wε dx+

∫
D

(zε − εθε − ε2φε)k2n(x/ε)Wε dx

+

∫
∂D

∇(zε − εθε − ε2φε)+ · ν Wε dsx.

We now apply the differential equations for θε and φε, their jump conditions, (66)
and (67), which yield∫
BR

(zε − εθε − ε2φε)φdx = −
∫
D

ηε∇Wε dx+

∫
D

zεk
2n(x/ε)Wε dx

+

∫
∂D

(∇zε)+ · νWε dsx + ε2
∫
D

(−v(2) + a∇xu(2))∇Wε dx

+

∫
∂D

(v0 − v0 − εv(1) − ε2v(2)) · νWε dsx

= −ε2
∫
D

(k2n(x/ε)u(2) +∇x · v(2))Wε dx+ ε2
∫
D

(−v(2) + a∇xu(2))∇Wε dx

+

∫
∂D

(
(v0 − v0 − εv(1) − ε2v(2))− · ν − (ηε)

− · ν + (∇zε)+ · ν
)
Wε dsx

= −ε2
∫
D

(k2n(x/ε)u(2) +∇x · v(2))Wε dx+ ε2
∫
D

(−v(2) + a∇xu(2))∇Wε dx,

where in the last step the boundary integral vanishes thanks to (3), (4), (64), and (65)
canceling as intended. Note that here we are using more stringent regularity require-
ments on u0 in order to secure boundedness of the above integrals. Indeed, the L2

bounds on the featured integrands (in particular, that on ∇x ·v(2)) will require fourth-
order L2 derivatives, and we obtain

(70)

∣∣∣∣∫
BR

(zε − εθε − ε2φε)φdx
∣∣∣∣ ≤ Cε2‖u0‖H4(D)‖Wε‖H1(D).

Finally, the claim of the lemma follows from the bound

‖Wε‖H1(D) ≤ CR ‖φ‖H−1(D)

by taking the supremum over all φ ∈ H−1(D).
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2546 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

Following the same reasoning as that used to obtain the bound (34) on θ̂ε, we
have

(71) ‖φε‖H1(D) + ‖φε‖H1(BR\D) ≤ CR ε
−1/2‖u0‖H4(D)

and

(72) ‖φε‖L2(BR) ≤ CR ‖u0‖H4(D).

Hence the following theorem is a straightforward corollary of the above lemma.

Theorem 5. Let uε be the solution to (3), u0 the solution to (4), and let the bulk
and boundary corrections u(1) and θε be given by (13) and (18), respectively. We also
note that in the definition of θε, v

(1) must be given by (63). Then for any ball BR of
radius R > 0 which contains D, we have

‖uε − (u0 + εu(1) + εθε)‖H1(D) + ‖uε − (u0 + εθε)‖H1(BR\D) ≤ CR ε
3/2‖u0‖H4(D)

and

‖uε − (u0 + εu(1) + εθε)‖L2(BR) ≤ CR ε
2‖u0‖H4(D),

where CR is a constant independent of ε and u0.

5. An example of a boundary layer limit. The first-order boundary cor-
rector function θε given by (57) is of great interest for the analysis of scattering by
periodic media, in particular, because its presence is necessary to obtain estimates
of order ε2. Unfortunately, (57) is harder to solve than our original equation for uε,
rendering θε useless as a straightforward numerical correction. However, we would
overcome this problem if we could find its limit. Presently, there are a number of
works on the limit (when it exists) of the analogue of θε for Dirichlet problems on
rational polygons [26, 30], Neumann problems [27], and more recently works which
extend the existence of the limit to more general domains [12, 13]. In this section
we will borrow certain techniques from [26, 30] to find the limit of our transmission
boundary corrector θε for a specific geometry. This requires a new analysis since the
boundary layer and its limit take a different form.

For simplicity, consider the case where the domain D is a unit square (0, 1) ×
(0, 1). Note that the present discussion can also be extended to convex polygonal
domains with sides of rational slope [26]. To find the limit of θε, one can consider
the transmission data on one side of the square at a time. We first note that the
leading-order part of the conormal jump data (which has the factor of 1

ε ) in (57),
namely,

(v0 − v0) · ν = rotyq · ν,
is a tangential y derivative on the boundary cells, and so will have integral zero on
a boundary period cell. We will see below that when we have the 1

ε factor, we need
the oscillatory part to have zero boundary average for the limit to exist. That is, its
weak limit needs to be zero. So, on the right side of the square ∂D ∩ {x1 = 1},

(v0 − v0) · ν =

(
a1j(x/ε)− a1k(x/ε)

∂χj

∂yk
(x/ε)−A1j

)
∂u0
∂xj

=: g1(y)
∂u0
∂x1

+ g2(y)
∂u0
∂x2
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2547

which is a y2 derivative. Unless slow parts ∂u0

∂x1
, ∂u0

∂x2
are linearly dependent, this implies

that g1 and g2 both separately have a boundary cell average of zero. Were it to be
the case that the slow parts were linearly dependent, we could group them together
as a single boundary term. Without loss of generality we will assume this is not the
case.

Consider also the term with v(1) in the boundary data (57), and define its bound-
ary cell average on ∂D ∩ {x1 = 1},

v(1)
∂

:=

∫ 1

0

v(1)(y, x)dy2,

which on that boundary will depend only on the slow variable. We write

v(1) := v(1)
∂

+ (v(1) − v(1)∂)

and note that the second term, which has a boundary cell average of zero but no factor
of 1

ε , will not contribute in the limit to this first-order boundary correction since its
H1-weak limit is zero and hence its strong L2 limit will be zero. It will contribute
to the higher-order correction limit. Hence instead of (57) we consider the following
system

∇ ·
(
a(x/ε)∇θε

)
+ k2n(x/ε)θε = 0 in D,

∆θε + k2θε = 0 in R2 \D,

θ+ε − θ−ε = 1{x1=1} χ
j(x/ε)

∂u0
∂xj

on ∂D,

(∇θε · ν)+ − (a(x/ε)∇θε · ν)− = 1{x1=1}

(
ε−1gj(x/ε)

∂u0
∂xj

+ v(1)
∂
)

on ∂D,(73)

together with the Sommerfeld radiation condition (2) at infinity. Here 1M (x) is the
characteristic function equaling 1 for x ∈M and zero otherwise, and

(74) gj(x/ε) = a1j(x/ε)− a1k(x/ε)
∂χj

∂yk
(x/ε)−A1j .

Note that in the above problem, the transmission data on the right side of the square
depend strongly on the choice of ε. If, for example εm = 1/m for integer m, this
boundary layer problem would see only a boundary slice of the periodic functions
χj(y), gj(y), and v(1). It is for this reason that one can expect different limits of the
boundary layer function for different sequences of ε going to zero. This phenomenon
was first noticed in [30] and further understood in [26]. Let us therefore assume that
εm is a sequence going to zero for which the boundary cutoff is fixed. That is, we
assume that the fractional part of 1/εm is constant, i.e.,

1

εm
−
⌊

1

εm

⌋
= δ

for all m, and we abuse notation a bit to set our oscillatory boundary functions to
their restrictions:

(75) χj(y2) = χj(δ, y2), gj(y2) = gj(δ, y2), v(1)
∂

= v(1)
∂
(δ, x).
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2548 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

In order to describe the limit of the above boundary layer problem, we need to in-
troduce auxiliary problems on a strip G = {−∞ < y1 <∞; y2 ∈ [0, 1]} with its two
halves

G+ = {y1 > 0; y2 ∈ [0, 1]} and G− = {y1 < 0; y2 ∈ [0, 1]}.
Let ŵj(y1, y2) solve

∇y ·
(
a(y1+ δ, y2)∇ŵj

)
= 0 in G−,

∆yŵj = 0 in G+,

ŵj(0, y2)+ − ŵj(0, y2)− = χj(y2),

∂y1ŵj(0, y2)+ − a1i(δ, y2)∂yiŵj(0, y2)− = gj(y2),

ŵj [0, 1]-periodic in y2,

there exists γ > 0 such that e±γy1∇ŵj ∈ L2(G±).(76)

By Theorem 9, such a solution ŵj exists and is unique up to an additive constant across
the entire strip G. Note the exponential decay of all derivatives in both directions at
infinity; this ensures that ŵj approaches a constant as y1 → ±∞. Next, set

d+j = lim
y1→∞

ŵj and d−j = lim
y1→−∞

ŵj .

We can now define our limiting boundary value jump as

(77) χ∗j = d+j − d−j ,
where one notes that its value is independent of the choice of the additive constant
for ŵj . Then, we can similarly define wj(y1, y2) via

∇y ·
(
a(y1+ δ, y2)∇wj

)
= 0 in G−,

∆ywj = 0 in G+,

wj(0, y2)+ − wj(0, y2)− = χj(y2)− χ∗j ,
∂y1wj(0, y2)+ − a1i(δ, y2)∂yiwj(0, y2)− = gj(y2),

wj [0, 1]-periodic in y2,

there exists γ > 0 such that e±γy1∇wj ∈ L2(G±).(78)

Note that wj , the solution to (78), is itself unique only up to an additive constant.
However, from the definition of χ∗j , wj will always approach the same constant limit in
both directions. (To see this, just subtract off from a given choice of ŵj the piecewise
constant function d+j in G+, d−j in G−.) Therefore an additive constant can be chosen
so that wj itself also decays to zero as |y1| → ∞. With the above results in place, we
have the following convergence theorem.

Theorem 6. Let D = (0, 1) × (0, 1) be the unit square and let εm be a sequence
approaching zero such that 1

εm
− b 1

εm
c = δ for all m. Then if θεm solves (73) for

ε = εm, we have that θεm → θ∗ strongly in L2
loc(R2), where θ∗ solves

∇ ·A∇θ∗ + k2nθ∗ = 0 in D,

∆θ∗ + k2θ∗ = 0 in R2 \D,

(θ∗)
+ − (θ∗)

−
= 1{x1=1} χ

∗
j

∂u0
∂xj

on ∂D,

(∇θ∗ · ν)+ − (A∇θ∗ · ν)− = 1{x1=1}

(
a12wj

∂ ∂2u0
∂xj∂x2

+ v(1)
∂
)

on ∂D,(79)
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2549

where A is the homogenized matrix given by (5),

a12wj
∂ := a12(δ, y2)wj(0, y2)−

denotes the average in the y2 direction of a12wj at y1 = 0 coming from the left side
of the strip, and the χ∗j are given by (77).

Proof. Without loss of generality, we can assume that the Dirichlet part of the
jump data is zero in a neighborhood of the corners. The reason that we can as-
sume this is because in the proof of Theorem 10, if we were to only have small-
support Dirichlet jumps, and no Neumann jumps, the L2 norm would go to zero;

see (126). Let us decompose θε solving (73) into θε = ψ
(1)
ε + ψ

(2)
ε , where ψ

(1)
ε

satisfies

∇ ·
(
a(x/ε)∇ψ(1)

ε

)
+ k2n(x/ε)ψ(1)

ε = 0 in D,

∆ψ(1)
ε + k2ψ(1)

ε = 0 in R2 \D,

(ψ(1)
ε )

+ − (ψ(1)
ε )
−

= 1{x1=1} χ
∗
j

∂u0
∂xj

on ∂D,

(∇ψ(1)
ε · ν)

+ − (a(x/ε)∇ψ(1)
ε · ν)

−
= 1{x1=1}

(
a12wj

∂ ∂2u0
∂xj∂x2

+ v(1)
∂
)

on ∂D,

and ψ
(2)
ε solves

∇ ·
(
a(x/ε)∇ψ(2)

ε

)
+ k2n(x/ε)ψ(2)

ε = 0 in D,

∆ψ(2)
ε + k2ψ(2)

ε = 0 in R2 \D,

(ψ(2)
ε )

+ − (ψ(2)
ε )
−

= 1{x1=1} (χj(x/ε)− χ∗j )
∂u0
∂xj

on ∂D,

(∇ψ(2)
ε · ν)

+ − (a(x/ε)∇ψ(2)
ε · ν)

−
= 1{x1=1}

(
ε−1gj(x/ε)

∂u0
∂xj
− a12wj∂

∂2u0
∂xj∂x2

)
on ∂D.

Note from the analysis in the previous sections that ψ
(1)
ε → θ∗ strongly in L2

loc(R2),
since this is an example of a standard homogenization problem. It therefore suffices

to show that ψ
(2)
ε → 0 strongly in L2

loc(R2). We will consider the boundary data when
j = 1 only; the case j = 2 will follow in exactly the same way. Define V (x2) to be the
restriction of ∂u0/∂x1 to ∂D ∩ {x1 = 1}, extended as a constant in the x1-direction,
and extended by zero for x2 outside of (0, 1). Recall that we assumed that V (x2)
is zero in a neighborhood of x2 = 1 and x2 = 0, so that this extension is smooth.
Next, define φ(x1) to be a smooth cutoff function (constant in x2) such that φ ≡ 1
for x1 ≥ 1 and φ ≡ 0 for x1 ≤ 0. Let

ψ(3)
ε = w1

(
x1 − 1

ε
,
x2
ε

)
,

where w1 solves (78) with j = 1, and with the constant chosen so that w1 goes to
zero as y1 → ±∞. Note that χ∗1 was chosen precisely so that such a w1 exists which
decays to zero in both directions. Then we set

ψ(4)
ε = ψ(3)

ε V (x2)φ(x1),

and note that ψ
(4)
ε → 0 in L2

loc(R2) thanks to the exponential decay of w1.
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2550 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

Now we will show that ψ
(2)
ε − ψ(4)

ε is small by looking at its residual when the
differential operators are applied. Inside of D, we have

(80)
(
∇ ·
(
a(x/ε)∇

)
+ k2n(x/ε)

)
(ψ(2)
ε − ψ(4)

ε ) = −(∇ · a∇ψ(3)
ε )V φ− k2nψ(3)

ε V φ

− a∇ψ(3)
ε · ∇(V φ)− (∇ · (aψ(3)

ε )) · ∇(V φ)− ψ(3)
ε a : ∇∇(V φ).

Above, the tensor notation “ :′′ represents the multiple contraction of two tensors
producing a scalar; in this case A : B = AijBij , using Einstein summation. The first
term on the right-hand side of (80) is zero while the second, fourth, and last term go
to zero strongly in H−1(D) due to the exponential decay of w1. The third term also
goes to zero strongly in H−1(D) as ε→ 0, but it takes a little more effort to see this;
we sketch the same argument as [26, p. 1287]. Note that from the exponential decay
of w1 we have

|∇ψ(3)
ε | ≤

C

ε
exp

(
− γ |x1 − 1|

ε

)
.

Consider any test function Φ ∈ C∞0 (D); then

(81)
∣∣∣ ∫
D

a∇ψ(3)
ε · ∇(V φ)Φdx

∣∣∣ ≤ C ∫
D

1

ε
exp

(
γ
x1 − 1

ε

)
|Φ|dx.

Considering for fixed 0 < x2 < 1 the integral on the right-hand side, i.e.,

(82)

∫ 1

0

1

ε
exp

(
γ
x1 − 1

ε

)
|Φ|dx1,

integrating by parts (|Φ| will have a weak derivative), and using the Cauchy–Schwartz
inequality one obtains (see p. 1287 in [26] for details)

(83)

∫ 1

0

1

ε
exp

(
γ
x1 − 1

ε

)
|Φ|dx1 ≤ Cε1/2

(∫ 1

0

∣∣∣ ∂
∂x1

Φ(x1, x2)
∣∣∣2dx1)1/2

.

Integrating this result over x2 and again using the Cauchy–Schwartz inequality, we
have

(84)

∫
D

1

ε
exp

(
γ
x1 − 1

ε

)
|Φ|dx ≤ Cε1/2‖Φ‖H1

0 (D)

which shows that the third term and thus the entire right-hand side of (80) is small
in H−1(D). At the same time, outside of D, we have(

∆ + k2
)

(ψ(2)
ε − ψ(4)

ε ) = −∆ψ(3)
ε V φ− k2ψ(3)

ε V φ

−2∇ψ(3)
ε · ∇(V φ)− ψ(3)

ε ∆(V φ).(85)

Note that for x1 ≤ 0, x2 ≥ 1, or x2 ≤ 0, all terms are zero thanks to the cutoff
functions. For x1 ≥ 1, the first term is zero, and all other terms go to zero in H−1 of

any bounded domain, due again to the exponential decay of ψ
(3)
ε . Hence both inside

and outside of D the operator residuals go to zero in H−1. Let us now examine the

transmission data for (ψ
(2)
ε −ψ(4)

ε ) across ∂D. Due to the presence of cutoff functions,
both Dirichlet and Neumann jumps are all zero across the top, bottom, and left side of
the square. The Dirichlet jump is also clearly zero across the right side of the square
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2551

due to the matching of our jump data. For the jump in the conormal derivative across
the right side of the square, recalling that ν = (1, 0) and x1 = 1, one has

(∇ψ(4)
ε · ν)+ − (a∇ψ(4)

ε · ν)− =

(
∂ψ

(3)
ε

∂x1

)+
(V φ)− a1k

(
∂ψ

(3)
ε

∂xk

)−
(V φ)− a12(ψ(3)

ε )−
∂V

∂x2
φ

=
1

ε

(
∂w1

∂y1

)+
V − 1

ε
a1k

(
∂w1

∂yk

)−
V − a12w−1 V ′

=
1

ε
g1V − a12(δ, y2)(w1(0, y2))−V ′,(86)

so that the conormal jump also matches with that of ψ
(2)
ε for a(x/ε) isotropic. Hence

in the isotropic case, all transmission data vanish. In the anisotropic case, we have
an oscillating bounded conormal jump,

(∇(ψ(4)
ε − ψ(2)

ε ) · ν)+ − (a∇(ψ(4)
ε − ψ(2)

ε ) · ν)− = (a12w1 − a12w−1 )
∂2u0
∂x1∂x2

,

which is small in H−1/2(∂D) since it has zero average. In particular, since its average
along a boundary cell is zero, it can be written as a y2 derivative, for which we
can integrate by parts. Furthermore, due to the exponential decay in all directions,

(ψ
(2)
ε −ψ(4)

ε ) will also satisfy the Sommerfeld radiation condition at infinity. Standard
regularity results then yield convergence to zero in H1 on bounded domains, and
hence in L2

loc.

Remark 7. By doing the above on all four sides of the square D, we have found
the limit of O(ε) boundary corrector θε. The above result, however, will also allow us
to find the limit of the O(ε2) boundary correction, and indeed that of higher orders.
The first thing one needs to note is that the oscillatory part of v(1) (which we have
thrown away at first order) will need to come in at second order. This is actually
convenient, as it has the same slow part as the second-order Dirichlet jump. In light
of this, a more appropriate definition for the second-order boundary correction may
be φ̃ε where φ̃ε satisfies

∇ ·
(
a(x/ε)∇φ̃ε

)
+ k2n(x/ε)φ̃ε = 0 in D,

∆φ̃ε + k2φ̃ε = 0 in Rd \D,
φ̃+ε − φ̃−ε = u(2) on ∂D,

(∇φ̃ε · ν)+ − (a(x/ε)∇φ̃ε · ν)− =
1

ε
(v(1) − v(1)∂) · ν + v(2)

∂ · ν on ∂D(87)

with θε also appropriately modified. The oscillatory parts of the data will have the
same slow factors, allowing us to use the same proof for the limit on a square. Note
that the mean field of u(2), u(2)(x), will affect the far field precisely through this
boundary layer.

Remark 8. In the special (but relevant) case where a is constant and the periodic
structure is only in the lower-order term n, the cell functions χj and the first-order
bulk correction are all zero. The first-order boundary correction θε may be almost
zero; indeed its only nonzero data are the conormal jump given by v1 ·ν = k2a∇yβ(y)·
νu0. Obviously from our analysis in the previous sections, in this case the boundary
correction is bounded in the H1-norm. However, as shown by this example, in the
case when D is a square, the limit of the boundary corrector is not zero and in fact it is
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2552 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

not even unique. Indeed, for an appropriately chosen subsequence εk, the subsequent
limit of the boundary corrector will take a simple form with the only contribution

coming from the boundary average v(1)
∂ · ν within the cell. In the case of general

domains with smooth boundary without flat parts, the first-order boundary corrector
for a-constant should have zero limit (since the term k2a∇yβ(y) · νu0 appearing in
the Neumann data has Y cell average zero, its boundary weak limit is zero, and hence
the boundary corrector limit should be zero ).

6. Higher-order PDE governing the mean behavior of uε. Let us in this
section go back to the transmission problem (3), and consider the bulk expansion of
uε inside D as in (8). Here we take a different approach, where we consider the mean
behavior of uε by taking cell averages of the terms in its expansion. That is, we take
the Y -average of uε, to write

(88) ūε = u0(x) + εū(1)(x) + ε2ū(2)(x) + · · · ,

where

(89) ū(n) =

∫
Y

u(n)(x, y) dy.

We now know that u0 solves (4), and

(90) u(1)(x, y) = −χj(y)
∂u0
∂xj

as shown in section 4. Here the goal is to expose the PDEs governing the mean
response, ūε, inside D when considering the higher-order approximations.

Thanks to the identity χ̄j = 0, one immediately finds from (90) that ū(1) = 0. To
uncover the behavior of ū(2), on the other hand, it can be shown by substituting (8)
into (7) and collecting the terms of order ε0 that

(91) k2nu0 +∇x ·
(
a(∇xu0 +∇yu(1))

)
+∇y ·

(
a(∇xu(1) +∇yu(2))

)
= 0.

By virtue of this result, (6) and (90), one finds as in [10, 33] that u(2) admits the
representation

(92) u(2)(x, y) = ū(2)(x) + ψij(y)
∂2u0
∂xi∂xj

,

where ψij are the zero-mean, Y -periodic solutions to

(93) ∇y ·
(
a∇y(ψij +Aijβ(y)/n̄)

)
= bij(y)− bij ,

where β and bij are given by (17) and (42), respectively. A comparison between (43)
and (93) reveals that in fact ψij = χij −Aijβ/n̄.

At order O(εm), m > 1, one similarly finds from (7) and (8) that

(94) k2nu(m) +∇x ·
(
a(∇xu(m) +∇yu(m+1))

)
+∇y ·

(
a(∇xu(m+1) +∇yu(m+2))

)
= 0.

Taking m = 1 and recalling (48), it can be shown from (94) that u(3) can be written
as

(95) u(3)(x, y) = ū(3)(x)− χj(y)
∂ū(2)

∂xj
+ ψijk(y)

∂3u0
∂xi∂xj∂xk

,
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2553

where ψijk are Y -periodic, have zero mean, and solve

(96) ∇y ·
(
a∇y(ψijk−Aijβk(y)/n̄)

)
= cijk(y)− c̄ijk −

∂

∂yl

(
alkψ

ij
)
,

featuring cijk that are given by (55); cf. (53) that is solved by χijk.
On computing the Y -average of (91), using (90) and (92), and exploiting the

periodicity of χj and χij , one can show that

(97) A :∇∇u0 + k2nu0 = 0

as in (4), where the multiple tensor contraction produces a scalar (in this case A :
∇∇u0 = ∇ ·A∇u0). On the other hand the Y -averaging of (94) for m = 2, combined
with the fact that ū(1) = 0 and the use of (90), (92), and (95) yields

(98) A :∇∇ū(2) + k2nu(2) = −
(
A :∇∇∇∇u0 + k2N :∇∇u0

)
,

where A and N are, respectively, the fourth- and second-order constant tensors given
by

Aijkl = aklψij + akr
∂ψijk

∂yr
, Nij = nψij ,

and

A :∇∇∇∇u0 = Aijkl
∂4u0

∂xi∂xj∂xk∂xl
;

see also [33]. Referring back to (88), (97) and (98) — combined with the result
ū(1) = 0 obtained earlier — demonstrate that the mean of the field inside D in (4)
formally satisfies

(99) A :∇∇ūε + k2nuε = − ε2
(
A :∇∇∇∇ūε + k2N :∇∇ūε

)
+ o(ε2).

As examined in [33], the O(ε2)-terms in (99) bring additional length scales into the
problem that are responsible for describing the incipient wave dispersion due to small-
scale periodic fluctuations in a(x/ε) and n(x/ε).

Appendix A. Some auxiliary results.

A.1. On a transmission problem in the strip. In this section, we study the
solvability of a transmission problem in a strip which is used to construct the limit
of the boundary corrector. To study this problem we adapt here the approach of
section 10.4 in [23] used for a similar problem in a half-strip. For the sake of reader’s
convenience we sketch here the main lines of the analysis. To formulate the problem
under consideration, we recall the notation

G+ = {y1 > 0; y2 ∈ [0, 1]} and G− = {y1 < 0; y2 ∈ [0, 1]}
and consider h a smooth function defined on [0, 1] and a := (aij)2×2 with entries

aij ∈ C1(G+) such that ξ · aξ ≥ α|ξ|2, ξ ∈ R2 and α > 0. Assuming that h(y2) as
well as the coefficient aij(y1, y2) are extended periodically in y2 with period [0, 1], the
transmission problem we would like to solve is

∇y ·
(
a(y1, y2)∇w−

)
= 0, y1 < 0, −∞ < y2 < +∞,(100)

∆yw
+ = 0, y1 > 0, −∞ < y2 < +∞,(101)

w+(0, y2)− w−(0, y2) = 0, −∞ < y2 < +∞,(102)

∂y1w
+(0, y2)− a1i(0, y2)∂yiw

−(0, y2) = h, −∞ < y2 < +∞,(103)
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2554 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

such that w+, w− are periodic in y2 and e−γy1∇w− ∈ L2(G−) and eγy1∇w+ ∈ L2(G+)
for some γ > 0. It is natural to look for a solution to this problem in the spaces

H1
per[0, 1] :=

{
ϕ ∈ H1[0, 1], periodic with period [0, 1]

}
,

V + :=
{
u(y1, y2) ∈ L2((0, R), H1

per[0, 1]) ∀R > 0 such that eγy1∇u ∈ L2(G+)
}
,

V − :=
{
u(y1, y2) ∈ L2((−R, 0), H1

per[0, 1]) ∀R > 0 such that e−γy1∇u ∈ L2(G−)
}
.

In general this strip problem does not have a solution, and when it has a solution
(w+, w−), any (w+ + c, w− + c) is also a solution. Hence a necessary solvability
condition on the data h is

(104)

∫ 1

0

h(y2)dy2 = 0

(this is easily seen by integrating by parts both equations against the test function
1, which is in the solution space, and using the transmission condition along with
the periodicity). This solvability condition is also interpreted as an orthogonality
condition with the kernel of the adjoint problem.

To find a solution to the strip problem we narrow the solution space by adding a
side condition which in principle eliminates constants. To this end we let

(105) u(y1) :=

∫ 1

0

u(y1, y2) dy2,

and define

V ±0 :=
{
u ∈ V ± such that u(0) = 0

}
,

where u(0, y2) is understood in the sense of trace. Thanks to the zero-mean condition
at y1 = 0, V ±0 are Hilbert spaces equipped with the norms

‖u‖V +
0

:= ‖eγy1∇u‖L2(G+) and ‖u‖V −
0

:=
∥∥e−γy1∇u∥∥

L2(G−)
.

In this framework, we are looking for a solution (w−, w+) ∈ X(G) to (100)–(103),
where

X(G) :=
{

(u−, u+) ∈ V −0 × V +
0 , such thatu−(0, y2) = u+(0, y2), y2 ∈ [0, 1]

}
.

To control the behavior of the function itself as y1 → ±∞ we need the following test
space

Ṽ ±0 :=
{
u ∈ V ±0 , such that e±γy1u ∈ L2(G±)

}
equipped with the norm

‖u‖2
Ṽ ±
0

= ‖u‖2
V ±
0

+ ‖e±γy1u‖2L2(G±).

Now multiplying (100) and (101) by e−2γy1v− and e2γy1v+, respectively, for (v−, v+) ∈
X̃(G), where

X̃(G) :=
{

(u−, u+) ∈ Ṽ −0 × Ṽ +
0 , such that u−(0, y2) = u+(0, y2), y2 ∈ [0, 1]

}
,
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2555

integrating by parts, and using (103), we may put (100)–(103) in the following varia-
tional form: find w := (w−, w+) ∈ X(G), both periodic in y2, satisfying∫

G−
a(y1, y2)∇w− · ∇(e−2γy1v−) dy1dy2 +

∫
G+

∇w+ · ∇(e2γy1v+) dy1dy2

=

∫ 1

0

hv+ dy2(106)

for every v := (v−, v+) ∈ X̃(G). Note that X̃(G) ⊂ X(G) and since the solution
space and the test space are different, from Tartar’s lemma, section 10.3 in [23], to
prove the solvability of (106) it suffices to prove that the continuous bilinear form
A : X(G)× X̃(G)→ R defined by

A(w, v) : =

∫
G−

a(y1, y2)∇w− · ∇(e−2γy1v−) dy1dy2

+

∫
G+

∇w+ · ∇(e2γy1v+) dy1dy2(107)

is M -coercive, that is there exists a bounded linear and onto mapping M : X(G) →
X̃(G) such that

A(w,Mw) ≥ c‖w‖X(G) for all w ∈ X(G) and for some c > 0.

Our construction of the linear mapping M makes use of the construction by Lions
in [23, section 10.4] of a similar mapping in the half-strip. In particular, we define
M = (M+,M−), where

M+u+ = u+ − 2γe−2γy1 ∗ u+, y1 > 0,

and
M−u− = u− + 2γe2γy1 ∗ u−, y1 < 0,

where u± is defined by (105) and ∗ denotes the convolution in y1 where the functions
are extended by zero on the other half-line and this does not cause any problem since
u±(0) = 0. In [23, section 10.4] it is shown that M+ is bounded linear and onto
mapping from V +

0 to Ṽ +
0 (the only difference between our spaces and the spaces in

[23, section 10.4] is the condition at y1 = 0 and this does not change anything in the
proof). By making the change of variable y1 → −y1 the same argument implies that
M− is bounded linear and onto mapping from V −0 to Ṽ −0 . Furthermore since

M+u+(0, y2) = M−u−(0, y2), y2 ∈ [0, 1],

we can conclude that M : X(G) → X̃(G) in bounded linear and onto. Next one can
calculate

A(w,Mw) =

∫
G−

a(y1, y2)e−2γy1∇w− · ∇w− dy1dy2(108)

−2γ

∫
G−

a1ie
−2γy1 ∂w

−

∂yi
(w− − w−)dy1dy2

+

∫
G+

e2γy1∇w+ · ∇w+ dy1dy2

+2γ

∫
G+

a1ie
2γy1

∂w+

∂yi
(w+ − w+)dy1dy2.
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2556 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

By Poincaré’s inequality we have that

(109) ‖w±(y1, y2)− w±(y1)‖L2[0, 1] ≤ cp
∥∥∥∥∂w±∂y2

∥∥∥∥
L2[0, 1]

and since the derivatives of w± “decay exponentially” as y1 → ±∞ it follows that
e±γy1(w± − w±) ∈ L2(G±). From the definition of the norm X(G) and the positive
definiteness of a, the first and third terms on the right-hand side of (108) are positive
and bounded below:∫
G−

a(y1, y2)e−2γy1∇w− · ∇w− dy1dy2 +

∫
G+

e2γy1∇w+ · ∇w+ dy1dy2 ≥ α‖w‖2X(G).

Further, using (109), the second and the fourth terms of (108) have absolute values
bounded above by cγ‖w‖2X(G). Hence

A(w,Mw) ≥ (α− cγ)‖w‖2X(G)

which implies M -coercivity for small enough γ (since α and c are independent of γ).
From Tartar’s lemma, this completes the proof of the existence of a unique solution to
(100)–(103) in the space X(G). Any other solution to (100)–(103) in V +×V − differs
from this found solution by a constant. Therefore, if h satisfies (104), a solution to
(100)–(103) exists, and it is unique up to an additive constant.

Theorem 9. Assume that χ ∈ C1[0, 1], g ∈ C1[0, 1], and
∫ 1

0
g(y2)dy2 = 0. Then

there exists a w ∈ H1([−R,R] × [0, 1]) for all R > 0, and periodic in y2 with period
[0, 1], unique up to a additive constant, satisfying

∇y ·
(
a(y1, y2)∇w

)
= 0, y1 < 0, −∞ < y2 < +∞,(110)

∆yw = 0, y1 > 0, −∞ < y2 < +∞,(111)

w+(0, y2)− w−(0, y2) = χ(y2), −∞ < y2 < +∞,(112)

∂y1w
+(0, y2)− a1i(δ, y2)∂yiw

−(0, y2) = g(y2), −∞ < y2 < +∞,(113)

along with eγy1∇w ∈ L2(G+) for y1 > 0 and e−γy1∇w ∈ L2(G−) for y1 < 0 for some
γ > 0, where χ(y2) and g(y2) are extended periodically in y2 with period [0, 1].

Proof. Let w̃ be the solution of the following problem,

∆w̃ = 0 y1 > 0, −∞ < y2 < +∞,(114)

w̃(0, y2) = χ(y2) −∞ < y2 < +∞,(115)

eγy1∇w̃ ∈ L2(G+).(116)

This problem can be explicitly solved and the solution is

w̃ = a0 +

∞∑
n=1

(an cos 2nπy2 + bn sin 2nπy2) e−2nπy1 ,

where a0, an, bn are the Fourier coefficients of χ. In particular, we have that∫ 1

0

∂w̃

∂y1
(0, y2) dy2 = 0.
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2557

Then w− := w|G− ∈ V −0 and w+ := w|G+ − w̃ ∈ V +
0 are the unique solution of

(100)–(103) with Neuman data h replaced by

(117) h(y2) := g(y2)− ∂w̃

∂y1
(0, y2).

From the above and the assumption on g we have that h given by (117) is such that
h(0) = 0, i.e, it has mean zero at [0, y2]. This means that the solvability condition for
the strip problem is satisfied and the theorem follows from the discussion in section
A.1 prior to this theorem.

A.2. L2-boundedness of the boundary corrector. Although L2 estimates
(see [9] and [18]) are, in general, expected for the transmission problems satisfied
by the boundary correctors discussed above, here we only show that the boundary
corrector θε given by (57) is bounded in L2(BR)-norm for any ball BR of radius R
containing D. In particular we use here an approach by duality following [27].

Theorem 10. Let u0 ∈ H2(BR) be the solution of (4), and let θε be given by
(57). Then

‖θε‖L2(BR) ≤ CR‖u0‖H2(D),

where BR is an arbitrary ball of radius R containing D and C which depends only
on R.

Proof. Without loss of generality we prove our theorem for the boundary corrector
θ̂ε given by (18). Let φ ∈ L2(BR) and let Wε ∈ H1

loc(Rd) be the solution of (26) where
φ is extended by zero outside BR. Let W0, W (1), and Θε be analogous to u0, u1,
and θ̂ε corresponding to Wε in the same type of homogenization analysis as for uε in
section 3. Integrating by parts, using the equations for Wε, and arguing in the same
way as in the proof of Lemma 1 to cancel the boundary terms on ∂BR we have∫

BR

θ̂ε φdx = −
∫
D

a(x/ε)∇θ̂ε · ∇Wε dx+ k2
∫
D

n(x/ε)θ̂εWε dx

+

∫
∂D

ν · a(x/ε)∇W−ε θ̂−ε dsx(118)

+

∫
∂D

ν · ∇θ̂+ε · W+
ε dsx −

∫
∂D

ν · ∇W+
ε · θ̂+ε dsx.

Integrating again by parts in D, using the equation for θε, the transmission conditions
for θε across ∂D, and the continuity of Wε and its conormal derivative across ∂D from
(26) we have that∫

BR

θ̂ε φdx =

∫
∂D

ν ·
(
v0 − v0

ε
+ v̂(1)

)
W+
ε dsx −

∫
∂D

u(1) (ν · ∇W+
ε ) dsx

=

∫
∂D

ν ·
(
rot(q) + k2a∇yβ(y)u0

)
W+
ε dsx(119)

+

∫
∂D

χj(x/ε)
∂u0
∂xj

(ν · ∇W+
ε ) dsx.

The same analysis as in section 3 applies to Wε. In particular by the analogue of
Lemma 1

(120) ‖Wε − (W0 + εW (1) + εΘε)‖H1(BR) ≤ CR ε‖W0‖H2(D),
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2558 FIORALBA CAKONI, BOJAN B. GUZINA, AND SHARI MOSKOW

where CR is a constant independent of ε and W0. By continuity of the trace mapping
γ+ : H1(BR \D)→ H1/2(∂D), (120) also holds in the H1/2(∂D)-norm. In particular,
since the bulk correction W (1) is zero outside D, (26) takes the form

‖Wε − (W0 + εΘε)‖H1(BR\D) ≤ CR ε‖W0‖H2(D).

Now from the equations satisfied by Wε, W0, and Θε, we have that their Laplacian is
in L2(BR \D) hence they are in H1(BR \D,∆). For such functions u, it is well known
(see, e.g., Theorem 5.7 in [11]) that γ+1 : u 7→ ν · ∇u can be extended as a bounded
linear mapping from H1(BR \D,∆)→ H−1/2(∂D), which implies that

(121) ‖ν · ∇(W+
ε −W+

0 − εΘ+
ε )‖H−1/2(∂D) ≤ CR ε‖W0‖H2(D).

Hence we can estimate∣∣∣∣∫
∂D

ν ·
(
rot(q) + k2a∇yβ(y)u0

)
W+

0 dsx

∣∣∣∣ ≤ ∣∣∣∣∫
∂D

q rot(W+
0 ) · ν dsx

∣∣∣∣
+k2

∣∣∣∣∫
∂D

ν · a∇yβ(y)u0W
+
0 dsx

∣∣∣∣ ≤ C1‖u0‖H2(D)‖W0‖H2(D)(122)

since by (15) q in H−1(∂D) is bounded by the H2(D)-norm of u0 independent of ε
and by (17) a∇yβ(y) is bounded in H1/2(∂D) independent of ε. Also we know that

‖u(1)‖L2(∂D) ≤ C‖u0‖H2(D),

and hence we have∣∣∣∣∫
∂D

u(1) (ν · ∇W+
0 ) dsx

∣∣∣∣ ≤ C‖u(1)‖L2(∂D)‖∇W0‖L2(∂D)

≤ C2‖u0‖H2(D)‖W0‖H2(D).(123)

Next∣∣∣∣∫
∂D

(
v0 − v0

ε
+ v̂(1)

)
εΘε dsx

∣∣∣∣ ≤ εC2

∥∥∥∥v0 − v0ε
+ v̂(1)

∥∥∥∥
H−1/2(∂D)

‖Θε‖H1/2(∂D)

≤ C3‖u0‖H2(D)‖W0‖H2(D)(124)

since by the analogue of (34)

‖Θε‖H1/2(∂D) ≤ Cε−1/2‖W0‖H2(D)

and by (34) ∥∥∥∥v0 − v0ε
+ v̂(1)

∥∥∥∥
H−1/2(∂D)

≤ Cε−1/2‖u0‖H2(D).

Similarly, since in addition we have

‖u(1)‖H1/2(∂D) ≤ Cε−1/2‖u0‖H2(D),

∣∣∣∣∫
∂D

u(1) ε(ν · ∇Θ+
ε ) dsx

∣∣∣∣ ≤ Cε‖u(1)‖H1/2(∂D)‖Θε‖H1/2(∂D)

≤ C4‖u0‖H2(D)‖W0‖H2(D).(125)
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HOMOGENIZATION OF A TRANSMISSION PROBLEM 2559

Finally, again using (34) and its analogue for Θε we have∣∣∣∣−ε ∫
D

a(x/ε)∇θ̂ε · ∇Θε dx+ k2ε

∫
D

n(x/ε)θ̂ε Θε dx+ ε

∫
∂D

ν · a(x/ε)∇Θ−ε θ̂
−
ε dsx

+ε

∫
∂D

ν · ∇θ̂+ε · Θ+
ε dsx − ε

∫
∂D

ν · ∇Θ+
ε · θ̂+ε dsx

∣∣∣∣
≤ εC‖θε‖H1(BR)‖Θε‖H1(BR) ≤ C5‖u0‖H2(D)‖W0‖H2(D).(126)

Now combining (122), (123), (124), (125), and (126) together with the fact that
the remainder of (120) is of order ε, and since ‖W0‖H2(D) ≤ ‖φ‖L2(BR) from the
homogenized equations for W0, we obtain that

‖θ̂ε‖L2(BR) ≤ C‖u0‖H2(D).

Now, we notice that the difference between θ̂ε and θε is in the jump of derivatives
across the boundary ∂D, which in a similar way to the second term of (122) can
be bounded in the L2(BR)-norm by ‖u0‖H2(D) independently of ε. This proves the
theorem.
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CORRECTION

The author of reference [32] is incorrect. The corect reference is as follows.

V. Vinoles, Problèmes d’interface en presence de métamatériaux: Modélisation,
analyse et simulations, Thèse de doctoratès mathématiques, Université Paris-Saclay,
2016.
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