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Abstract
In this paper we consider the inverse acoustic scattering (in 3) or electro-
magnetic scattering (in 2, for the scalar TE-polarization case) problem of
reconstructing possibly multiple defective penetrable regions in a known
anisotropic material of compact support. We develop the factorization method
for a non-absorbing anisotropic background media containing penetrable
defects. In particular, under appropriate assumptions on the anisotropic
material properties of the media we develop a rigorous characterization for the
support of the defective regions from the given far field measurements. Finally
we present some numerical examples in the two-dimensional case to
demonstrate the feasibility of our reconstruction method including examples
for the case when the defects are voids (i.e. subregions with refractive index
the same as the background outside the inhomogeneous hosting media).

Keywords: factorization method, anisotropic materials, non-destructive
testing, inverse scattering problem

(Some figures may appear in colour only in the online journal)

1. Introduction

Nondestructive testing of exotic materials using acoustic or electromagnetic waves is an
important engineering problem. The inverse problem that we are interested in is to determine
the shape and position of defects in a known anisotropic material of compact support. This
problem arises for example in nondestructive testing of airplane canopies. Using Newton type
optimization techniques it is possible to reconstruct the refractive index of the defect (see e.g.
[8, 12] and the references therein for inverse medium problem in a homogeneous background).
However, such methods require good a priori information about the type and the number of
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components of possible defects, and they are problematic for anisotropic media due to lack of
uniqueness (see [7]. Alternative methods for solving the inhomogeneous media inverse problem
that come under the general title of qualitative methods, such as sampling methods, practically
do not require any a priori information but as oppose to nonlinear optimization techniques only
seek limited information about the defects. It has been shown in [11] that, when the defect is a
void(s) (i.e. subregions with refractive index the same as the background outside the inho-
mogeneous hosting media) one can qualitatively obtain information about the size of the void(s)
from far field data using the corresponding transmission eigenvalues (see definition 4.1 in this
paper). In this paper we develop a factorization method (see [13, 14] and the references therein),
to reconstruct the support of the defective region. A similar problem was considered in [2],
where it is assumed that the background media is piecewise homogeneous with a sound-soft
obstacle embedded in it. Also in [10] the factorization method was developed for non-absorbing
inhomogeneous media embedded in a piecewise homogeneous background. We remark that
other qualitative methods such as the linear sampling method and reciprocity gap functional
have been developed for inhomogeneous (possibly anisotropic) background [5, 6, 9]. We
remark that the factorization method is the most rigorously justified technique within the class
of qualitative methods in inverse scattering.

Motivated by nondestructive testing of anisotropic material, we develop the factorization
method for determining the support of a penetrable (possibly anisotropic) defective region
embedded in a known anisotropic media of compact support sitting in a homogeneous
background. The factorization method gives a rigorous characterization of the support of the
defect in terms of the far field operator provided that the background is known hence pro-
viding also a uniqueness result. Note that for anisotropic defects the unique determination of
the support is the best we can hope, since in general it is well known that the matrix-valued
refractive index is not uniquely determined. We note that, the factorization method for this
configuration involves the computation of the far field pattern of the Green function for the
inhomogeneous background media. However for the case of anisotropic homogeneous media
we extend the result in [2] and provide a simple formula to compute the far field pattern of the
background Greenʼs function in terms of the total field due to the background. As a particular
application of this study, we consider the determination of the support of voids inside a
known anisotropic media.

The paper is structured as follows. After formulating the scattering problem in the next
section, we construct a factorization of the far field field operator which is defined in terms of
the measured far field data and the far field pattern of the scattered field due to the back-
ground. Then in section 4 we use the main factorization theorems in [13] and [14] to derive an
indicator function for the support of the defect D0 embedded in a known anisotropic media
with support D (see figure 1) under reasonable assumptions on the constitutive parameters of
the background and the defect. In the last section we present some numerical examples to
show the viability of our reconstruction method. We remark that for standard asymptotic
expressions in scattering theory used here, we refer the reader to [4] for the case of 2 and to
[8] for the case of 3.

2. Formulation of the problem

We start by introducing the scattering problem for a ‘healthy’ and ‘faulty’ material in m,
m = 2, 3.

To this end, let ⊂D m be a bounded simply connected open set having piece-wise
smooth boundary ∂D with v being the unit outward normal to the boundary. We assume that
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the constitutive parameters of the media in D are represented by a real-valued symmetric
matrix ∈ ×( )A C D˜ , m m1 and a real valued function ∈n C D˜ ( )1 such that

ξ ξ ξ⩾ >A x a· ˜ ( ) | | 0min
2 and ⩾ >n x n˜ ( ) 0min for almost all ∈x D and all ξ ∈ m. Outside

D the background media is homogeneous isotropic with refractive index scaled to one. We
denote by A and n the constitutive parameters of the anisotropic background m given by

 
=

∈
∈ ⧹

=
∈

∈ ⧹
⎪

⎪

⎧
⎨
⎩

⎧⎨⎩A x
A x x D

I x D
n x

n x x D

x D
( ) :

˜ ( ) ,

,
( ) :

˜ ( ) ,

1 ,m m

where I is the identity matrix. Note that the support of −A I and −n 1 is D . Now the
scattering of an incident plane wave e kx di · , where d is a unitary vector, by the ‘healthy’
anisotropic material (i.e. without defects) is mathematically formulated as: find ∈u H ( )b

m
loc
1

with = +u u eb b
s kx di · such that

+ = A x u k n x u· ( ) ( ) 0 in , (1)b b
m2

∂
∂
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− ⎛
⎝⎜
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r
kulim i 0, (2)
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2

where the radiation condition (2) is satisfied uniformly with respect to =x x xˆ | |. We recall
that (1) implies that across the interface ∂D we have

∂
∂

=
∂
∂

∂
− +u

v

u

v
Don ,b

A

b

where the superscripts + and − for a generic function indicates the trace on the boundary taken
from the exterior or interior of its surrounding domain, respectively. Here ub is the total field
in the background (including the homogeneous part and the anisotropic media of compact
support D) and usb is the scattered field due to the anisotropic region D of the background. It is
known that the scattered field u d( · , )b

s which depends on the incident direction d, has the
following asymptotic expansion

= + → ∞∞
−

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( )u x d
x

u x d
x

x( , )
e

ˆ,
1

as ,b
s

k x

b

i

m 1
2

where =x x xˆ : | | and ∞u x d( ˆ, )b , which depends on the incident direction d and observation
direction x̂ , is the corresponding far field pattern. The far field pattern is given by the integral
representation

Incident Field
Incident FieldScattered Field

Scattered Field

D
D\DO

DO

Figure 1. Example geometry of the scattering of a medium without and with a defective
region.
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where the constant γm, m = 2, 3 is given by γ =
π

π

k2
e

8

i 4

and γ =
π3
1

4
and the region Ω is any

subset of m such that Ω⊆D . We now define the far field operator for the background
scattering problem as  ↦F L L: ( ) ( )b

2 2





∫= ∈∞( )( ) ( )F g x u x d g d s d g Lˆ : ˆ, ( ) d ( ), ( ),b b
2

where  = ∈ =x x{ : | | 1}m is the unit circle or sphere. For later use we introduce the
scattering operator associated with this scattering problem, which plays an essential role in
our factorization in the follow section.

Definition 2.1. The scattering operator  → L L: ( ) ( )b
2 2 for (1)–(2) is defined by

γ= + I k F2i . (4)b m b

Since A and n are real valued, the scattering operator is unitary, i.e. = =    Ib b b b
* * (see

theorem 7.32 in [4] in 2; exactly same argument applies in 3).

Next we assume that inside the anisotropic material D there is a defect (possibly ani-
sotropic and/or absorbing) occupying the subregion D0 such that ⊂D D0 having piecewise
smooth boundary ∂D0 (see figure 1). Note that D0 can be of multiple components with
connected complement. We denote by Ã0 and ñ0 the material properties of the medium in D0.
We further assume that the symmetric matrix-valued function Ã0 is such that

∈ ×( )A C D˜ , m m
0

1
0 , ξ ξ α ξ⩾R A x· ( ˜ ( )) | |0 0

2, ξ ξ ⩽I A x· ( ˜ ( )) 00 for all ξ ∈ m and for all

∈x D0, whereas the scalar-valued function ñ0 is such that ∈n C D˜ ( )0
1 , ⩾ >R n x c( ˜ ( )) 00 0

and ⩾I n x( ˜ ( )) 00 for all ∈x D0. Let us denote by A0 and n0 the extensions
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Obviously, A x( )0 and n x( )0 are such that −A A0 and −n n0 are supported on D0. Notice
that a specific case of a defect is a void with =A I˜0 and =ñ 10 . The scattering problem for
the anisotropic media with the defective region D0 now reads: find ∈u H ( )m

0 loc
1 with

= +u u es kx d
0 0

i · such that

+ = A x u k n x u· ( ) ( ) 0 in , (5)m
0 0

2
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where again the radiation condition (6) is satisfied uniformly with respect to =x x xˆ | |. Once
again we recall that across the interfaces ∂D and ∂D1 we have that

∂
∂

= ∂
∂

∂ ∂
∂
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− + − +u
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u

v
D

u

v
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v
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A A A
0

0

Similarly since u s
0 is a radiating solution to the Helmholtz equation in  ⧹Dm , we have that its

corresponding far field pattern ∞u x d( ˆ, )0 is given by (3), where ub
s is replaced with u s

0 . The far
field operator  ↦F L L: ( ) ( )0

2 2 for the defective anisotropic media is now defined by
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



∫= ∈∞( )( ) ( )F g x u x d g d s d g d Lˆ : ˆ, ( ) d ( ) where ( ) ( ).0 0
2

The inverse problem we consider here is to determine the support of D0 from a knowledge of
F0, i.e. from a knowledge of the measured far field pattern ∞u x d( ˆ, )0 for all ∈d x, ˆ ,
provided that A, n and D are known.

One can see that, if we take the incident field in (5)–(6) to be = +u d u( · , ) eb b
s kx di · then

the resulting scattered field = −u u us s
b
s

0 is due to the defect D0. Note that the scattered field
us due to the incident field = +u d u( · , ) eb b

s kx di · satisfies the source problem

+ = − + −   ( )A u k n u A A u k n n u· · ( ) in , (7)s s
b b

m
0

2
0 0

2
0

together with the Sommerfeld radiation condition, which coincides with the equation for
−u us

b
s

0 by linearity and (1) and (5). Therefore the relative far-field operator associated with
the scattered field due to the defect is given by





∫= − ∈∞ ∞⎡⎣ ⎤⎦( ) ( ) ( )Fg x u x d u x d g d s d g d L( ) ˆ : ˆ, ˆ, ( ) d ( ) where ( ) ( ),b0
2

which is = −F F Fb0 . Note that F0 is what we measure and Fb is computable since A, n and
D are known, hence we can assume that we know F.

Remark 2.1. The smoothness of the coefficients A0, A, n and n0 in our analysis can be
relaxed e.g. to Lipschitz continuous or as regular as it is needed to apply unique continuation
to the solution of the direct scattering problem.

3. Factorization of the far field operator

Our goal in the current section is to construct a factorization of the relative far field operator
= −F F Fb0 in such a way as to use the factorization method in [13, 14], in order to develop a

range test for the support D0 of the defect in terms of the measured far field operator. To this
end motivated by the expression (7) for the scattered field due to the defect, we consider the
problem of finding ∈u H ( )m

loc
1 for a given ∈v H D( )1

0 such that

+ = − + −   ( )A u k n u A A v k n n v· · ( ) in , (8)m
0

2
0 0

2
0
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∂

− =
→∞
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⎞
⎠r

u

r
kulim i 0.

r

m 1
2

At this point let us recall the exterior Dirichlet-to-Neumann map
 ∂ ↦ ∂−H B H B: ( ) ( )k R R

1 2 1 2 given by  = φ
ν

∂
∂

fk on ∂BR, where

Δφ φ
φ

φ φ

+ = ⧹
= ∂

∂
∂

− =
→∞
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⎝

⎞
⎠

k B

f B

r
r

k

0 in ,

on ,

lim i 0

m
R

R

r

2

m 1
2

with = ∈ <B x x R{ : | | }R
m . With help of Dirichlet-to-Neumann operator we can write (8)

in the following equivalent variational form: find ∈u H B( )R
1 such that
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∫ ∫

∫

φ φ φ

φ φ φ
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which will be used frequently in what follows. It is standard to shown that the above problem
is well-posed, and furthermore if =v u |b D0 we see that the scattered field = −u u us s

b
s

0

(where ub
s and u s

0 are the scattered fields for (1)–(2) and (5)–(6), respectively) must coincide
with u given by (8). We now define the source-to-far field pattern operator as

↦ = ∞( )G H D L Gv u: ( ) given by : .1
0

2
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Obviously F = GH. To further factorize the operator F we first need to compute the adjoint
→H H D L*: ( ) ( )1

0
2 of the operator H defined above.

Lemma 3.1. The operator ↦H H D L*: ( ) ( )1
0

2 is given by

γ− = ∞H v v* ˜ ,m b
*

where ∞ṽ is the far field pattern of the radiating field ∈v H˜ ( )loc
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Proof. Let ∈v H D( )1
0 be given then we can construct a unique radiating field
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1 that satisfies (10) (see chapter 5 of [4]). Now we have that integration by

parts gives





∫

∫

∫

∫ν ν

=

= − − +

= ∂
∂

−
∂
∂

+ +

∂

∂

 

 
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
( )

( )

( )H v g v Hg

A v v k nvv x v v s

v
v

v
v

s v A v k nv x

* , ( , )

˜ · ˜ d ˜ d

˜
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where we recall that


∫= +( )v x u x d g d s d( )( ) ( , ) e ( ) d ( )g
b

b
s kx di · for all of ∈x m. Using that

the matrix A is real symmetric along with =I n x{ ( )} 0 and that + = A v k nv· 0g
b

g
b2 in m

gives that the integral over BR is zero. Now by using the definition of vg
b and changing the

order of integration we have that
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We notice that (3) gives that
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Using the asymptotic behavior of a radiating solution to Helmholtz equation and its derivative
(see [4] for the case of 2 and [8] for the case of 3) and letting → ∞R the second integral in
(11) becomes
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Now for any given ϕ ∈ H D( )1
0 we can construct a function ∈ϕw H ( )m

loc
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ϕ ϕ+ = − + −ϕ ϕ   ( )A w k nw A A k n n· · ( ) in , (14)m2
0

2
0
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and then let ∈u H ( )m
loc
1 be the unique solution to (8) for a given ∈v H D( )1

0 . Now by
letting ϕ = +v u |D0 and the corresponding = ϕw w: , we observe that this w satisfies the
variational problem

∫ ∫

∫ ∫

φ φ φ

φ φ φ

− − +

= − − + + − + ∀ ∈

∂

 

 ( ) ( )

A w k nw x w s

A A v u x k n n v u x H B

· d d

( ) · d ( )( ) d .

B B

k

D D

R

2

0
2

0
1

R R

0 0

Next by means of Riesz representation theorem, we define the bounded linear operator
↦T H D H D: ( ) ( )1

0
1

0 such that for all φ ∈ H D( )1
0

∫ ∫φ φ φ= − − + + − + ( )( )Tv A A v u x k n n v u x( , ) ( ) · d ( )( ) d . (15)H D

D D

0
2

01
0

0 0

Notice that the function u defined by solving (8) satisfies

+ = − + + − +   ( )A u k nu A A v u k n n v u· · ( ) ( )( ) in , (16)m2
0

2
0

together with the Sommerfeld radiation condition, which gives that u = w in m since (14) is
well-posed. Therefore we conclude that =∞ ∞u w . Now by the definition of the operators G
we have that =∞u Gv while using the definition of H* and T we have that

γ= −∞ w H Tv*m b . We now conclude that γ= − Gv H Tv*m b . From the above analysis
and the fact that F = GH we have the following factorization.

Theorem 3.1. The far field operator  ↦F L L: ( ) ( )2 2 associated with (8) can be
factorized as γ= − F H TH*m b .

4. The factorization method

In this section we connect the support of the defect D0 to the range of an operator defined by
the measured far field operator based on the factorization method discussed in [13] or [14].
We make this connection by analyzing the factorization of the far field operator developed in
the previous section. Defining γ= − F F˜ : *m b

1 , we recall from the previous section that we
have the following factorization = −F H TH˜ * . Under appropriate assumptions on the
operators H and T the factorization method states that the range of the operators

↦H H D L*: ( ) ( )1
0

2 and  ↦♯F L L˜ : ( ) ( )
1 2 2 2 coincide, where = +♯ R IF F F˜ | ( ˜ )| | ( ˜ )|.

To arrive at the above range test we use the abstract theorems proven in [13] and [14] on
the range identities. To this end, we recall that for a generic bounded linear operator

→B X Y: , where X and Y are Banach spaces, we define the real and imaginary part selfajoint
operators by

= + = −
R IB

B B
B

B B

i
( )

*

2
and ( )

*

2
.

Furthermore for a generic self-adjoint compact operator B on a Hilbert space U, B| | is defined
in terms of the spectral decomposition as λ ψ ψ= ∑B x x| |( ) | |( , )j j j for all ∈x U where
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λ ψ ∈ × U( , )j j is the orthonormal eigensystem of B. Now, let ⊂ ⊂X U X* be a Gelfand
triple with a Hilbert space U and a reflexive Banach space X such that the embedding is dense.
Furthermore, let Y be a second Hilbert space and let ↦F Y Y˜ : , ↦H Y X: and ↦T X X: *

be linear bounded operators such that =F H TH˜ * .

Theorem 4.1. (Theorem 2.15 in [13]) Assume that

(i) H* is compact with dense range.
(ii) There exists π∈t [0, 2 ] such that R T(e )it is the sum of a compact operator and a self-

adjointcoercive operator.
(iii) I T( ) is compact and non-negative on the range  H( ) of H.
(iv) R T(e )it is injective or I T( ) is strictly positive on the closure  H( ).

Then the operator = +♯ R IF F F˜ | (e ˜ )| ( ˜ )it is positive, and the range of the operators

↦H X Y*: * and ↦♯F Y Y˜ :
1 2

coincide.

Theorem 4.2. (Theorem 2.1 in [14]) Assume that

(i) H is compact and injective.
(ii) R T( ) is the sum of a compact operator and a self adjoint coercive operator.
(iii) I T( ) is non-negative on X. Moreover assume that either of the following is satisfied:
(iv) T is injective.
(v) I T( ) is strictly positive on the (finite-dimensional) null space of R T( ).

Then the operator = +♯ R IF F F˜ | ( ˜ )| ( ˜ ) is positive, and the range of the operators

↦H X Y*: * and ↦♯F Y Y˜ :
1 2

coincide.

We note that just as in the remark after theorem 2.15 in [13] we have that if I T( ) is non-
positive then both theorems hold for = −♯ R IF F F˜ | ( ˜ )| ( ˜ ), hence in either case we can use

+R IF F| ( ˜ )| | ( ˜ )| in the range test.
We dedicate this section to showing that H and T satisfy the necessary conditions to

apply any of the above range tests. To this end, letʼs define the interior transmission eigen-
value problem in the defective region D0 as finding a pair ∈ ×w v H D H D( , ) ( ) ( )1

0
1

0 such
that for given ∈ ∂ × ∂−f h H D H D( , ) ( ) ( )1 2

0
1 2

0 satisfies

+ = A w k n w D· 0 in , (17)0
2

0 0

+ = A v k nv D· 0 in , (18)2
0

− = ∂w v f Don , (19)0

ν ν
∂

∂
− ∂

∂
= ∂w v

h Don . (20)
A A

0
0

Definition 4.1. The values of ∈k for which the homogeneous interior transmission
problem, i.e. (17)–(20) with =f h( , ) (0, 0), has nontrivial solutions are called transmission
eigenvalues for D0.
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The following results are know if =A I0 and =n 10 . The proofs can be readily extended
to the current case. We state the results and give the corresponding reference for the proof in
the case of =A I0 and =n 10 .

Theorem 4.3. Assume that − RA A( )0 is positive definite or negative definite. Then (17)–
(20) satisfies the Fredholm alternative, i.e. if k is not a transmission eigenvalue there exits a
unique solution to (17)–(20) that depends continuously on the data (f, h).

See [4] for the proof.

Theorem 4.4.

(i) If <I A( ) 00 and/or >I n( ) 00 in D0 then there are no real transmission eigenvalues.
(ii) Assume that =I A( ) 00 and =I n( ) 00 . Then the set of real transmission eigenvalues is

at most discrete with +∞ as the only possible accumulation point provided:
(a) −A A0 is positive or negative definite uniformly in D0 and ∫ − ≠n n dx( ) 0

D 0
0

,

(b) −A A0 is positive or negative definite uniformly in D0 and ≡n n0.

See [4], chapter 6 for the proof of parts (i) and (ii)(b), and [3] for the proof of part (ii)(a).
We call ( · , · ) the Greenʼs function of the background media, i.e.

 ∈ ⧹z H z(· , ) ( { })m
loc
1 which solves

  




δ+ = − − ⧹
∂

∂
− =

→∞

−

 

⎜ ⎟⎛
⎝

⎞
⎠

A z k n z z z

r
z

r
k z

· (· , ) (· , ) (· ) in { },

lim
(· , )

i (· , ) 0.

m

r

2

m 1
2

Outside of the scattering object D we have that, for a fixed ∈z m,  z(· , ) is a radiating
solution to Helmholtz equation in  ⧹Bm

R for some R sufficiently large. So we let

 ∈∞ z L(· , ) ( )2 be the far field pattern of  z(· , ).

Theorem 4.5. The operator ↦H H D L*: ( ) ( )1
0

2 defined in lemma 3.1 satisfies the
following:

(i) H* is compact with dense range (or in other words H is compact and injective).
(ii)  ∈∞ z H(· , ) ( *)b

* if and only if ∈z D0.

Proof. (i) H* is compact due to the fact that the mapping ↦v ṽ is bounded from H D( )1
0 to

H ( )m
loc
1 and ↦ ∞v v˜ ˜ is compact from H ( )m

loc
1 to L ( )2 . We have also used that the

scattering operator is bounded. Now to prove that H* has dense range it is sufficient to prove
that H is injective. So assume that ∈g L ( )2 is such that Hg = 0, then vg

b defined by


∫=v u x d g d s d: ( , ) ( ) d ( )g

b
b for all ∈x m therefore we have that =v 0g

b in D0. Therefore
since vbg satisfies

+ = A v k nv· 0 ing
b

g
b m2

we have that, by a unique continuation argument, =v 0g
b in any large ball BR of arbitrary

radius R. But = +v u ug
b

g
s

g
i, where


∫=u u x d g d s d( , ) ( ) d ( )g

s
b
s and


∫=u g d s de ( ) d ( )g

i kx di · .
We now observe that usg is a radiating solution to the Helmholtz equation whereas uig is an
entire solution to the Helmholtz equation. Hence = =u u 0g

s
g
i in m which implies g = 0 in

L ( )2 .
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(ii) Let ∈ ⧹z Dm
0 and assume that there is some ∈v H D( )1

0 such that

= ∞H v z* (· , )b
* . We can then conclude by the definition of H* that there isa
∈v H˜ ( )m

loc
1 satisfying (10) and therefore + = A v k nv· ˜ ˜ 02 in  ⧹Dm

0 and
=∞ ∞v z˜ ( · , ). Therefore Rellichʼs lemma and unique continuation gives that =v z˜ (· , )

in  ∪⧹ D z( { })m
0 , which is a contradiction since  ∉z H B z(· , ) ( ( ))r

1 and ∈v H B z˜ ( ( ))r
1 ,

for any disk Br(z) centered at z of radius >r 0.
Now let ∈z D0 then we have that  ∈ ⧹z H D(· , ) ( )m

loc
1

0 . Since k is not a transmission
eigenvalue in D0 we can construct w v( , )z z that solve the interior transmission problem (17)–

(20) with  =
ν
∂

∂( )f h z z( , ) ( · , ) , ( · , )
A

. Now let

 
=

−
⧹

⎧⎨⎩u
w v D

z D
:

in

( · , ) inz
z z

m

0

0

therefore we have that ∈u H ( )z
m

loc
1 with =∞ ∞u z(· , )z such that

+ = − + −   ( )A u k nu A A w k n n w· · ( ) in .z z z z
m2

0
2

0

The latter implies that for all φ ∈ H B( )R
1

∫ ∫ ∫

∫

φ φ φ φ

φ

− − + = − −

+ −

∂

   ( )A u k nu x u s A A w x

k n n w x

· d d · d

( ) d . (21)

B

z z

B

k z

D

z

D

z

2
0

2
0

R R 0

0

Let θ ∈ H D( )z
1

0 be defined from the right-hand side of (21) by means of the Riesz
representation theorem, hence we have

∫ ∫φ φ φ θ φ− − + =
∂

  ( ) ( )A u k nu x u s· d d , .

B

z z

B

k z z H D
2

R R

1
0

Thus we now conclude that γ θ− = ∞H z* (· , )m z b
* by the definition of H* giving the

result. □

Next we analyze the properties of the middle operator T defined by (15).

Theorem 4.6. The operator ↦T H D H D: ( ) ( )1
0

1
0 is injective provided that either one of

the following conditions are satisfied:

(i) <I A( ) 00 in D0 and ∫ − ≠n n dx( ) 0
D 0 .

(ii) ⩽I A( ) 00 and >I n( ) 00 in D0.
(iii) =I A( ) 00 , =I n( ) 00 in D0 and either − >A A 00 and − <n n 00 or − <A A 00 and

− >n n 00 in D0.

Proof. Assume that Tv = 0, therefore ∈u H ( )m
loc
1 defined by solving (8) satisfies for all

φ ∈ H B( )R
1

∫ ∫φ φ φ φ− − + = =
∂

  ( )A u k nu x u s Tv· d d ( , ) 0,

B B

k H D
2

R R

1
0
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which implies that u = 0 and therefore we have that for all φ ∈ H D( )1
0

∫ φ φ− − − = ( )A A v k n n v x· ( ) d 0. (22)

D

0
2

0

0

Letting φ = v: , parts (i) and (ii) of the proof follow by taking the imaginary part of (22) (note
that ⩾I n( ) 00 ) whereas part (iii) is obvious from the assumptions. □

Theorem 4.7. The imaginary part of the operator ↦T H D H D: ( ) ( )1
0

1
0 satisfies the

following properties:

(i) ⩽I T v v( ( ) , ) 0H D( )1
0 .

(ii) If k is not a transmission eigenvalue for D0 then <I T v v( ( ) , ) 0H D( )1
0 for ∈ v H( ).

(iii) If =I A( ) 00 then I T( ) is compact.

Proof.

(i) Recall that for any ∈v H D( )j
1

0 there is a unique ∈u H ( )j
m

loc
1 that is a solution to (8).

Now we let ϕ = +v uj j j, therefore using (15) we have that

∫

∫

∫

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

= − − − − − −

= − − − −

+ − − −

 

 

 

( ) ( )( ) ( )

( )

( )

( )Tv v A A u k n n u x

A A k n n x

A A u k n n u x

, · ( ) d

· ( ) d

· ( ) d .

H D

D

D

D

1 2 0 1 2 2
2

0 1 2 2

0 1 2
2

0 1 2

0 1 2
2

0 1 2

1
0

0

0

0

Now using that

ϕ ϕ+ = − + −   ( )A u k nu A A k n n· · ( ) in m
1

2
1 0 1

2
0 1

multiplying by u2 and integrating by parts over BR such that ⊂D BR we have that

∫ ∫ ∫

∫
ν

ϕ

ϕ

− − +
∂
∂

= − −

+ −

∂

   ( )A u u k nu u x u
u

s A A u x

k n n u x

· d d · d

( ) d .

B B D

D

1 2
2

1 2 2
1

0 1 2

2
0 1 2

R R 0

0

This gives that

∫

∫ ∫

ϕ ϕ ϕ ϕ

ν

= − − − −

+ − −
∂
∂

∂

 

 

( ) ( )( )Tv v A A k n n x

A u u k nu u x u
u

s

, · ( ) d

· d d . (23)

H D

D

B B

1 2 0 1 2
2

0 1 2

1 2
2

1 2 2
1

R R

1
0

0

Now taking the imaginary part of (23), where we substitute v2 by v1, using the fact
that A and A0 are symmetric matrices, A and n are real valued and letting → ∞R we
obtain
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

∫ ∫ϕ ϕ= − − ∞I I I( ) ( ) ( )( )T v v A k n x k u s x( ) , ( ) d d ˆ , (24)
H D

D

1 1 0 1
2 2

0 1
2

1
2

1
0

0

where ∞u1 is defined by the asymptotic expansion of the radiating field u1

= + = =∞ −
−

+( )( )u x
r

u x O r r x x x x( )
e

ˆ , , ˆ ,
kr

1

i

1m

m

1
2

1
2

(see [8] in 3 and [4] in 2), which gives that I T( ) is non-positive.
(ii) Now let ∈ v H( ) and assume that =I T v v( ( ) , ) 0H D( )1

0 . Then there is a sequence

∈ v H( )ℓ such that →v vℓ in H D( )1
0 , and let ∈u H ( )ℓ

m
loc
1 be the sequence of the

corresponding solutions of (8). Since uℓ is bounded in H ( )m
loc
1 by the well-posedness of

(8), we can conclude that ⇀u uℓ weakly in H ( )m
loc
1 which implies that



 

∫ ∫φ φ φ φ φ− = − ∈
→∞

∞    ( )A u k n u x A u k n u x Clim · d · d , .
ℓ

ℓ ℓ
m

0
2

0 0
2

0 0
m m

Hence, this limit u is a week solution of

+ = − + −

+ =

   

 

( )A u k n u A A v k n n v

A v k nv D

· · ( ) in ,

· 0 in .

m
0

2
0 0

2
0

2
0

Furthermore, since →I T v v( ( ) , ) 0ℓ ℓ H D( )1
0 , from (24) we conclude that =∞u 0 whence

by Rellich’ lemma and unique continuation u is zero outside of D0. So we have that

=+u 0 and =
ν

∂
∂

+
0u

A
on ∂D0 therefore the pair +u v v( , ) are transmission eigenfunctions

for D0 but since k is not a transmission eigenvalue we have that v = 0.
(iii) If =I A( ) 00 then


∫ ∫ϕ ϕ− = + ∞ ∞I I( ) ( )( )T v v k n x k u u s x( ) , ( ) d d ˆ ,

H D

D

1 2
2

0 1 2 1 21
0

0

now using that the mapping ↦v ṽ is bounded from H D( )1
0 to H ( )m

loc
1 and ↦ ∞v v˜ ˜ is

compact from H ( )m
loc
1 to L ( )2 , we can conclude that the second term in the variational

form given above is compact. Furthermore from the fact that H D( )1
0 is compactly

embedded in L D( )2
0 , we can finally conclude that I T( ) is compact. □

Theorem 4.8. The real part of the operator T satisfies the following property:

(i) If −R A A( )0 is positive definite in D0 thenR T( ) is the sum of a compact operator and a
self-adjoint coercive operator.

(ii) If α− − >R IA A A( ( ) | ( )|) 00 0 uniformly in D0 and − ⩾
α

R IA A( ( ) | ( )|) 00
1

0 for
some constant α > 0 then −R T( ) is the sum of a compact operator and a self-adjoint
coercive operator.

Proof. (i) Assume first that −R A A( )0 is positive definite. Now by using the variational
form (23) for T and the Dirichlet to Neumann operator k we have that

∫ ϕ ϕ ϕ ϕ= − − − − ( ) ( )( )Tv v A A k n n x, · ( ) d (25)
H D

D

1 2 0 1 2
2

0 1 21
0

0
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∫ ∫+ − −
∂

 A u u k nu u x u u s· d d . (26)

B B

k1 2
2

1 2 2 1

R R

Now define the bounded linear operators S and ↦K H D H D: ( ) ( )1
0

1
0 by the Riesz

representation theorem such that



∫

∫ ∫

∫ ∫ ∫

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − +

+ + −

− = − + + +

∂

 

 

( )

( ) ( )

( )

( )

( )

Sv v A A x

A u u u u x u u s

Kv v k n n x x k n u u x

, · d

· d d ,

, ( ) d d 1 d .

H D

D

B B

k

H D

D D B

1 2 0 1 2 1 2

1 2 1 2 2 1

1 2
2

0 1 2 1 2
2

1 2

R R

R

1
0

0

1
0

0 0

By the definition of T we have that = +T S K . By the compact embedding of H D( )1
0

into L D( )2
0 and H B( )R

1 into L B( )R
2 we have that K is a compact operator which implies that

R K( ) is also compact. We now show that R S( ) is self-adjoint and coercive on H D( )1
0 .

Notice that since A is a real symmetric matrix we have that



∫

∫ ∫

ϕ ϕ ϕ ϕ= − +

+ + −
∂

 

 

R R

R

( )( ) ( )

( )

( )S v v A A x

A u u u u x u u s

( ) , · d

· d d

H D

D

B B

k

1 2 0 1 2 1 2

1 2 1 2 2 1

R R

1
0

0

which gives that R S( ) is self-adjoint. To prove coercivity we write



∫

∫ ∫

= − + + +

+ + −
∂





R R

R

( )( ) ( )

( )

( )S v v A A v u v u x

A u u x u u s

( ) , ( ) ( ) d

d d .

H D

D

B B

k

1 1 0 1 1
2

1 1
2

1
2

1
2

1 1

R R

1
0

0

Using the fact that the real part of the Dirichlet to Neumann R( )k is non-positive (see e.g.
[16] in 3) we obtain that

α⩾ ∥ ∥R( ) ( ) ( )S v v v( ) ,
H D H D1 1 1

2
1

0
1

0

from a contradiction argument, namely by considering a sequence ∈v H D( )n 1
0 and the

corresponding un such that∥ ∥ =v 1n
H D( )1

0 for which →R S v v( ( ) , ) 0n n
H D( )1

0 we arrive at the

contradiction that →v 0n in H D( )1
0 . This proves the claim when −R A A( )0 is positive

definite.
(ii) We now assume that − RA A( )0 is positive definite. Unfortunately due to

incompatible signs for − RA A( )0 and the real part of the Dirichlet-to-Neumann operator we
can not work with (25) for the operator T. To derive an appropriate expression for T, we use
(15) and letting ϕ = +v uj j j, we arrive at
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∫

∫

∫

ϕ ϕ= − − − −

= − − − −

− − − −

 

 

 

( ) ( )

( )

( )

( )Tv v A A v k n n v x

A A v v k n n v v x

A A u v k n n u v x

, · ( ) d

· ( ) d

· ( ) d .

H D

D

D

D

1 2 0 1 2
2

0 1 2

0 1 2
2

0 1 2

0 1 2
2

0 1 2

1
0

0

0

0

Now recall that for a given ∈v H D( )2
1

0 we have that ∈u H ( )m
2 loc

1 satisfies

+ = − + −   ( )A u k n u A A v k n n v· · ( ) in .m
0 2

2
0 2 0 2

2
0 2

Hence multiplying the above equation by u1 and integrating by parts over BR such ⊂D BR we
have that

∫ ∫

∫ ∫
ν

− − +
∂
∂

= − − − −

∂

 

 ( )

A u u k n u u x u
u

s

A A v u k n n v u x

· d d

· ( ) d . (27)

B B

D D

0 2 1
2

0 2 1 1
2

0 2 1
2

0 2 1

R R

0 0

By taking the conjugate of the above expression and using the Dirichlet to Neumann operator
k we have that



∫

∫ ∫

∫

− = − − −

+ − −

− − − −

∂

 

 

 ( )

( ) ( )( )Tv v A A v v k n n v v x

A u u k n u u x u u s

A A u v k n n u v x

, · ( ) d

· d d

· ( ) d .

H D

D

B B

k

D

1 2 0 1 2
2

0 1 2

0 1 2
2

0 1 2 1 2

0 0 1 2
2

0 0 1 2

R R

1
0

0

0

In order to analyzeR T( ) we first 1compute T v v( * , )H D1 2 ( )1
0 and then +T T v v1 2( * , )v H D1 1 2 ( )1

0

to obtain



∫

∫ ∫

∫

− = −

= − − −

+ − −

− − − −

∂

 

 

 

( ) ( )( ) ( )T v v Tv v

A A v v k n n v v x

A u u k n u u x u u s

A A u v k n n u v x

* , ,

( ) · ( ) d

· d d

( ) · ( ) d .

H D H D

D

B B

k

D

1 2 2 1

0 1 2
2

0 1 2

0 1 2
2

0 1 2 2 1

0 0 2 1
2

0 0 2 1

R R

1
0

1
0

0

0
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

∫

∫

∫

− = − − −

+ −

−
∂

 

 

R R R

R R

R

( )( ) ( ) ( )

( )

( )

( )T v v A A v v k n n v v x

A u u k n u u x

u u s

( ) , · ( ) d

· ( ) d

d

H D

D

B

B

k

1 2 0 1 2
2

0 1 2

0 1 2
2

0 1 2

1 2

R

R

1
0

0

∫

∫

− −

+ −

 

 

I I

I I

( )

( )

A u v k n u v x

A v u k n v u x

i · ( ) d

i · ( ) d .

D

D

0 1 2
2

0 1 2

0 1 2
2

0 1 2

0

0

(Note that it is easy to see that the above expression is self-adjoint despite the appearance of
the complex i in front of complex-valued mixed terms.)

Now define the bounded linear operators S and ↦K H D H D: ( ) ( )1
0

1
0 by the Riesz

representation theorem such that



∫ ∫

∫ ∫

∫

= − + +

− −

+

∂

   

 

 

R R

R I

I

( )( ) ( ) ( )

( ) ( )

( )

( )Sv v A A v v v v x A u u x

u u s A u v x

A v u x

, · d · d

d i · d

i · d

H D

D B

B

k

D

D

1 2 0 1 2 1 2 0 1 2

1 2 0 1 2

0 1 2

R

R

1
0

0

0

0

and = − −RKv v T v v Sv v( , ) ( ( ) , ) ( , )H D H D H D1 2 ( ) 1 2 ( ) 1 2 ( )1
0

1
0

1
0 . Note that in the definition of K

there are only L2-terms, hence K is a compact operator due to the compact embedding of
H D( )1

0 into L D( )2
0 and H B( )R

1 into L B( )R
2 . Now, using that − >RA A( ) 00 and

>R A( ) 00 along with the fact that the real part of the Dirichlet to Neumann R( )k is non-
positive (see e.g. [16] in 3) and applying Youngʼs inequality we have

α

α

⩾ − − +

+ − ⩾ ∥ ∥

 

 

R I

R I⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( )( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )
( )

Sv v A A A v v v v

A A u u C v

, , ( , )

1
, .

H D L D
L D

L D
H D

1 1 0 0 1 1 1 1

0 0 1 1 1

1
0 2

0

2
0

2
0

1
0

Provided α is such that α− − >R IA A A( ( ) | ( )|) 00 0 uniformly in D and
− ⩾

α
R IA A( ( ) | ( )|) 00

1
0 which prove the second part of the theorem. □

Now we are ready to state the main theorem of the paper which characterizes the support
of defective region D0 in terms of the range of the operator ♯F̃

1 2
, where we define

 γ γ= + ↦♯
− −R I ( ) ( )F F F L L˜ : : ( ) ( ).m b m b

1 * 1 * 2 2

We assume that the coefficients A, A0, n and n0 satisfy the assumptions stated in section 2.
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Theorem 4.9. Assume that k is not a transmission eigenvalue for D0 if =I A( ) 00 otherwise
the assumptions of theorem 4.6 hold. Furthermore assume that either − >R A A( ) 00

uniformly in D0, or − >A A 00 uniformly in D0 or there is some constant α > 0 such that
α− − >R IA A A( ) | ( )| 00 0 uniformly in D0 and − ⩾

α
R IA A( ) | ( )| 00

1
0 in D0. For any

∈z m we define  ϕ = ∈∞ z L: (· , ) ( )z b
* 2 , then

ϕ∈ ∈ ♯( )z D Fif and only if ˜ .z0
1 2

Proof. Combining theorems 4.5–4.8 the result follows by applying theorem 2.15 in [13] if
=I A( ) 00 in D0 or theorem 2.1 in [14] if <I A( ) 00 in D0 to the operator ♯F̃ . □

Now let  λ ψ ∈ ×+ L( , ) ( )i i
2 be an orthonormal eigensystem of ♯F̃ then by appealing to

Picardʼs criterion (see e.g. theorem 2.7 of [4]) we have the following characterization of the
support of the defect D0.

Corollary 4.1. Assume that k is not a transmission eigenvalue of D0 and A A n n, , ,0 0 satisfy
the assumptions of theorem 4.9. Then for ϕ = ∞ z: (· , )z b

*

∑
ϕ ψ

λ
∈ < ∞

=

∞ ( )
z D if and only if

,
.

i

z i

i
0

1

2

Remark 4.1. Alternatively the discussed analytical framework can be used to characterize
the support of D0 via the Generalized Linear Sampling Method developed in [1] which
connects the support of D0 to the solution of a minimization problem.

5. Numerical examples

In this section we show numerical examples in 2, where a defective region is reconstructed
from simulated far-field data. To simulate the data, we solve the direct scattering problems
using a cubic finite element method with a perfectly matched layer and from this we will
evaluate approximated ∞u0 and ∞ub . In the following calculations we use N different incident
and observation directions θ θ= = ( )d x̂ cos ( ), sin ( )j j j j , where θj are uniformly spaced

points in π[0, 2 ). This leads to discretized far field operators = ∞
=

⎡⎣ ⎤⎦u x dF ( ˆ , )i j
i j

N
0 0

, 1
,

= ∞
=

⎡⎣ ⎤⎦u x dF ( ˆ , )b i j
i j

N
b

, 1
, and = −F F F0 b, where we can apply the Picardʼs criterion in cor-

ollary 4.1. Even though the scattering operator b is unitary, due to approximation error in the
discretized operator Sb we use −Sb

1, instead of its adjoint Sb
* in order to minimize the error (in

all our examples we observe that ∥ − ∥ ∥ ∥ ≈IS S S 1.0014b b b
* * 2 ). Hence we let

γ γ= +♯
− − − −R IF S F S F˜ | ( )| | ( ) |m b m b

1 1 1 1 in the calculations along with ϕ = − ∞
=x zS[ ( ˆ , )]z b j j

N1
1,

where −Sb
1 is computed by a LU decomposition. The application of the factorization method

requires the computation of the far field pattern ∞ x z( ˆ, ) of the background Greenʼs function
 x z( ˆ, ). In order to avoid dealing with singularity at the point z, for the case of piecewise
homogeneous isotropic background in theorem 2.1 of [2] the authors provide a relation
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between the far field pattern of the background Greenʼs function and the total field due to the
background media extending the mixed reciprocity relation known for homogeneous back-
ground [8]. We use this relation in our examples for piecewise homogeneous background. In
the case of anisotropic media in D we provide a partial result of mixed reciprocity relation for

∈z D (for problems in nondestructive testing when D is known, it is reasonable to consider
the sampling points z inside D). We show here the proof in 2. To this end let us first assume
that ≠A I is constant matrix and ≠n 1 is constant in D. The fundamental solution of the
differential operator = + Lu A u k nu: · 2 in 2 is given by

Φ = −( )x y
A

H k n x y( , )
i

4 det
,b A0

(1)

where − = − −⊤ −x y x y A x y| | ( ) ( )A
2 1 . (There is a similar definition for the fundamental

solutions in 3.)

Theorem 5.1. Assume that A is a constant positive definite matrix and >n 0 constant. Then
for ∈x̂ and ∈z D we have that

 γ= −∞( ) ( )x z u z xˆ, , ˆm b

with −u z x( , ˆ)b is that solution of (1)–(2).

Proof. Assume that ∈z D therefore we have that  y z( , ) is a smooth radiating solution to
Helmholtz equation in  ⧹Dm . So by (3) we have that

  ∫γ
ν ν

= ∂
∂

− ∂
∂

∞

∂

+ − + −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )x z y z y z sˆ, ( , ) e ( , ) e d .m

D
y

kx y

y

kx y
y

i ˆ· i ˆ·

Now from Greenʼs second identity we have that for ∈z D

∫ ν
Φ

ν
Φ− = ∂

∂
− − − ∂

∂
∂

− −( ) ( ) ( )u z x u y x y z u y x y z s, ˆ , ˆ ( , ) , ˆ ( , ) d . (28)b

D
A

b b b
A

b y
y y

Noting that the difference  Φ−y z y z( , ) ( , )b is a smooth solution of (1) in D and using again
Greenʼs second identity implies that





∫ ν
Φ

ν
Φ

= ∂
∂

− −

− − ∂
∂

−

∂

− −

− −

( )

( )

[ ]

[ ]

u y x y z y z

u y x y z y z s

0 , ˆ ( , ) ( , )

, ˆ ( , ) ( , ) d .

D
A

b b

b
A

b y

y

y

By adding this identity with (28) gives that

 

 

∫

∫
ν ν

ν ν

− = ∂
∂

− − − ∂
∂

= ∂
∂

− − − ∂
∂

∂

− − − −

∂

+ + + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ) ( )

( ) ( )

u z x u y x y z u y x y z s

u y x y z u y x y z s

, ˆ , ˆ ( , ) , ˆ ( , ) d

, ˆ ( , ) , ˆ ( , ) d , (29)

b

D
A

b b
A

y

D
y

b b
y

y

y y

where the second equality is due to the continuity conditions of the Cauchy data across ∂D.
Now since − = − + −u z x u z x( , ˆ) ( , ˆ) eb b

s kx zi ˆ· with −u z x( , ˆ)b
s being a radiating solution to

Helmholtz equation in  ⧹Dm , once more an application of Greenʼs second identity yields that
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 ∫ ν ν
= ∂

∂
− − − ∂

∂
∂

+ +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )u y x y z u y x y z s0 , ˆ ( , ) , ˆ ( , ) d .

D
y

b
s

b
s

y
y

Therefore we have that

 ∫ ν ν
− = ∂

∂
− ∂

∂
∂

+ − + −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )u z x y z y z s, ˆ ( , ) e ( , ) e d ,b

D
y

kx y

y

kx y
y

i ˆ· i ˆ·

which proves the result. □
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Figure 2. On the left is the reconstruction of the circular void and on the right the
square void. The defective region is a void so the coefficients are given by =A I0 and

=n 10 in D0 for wavenumber k = 1. Dashed line: exact boundaries of the scatterer D
and void(s) D0. No added noise.
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Figure 3. Reconstruction of the ellipse void on the left and of the two circular voids on
the right using the factorization method. The wavenumber in both examples is k = 1.
Dashed line: exact boundaries of the scatterer D and void(s) D0. 2% added noise.
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Remark 5.1. The proof of theorem 5.1 holds true for non-constant media in 2 or 3 as long
as one can define the corresponding fundamental solution Φ (· , ·)b of the operator

= + Lu A u k nu: · 2 (see e.g. [15]).

The above result gives that the ∞ x z( ˆ, ) can be approximated using the same cubic finite
element method with a perfectly matched layer that is used to compute the scattered field usb.
In particular this way we compute ∞ x z( ˆ, )p at the sampling points zp being the mesh points
in the finite element mesh. The defective region D0 is visualized by plotting the indicator
function

∑
ϕ ψ

λ
= ∈

=

−


⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )

z z D( )
,

,FM

i

N
z i ℓ

i
1

2 1

2

where  λ ψ ∈ ×+( , )i i
N is the eigensystem for the discretized operator ♯F̃ defined by the

discretized far field operators and scattering operator.
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Figure 4. On the left is the reconstruction of the two circular. While on the right is the
reconstruction of the a circular void of radius 1. Where the wavenumber is k = 1.
Dashed line: exact boundaries of the scatterer and void(s). No added noise.
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Figure 5. On the left is the reconstruction of the ellipse, while on the right is the
reconstruction of the two discs. The wavenumber is k = 1. Dashed line: exact
boundaries of the scatterer D and defect(s) D0. 4% added noise.
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Example 1. We consider = −D [ 2, 2]2, where the defective region is a void D0 (i.e. =A I0

and =n 10 in D0) embedded in isotropic media. The coefficients in D are given by =A I0.5
and =n 3. We consider four examples of the void region D0, namely the ball centered at the
origin with radius R = 1, the square = −D [ 1, 1]0

2, the ellipse centered at (0.5, 1) with axis
a = 0.5 and b = 0.3, and two circular voids with radius 0.3 centered at −( 1, 1) and −(1, 1),
respectively. Reconstructions are shown in figures 2 and 3. In all our examples, we use
N = 32, i.e. 32 incident directions and observation directions.

Example 2. For this example we now reconstruct a circular void of radius 1 centered at the
origin and two small circular voids in an anisotropic square scatterer = −D [ 2, 2]2. As in the
previous example the two circular voids both have radius 0.3 and they are centered at −( 1, 1)
and −(1, 1) respectively. The coefficients in D are chosen to be given by

= ( )A 0.6022 0.1591
0.1591 0.7478

and =n 3 with N = 64. The reconstructions are presented in figure 4.

Example 3. For our next example we now consider anisotropic defects embedded in
anisotropic material. In particular, we reconstruct the two small circular defects and the ellipse
inside the square = −D [ 2, 2]2. The coefficients are chosen in D and D0 to be given
respectively by

= = −
−( ) ( )A A0.6022 0.1591

0.1591 0.7478
and 0.1673 0.0308

0.0308 0.20300

and = =n n 30 with N = 64 in both cases. The reconstructions are shown in figure 5.
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