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IDENTIFICATION OF PARTIALLY COATED
ANISOTROPIC BURIED OBJECTS

USING ELECTROMAGNETIC CAUCHY DATA

FIORALBA CAKONI AND HOUSSEM HADDAR

ABSTRACT. We consider the three dimensional electro-
magnetic inverse scattering problem of determining informa-
tion about a target buried in a known inhomogeneous medium
from a knowledge of the electric and magnetic fields corre-
sponding to time harmonic electric dipoles as incident fields.
The scattering object is assumed to be an anisotropic dielec-
tric that is (possibly) partially coated by a thin layer of highly
conducting material. The data is measured at a given surface
containing the object in its interior. Our concern is to deter-
mine the shape of this scattering object and some informa-
tion on the surface conductivity of the coating without any
knowledge of the index of refraction of the inhomogeneity. No
a priori assumption is made on the extent of the coating, i.e.,
the object can be fully coated, partially coated or not coated
at all. Our method, introduced in [14, 17], is based on the
linear sampling method and reciprocity gap functional for re-
constructing the shape of the scattering object. The algorithm
consists in solving a set of linear integral equations of the first
kind for several sampling points and three linearly indepen-
dent polarizations. The solution of these integral equations is
also used to determine the surface conductivity.

1. Introduction. The inverse scattering problem we consider in
this paper is to determine the shape and surface conductivity of an
anisotropic dielectric that is partially coated by a thin conducting ma-
terial from a knowledge of the scattered electromagnetic wave due to
time-harmonic point sources. The scattering object is embedded in a
known inhomogeneous background. Such problems arise in the detec-
tion of chemical waste deposits as well as certain problems arising in
the nondestructive evaluation of urban infrastructure, testing the in-
tegrity of coatings, etc. The literature on this subject is particularly
rich, see, e.g., [4, 14, 26 and the references therein], and for a schol-
arly review of some aspects of its history we refer the reader to [4].
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Typically in such applications, the material properties of the scatter-
ing object are not known a priori and the newly developed class of
electromagnetic imagining techniques, described as “qualitative meth-
ods in inverse scattering theory” [11], are designed to overcome this
difficulty [18, 21, 24, 26]. These methods avoid any weak scattering
assumption but, as opposed to nonlinear optimization techniques, only
seek limited information about the scattering object and do not rely on
any a priori knowledge of the geometry and physical properties of the
scatterer. We focus our attention on linear sampling methods. A fur-
ther problem arising in the electromagnetic imagining of buried objects
is related to the ability to compute accurately the Green’s function of
the background medium or, in other words, being able to distinguish
between the scattered field due to the target and scattered field due
to the background medium including interfaces, the antenna, etc. This
task can be rather expensive and sometimes practically impossible. To
address this issue, a new version of the linear sampling method based
on the reciprocity gap functional (RG-LSM) was introduced by Colton
and Haddar [17] for the scalar case and by Cakoni, Fares and Haddar
[14] for the vector case.

The RG-LSM, like the classical linear sampling method, is based
on the study of an ill-posed integral equation of the first kind but as
opposed to the linear sampling method this equation does not involve
the Green’s function for the background medium. This benefit is paid
for by the need to measure the tangential component of both electric and
magnetic total fields on the boundary of a bounded region containing
the scatterer. Due to the knowledge of the electromagnetic Cauchy data
of the total field on the boundary, it suffices to consider the scattering
problem only in this region. In particular, if the medium inside this
region is homogeneous, which is the case in this paper, all that is needed
is the fundamental solution of an equation with constant coefficients.
In addition, RG-LSM has the advantage of offering a more flexible
mathematical framework than the classical linear sampling method.
We note that the reciprocity gap functional is used in different ways to
solve other inverse problems [1, 27].

This paper analyzes the RG-LSM for the case of a buried partially
coated dielectric. The problem is to determine both the support of
the inhomogeneity and the surface conductivity using the solution of a
vector integral equation of the first kind for a set of sampling points.
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This can be done without any a priori assumption on the coating
and the index of refraction of the object. However, no information
about the index of refraction and the support of the coating can be
obtained by this method. The case of a buried partially coated perfect
conductor was considered in [8] where the analysis was based on a
variety of recent results on the mixed boundary value problems for
electromagnetic inverse scattering [9, 10, 13, 21]. The analytical
justification of the RG-LSM for the inverse problem considered in this
paper is much more difficult and is only possible due to the recent
results obtained by Cakoni and Haddar [12] on the well posedness of
the interior transmission problem with mixed transmission conditions
which generalize the results of Haddar [23]. As in [14], we will first
consider the case when the electric and magnetic fields are both known
on the entire boundary of an absorbing homogeneous region of the
background media that is known a priori to contain the target. The
case of an object buried in the earth is then handled by assuming that
the part of the boundary below the surface of the earth is far away from
the incident sources and hence we can assume that the total electric
and magnetic fields are very small on this portion of the boundary.

2. Formulation of the direct and inverse scattering prob-
lem. We consider the scattering of a time-harmonic electromagnetic
field of frequency ω by a scattering object embedded in a piecewise
homogeneous background medium in R3. We assume that the mag-
netic permeability μ0 > 0 of the background medium is a positive
constant whereas the electric permittivity ε(x) and conductivity σ(x)
are piecewise constant. Moreover, we assume that for |x| = r > R, for
R sufficiently large, σ = 0 and ε(x) = ε0. Then the electric field Ẽ and
magnetic field H̃ in the background medium satisfy the time-harmonic
Maxwell’s equations

∇× Ẽ − iωμ0H̃ = 0, ∇× H̃ + (iωε(x) − σ(x))Ẽ = 0.

After an appropriate scaling [20] and elimination of the magnetic field
we now have that in the background medium E satisfies

curl curlE − k2n(x)E = 0,

where Ẽ = 1/
√
ε0E , k2 = ε0μ0ω

2 and n(x) = 1/
√
ε0 (ε(x) + iσ(x)/ω).

Note that the piecewise constant function n(x) satisfies n(x) = 1 for
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FIGURE 1. Example of the geometry of the scattering problem.

r > R, Re (n) > 0 and Im (n) ≥ 0. The surfaces across which n(x) is
discontinuous are assumed to be piecewise smooth and closed.

The incident field is considered to be an electric dipole located at
x0 ∈ Λ with polarization p ∈ R3, where Λ is an open surface (to
be made precise later on) situated in a layer with constant index of
refraction ns, given by

(1) Ee(x, x0, p, ks) :=
i

ks
curlxcurlx p

eiks|x−x0|

4π|x− x0|

where k2
s = k2ns. We denote by G(x, x0) the free space Green’s

tensor of the background medium and define Ei(x) := Ei(x, x0, p) =
G(x, x0)p which satisfies

(2) curl curlEi(x) − k2n(x)Ei(x) = p δ(x− x0) in R3,

where δ denotes the Dirac distribution. Note that Ei can be written
as

(3) Ei(x) = Ee(x, x0, p, ks) + Es
b (x)

where Es
b = Es

b (·, x0, p) is the electric scattered field due to the
background medium.

Now letD denote a scattering object embedded in the above piecewise
homogeneous background such that R3 \D is connected with piecewise
smooth boundary ∂D. We denote by ν the outward unit normal defined
almost everywhere on ∂D. Furthermore, we assume that the boundary
∂D = Γ1 ∪ Γ2 is split into two open disjoint parts Γ1 and Γ2. The
domainD is the support of an anisotropic object that is partially coated
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on the portion Γ2 of the boundary by a very thin homogeneous layer
of a highly conductive material. Again, after an appropriate scaling
[20], the index of refraction of the scattering object is represented by
a symmetric matrix-valued function denoted by N(x), x ∈ D, whose
entries are bounded complex-valued functions such that

ξ̄ · Im (N) ξ ≥ 0 and
ξ̄ · Re (N) ξ ≥ γ|ξ|2

}
for all

{
ξ ∈ C3 and
x ∈ D

(4)

where γ is a positive constant. The surface conductivity of the coating
is described by the positive constant η > 0, [2]. Note that we assume
that the magnetic permitivity of the scattering object is the same as
that of the background medium.

We now consider a bounded domain Ω such that D is contained in
Ω and the open surface Λ is contained in R3 \ Ω. Let ∂Ω denote the
piecewise smooth boundary of Ω. Note that Λ may be a subset of
∂Ω. We make the assumption that the medium inside the domain Ω
containing the scattering object D is homogeneous with constant index
of refraction nb and define k2

b = k2nb, see Figure 1 for the geometry of
the problem.

Under the above assumptions we have that the interior electric field
Eint and the exterior total electric field

E = Es + Ei

satisfy the following transmission problem

curl curlEint − k2N(x)Eint = 0 in D,(5)
curl curlE − k2n(x)E = p δ(x− x0) in R3 \D(6)

ν × E − ν × Eint = 0 on ∂D(7)
ν × curlE − ν × curlEint = 0 on Γ1(8)
ν × curlE − ν × curlEint = ikη(ν × E) × ν on Γ2.(9)

In addition, the scattered field Es satisfies the Silver Müller radiation
condition

(10) lim
|x|→∞

(curlEs × x− ik|x|Es) = 0

uniformly in x̂ = x/|x|.
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In order to set up the function spaces for the above scattering
problem, we introduce the following definitions.

H(curl, D) := {u ∈ (L2(D))3 : ∇× u ∈ (L2(D))3}
Hs

t (∂D) := {u ∈ (Hs(∂D))3 : ν · u = 0 on ∂D}, s ≥ 0
L2

t (Γ2) := {u|Γ2 : u ∈ L2
t (∂D)}

where L2
t (∂D) is the space of square integrable tangential vector-valued

functions defined on ∂D. The space of solutions is constructed with aid
of

(11) X(D,Γ2) := {u ∈ H(curl, D) : ν × u|Γ2 ∈ L2
t (Γ2)}

equipped with the norm

(12) ‖u‖2
X(D,Γ2) = ‖u‖2

H(curl, D) + ‖ν × u‖2
L2(Γ2)

.

For the exterior domain De := R3 \ D we define the Fréchet spaces
Hloc(curl, De), respectively Xloc(De,Γ2), consisting of functions be-
longing to H(curl, De∩BR), respectively X(De∩BR,Γ2), for every ball
BR containingD. It is known that the traces ν×u|∂D and ν×(u×ν)|∂D

of u ∈ H(curl, D) (or u ∈ Hloc(curl, De)) are in the Hilbert spaces

H
− 1

2
div (∂D) :=

{
u ∈ (H− 1

2 (∂D))3, ν · u = 0, div∂D u ∈ H− 1
2 (∂D)

}
H

− 1
2

curl(∂D) :=
{
u ∈ (H− 1

2 (∂D))3, ν · u = 0, curl∂D u ∈ H− 1
2 (∂D)

}
with div∂D and curl∂D denoting the surface curl and the surface
divergence, respectively. Note that by an integration by parts we can
define a duality relation between H− 1

2
div (∂D) and H− 1

2
curl(∂D) (see [29] in

the case when the boundary is smooth, and [5, 6] in the case when the
boundary is piecewise smooth).

The direct scattering problem can be formulated as follows: given Ei

defined by (3) find Eint ∈ X(D,Γ2) and Es = E − Ei ∈ Xloc(R3 \
D,Γ2) such that (Eint, E) satisfies (5) (6) in the distributional sense,
(7) (9) in the sense of traces and such that Es satisfies the radiation
condition (10). We remark that (5) and (6) are satisfied in the sense
of distributions which implies the continuity of tangential components
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of E, Eint and curlE, curlEint across the interface where the index
of refraction has jumps. Using the variational approach developed in
[10], it can be shown that the direct scattering problem has a unique
solution.

Remark 2.1. It is also possible to consider the problem of objects
buried in an unbounded multi-layered medium. In this case, the radi-
ation condition and mathematical analysis of the forward problem be-
comes more complicated (see [22] for the case of two layered medium).
However the following analysis of the inverse scattering problems re-
mains the same.

In order to formulate the inverse problem we assume that both the
tangential components of the total electric field E = E(·, x0, p) and
magnetic field H = (1/(ik))curlE, respectively, are known on ∂Ω.
Furthermore, without loss of generality, we assume that Λ is a closed
surface surrounding Ω situated in a layer with index of refraction ns.
By an analyticity argument the following analysis also holds true if the
point sources are located on an open analytic surface provided it can
be extended to a closed (analytic) surface as above.

The inverse scattering problem we are interested in is to determine the
support D of the anisotropic inhomogeneity and η from a knowledge of
the tangential components ν×E and ν×curlE measured on ∂Ω for all
points x0 ∈ Λ and two linearly independent polarizations p1, p2 ∈ Tx0

where Tx0 is the tangent plane to Λ at x0. Here ν denotes the outward
unit normal to ∂Ω. We remark that in what follows ν is always
the outward unit normal to the surface under consideration unless
otherwise stated. For later use, we shall denote

(13) U := {E(·, x0, p), x0 ∈ Λ, p ∈ Tx0},

which represents the set of electric fields corresponding to the measure-
ments.

In this paper we shall not study the uniqueness question of the inverse
problem stated above. However, for the reader’s convenience we note
that, in the case of a homogeneous background with far field data, the
uniqueness forD is proved in [10] whereas the uniqueness for η is shown
in [13]. There is no uniqueness proof for D and η in the current case
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but we believe that the ideas of [10, 13] can be adapted to the inverse
problem under consideration.

The reconstruction method we shall present is based on the knowledge
of a solution to the so-called interior transmission problem associated
with D and N . This is why we shall present this problem first and state
some recent results on its solution. Another important ingredient for
this method is a density result that is also proved in following section.

3. The interior transmission problem. In this section we recall
some results on the interior transmission problem and develop some
related properties which will be very useful in the analysis of the inverse
problem. The interior transmission problem reads as follows: Given φ,
ψ and τ , find E0 and Eint such that

curl curlE0 − k2nbE
0 = 0 in D(14)

curl curlEint − k2N(x)Eint = 0 in D(15)
ν × E0 − ν × Eint = φ on ∂D(16)

ν × curlE0 − ν × curlEint = ψ on Γ1(17)
ν × curlE0 − ν × curlEint = ikην × (E0 × ν) + ψ + τ onΓ2.(18)

The study of this nonstandard boundary value problem is not straight-
forward and requires special attention in the case of Maxwell’s equa-
tions due to the vectorial aspect of the unknowns, the anisotropy, and
the curl curl operator. A variational technique based on a reformu-
lation of this problem as a fourth order boundary value problem has
been employed in [23] to study the existence and uniqueness in the case
η = 0 and nb = 1. This technique has been generalized in [12] to treat
the present case and we shall now present the main results from this
paper.

We first introduce the Hilbert space

Hinc(D) := {u ∈ L2(D)3, s.t. curl curlu− k2nbu = 0 inD}

equipped with the L2(D)3 norm. We remark that if u ∈ Hinc(D)
then curl curlu ∈ L2(D)3. Therefore, if u ∈ Hinc(D), one can define

the traces u × ν|∂D and curlu × ν|∂D as functions of H− 1
2

t (∂D) and
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H
− 3

2
t (∂D), respectively, see [12]. The proof of this is based on Stokes’

formulas and the lifting result of Lemma 3.1 in [23]. We next define

Hinc(D,Γ2) := {u ∈ Hinc(D) such that u× ν|Γ2 ∈ L2
t (Γ2)}

which is a Hilbert space equipped with the norm

‖u‖2
Hinc(D,Γ2)

= ‖u‖2
L2(D) + ‖ν × u‖2

L2
t(Γ2)

.

The solution to the interior transmission problem is defined as functions
Eint ∈ L2(D), E0 ∈ Hinc(D,Γ2) such that Eint − E0 ∈ H(curl, D),
curl (Eint − E0) ∈ H(curl, D) and (Eint, E0) satisfies [14 18].

With this functional setting, and for data

φ ∈ H
3
2
t (∂D), ψ ∈ H

1
2
t (∂D) and τ ∈ L2

t (Γ2),

by slightly modifying the analysis in [12] to account for the nb complex,
one can show that the Fredholm alternative applies to [14 18] under
the following three conditions.

Condition 1:

(19) M := (nbI −N)−1 is a bounded matrix,

Condition 2:

(20)
{ Im (M) is nonnegative on D, and

Im (M̃) − {Im (nbM)}2{Im (M)}−1 is nonnegative onD,

and

Condition 3: Letting M̃ := nbNM either

(21) Re (M) and Re (M̃) are nonnegative onD

and the two matrices

(22)

{
Re (M̃) − {Re (NM)}2{Re (M)}−1, and

Re (M) − {Re (NM)}2{Re (M̃)}−1,
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are uniformly positive definite on D, or

(23) −Re (M) and −Re (M̃) are nonnegative onD

and the two matrices

(24)

{
{Re (nbM)}2{Re (M)}−1 −Re (M̃), and

{Re (nbM)}2{Re (M̃)}−1 −Re (M),

are uniformly positive definite on D.

We remark that these conditions also apply to the cases where nb is a
matrix that commutes with N . When nb and N are real scalars, one
can easily verify that the first condition is equivalent to 0 < N < nb

and the third set of conditions is equivalent to 0 < nb < N . If only nb

is a real scalar the first set conditions is equivalent to Im (N) > 0 on
D.

Furthermore, one can prove that if the second matrix in (20) is
uniformly positive definite on D, then the uniqueness of solutions holds
true. In general, we shall exclude in our subsequent analysis the set of
frequencies for which this uniqueness result is not valid. This leads us
to the following definition.

Definition 3.1. The values of k for which the homogeneous interior
transmission problem, i.e., [14 18] with φ = ψ = τ = 0, has a
nontrivial solution are called transmission eigenvalues.

We remark that the questions of whether or not transmission eigen-
values exist and if so whether they form a discrete set are in general
open.

In order to connect the interior transmission problem with a scat-
tering problem we need to define appropriately the scattered field
corresponding to the incident field in Hinc(D,Γ2). In particular, for
E0 ∈ Hinc(D,Γ2), let Es satisfy

curl curlEs − k2nbE
s = 0 in R3 \D(25)

curl curlEs − k2NEs = k2(N − nbI)E0 in D(26)
ν × Es

+ − ν × Es
− = 0 on ∂D(27)



PARTIALLY COATED ANISOTROPIC BURIED OBJECTS 369

ν × curlEs
+ − ν × curlEs

− = 0 on Γ1(28)
ν × curlEs

+ − ν × curlEs
− = ikη(Es

+ + E0)� on Γ2(29)
lim

r→∞(curl Es × x− ikbrE
s) = 0(30)

where we used the notation u� := ν × (u× ν), and Es
+ and Es

− denote
the limit of Es approaching ∂D from R3 \ D and D, respectively.
Setting Ñ = N in D and Ñ = nb outside D, it can be shown, see [10,
28], that the above transmission problem is equivalent to the following
variational problem: Find Es ∈ Xloc(R3 \ Γ2,Γ2) satisfying∫

R3
(curlEs · curlU − k2ÑEs · U) ds− ikη

∫
Γ2

Es
� · U� ds(31)

= k2

∫
D

(N − nbI)E0 · U dv + ikη

∫
Γ2

E0
� · U� ds,

together with the radiation condition (30), for all U ∈ Xloc(R3\Γ2,Γ2)
with compact support. The bilinear form corresponding to the above
variational problem is studied in detail in [10], see also [28]. Here one
needs to use the Dirichlet to Neumann mapping in order to reduce the
problem in a bounded domain. The analysis of the variational problem
shows that the Fredholm alternative can be applied to the equation
(31) and therefore to (25) (30). In particular, the solution Es satisfies
the following a priori estimate:

(32) ‖Es‖X(BR\Γ2,Γ2)
≤ C

(
‖E0‖L2(D) + ‖ν × E0‖L2

t (Γ2)

)
where C > 0 is a positive constant independent of E0 and where BR is
a ball of radius R.

We now show that Hinc(D,Γ2) is the closure of the space of entire
solutions to Maxwell’s equations. Let us introduce

Mm
n (x) := curl (xum

n (x)) and
um

n (x) := jn(kb|x|)Y m
n (x/|x|)

where {Y m
n , m = −n, . . . , n, n = 0, 1, . . .}

is the set of orthonormal spherical harmonics and jn denotes the spher-
ical Bessel function of order n. The following lemma is fundamental
for the theoretical foundation of our inverse scheme.
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Lemma 3.2. The space

H := span {Mm
n , curlMm

n : n = 1, 2, . . . ,m = −n, . . . , n}

is dense in Hinc(D,Γ2).

Proof. The proof follows the ideas of the proof of Lemma 4.3 in [23].
Let H be the closure of H in Hinc(D,Γ2), and let E0 ∈ Hinc(D,Γ2) be
in the orthogonal complement of H . We define

E(x) =
∫

D

G(x, y)E0(y) dy +
∫

Γ2

G(x, y)
[
(ν × E0) × ν

]
ds(y),

x ∈ R3 \ Γ2

where

(33) G(x, y) = Φ(x, y, kb)I +
1
k2

b

gradx divx Φ(x, y, kb)I

with

Φ(x, y, kb) :=
1
4π

eikb|x−y|

|x− y| , x 
= y.

By definition we have that

curl curlE − k2
bE = E0 in D(34)

curl curlE − k2
bE = 0 in R3 \D.(35)

Furthermore, using the jump relations of single layer potential with L2
t

densities [20, 25] we also have

ν × E+ − ν × E− = 0 on ∂D(36)
ν × curlE+ − ν × curlE− = 0 on Γ1(37)
ν × curlE+ − ν × curlE− = (ν × E0) × ν on Γ2(38)

where E+ and E− denote the limit of E approaching ∂D from R3 \D
and D, respectively. Now, since in R3 \D

E(x) =
1
k2

b

curl curl
( ∫

D

Φ(x, y, kb)E0(y) dy

+
∫

Γ2

Φ(x, y, kb)
[
(ν × E0) × ν

]
ds(y)

)
,
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from the expansion of Theorem 6.27 in [20] for Φ(x, y, kb) and the
fact that E0 is orthogonal to H with respect to the inner product
(·, ·)L2(D) + (·, ·)L2

t (Γ2) we conclude that E = 0 in R3 \ D. Hence,
taking the L2(D) inner product of (34) with E0 and the L2(Γ2) inner
product of (38) with (ν × E0) × ν, we obtain that

(39) ‖E0‖2
L2(D) + ‖ν × E0‖2

L2
t (Γ2)

=
(
curl curlE − k2

b E, E0

)
L2(D)

+
(
ν × curlE, E0

)
L2

t(Γ2)
.

Finally, in view of the zero boundary conditions (36) (37) and the
fact that the test functions are dense in X(D,Γ2), we obtain after
integrating by parts that the right hand side of (39) is zero since
curl curlE0 − k2

bE
0 = 0 in the distribution sense. Hence E0 = 0 which

ends the proof.

4. The reciprocity gap operator. Our inverse scheme is based
on the construction of approximating solutions to the interior transmis-
sion problem from the boundary data of the inverse problem. These
solutions are computed by solving an integral equation of the first kind
constructed from the so-called reciprocity gap operator. This section
is devoted to the definition and description of some properties of this
operator. Let us define

H(Ω) :=
{
W ∈ H(curl,Ω), such that curl curlW − k2

bW = 0 in Ω} .
The expression of the reciprocity gap operator is obtained from the
so-called gap reciprocity functional R defined on U × H(Ω) by

(40) R(E,W ) :=
∫

∂Ω

{(ν × E) · curlW − (ν ×W ) · curlE } ds,

where the integrals are interpreted in the sense of the duality between
H

− 1
2

div (∂Ω) and H
− 1

2
curl(∂Ω). Notice that in the absence of a scattering

object D, the right hand side of (40) is zero for all point sources,
whereas ifD is present, this right hand side defines a nonzero function of
the source location x0 and the source polarization p. This observation
motivates the idea of using (40) to set up an integral equation whose
solution is an indicator function for D. To this end, we define the
reciprocity gap operator R : H(Ω) → L2

t (Λ) by

(41) R(W )(x0) · p = R(E(·, x0, p),W )
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for all x0 ∈ Λ and p ∈ Tx0 . Notice that this definition makes sense since
E depends linearly on the polarization p and so does R. It is easy to
prove, see e.g., [11, Theorem 4.8] for a similar result in the scalar case,
that the operator R : H(Ω) → L2

t (Λ) is compact. We shall prove in
the following two lemmas that this operator is also injective with dense
range if there are no eigenvalues of the interior transmission problem.

Lemma 4.1. Assume that k is not a transmission eigenvalue for D.
Then the operator R : H(Ω) → L2

t (Λ) defined by (41) is injective.

Proof. From (41), RW = 0 means R(E(·, x0, p),W ) = 0 for all
(x0, p) ∈ Λ × Tx0 . Using the second vector Green’s formula and the
transmission conditions (7) (10), we have that

0 =
∫

Γ

(ν × E) · curlW − (ν ×W ) · curlE ds(42)

=
∫

∂D

(ν × E) · curlW − (ν ×W ) · curlE ds

=
∫

∂D

(ν × Eint) · curlW − (ν ×W ) · curlEint ds

+ ikη

∫
Γ2

(ν × E) · (ν ×W ) ds.

Now (see [10]) let Ẽint ∈ X(D,Γ2) and Ẽ ∈ Xloc(R3 \D,Γ2) be the
unique solution to

curl curl Ẽint − k2N(x)Ẽint = 0 in D(43)

curl curl Ẽ − k2n(x)Ẽ = 0 in R3 \D(44)

ν × (Ẽ +W ) − ν × Ẽint = 0 on ∂D(45)

ν×curl(Ẽ+W )−ν×curlẼint = 0 on Γ1(46)

ν×curl(Ẽ+W )−ν×curlẼint = ikη
[
ν×(Ẽ+W )

]
×ν on Γ2(47)

lim
r→∞

(
curl Ẽ × x− ikrẼ

)
= 0.

Expressing W in the last equation of (42) in terms of Ẽ and Ẽint using
(45), (46) and (47), and using the fact that Eint and Ẽint satisfy the
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same equation in D, we obtain that

0 =
∫

∂D

(ν × Ẽ) · curlEint − (ν × Eint) · curl Ẽ ds(48)

− ikη

∫
Γ2

(ν × Ẽ) · (ν × Eint) ds.

Next, expressing Eint in terms of the total exterior field

E = Es + G(·, x0)p

using the transmission conditions (7) (10), using the fact that Es and
Ẽ are radiating solutions to the same equation outside D and, finally,
using the Stratton-Chu representation formula outside D [28] we can
rewrite (48) as

0 =
∫

∂D

(ν × Ẽ) · curl (Es + G(·, x0)p)

− [ν × (Es + G(·, x0)p)] · curl Ẽ ds

=
∫

∂D

(ν × Ẽ) · curlG(·, x0)p) − (ν × G(·, x0)p) · curl Ẽ ds

= −p · Ẽ(x0).

Since p is an arbitrary polarization in the tangent plane to Λ at x0,
we obtain that ν × Ẽ(x0) = 0 for all x0 ∈ Λ. Furthermore, since Ẽ is
a radiating solution to curl curl Ẽ − k2n(x)Ẽ = 0 outside the domain
bounded by Λ and satisfies ν × Ẽ = 0 on Λ, we can conclude by the
uniqueness theorem for scattering by a perfect conductor that Ẽ = 0
outside the domain bounded by Λ. Finally, from the unique contin-
uation principle, we have that Ẽ = 0 outside D as well. Therefore,
E0 := W and Eint := Ẽint satisfy the homogeneous interior transmis-
sion problem, i.e., (14) (18) with φ = ψ = τ = 0, whence from the
assumption that k is not a transmission eigenvalue, we finally obtain
that W = 0 in D. This proves the lemma.

Lemma 4.2. Assume that k is not a transmission eigenvalue for D.
Then the operator R : H(Ω) → L2

t (Λ) defined by (41) has dense range.
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Proof. Consider β ∈ L2
t (Λ), and assume that

(RW,β)L2
t (Λ) = 0 for all W ∈ H(Ω).

From (41) and the bi-linearity of R, one has

(RW,β)L2
t (Λ) =

∫
Λ

R(E(·, x0, α(x0)),W ) ds(x0) = R(E ,W ),

where

(49) E(x) =
∫

Λ

E(x, x0, α(x0)) ds(x0)

and α = (β · p) p. Letting

(50) E int(x) =
∫

Λ

E(x, x0, α(x0)) ds(x0),

by linearity we have that E and E int satisfy the scattering problem
(5) (10). Using the second vector Green’s formula and the transmission
conditions for E and E int, one concludes that

0 = R(E ,W ) = k2

∫
D

(N − nbI) E int ·W dx(51)

+ ikη

∫
Γ2

(ν × E)(ν ×W ) ds

for all W ∈ H(Ω). Since H(Ω) contains the space H of Lemma 3.2, we
conclude from this lemma and (5.1) that E int = 0 in D and ν×E|Γ2 = 0.
Then the transmission conditions imply that both ν × E = 0 and
ν × curl E = 0 on ∂D. This means that the extension of E by 0 inside
D satisfies Maxwell’s equations inside the domain bounded by Λ with
the index n set equal to nb inside D. From the unique continuation
principle one has that E is 0 inside the domain bounded by Λ and
outside D. Noting that

E(x) =
∫

Λ

(Es(x, x0, α(x0)) + G(x, x0)α(x0)) ds(x0),
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one concludes that E × ν is continuous across Λ. The uniqueness the-
orem for the exterior problem for Maxwell’s equations with boundary
data ν × E = 0 on Λ implies that E = 0 outside the domain bounded
by Λ as well. Finally, from the jump relations of the vector potential
across Λ [20], we have that

0 = curlE|Λ+ − curl E|Λ− = −α on Λ.

Hence (β · p) p = 0 for all p tangential to Λ which implies that β = 0.

5. The inverse scheme.

5.1. The sampling integral operator. The inverse scheme is based on
the construction of an integral equation using the reciprocity operator
of the previous section and a parametric family of solutions in H(Ω)
which satisfy certain properties to be made precise later. To fix our
ideas we shall consider here the case of single layer potentials Aϕ defined
by

(52) (Aϕ)(x) := curl curl
∫

Λ̃

ϕ(y)Φ(x, y, kb) ds, ϕ ∈ L2
t (Λ̃)

where Λ̃ is a part of the analytic boundary of some simply connected
domain containing Ω in its interior. The sampling integral operator,
S : L2

t (Λ̃) → L2
t (Λ) is defined by

(53) Sϕ := RAϕ forϕ ∈ L2
t (Λ̃).

Using the definition of R and interchanging the order of integration,
it is readily seen that S is an integral operator whose (matrix) kernel
s(x0, y) is defined by

(s(x0, y) · q) · p = R(E(·, x0, p), curl curl (qΦ(·, y, kb)))

for (x0, y) ∈ Λ× Λ̃ and (p, q) ∈ Tx0 × T̃y where T̃y denotes the tangent
plane to Λ̃ at y.

The key property needed for the parametric family of solutions is
that it is a dense subset of Hinc(D,Γ2). This is the case for single layer
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potentials as shown by the following lemma, which uses the density
result of Lemma 3.2.

Lemma 5.1. The set {Aϕ, ϕ ∈ L2
t (Λ̃)} is dense in Hinc(D,Γ2).

Proof. It suffices only to prove that the set of {Aϕ, ϕ ∈ L2
t (Λ̃)}

is complete in L2
t (∂BR) where BR is a large ball containing D and

contained in the domain bounded by the analytic extension of Λ̃ such
that kb is not a Maxwell eigenvalue for BR (which is not a restriction
since we can always find such a ball!). The result of the lemma is then
obtained by combining Lemma 3.2 and Theorem 7.9 in [20]. To this
end, noting that

curlx curlx
∫

Λ̃

ϕ(y)Φ(x, y, kb) ds(y) = −ikb

∫
Λ̃

G(x, y)�ϕ(y) ds(y)

where G is given by (33) and � denotes the transposed matrix, we take
a ∈ L2

t (∂BR) such that

(54)
∫

∂BR

a(x) ·
∫

Λ̃

G(x, y)�ϕ(y) ds(y) ds(x) = 0

for every ϕ ∈ L2
t (Λ̃). We want to show that a = 0. By interchanging

the order of integration we arrive at∫
Λ̃

ϕ(y) ·
∫

∂BR

G(x, y)a(x) ds(x) ds(y) = 0

for every ϕ ∈ L2
t (Λ̃). This implies that

ν ×
∫

∂BR

G(x, y)a(x) ds(x) = 0 on Λ̃,

which by analyticity holds true on the closed analytic extension of
Λ̃. Hence, using the uniqueness of the exterior Maxwell problem and
analytic continuation we have that the surface potential

(V a)(y) :=
∫

∂BR

G(x, y)a(x) ds(x), y ∈ R3 \ ∂BR, a ∈ L2
t (∂BR)
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is zero outside ∂BR. By continuity of the tangential component of V a
across ∂BR and the fact that kb is not a Maxwell eigenvalue for BR,
we conclude that V a = 0 in BR as well. Finally by applying the jump
relation for ν ×∇× (V a) across ∂BR [20], we obtain that a ≡ 0. This
ends the proof.

A consequence of this Lemma is that the sampling operator S has
dense range provided that k is not a transmission eigenvalue. The
proof of this result follows that of Lemma 4.2 where W is replaced
by Aϕ and the density result of Lemma 3.2 is replaced with that of
Lemma 5.1. On the other hand, as an easy exercise on the use of
the unique continuation principle and the uniqueness of a solution to
the exterior Dirichlet problem for Maxwell’s equations, one can verify
that A : L2

t (Λ̃) → H(Ω) is injective. Lemma 4.1 therefore implies that
S is injective provided that k is not a transmission eigenvalue. We
summarize these results in the following lemma.

Lemma 5.2. The sampling integral operator S : L2
t (Λ̃) → L2

t (Λ) is
compact. It is also injective with dense range provided that k is not a
transmission eigenvalue for D.

Remark 5.1. Alternatively one can use, instead of the single layer
potential, the electric Herglotz function Hg defined by

(55) Hg(x) :=
∫

S2
g(d)eikbd·x ds(d), g ∈ L2

t (S
2)

where S2 is the unit sphere, and define the sampling operator as

S̃ : L2
t (S

2) −→ L2
t (Λ), such that S̃g = RHg.

Subsection 3.2 in [7] together with Lemma 3.2 imply that the set
{Hg, g ∈ L2

t (S
2)} is dense in Hinc(D,Γ2) as well. Therefore, the

analysis which follows also holds with S replaced by S̃.

5.2. The determination of D. We are now in possession of all in-
gredients to describe a sampling algorithm to determine D without
knowing N and η. The only requirement is that the interior transmis-
sion problem is well posed within the functional framework defined in
Section 3.
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Let z ∈ R3 be a sampling point and let q ∈ R3 \ {0} be an arbitrary
vector (that will be kept fixed). Let

(56) Ee(x, z, q, kb) :=
i

kb
curlx curlx qΦ(x, z, kb),

be the electric field of the electric dipole corresponding to kb. We
associate with this dipole the function �z ∈ L2

t (Λ) defined by

(57) �z(x0) · p = R(E(·, x0, p), Ee(·, z, q, kb))

for x0 ∈ Λ and p ∈ Tx0 . Our proposed sampling algorithm consists
in seeking for each sampling point z an approximate solution of the
ill-posed integral equation

(58) Sϕz = �z in L2
t (Λ).

In view of Lemma 5.2, an approximate solution can be constructed
using any regular regularization, see [20]. The following theorem
suggests that the norm of this approximate solution should be much
larger for z outside D than for z in D, allowing us to use this norm
as an indicator of the location and the shape of D. The idea behind
the different behavior of this approximate solution for z inside and
outside D is that when z ∈ D an approximate solution to (58) can be
constructed from a sequence Aϕε

z approaching E0
z where (E0

z , E
int
z ) is

a solution to the interior transmission problem

curl curlE0
z − k2nbE

0
z = 0 in D(59)

curl curlEint
z − k2N(x)Eint

z = 0 in D(60)
ν × E0

z − ν × Eint
z = ν × Ee(·, z, q, kb) on ∂D(61)

ν × curlE0
z − ν × curlEint

z = ν × curlEe(·, z, q, kb) on Γ1(62)
ν × curlE0

z − ν × curlEint
z = ikην(63)

× [(
E0

z − Ee(·, z, q, kb)
) × ν

]
+ ν × curlEe(·, z, q, kb) on Γ2,

whereas for z /∈ D this construction cannot hold. Let us remark that
(58) can be equivalently written, using the definition of S and �z, in
the form

(64) R(E,Aϕz) = R(E,Ee(·, z, q, kb)) for allE ∈ U .



PARTIALLY COATED ANISOTROPIC BURIED OBJECTS 379

We also emphasize that, as opposed to the classical linear sampling
method, the background Green’s function G(·, x0)p does not appear in
the integral equation (64).

Theorem 5.3. Assume that k, N and nb are such that the inte-
rior transmission problem (59) (63) is well posed (for instance, under
conditions (19) (20)). Then

1. For z ∈ D and a given ε > 0, there exists a ϕε
z ∈ L2

t (Λ̃) such that

‖Sϕε
z − �z‖L2

t (Λ) < ε

and the corresponding single layer potential Aϕε
z converges to E0

z in
Hinc(D,Γ2) as ε→ 0 where (E0

z , E
int
z ) is the solution of (59) (63).

Moreover, for a fixed ε > 0, we have that

lim
z→∂D

‖Aϕε
z‖Hinc(D,Γ2) = ∞ and lim

z→∂D
‖ϕε

z‖L2
t (Λ̃) = ∞.

2. For z ∈ R3 \ Δ and a given ε > 0, every ϕε
z ∈ L2

t (Λ̃) that satisfies

‖Sϕε
z − �z‖L2

t (Λ) < ε

is such that

lim
ε→0

‖Aϕε
z‖Hinc(D,Γ2) = ∞ and ‖ϕε

z‖L2
t(Λ̃) = ∞.

Proof. Consider z ∈ D, and let E0
z and Eint

z be the solution to the
interior transmission problem (59) (63). Since both W ∈ H(Ω) and
Ee(·, z, q, kb) satisfy curl curlU − kbU = 0 in Ω \ D, integrating by
parts and using the equations satisfied by the total electric field we
have that

(65) R(E,W ) = k2

∫
D

(N−nbI)Eint·W dx+ik
∫

Γ2

η (ν×E)(ν×W ) ds.

From Lemma 4.1 we see that R(E,W ) = R(E,Ee(·, z, q, kb)) has a
unique solution W if and only W coincides with E0

z in D. But this is



380 F. CAKONI AND H. HADDAR

in general not possible. However, from Lemma 5.1, for every ε > 0 we
can find a ϕε

z ∈ L2
t (Λ̃) such that

‖E0
z −Aϕε

z‖Hinc(D,Γ2) < ε

which implies

‖R(E,Aϕε
z) −R(E,W )‖L2

t (Λ) < Cε

for some positive constant C > 0, whence

‖R(E,Aϕε
z) −R(E,Ee(·, z, q, kb))‖L2

t (Λ) < ε.

Furthermore, by construction, Aϕε
z converges to E0

z in the Hinc(D,Γ2)
norm as ε → 0. Next we observe that Es := −Ee(·, z, q, kb) in R3 \D
and Es := Eint

z −E0
z in D satisfy the scattering problem (25) (30) with

E0 := E0
z . From the discussion in Section 2 we have that

‖Ee(·, z, q, kb)‖X(BR\D) ≤ C‖E0‖Hinc(D,Γ2).

Hence, due to the singularity of the electric dipole, we can conclude that
‖E0‖Hinc(D,Γ2) → ∞ as z → ∂D and hence so does ‖Aϕε

z‖Hinc(D,Γ2) and
‖ϕε

z‖L2
t (Λ̃).

Now we consider z ∈ Ω \ D and let ϕε
z and its corresponding single

layer potential Aϕε
z be such that

(66) ‖R(E,Aϕε
z) −R(E,Ee(·, z, q, kb))‖L2

t (Λ) < ε.

Note that from Lemma 4.2 we can always find such a Aϕε
z . Assume

to the contrary that ‖Aϕε
z‖Hinc(D,Γ2) < C where the positive constant

C is independent of ε. Noting that the total field can be written as
E(·, x0, p)Es(·, x0, p) + G(·, x0)p and integrating by parts, we obtain
that

R(E,Ee(x, z, q, kb)) =
∫

∂Ω

(ν × Es(x, x0, p)) · curlEe(x, z, q, kb) dsx

−
∫

∂Ω

(ν × Ee(x, z, q, kb)) · curlEs(x, x0, p) dsx

+
∫

∂Ω

(ν × G(x, x0)p) · curlEe(x, z, q, kb) dsx

−
∫

∂Ω

(ν × Ee(x, z, q, kb)) · curlG(x, x0)p dsx.
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Due to the symmetry of the background Green’s function, Es(x, x0, p)
as a function of x0 satisfies

curlx0 curlx0 E
s(x, x0, p) − k2n(x0)Es(x, x0, p) = 0

in the domain bounded by Λ and ∂D. Hence, the first two integrals
in the above equation give a solution W (x0) to the same equation
as the one satisfied by Es(·, x0, p), whereas the last two integrals
add up to −G(z, x0)p by the Stratton-Chu formula and the fact that
Ee(x, z, q, kb) is the fundamental solution of

curl curlE − k2
bE = 0.

On the other hand, we have that

R(E,Aϕε
z) = k2

∫
D

(N − nbI)Eint·Aϕε
z dx+ikη

∫
Γ2

(ν×E)(ν×Aϕε
z) ds.

Combining the above equalities we obtain that

(67) R(E,Aϕε
z) −R(E,Ee(·, z, q, kb))

= −W (x0) + G(z, x0)p+ k2

∫
D

(N − nbI)Eint · Aϕε
z dx

+ ikη

∫
Γ2

(ν × Eint)(ν ×Aϕε
z) ds.

Now since ‖Aϕε
z‖Hinc(D,Γ2) < C there exists a subsequence, still denoted

by Aϕε
z , that converges weakly to a V ∈ Hinc(D,Γ2) as ε → 0. Now

set

W̃ (x0) = lim
ε→0

R(E,Aϕε
z) = k2

∫
D

(N − nbI)Eint · V dx

+ ikη

∫
Γ2

(ν × E)(ν × V ) ds, x0 ∈ Λ.

From (66) we now have that

(68) W̃ (x0) = W (x0) + G(z, x0)p, x0 ∈ Λ.



382 F. CAKONI AND H. HADDAR

Since W̃ (x0) and W (x0) can be continued as radiating solutions to

curlx0 curlx0 E
s(x, x0, p) − k2n(x0)Es(x, x0, p) = 0

outside the domain bounded by Λ, we deduce by uniqueness and the
unique continuation principle that (68) holds true in R3 \ (D ∪ {z0}).
We now arrive at a contradiction by letting x0 → z. Hence Aϕε

z

is unbounded in the Hinc(D,Γ2) norm as ε → 0, which proves the
theorem.

Theorem 5.3 provides a characterization of the boundary ∂D of the
scattering object D in terms of the behavior of ‖Aϕε

z‖Hinc(D,Γ2) , which
is a norm depending on the unknown region D, and therefore not
useful numerically. Instead, one can use the behavior of ‖ϕε

z‖L2
t (Λ̃)

which follows that of ‖Aϕε
z‖Hinc(D,Γ2) . In particular, given a discrepancy

ε > 0 and ϕε
z the ε-approximate solution of (64), the boundary of the

scatterer is reconstructed as the set of points z where the L2
t (Λ̃) norm

of ϕε
z becomes large. In practice, since (64) is severely ill-posed due to

the compactness of the operator S, one uses regularization methods to
obtain a solution to (64). Obviously, an important question is whether
this regularized solution will exhibit the properties of the ε-approximate
solution provided by Theorem 5.3. In general, this question is still
open (however, see [3] for an answer to this question in the case of
the scalar problem for a perfect conductor in homogeneous background
using far field data). Numerical examples for similar reconstruction
methods have shown in these cases that the computed regularized
solution behaves in the way that the theory predicts [14, 15, 18, 24].
Notice that the method determines D without any a priori knowledge
of N , Γ1, Γ2 or η.

5.3. The determination of η. Assuming now that the support of
the inhomogeneity D is known (an approximation of D is obtained as
above), we want to use the approximate solution of (64) to estimate
the surface conductivity η without determining N . In particular, we
will obtain a lower bound for η and if the object is fully coated we will
reconstruct η, see formula (77) in Theorem 5.4 below. All this is done
provided that Im (N) 
= 0 (but N is unknown) since the estimate for
η is obtained from the absorption property of the inclusion.
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Our formula for η involves the solution of (59) (63). Let z ∈ D, and
let (E0

z , E
int
z ) be the unique solution of (59) (63), assuming that k is

not a transmission eigenvalue for D. As mentioned above,

Es := −Ee(·, z, q, kb) in R3 \D and
Es := Eint

z − Ez
0 in D

satisfy the scattering problem (25) (30) with E0 = Ez
0 . The idea

behind the formulas for η is to eliminate the unknown Eint
z from the

imaginary part of the energy identity associated with (59) (63). The
difficulty here is to justify the use of this energy identity for solutions
with weak regularity as defined in Section 3. We shall accomplish this
by using single layer potentials as approximating solutions.

Let Aϕε
z approximate Ez

0 in the Hinc(D,Γ2) norm with discrepancy
ε > 0, and let Es,ε

z be the solution of (25) (30) with E0 = Aϕε
z . From

(32) we have that

Es,ε
z → −Ee(·, z, q, kb) in X(BR \D,Γ2) and

Es,ε
z → (Eint

z − Ez
0 ) in X(D,Γ2) as ε→ 0.

We define Eint,ε
z := Es,ε

z + Aϕε
z in D. Applying the second vector

Green’s formula (note that Eint,ε has the needed regularity) we obtain
that ∫

∂D

(
ν × Eint,ε

z · curlEint,ε
z − ν × Eint,ε

z · curlEint,ε
z

)
ds(69)

= 2ik2

∫
D

Eint,ε
z · Im (N)Eint,ε

z dx.

On the other hand, from the boundary conditions for Es,ε
z , we have

that

(70)
∫

∂D

(
ν × Eint,ε

z · curlEint,ε
z − ν × Eint,ε

z · curlEint,ε
z

)
ds

=
∫

∂D

ν × (Es,ε
z +Aϕε

z) · curl (Es,ε
z +Aϕε

z) − ν × (Es,ε
z +Aϕε

z)

· curl (Es,ε
z +Aϕε

z) ds− 2ikη
∫

Γ2

|ν × (Es,ε
z +Aϕε

z)|2 ds.
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But∫
∂D

ν × (Es,ε
z +Aϕε

z) · curl (Es,ε
z +Aϕε

z)

− ν × (Es,ε
z +Aϕε

z) · curl (Es,ε
z +Aϕε

z) ds

=
∫

∂D

(
ν × Es,ε

z · curlEs,ε
z − ν × Es,ε

z · curlEs,ε
z

)
ds

+
∫

∂D

(
ν × Es,ε

z · curlAϕε
z − ν ×Aϕε

z · curlEs,ε
z

)
ds

+
∫

∂D

(
ν ×Aϕε

z · curlEs,ε
z − ν × Es,ε

z · curlAϕε
z

)
ds

+
∫

∂D

(
ν ×Aϕε

z · curlAϕε
z − ν ×Aϕε

z · curlAϕε
z

)
ds

= Iε
1 + Iε

2 + Iε
3 + Iε

4.

Hence combining (69) (70) we have that

(71) 2ik2

∫
D

Eint,ε
z · Im (N)Eint,ε

z dx

+ 2ikη
∫

Γ2

|ν × (Es,ε
z −Aϕε

z)|2 ds = Iε
1 + Iε

2 + Iε
3 + Iε

4

where the above integrals are interpreted in the sense of duality between
H

− 1
2

curl(∂D) andH− 1
2

div (∂D). Since Es,ε
z tends to −Ee(·, z, q, kb) in X(BR\

D,Γ2), we have that

lim
ε→0

Iε
1 =

∫
∂D

(
ν × Ee(·, z, q, kb) · curlEe(·, z, q, kb) − ν(72)

×Ee(·, z, q, kb) · curlEe(·, z, q, kb)
)
ds

=
∫

∂Ω

(
ν × Ee(·, z, q, kb) · curlEe(·, z, q, kb) − ν

×Ee(·, z, q, kb) · curlEe(·, z, q, kb)
)
ds

+ 2i Im (
k2

b

) ∫
Ω\D

|Ee(y, z, q, kb)|2 dy.
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Furthermore,

(73) lim
ε→0

Iε
2

= − lim
ε→0

∫
∂D

(
ν × Ee(·, z, q, kb) · curlAϕε

z − ν ×Aϕε
z · curlEe(·, z, q, kb)

)
ds

+ lim
ε→0

∫
∂D

ν × (Es,ε
z + Ee(·, z, q, kb)) · curlAϕε

z − ν

×Aϕε
z · curl (Es,ε

z + Ee(·, z, q, kb)) ds

= − lim
ε→0

ikbq · Aϕε
z(z) + 0 = −ikbq · E0

z (z)

where the last limit can be deduced using the mean value theorem for
the Helmholtz equation [16], see also [19, page 602]. Note that using
the transmission conditions across ∂D, we have that∫

∂D

ν × (Es,ε
z + Ee(·, z, q, kb)) · curlAϕε

z − ν

×Aϕε
z · curl (Es,ε

z + Ee(·, z, q, kb)) ds

= k2

∫
D

[
N(Es,ε

z − Eint
z + E0

z )

·Aϕε
z + (N − nbI)(E0

z −Aϕε
z)

]
·Aϕε

z dv

− k2

∫
D

nb(E
s,ε
z − Eint

z + E0
z ) ·Aϕε

z dv

+ ikη

∫
Γ2

ν × (
Es,ε

z + Ee(·, z, q, kb) +Aϕε
z − E0

z

)
· Aϕε

z ds −→ 0 as ε→ 0

since (Es,ε
z − Eint

z + E0
z ) → 0 in L2(D), Aϕε

z → E0
z in Hinc(D,Γ2) and

ν × (Es,ε
z + Ee(·, z, q, kb)) → 0 in L2

t (Γ2). Obviously, since I3 = −I2,
we obtain that

(74) lim
ε→0

Iε
3 = −ikbq · E0

z (z).

Finally,

lim
ε→0

Iε
4 = lim

ε→0
2i Im (

k2
b

) ∫
D

|Aϕε
z|2 dy(75)

= 2i Im (
k2

b

) ∫
D

∣∣E0
z (y)

∣∣2 dy.
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Hence, taking the limit as ε→ 0 in (71) and using (72), (73), (74) and
(75), we obtain

(76) 2ik2

∫
D

Eint
z · Im (N)Eint

z dx

+ 2ikη
∫

Γ2

|ν × (E0
z − Ee(·, z, q, kb))|2ds

=
∫

∂Ω

(
ν × Ee(·, z, q, kb) · curlEe(·, z, q, kb) − ν

×Ee(·, z, q, kb) · curlEe(·, z, q, kb)
)
ds

+ 2iIm (
k2

b

) ∫
Ω\D

|Ee(y, z, q, kb)|2 dy − 2iRe (kbq ·E0
z )

+ 2iIm (
k2

b

) ∫
D

∣∣E0
z (y)

∣∣2 dy
Thus, we have the following theorem.

Theorem 5.4. Assume that k, N and nb are such that the interior
transmission problem (59) (63) is well posed (for instance, under con-
ditions (19)–(24)). Let z ∈ D be fixed and E0

z be such that E0
z , E

int
z is

the unique solution of (59) (63). Then

(77) η

∫
Γ2

∣∣ν × [E0
z − Ee(·, z, q, kb)]

∣∣2 ds
≤ A(z,Ω, kb, q) −Re (

√
nbq ·E0

z )

+ kIm (nb)
{∫

Ω\D

|Ee(·, z, q, kb)|2 dy +
∫

D

∣∣E0
z

∣∣2 dy}
where the constant A(z,Ω, kb, q) is given by

(78) A(z,Ω, kb, q)

:=
1
k

∫
∂Ω

Im
(
ν × Ee(·, z, q, kb) · curlEe(·, z, q, kb)

)
ds.

If Im (N) = 0, then inequality (77) becomes an equality.

Let us indicate once again that, numerically, one has access to an
approximation to E0

z by Aϕz where ϕz is the nearby (regularized)
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solution of the integral equation (64). We conclude this section with
few remarks concerning further practical aspects of this theorem.

1. A drawback of (77) is that in general the extent of the coating Γ2

is not known. Thus, in practice, this expression provides only a lower
bound for η. However, if the object is fully coated, that is Γ2 = Γ, and
if the inhomogeneities is a dielectric, then we can indeed compute an
approximation of η. For an idea of how accurate this lower bound is
for η, we refer the reader to [21] where numerical examples for η are
given in the case of homogeneous background using the linear sampling
method with far field data.

2. The above analysis for the determination of D can be carried
out exactly in the same way if η is an L∞(Γ2) function such that
η(x) ≥ η0 > 0. For instance, when Im (N) = 0, formula (77) becomes
an integral equation of the first kind for η with kernel

∣∣ν(y) × [E0
z (y) − Ee(y, z, q, kb)]

∣∣2 , (y, z) ∈ Γ2 ×D.

One can use this equation to determine ‖η‖L∞(Γ2). In this regard, see
[13] for the scalar case and [9] for the case of a partially coated perfect
conductor for Maxwell’s equation.

3. The above analysis for solving (64) requires the measured tangen-
tial component of the total electric and magnetic field on the whole
boundary ∂Ω of Ω. The case of an object buried in a layered medium,
for instance in the earth, is handled by assuming that the part of ∂Ω
below the surface of the earth is far away from the incident sources
and hence we can assume that the total electric and magnetic fields are
very small on this portion of the boundary.

Numerical examples for determiningD and η for partially coated buried
penetrable objects using the above results will follow in a forthcoming
paper. However, for the implementation procedure and examples in
similar situations, see [14, 15, 21].
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