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Abstract. We consider the inverse scattering problem of determining the shape of a partially coated obstacle in R3 from a
knowledge of the incident time harmonic electromagnetic plane wave and the electric far field pattern of the scattered wave. A
justification is given of the linear sampling method in this case and numerical examples are provided showing the practicality
of our method.
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1. Introduction. The inverse scattering problem we consider in this paper is to determine the shape of
a (possibly disconnected) scattering obstacle from a knowledge of the incident time harmonic electromagnetic
plane wave and the electric far field pattern of the scattered wave. Although this problem is a basic one in
inverse scattering theory, until now only partial solutions have been obtained [16], [18], [9]. The difficulty
lies in what a priori assumptions need to be made on the material properties of the scattering object D, e.g.
is D penetrable, perfectly conducting or coated? In particular, for iterative methods such as those of [16]
and [18] some a priori knowledge of this type is needed in order to implement the inversion scheme. On the
other hand, the linear sampling method used in [9] for solving this problem requires that each component
of the scattering object has the same boundary condition although this boundary condition can vary from
component to component and does not have to be known a priori. Excluded in this analysis is the case of
partially coated obstacles, i.e. the case of possibly mixed boundary conditions on each component and it is
this problem that we are concerned with in this paper.

The inverse scattering problem for partially coated obstacles was first considered in [4] for the special
case of an infinite cylinder where the Maxwell systems decouples into a two dimensional scalar Helmholtz
equation. This problem, and in particular the three dimensional analogue considered in this paper, is
particularly important in the use of electromagnetic waves to detect ”hostile” objects where the boundary,
or more generally a portion of the boundary, is coated with an unknown material in order to avoid detection.
Since in general such objects have corners and edges, which are in fact responsible for strong scattering effects,
it is important to consider the general case of disconnected obstacles where each component is allowed to have
a Lipschitz boundary. These considerations are the motivation for the problem considered in this paper.

The goal of this paper is to establish the validity of the linear sampling method for the solution of
the three dimensional electromagnetic inverse scattering problem for partially coated obstacles (c.f. [4] for
the two dimensional case). As in [4], in order to accomplish this goal it is first necessary to establish the
uniqueness, existence and a priori estimates for the corresponding direct exterior and interior problems. This
was done in the scalar case through the use of integral equations of the first kind [4]. However, this approach
is not suitable for the three dimensional vector case and hence we establish these results for the vector case
in Section 2 of this paper through the use of variational methods. In this section, using the ideas of [14],
we also establish the approximation properties of electromagnetic Herglotz pairs which are necessary for
the justification of the linear sampling method given in Section 3. Finally, in Section 4, we provide some
numerical examples showing the practicality of our method for solving the inverse scattering problem.

2. The direct scattering problem. Let D ⊂ R3 be a bounded region with boundary Γ such that
De := R3 \ D is connected. Each simply connected piece of D is assumed to be a Lipschitz curvilinear
polyhedron. Moreover we assume that the boundary Γ = ΓD ∪ Π ∪ ΓI is split into two disjoint parts ΓD

and ΓI having Π as their possible common boundary in Γ and that each part ΓD and ΓI can be written as
the union of a finite number of open smooth faces

(
Γj

D

)
j=1,...ND

and
(
Γj

I

)
j=1,...,NI

, respectively where eij

denotes the common edge of two adjacent faces Γi and Γj . Let ν denote the unit outward normal defined
almost everywhere on Γ.
The direct scattering problem for the scattering of a time harmonic electromagnetic plane wave by a partially
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coated obstacle D is to find an electric field Et and a magnetic field Ht such that

curl Et − ikHt = 0(2.1)
curl Ht + ikEt = 0(2.2)

in R3 \ D and on the boundary Γ satisfy

ν × Et = 0 on ΓD(2.3)
ν × curl Et − iλ(ν × Et) × ν = 0 on ΓI(2.4)

where λ > 0 is the surface impedance which is assumed to be a (possibly different) constant on each connected
subset of ΓI . The total fields Et and Ht are given by

Et = Ei + E(2.5)
Ht = Hi + H(2.6)

where E, H is the scattered field satisfying the Silver-Müller radiation condition

lim
r→∞(H × x − rE) = 0(2.7)

uniformly in x̂ = x/|x| where r = |x| and the incident field Ei,Hi is given by

Ei(x) :=
i

k
curl curl peikx·d = ik(d × p) × deikx·d(2.8)

Hi(x) := curl peikx·d = ikd × peikx·d(2.9)

where the wave number k is positive, d is a unit vector giving the direction of propagation and p is the
polarization vector.

2.1. Solution of the forward problem. Letting (Hs(D))3, (Hs
loc(De))3 and (Hs(Γ))3, s ∈ R, denote

the product of the standard Sobolev spaces defined on D,De,Γ (with the convention H0 = L2), and

H(curl,D) := {u ∈ (L2(D))3 : curlu ∈ (L2(D))3}
Hs

t (Γ) := {u ∈ (Hs(Γ))3 : ν · u = 0 on Γ}
Hs

t (Γ0) := {u|Γ0 : u ∈ Hs
t (Γ)}

for an open subset Γ0 of Γ, we introduce the space

X(D,ΓI) := {u ∈ H(curl,D) : ν × u|ΓI
∈ L2

t (ΓI)},(2.10)

equipped with the natural norm

‖u‖2
X(D, ΓI) := ‖u‖2

H(curl, D) + ‖ν × u‖2
L2(ΓI).(2.11)

For the exterior domain De we define the above spaces in the same way for every De ∩ BR, with BR a
ball of radius R, and denote these spaces by Hloc(curl,De) and Xloc(De,ΓI), respectively. Furthermore we
introduce the trace space of X on the complementary part ΓD by

Y (ΓD) :=
{

f ∈ (H−1/2(ΓD))3 : ∃u ∈ H0(curl, BR),
ν × u|ΓI

∈ L2
t (ΓI)

and f = ν × u|ΓD

}
,(2.12)

where the ball BR contains D and H0(curl, BR) is the space of functions u in H(curl, BR) satisfying ν ×
u|∂BR

= 0. It is easy to show that Y (ΓD) is a Banach space with respect to the norm

‖f‖2
Y (ΓD) := inf {‖u‖2

H(curl,BR) + ‖ν × u‖2
L2(ΓI)},(2.13)
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where the infimum is taken over all functions u ∈ H0(curl, BR) such that ν×u|ΓI
∈ L2

t (ΓI) and f = ν×u|ΓD
.

Let X0(RR,ΓI) := H0(curl, BR)∩X(RR,ΓI). By using an extension theorem [7] one can prove that ‖·‖Y (ΓD)

is equivalent to both of the norms

|||f |||1 := sup
φ∈X(D,ΓI)

|〈f, φ〉1|
‖φ‖X(D,ΓI)

and |||f |||2 := sup
φ∈X0(BR\D,ΓI)

|〈f, φ〉2|
‖φ‖X(BR\D,ΓI)

,

where for u ∈ H0(curl, BR) such that ν × u|ΓI
∈ L2

t (ΓI) and f = ν × u|ΓD

〈f, φ〉1 : =
∫
D

(curlu · φ − u · curl φ) dv −
∫
ΓI

ν × u · φds φ ∈ X(D,ΓI),(2.14)

〈f, φ〉2 : =
∫

BR\D

(curlu · φ − u · curlφ) dv +
∫
ΓI

ν × u · φds φ ∈ X0(BR \ D,ΓI).

In particular, Y (ΓD) is a Hilbert space.

We can now formulate the following exterior mixed boundary value problem for the Maxwell equations:
given f ∈ Y (ΓD) and h ∈ L2

t (ΓI) find E ∈ Xloc(De,ΓI) and H = 1
ik curlE satisfying

(i) curl curlE − k2E = 0 in De

(ii) ν × E = f on ΓD(2.15)
(iii) ν × curl E − iλ(ν × E) × ν = h on ΓI

(iv) lim
r→∞(H × x − rE) = 0.

Note that the scattered fields E, H in (2.5) and (2.6) satisfy the exterior mixed boundary value problem
with f := −ν × Ei and h := −ν × curl Ei + iλ(ν × Ei) × ν.
We will also need to consider the corresponding interior mixed boundary value problem: given f ∈ Y (ΓD)
and h ∈ L2

t (ΓI) find E ∈ X(D,ΓI) satisfying

(i) curl curlE − k2E = 0 in D

(ii) ν × E = f on ΓD(2.16)
(iii) ν × curl E − iλ(ν × E) × ν = h on ΓI

We begin with establishing uniqueness and existence results for the interior and exterior mixed boundary
value problems (2.16) and (2.15).

Theorem 2.1. Assume that the impedance part ΓI is not empty. Then, if λ 	= 0, the interior mixed
boundary value problem (2.16) has at most one solution.

Proof. Let E ∈ X(D,ΓI) and H = 1
ik curlE be the solution of (2.16) with boundary data f ≡ 0 and

h ≡ 0. Taking the dot product of (2.16(i)), which is understood in the distribution sense, by the complex
conjugate of E, integrating over D and then using integration by parts we obtain∫

D

(|curl E|2 − k2|E|2) dv +
∫
ΓI

ν × curl E · ET ds = 0,(2.17)

where the ET denotes the tangential component ET := (ν×E)×ν. Making use of the homogeneous boundary
condition ν × curlE = iλET on ΓI we have∫

D

(|curl E|2 − k2|E|2) dv + iλ

∫
ΓI

|ET |2 ds = 0.(2.18)

Since λ is a real number, by taking the imaginary part of (2.18) we conclude that ET ≡ 0 and ν × curlE ≡ 0
as functions in L2

t (ΓI), whence E ≡ 0 in D by first using the representation formula to establish the regularity
of E across ΓI and then applying the unique continuation principle ( [11], [17]).
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Theorem 2.2. The exterior mixed boundary value problem (2.15) has at most one solution.
Proof. By doing the same as in the previous theorem but now in the domain De ∩ BR, where BR is a ball
of radius R > 0 containing D we obtain∫

De∩BR

(|curl E|2 − k2|E|2) dv − ik

∫
SR

(ν × E) · H ds − iλ

∫
ΓI

|ET |2 ds = 0,(2.19)

Taking the imaginary part of (2.19) we now obtain

Re
∫

SR

(ν × E) · H ds = −λ

k

∫
ΓI

|ET |2 ds ≤ 0,

Hence the uniqueness follows from [11], Theorem 6.10, and the unique continuation principle.
We now prove the existence of the solution to the exterior and interior mixed boundary value problems.

We will write the variational formulation of (2.16) and (2.15), show that this weak formulation is equivalent
to our problems and that it has a unique solution. For the sake of conciseness we will consider only the
interior problem (2.16) in details and then simply indicate how a similar proof is valid for the exterior
problem (2.15).
By using the integration by parts formula and the impedance boundary condition on ΓI the variational
formulation for the electric field of (2.16) becomes:
Find E ∈ X(D,ΓI) satisfying ν × E = f on ΓD such that

∫
D

(
curl E · curlφ − k2E · φ)

dv + iλ

∫
ΓI

ET · φT ds = −
∫
ΓI

h · φT ds,(2.20)

for every test function

φ ∈ X̃ := {u ∈ H(curl,D) : ν × u|ΓD
= 0 and ν × u|ΓI

∈ L2
t (ΓI)}.

From the definition of the space Y (ΓD), there exists a function U ∈ X(D,ΓI) such that ν × U |ΓD
= f . By

subtracting from both sides of (2.20) the expression
∫
D

(
curlU · curlφ − k2U · φ)

dv + iλ

∫
ΓI

UT · φT ds,

which is obviously well defined for φ ∈ X̃, we obtain for W := E − U the equation∫
D

(
curl W · curl φ − k2W · φ)

dv + iλ

∫
ΓI

WT · φT ds(2.21)

= −
∫
ΓI

h · φT ds −
∫
D

(
curlU · curl φ − k2U · φ)

dv − iλ

∫
ΓI

UT · φT ds,

and ν × W = 0 on ΓD. Taking a sufficiently smooth test function φ and using a denseness argument one
can show that if W ∈ X̃ solves (2.21) than E = W + U in X(D,ΓI) is a solution of (2.16) and conversely.
Hence our problem is to find W ∈ X̃ such that for every φ ∈ X̃

a (W,φ) = 〈h, φ〉 − a (U, φ) ,(2.22)

where the sesquilinear form a : X̃ × X̃ → C is defined by

a(u, ψ) = (curlu, curl ψ) − k2 (u, ψ) + iλ 〈uT , ψT 〉 , u, ψ ∈ X̃,

with (·, ·) denoting the L2(D) scalar product, and 〈·, ·〉 the L2(ΓI) scalar product. The sesquilinear form
a(u, ψ) is systematically studied in [20], Chapter 4, in the case when ΓD and ΓI are closed manifolds. We
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will outline the analysis there showing that it remains valid in our case when ΓD and ΓI are open subsets
of the boundary Γ. Without loss of generality we assume that D is simply connected. First we observe that
every function u ∈ X̃ satisfying curlu = 0 in D and ν × u|ΓI

= 0 satisfies u = ∇p with p ∈ S where S is
defined by

S =
{
p ∈ H1(Ω); p = 0 on Γ

}
.

For a similar result for non-simply connected domains see [20], Remark 4.4. Hence the Helmholtz decompo-
sition holds (see e.g. [20] Theorem 4.3)

X̃ = X0 ⊕∇S(2.23)

where

X0 =


u ∈ X̃;

∫
D

u · ∇ξ = 0, for all ξ ∈ S


 .

Furthermore, since for u ∈ X0 both ν × u|ΓD
= 0 and ν × u|ΓI

∈ L2
t (ΓI) imply ν × u ∈ L2

t (Γ) which from
a regularity result of Costabel [15] implies that u is in H

1
2 (D), we have that X0 is compactly imbedded in

L2(D). From (2.23) we can now look for our solution in the form W = W0 + ∇p with W0 ∈ X0 and p ∈ S.
Using the fact that curl(∇p) = 0 in D and ∇p × ν = 0 on Γ and by choosing the test function φ = ∇ξ for
some ξ ∈ S we obtain

(∇p,∇ξ) = − (U,∇ξ) .(2.24)

An application of the Lax-Milgram lemma for the continuous and coercive sesquilinear form (∇p,∇ξ) implies
that there exist a unique p0 ∈ S satisfying (2.24) and

||∇p0||L2(D) ≤ ||U ||L2(D).(2.25)

Hence determining W is equivalent to determining W0 ∈ X0 such that

a (W0, φ) = 〈h, φ〉 − a (U, φ) + k2 (∇p0, φ) ,(2.26)

for all φ ∈ X0. We write this sesquilinear form as

a (u, φ) = b (u, φ) − (1 + k2) (u, φ) ,(2.27)

where b : X0 × X0 → C is defined by

b(u, φ) := (curlu, curl φ) + (u, φ) + iλ 〈uT · φT 〉 , u, φ ∈ X̃.

¿From the Cauchy-Schwarz inequality there exists a constant C1 such that

|b(u, φ)| ≤ C1||u||X ||φ||X
and by taking the real and the imaginary part there is a constant C2 > 0 such that for u ∈ X0

|b(u, u)| ≥ 1
2


∫

D

|curl u|2 + |u|2 dv + λ

∫
ΓI

|uT |2 ds


 ≥ C2‖u‖X .

Hence by the Lax-Milgram lemma the first term in (2.27) gives rise to a bijective operator and by the compact
embedding of X0 in L2(D) the second term gives rise to a compact operator. Then a standard argument
implies that the Fredholm alternative is applicable which together with the uniqueness Theorem 2.1 shows
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that there exists a unique solution E = U + W0 + ∇p to (2.16), providing ΓI 	= ∅. Moreover, since a(U, φ)
is bounded and (2.25) holds, we have the norm estimate for this solution

‖E‖X ≤ C
(‖U‖X + ‖h‖L2(ΓI)

)
,(2.28)

with some positive constant C independent of h and U . From the definition of the norm of Y (ΓD) (2.13) for
every ε > 0 we can find a Uε ∈ H(curl, BR) such that ν × Uε|ΓI

∈ L2
t (ΓI) and f = ν × Uε|ΓD

satisfies

‖Uε|D‖2
X(D,ΓI) ≤ ‖Uε‖2

H(curl,BR) + ‖Uε‖2
L2(ΓI) ≤ ‖f‖2

Y (ΓD) + ε.

Since the unique solution of (2.16) does not depend on the choice of U , the estimate (2.28) implies that, for
every ε > 0,

‖E‖X ≤ C
(‖f‖Y (ΓD) + ε + ‖h‖L2(ΓI)

)
.(2.29)

Hence we have proved the following result.
Theorem 2.3. Assume that ΓI is not empty. Then the interior mixed boundary value problem (2.16)

has a unique solution which satisfies

‖E‖X(D,ΓI) ≤ C
(‖f‖Y (ΓD) + ‖h‖L2(ΓI)

)
,(2.30)

for some positive constant C.
Note that for ΓI = ∅ we have the perfect conductor problem and Theorem 2.3 holds under the assumption
that k is not a Maxwell eigenvalue. Furthermore, in this case Y (Γ) becomes simply the trace space of

H(curl,D) which for a smooth boundary is known to be H
− 1

2
div (Γ), the space of tangential vectors that belong

together with their surface divergence to H− 1
2 (Γ). (For the characterization of this space in the case of

Lipschitz polyhedra we refer to [1].)

The exterior mixed boundary value problem can be treated in a similar manner but in the domain
De ∩BR. There are several ways of imposing the boundary condition on the artificial surface ∂BR basically
by incorporating the capacity operator (for details see [21]). Here we only state the desired result.

Theorem 2.4. The exterior mixed boundary value problem (2.15) has a unique solution which satisfies

‖E‖X(De∩BR,ΓI) ≤ C
(‖f‖Y (ΓD) + ‖h‖L2(ΓI)

)
,(2.31)

for some positive constant C depending on R but not on f and h.

2.2. An approximation property. An electromagnetic Herglotz pair is defined to be a pair of vector
fields of the form

Eg(x) =
∫
Ω

eikx·dg(d)ds(d), Hg(x) =
1
ik

curlEg(x)(2.32)

where the kernel g is a tangential vector field in L2
t (Ω). It is easily seen that Eg, Hg is a solution of the

Maxwell equations in R3. Our goal is to prove that the electric field of the solution of the interior mixed
boundary value problem (2.16) can be approximated by the electric field of a Herglotz pair in X(D,ΓI).
For the following analysis we need a proper characterization of certain function spaces and the corresponding
differential operators defined on the boundary of a Lipschitz polyhedra. To this end, we recall the recent
results of [1] and [2] where the situation was first clarified. Let H

1
2−(Γ) denote the space of functions u ∈ L2

t (Γ)

such that u ∈ H
1
2 (Γj

D), j = 1, . . . , ND, and u ∈ H
1
2 (Γj

I), j = 1, . . . , NI , and let H
− 1

2− (Γ) denote the associated
dual space with respect to L2

t scalar product. Then the tangential traces ν × (u × ν) and ν × u of vectors

u ∈ H1(D) form subspaces of H
1
2−(Γ) denoted by H

1
2
‖ (Γ) and H

1
2
⊥(Γ), respectively, and these spaces are fully

characterized in [1]. Roughly speaking, H
1
2
‖ (Γ) contains the tangential surface vectors that are in H

1
2−(Γ)

and ”preserves” a suitable weak tangential continuity across the edges of each smooth face Γj , while H
1
2
⊥(Γ)
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”preserves” a suitable weak normal continuity across the edges of Γj . For smooth boundary these spaces
coincide with the space of tangential vectors in H

1
2 (Γ). The associated dual spaces with L2

t (Γ) as a pivot

space are denoted by H
− 1

2
‖ (Γ) and H

− 1
2

⊥ (Γ), respectively. In [1], [2] it is shown that the following sequences
are such that the range of one operator is the kernel of the following in the sequence

H
1
2 (Γ)

gradΓ−→ H
− 1

2
⊥ (Γ) curlΓ−→ H− 3

2 (Γ) −→ {0}(2.33)

H
1
2 (Γ) curlΓ−→ H

− 1
2

‖ (Γ) divΓ−→ H− 3
2 (Γ) −→ {0},(2.34)

The mapping u → ν × (u× ν) from H(curl,D) to H
− 1

2
⊥curl(Γ) and u → ν ×u from H(curl,D) to H

− 1
2

‖div(Γ) are
continuous and surjective, where

H
− 1

2
‖div(Γ) :=

(
u ∈ H

− 1
2

‖ (Γ) : divΓ u ∈ H− 1
2 (Γ)

)
(2.35)

H
− 1

2
⊥curl(Γ) :=

(
u ∈ H

− 1
2

⊥ (Γ) : curlΓ u ∈ H− 1
2 (Γ)

)
.(2.36)

The integration by parts formula for functions in H(curl,D) remains true for Lipshitz polyhedra and naturally

defines the duality pairing between H
− 1

2
‖div(Γ) and H

− 1
2

⊥curl(Γ).

Let H
− 1

2
‖div(ΓD) and H

− 1
2

⊥curl(ΓD) be the spaces of functions in H
− 1

2
‖div(Γ) and H

− 1
2

⊥curl(Γ), respectively, restricted
on ΓD. The relation (2.14) defines a duality between the space Y (ΓD) defined by (2.12) and a subspace of

H
− 1

2
⊥,curl(ΓD). In particular, if Y (ΓD)′ denotes the dual space of Y (ΓD) with respect to the duality pairing

defined by (2.14), a function ϕ ∈ Y (ΓD)′ can be extended to a function ϕ̃ ∈ H
− 1

2
⊥,curl(Γ) defined on the whole

boundary and satisfying ϕ̃|ΓI
∈ L2

t (ΓI).

We now define an operator H : L2
t (Ω) → Y (ΓD) × L2

t (ΓI) by

Hg :=




ν × Eg on ΓD

ν × curlEg − iλν × (Eg × ν) on ΓI

(2.37)

where Eg is the electric field of an electromagnetic Herglotz pair defined by (2.32). By Theorem 2.1 we see
that H is injective provided ΓI 	= ∅ and λ 	= 0 .

Theorem 2.5. Assume that ΓI 	= ∅ and λ 	= 0. Then the range of H is dense in Y (ΓD) × L2
t (ΓI).

Proof. By the change of variables d → −d it suffices to consider the operator H with Eg written as

Eg(x) =
∫

Ω

e−ikx·dg(d) ds(d).

Let H := Y (ΓD) × L2
t (ΓI) with dual H∗ := Y (ΓD)′ × L2

t (ΓI) in the component-wise duality pairing. Note
that L2

t (ΓI) is considered as the dual space of itself with respect to the L2 scalar product. The dual operator
H	 : H∗ → L2

t (Ω) of the operator H is such that for every (a1, a2) ∈ H∗ and g ∈ L2
t (Ω) we have

〈Hg, (a1, a2)〉H,H∗ =
〈
g,H	[a1, a2]

〉
L2

t (Ω),L2
t (Ω)

.

It is enough to show that the dual operator H	 is injective. Then the result follows from the fact that the
range of H can be characterized as [19]

(RangeH) = aKernH	

where

aKernH	 :=
{

(p1, p2) ∈ H : 〈(p1, p2), (q1, q2)〉H,H∗ = 0 ∀ (q1, q2) ∈ KernH	
}

.
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In particular, the injectivity of H	 implies that (RangeH) = H. Simple computations shows that the dual
operator H	 is defined by

H	[a1, a2] = d ×



∫
ΓD

e−ikx·d(a1 × ν)dx

+ ik d ×
∫
ΓI

e−ikx·d(a2 × ν)dx − iλ

∫
ΓI

e−ikx·d[ν × (a2 × ν)]dx


 × d.

We note that H	[a1, a2] coincides with the far field pattern of the combined electric and magnetic dipole
distributions

P (z) =
1
k2

curl curl
∫

ΓD

Φ(x, z)(a1 × ν)dsx

− curl
∫

ΓI

Φ(x, z)(a2 × ν)dsx − iλ
1
k2

curl curl
∫

ΓI

Φ(x, z)[ν × (a2 × ν)]dsx,

where

Φ(x, z) :=
1
4π

eik|x−z|

|x − z| , x 	= z and x, z ∈ R3.(2.38)

The potential P is well defined and satisfies curlcurlP − k2P = 0 in De and D.
Now, let us assume that H	[a1, a2] = 0. This means that the far field pattern of P is zero and from the

Rellich lemma P = 0 in De. Since a1 ∈ Y (ΓD)′ there is an extension (ã1 × ν) ∈ H
− 1

2
‖div(Γ) of a1 × ν such that

(ã1 × ν)|ΓI
∈ L2

t (ΓI). Hence we can write

P (z) =
1
k2

curl curl
∫
Γ

Φ(x, z)(ã1 × ν)dsx − 1
k2

curl curl
∫
ΓI

Φ(x, z)(ã1 × ν)dsx

− curl
∫

ΓI

Φ(x, z)(a2 × ν)dsx − iλ
1
k2

curl curl
∫

ΓI

Φ(x, z)[ν × (a2 × ν)]dsx.

If z → Γ the following jump relations hold

ν × P+ − ν × P−|ΓD
= 0(2.39)

ν × P+ − ν × P−|ΓI
= −(a2 × ν)(2.40)

ν × curl P+ − ν × curl P−|ΓD
= (a1 × ν)(2.41)

ν × curl P+ − ν × curl P−|ΓI
= −iλ[ν × (a2 × ν)],(2.42)

where by the superscript + and − we distinguish the limit obtained by approaching the boundary Γ from
De and D, respectively. Note that ν ×P− and ν × curlP− = 0 exist in the L2 sense on the whole boundary
Γ.
We remark that, since ã1×ν ∈ H

− 1
2

‖div(Γ), then the potential over Γ and the corresponding jump relations are

well defined from potential theory for the single layer potentials with H− 1
2 density [19] (see also [3]), while

the jump relations for the potentials over ΓI with L2 layer are interpreted in the sense of the L2 limit [11]
p. 172. Therefore combining (2.40) and (2.42) and using the fact that ν × P+ = ν × curlP+ = 0 we obtain

ν × P−|ΓD
= 0(2.43) [

ν × curl P− + iλν × (P− × ν)
]∣∣

ΓI
= 0(2.44)

which are understood in the L2 limit sense. Hence P is such that curlcurlP −k2P = 0 in D and satisfies the
boundary conditions (2.43) and (2.44). Using the divergence theorem and a parallel surface argument one
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can conclude as in Theorem 2.1 that P = 0 in D, whence from the jump relations (2.40) and (2.41) and the
fact that a1 and a2 are tangential fields we obtain that a1 = 0 and a2 = 0. This means that H	 is injective,
which ends the proof.

Corollary 2.6. Assume that ΓI 	= ∅ and λ 	= 0. Then the electric field E of the solution to the interior
mixed boundary value problem (2.16) can be approximated by the electric field of an electromagnetic Herglotz
pair with respect to the X(D,ΓI) norm.

Proof. The result is a consequence of Theorem 2.5 and the a priori estimate (2.30).
If ΓI = ∅, then D is a perfect conductor, X(D,ΓI) = H(curl,D) and the approximation properties of

electromagnetic Herglotz pairs follows from the results of [12].

3. Inverse scattering problem. It is known [11] that the radiating solutions E, H to the exterior
problem (2.15), have the asymptotic behavior

E(x) =
eik|x|

|x|
{

E∞(x̂) + O

(
1
|x|

)}
, H(x) =

eik|x|

|x|
{

H∞(x̂) + O

(
1
|x|

)}

as |x| → ∞, where E∞ and H∞ are defined on the unit sphere Ω and are known as the electric far field
pattern and magnetic far field pattern, respectively. Moreover they satisfy

H∞ = x̂ × E∞, and x̂ · E∞ = x̂ · H∞ = 0.

We now consider the scattering of an electromagnetic plane wave by a perfectly conducting obstacle D that
is partially coated by a material with surface impedance λ. In this case the scattered fields E, H satisfy
(2.15) with f := −ν × Ei and h := −ν × curlEi + iλ(ν × Ei) × ν, where the incident plane wave is given
by (2.8). We indicate the dependence of the electric far field on the incident direction d and polarization p
by writing E∞(x̂, d, p). The inverse scattering problem we will consider in this paper is to determine D from
the knowledge of the electric far field E∞(x̂; d, p). (Note that we do not assume a priori knowledge of ΓD,
ΓI or λ!).

3.1. The linear sampling method. The electric far field pattern defines the electric far field operator
F : L2

t (Ω) → L2
t (Ω) by

(Fg)(x̂) :=
∫
Ω

E∞(x̂, d, g(d))ds(d), x̂ ∈ Ω,(3.1)

for g ∈ L2
t (Ω). Note that by superposition Fg is the electric far field pattern of the exterior mixed boundary

value problem corresponding to the electromagnetic Herglotz pair with kernel ikg as incident field. Now let
us consider the electric dipole with polarization q defined by

Ee(x, z, q) : =
i

k
curlx curlx q Φ(x, z)

He(x, z, q) : = curlx q Φ(x, z),

where Φ is the fundamental solution of Helmholtz equation defined by (2.38). If z ∈ D then Ee(x, z, q) and
He(x, z, q) solve the Maxwell equations in De and the corresponding electric far field pattern Ee,∞(x̂, z, q)
is given by

Ee,∞(x̂, z, q) =
ik

4π
(x̂ × q) × x̂ e−ikx̂·z.(3.2)

The linear sampling method for solving the inverse problem consists of solving the following linear first kind
integral equation which we will call the far field equation

Fg(x̂) = Ee,∞(x̂, z, q),(3.3)

for a set of sampling points z ∈ R3 and three linear independent polarizations q ∈ R3.
We now define the operator B : Y (ΓD) × L2

t (ΓI) → L2
t (Ω) which maps a pair of functions (f, h) ∈ Y (ΓD) ×
9



L2
t (ΓI) onto the electric far field pattern E∞ ∈ L2

t (Ω) of the solution to (2.15) with boundary data (f, h).
The operator B is a composition of the bounded linear solution operator mapping the boundary data (f, h) ∈
Y (ΓD) × L2

t (ΓI) into the radiating solution to (2.15) (see Theorem 2.4) with the compact operator which
takes this solution to the corresponding electric far field (see [11], Theorem 6.8). Hence B is a bounded
injective linear operator and moreover compact.

Theorem 3.1. The operator B has dense range, that is the set B (
Y (ΓD) × L2

t (ΓI)
)

is dense in L2
t (Ω).

Proof. As in the proof of Theorem 2.5 we define H := Y (ΓD) × L2(ΓI) and its dual H∗ := Y (ΓD)′ ×
L2

t (ΓI). Recall that the duality pairing between Y (ΓD) and Y (ΓD)′ is defined by (2.14) and the duality
pairing between L2

t (ΓI) and L2
t (ΓI) is the L2 scalar product. The dual operator B	 : L2

t (Ω) → H∗ of the
operator B is such that for every (f, h) ∈ H and g ∈ L2

t (Ω) we have

〈B(f, h), g〉L2
t (Ω),L2

t (Ω) =
〈
(f, h),B	g

〉
H,H∗ .

Next we want to characterize the dual operator B	. From [11], Theorem 6.8, we have

B(f, h) := E∞ =
ik

4π
x̂ ×

∫
Γ

{
ν(y) × E(y) +

1
ik

[ν(y) × curl E] × x̂

}
e−ikx̂·yds(y),

where E ∈ Xloc(De,ΓI) is the electric scattered field corresponding to the boundary data (f, h). Hence by
changing the order of integration we can write

〈B(f, h), g〉 =
ik

4π

∫
Γ

∫
Ω

e−ikx̂·y
{

[x̂ × (ν(y) × E(y))] · g(x̂)(3.4)

+
1
ik

[x̂ × (ν(y) × curl E) × x̂] · g(x̂)
}

ds(x̂) ds(y).

Let

Eg(y) :=
∫
Ω

g(x̂)e−ikx̂·y ds(x̂)

denote the electric Herglotz wave function with tangential kernel g ∈ L2
t (Ω). Simple calculations show that

curly Eg(y) = ik

∫
Ω

[g(x̂) × x̂]e−ikx̂·y ds(x̂)

curly curly Eg(y) = k2

∫
Ω

[x̂ × (g(x̂) × x̂)]e−ikx̂·y ds(x̂).

By using the relations

[x̂ × (ν(y) × E(y))] · g(x̂) = [ν(y) × E(y)] · [g(x̂) × x̂]
[x̂ × (ν(y) × curl E(y)) × x̂] · g(x̂) = [ν(y) × curlE(y)] · [x̂ × (g(x̂) × x̂)]

and the fact that

curly curly Eg(y) = k2Eg(y),

due to the fact that g(x̂) is a tangential vector on the unit sphere, we can rewrite (3.4) as

〈B(f, h), g〉 =
1
4π

∫
Γ

[ν(y) × E(y)] · curlEg(y) + [ν(y) × curl E(y)] · Eg(y)ds(y).(3.5)

10



Now let Ẽ ∈ Xloc(De,ΓI) be the solution of the exterior mixed boundary value problem (2.15) with boundary
data

ν × Ẽ = ν × Eg on ΓD(3.6)

ν × curl Ẽ − iλ(ν × Ẽ) × ν = ν × curl Eg − iλ(ν × Eg) × ν on ΓI .

By splitting the integral in (3.5) into two pieces over ΓD and ΓI , and by using the boundary relations (3.6),
we obtain

〈B(f, h), g〉 =
1
4π

∫
ΓD

(ν × E) · curlEg + (ν × curl E) · Ẽ ds(3.7)

+
1
4π

∫
ΓI

(ν × E) · [curl Ẽ + iλ(ν × Ẽ)] − iλ(ν × E) · (ν × Eg) + (ν × curl E) · Eg ds.

Using the relation∫
ΓD

(ν × curlE) · Ẽds −
∫
ΓI

(ν × curl Ẽ) · Eds =
∫

ΓD

(ν × curl Ẽ) · Eds −
∫
ΓI

(ν × curl E) · Ẽds,

which is obtained from Green’s formula in De for two radiating solutions E, Ẽ to the Maxwell equations,
and rearranging the terms, we have

〈B(f, h), g〉 =
1
4π

∫
ΓD

(ν × E) · (curlEg − curl Ẽ) ds

+
1
4π

∫
ΓI

[ν × curl E − iλ(ν × E) × ν] · (Eg − Ẽ) ds,

and finally the boundary condition for E implies

〈B(f, h), g〉 =
1
4π

∫
ΓD

f · (curlEg − curl Ẽ) ds +
1
4π

∫
ΓI

h · (Eg − Ẽ) ds.(3.8)

Hence

4πB	g =




ν × (curlEg − curl Ẽ) × ν ∈ Y (ΓD)′ on ΓD

ν × (Eg − Ẽ) × ν ∈ L2
t (ΓI) on ΓI

(3.9)

Let B	g ≡ 0. Then (3.9) and (3.6) imply that ν × Ẽ ≡ ν × Eg and ν × curl Ẽ ≡ ν × curlEg on the whole
boundary Γ. Therefore by using the Stratton-Chu formula (see [11], Theorem 6.6, and justified for Lipschitz
boundary in [3], Theorem 3.2 and in [20]) Ẽ and H̃ = 1

ik curl Ẽ can be extended to a solution of the Maxwell
equations in R3. But since they satisfy the Silver-Müller radiation condition this means that Ẽ ≡ 0 and
hence Eg ≡ 0 which can happen only if the kernel g ≡ 0.
We can now characterize the rangeB as (rangeB)a = kernB	 where ( )a denotes the annihilator set [19]. In
other words from the injectivity of B	 we have

{
g ∈ L2

t (Ω) : 〈g, ψ〉 = 0 for all ψ ∈ rangeB}
= {0} ,

whence the set B (
Y (ΓD) × L2

t (ΓI)
)

is dense in L2
t (Ω). This ends the proof of the theorem.

In terms of the operator B the far field equation (3.3) can be written as

B(ΛEg) = − 1
ik

Ee,∞(·, z, q) z ∈ R3,(3.10)
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where Λ denotes the trace operator corresponding to our mixed boundary condition, i.e. Λu := ν × u|ΓD
on

ΓD and Λu := ν × curlu− iλ(ν ×u)× ν|ΓI
on ΓI , and Eg is the electric field of the electromagnetic Herglotz

pair given by (2.32). Our goal is to study (3.10) for sampling points z ∈ R3.
First let z ∈ D. In this case Ee,∞(·, z, q) is in the range of B since it is the far field pattern of the electric
dipole Ee(x, z, q) which is the solution of the exterior mixed boundary problem (2.15) with boundary data
−ikfe := ν ×Ee|ΓD

and −ikhe := ν × curl Ee − iλ(ν × Ee) × ν|ΓI
. Let E ∈ X(D,ΓI) be the solution of the

interior mixed boundary value problem (2.16) satisfying the boundary condition (fe, he). Then if ΓI 	= ∅,
from Theorem 2.5 for every ε > 0 there is a gε(·, z) = gε(·, z, q) ∈ L2

t (Ω) such that the corresponding electric
Herglotz function Egε(·,z) satisfies

‖Λ (E − Egε(·,z))‖Y (ΓD)×L2
t (ΓI) < ε.(3.11)

The continuity of the operator B and the fact that ΛE ≡ (fe, he) imply that

‖B(ΛEgε(·,z)) +
1
ik

Ee,∞(·, z, q)‖L2
t (Ω) < Cε

for some positive constant C. Furthermore, if z → Γ then ‖Ee(·, z, p)‖X(De\BR,ΓI) → ∞, whence the
well-posedness of the exterior mixed boundary value problem implies

lim
z→Γ

‖(fe, he)‖Y (ΓD)×L2
t (ΓI) = ∞,

and so from (3.11)

lim
z→Γ

‖ΛEgε(·,z))‖Y (ΓD)×L2
t (ΓI) = ∞.

Hence the kernel and the corresponding electric Herglotz function satisfy

lim
z→Γ

‖Egε(·,z)‖X(D,ΓI) = ∞, and lim
z→Γ

‖gε(·, z)‖L2
t (Ω) = ∞.

Now let z ∈ De. For these points − 1
ikEe,∞(·, z, q) is not in the range of B because from Rellich’s lemma

the electric dipole Ee(x, z, q) has to be a solution to Maxwell’s equation in De which is not possible since it has
a singularity at z. However, using Theorem 3.1 and Tikhonov regularization, we can construct a regularized
solution to the far field equation (3.10). In particular, there exist functions (fα

z , hα
z ) ∈ Y (ΓD) × L2(ΓI)

corresponding to a parameter α = α(δ) chosen by a regular regularization strategy (e.g. the Morozov
discrepancy principle [11]) such that

‖B(fα
z , hα

z ) +
1
ik

Ee,∞(·, z, q)‖L2
t (Ω) < δ,(3.12)

for an arbitrary small δ > 0, and

lim
α→0

(‖fα
z ‖Y (ΓD) + ‖hα

z ‖L2(ΓI)

)
= ∞.(3.13)

Note that in this case we have that α → 0 as δ → 0. Again assuming that ΓI 	= ∅, we can use Theorem
2.5 and the continuity of the operator B to find an electric Herglotz function Egα,ε(·,z) with gα,ε(·, z) =
gα,ε(·, z, q) ∈ L2

t (Ω) such that

‖B(ΛEgα,ε(·,z)) − B(fα
z , hα

z )‖L2
t (Ω) < ε.(3.14)

Now combining (3.12) and (3.14) we obtain

‖B(ΛEgα,ε(·,z)) +
1
ik

Ee,∞(·, z, q)‖L2
t (Ω) < ε + δ.(3.15)
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Furthermore, since ΛEgα,ε(·,z) approximates (fα
z , hα

z ) in Y (ΓD) × L2
t (ΓI), (3.13) implies that

lim
α→0

‖ΛEgα,ε(·,z)‖Y (ΓD)×L2
t (ΓI) = ∞,

whence

lim
α→0

‖Egα,ε(·,z)‖X(D,ΓI) = ∞, and lim
α→0

‖gα,ε(·, z)‖L2
t (Ω) = ∞.

We summarize these results in the following main theorem.
Theorem 3.2. Assume that ΓI 	= ∅ and λ > 0. Then if F is the electric far field operator (3.1)

corresponding to the mixed boundary value problem problem (2.15), we have that
1) If z ∈ D then for every ε > 0 there exists a solution gε(·, z) = gε(·, z, q) ∈ L2

t (Ω) satisfying the inequality

‖Fgε(·, z) − Ee,∞(·, z, q)‖L2
t (Ω) < ε.

Moreover this solution satisfies

lim
z→Γ

‖Egε(·,z)‖X(D,ΓI) = ∞, and lim
z→Γ

‖gε(·, z)‖L2
t (Ω) = ∞.

where Egε(·,z) is the electric field of the electromagnetic Herglotz pair with kernel gε, and
2) If z ∈ De then for every ε > 0 and δ > 0 there exists a solution gδ,ε(·, z) = gδ,ε(·, z, q) ∈ L2

t (Ω) of the
inequality

‖Fgδ,ε(·, z) − Ee,∞(·, z, q)‖L2
t (Ω) < ε + δ,

such that

lim
δ→0

‖Egδ,ε(·,z)‖X(D,ΓI) = ∞, and lim
δ→0

‖gδ,ε(·, z)‖L2
t (Ω) = ∞,

where Egδ,ε(·,z) is the electric field of the electromagnetic Herglotz pair with kernel gδ,ε.
We remark that if ΓI = 0, i.e. D is a perfect conductor, then Theorem 3.2 holds provided k is not a

Maxwell eigenvalue.

4. Numerical examples. The numerical results in this section are computed in the way detailed in
[9]. In summary, for a given test object, the far field pattern is computed using the ultra weak variational
formulation of Maxwell’s equations given in [6]. The far field data is then perturbed by random noise, and
used in a discrete version of the far field equation obtained by applying numerical quadrature to (3.3) using a
discrete set of N quadrature points on the unit sphere corresponding to the directions of the incoming waves
and the measurement points. Tikhonov regularization and the Morozov discrepancy principle are used in
the inversion of the discrete far field equation. We choose z on a uniform grid in the region we are sampling
for a scatterer. The region varies depending on the example and can be seen from the figures. In each case
we use a 51×51×51 uniform grid. The reconstruction of the two balls shown in Section 4.2 takes 235 seconds
on 300MHz Silicon Graphics Origin-2000. The reader is referred to [9] for complete details of the algorithm.

There are three important parameters for the far field data. The first, ε controls the amount of random
noise added to the data. As in our previous papers we choose ε = 0.01. The second is the number of
incoming waves. This varies between examples. The third parameter is the contour level at which we draw
the iso-surface of the reconstruction. Suppose we compute an approximation to g = g(x, z, q) where z and q
are the source point location and polarization of the dipole source in (3.2). We define

G(z) =
1
3

(
1

‖g(·, z, e1)‖L2(Ω)
+

1
‖g(·, z, e2)‖L2(Ω)

+
1

‖g(·, z, e3)‖L2(Ω)

)
.

The iso-surface is then the set of points z such that

G(z) = 0.2max
z

G(z)
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Fig. 4.1. Original figures used in this study showing the surface mesh. The shaded region shows where the impedance
boundary condition is applied. In each case the mesh is refined towards the curve separating the perfectly conducting and
impedance portions of the boundary.

where the factor 0.2 is chosen “ad hoc”.
The three scatterers presented here are shown in Fig. 4.1. The simplest scatterer is just a cube and is

a very simple example of a Lipschitz domain. We allow one face to have an impedance boundary condition.
The second scatterer, the balls, are disconnected. This example demonstrates that with no modification the
LSM can easily reconstruct disconnected objects. The third example, a camping mug, has a metal body
and an imperfectly conducting handle. In each case we are interested in investigating the LSM at long
wavelengths compared to the object.

4.1. Cube. Our first example is a simple Lipschitz domain, namely the unit cube [−0.5, 0.5]3. We use
N = 42 incoming waves (as in [9]) and choose k = 2. The resulting wavelength of the incident field is π
and so the unit cube is less than a third of a wavelength across. Despite this the results shown in Figures
4.2 (where the entire surface is perfectly electrically conducting) and 4.3 (where one face is imperfectly
conducting) show that we can obtain a reconstruction of the cube with obvious flattening of the faces. The
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(c) Contours on z3 = 0 (d) Iso-surface for C = 0.2

Fig. 4.2. Reconstruction of the perfectly conducting cube. The three contour plots show contours of G(z) as z varies
on planes across the reconstruction domain. The three dimensional surface in the lower right hand panel is the surface
G(z) = 0.2 maxz G(z). Here we use k = 2 and 42 incoming waves. As usual ε = 0.01.

fact that the cube is rounded is not surprising given the long wavelength compared to the size of the cube.
Comparing Figures 4.2 and 4.3 we can see that although there are detailed differences in the contour maps
for G(z), the overall three dimensional reconstruction does not differ noticeably in the two cases.

4.2. Two balls. The second example is two balls, one of which is half perfectly conducting and the
other of which is a perfect conductor. The original scatterer is shown in panel (b) of Fig. 4.1, and the
reconstruction is shown in Fig. 4.4. Since the reconstruction of two perfectly conducting balls is indistin-
guishable graphically from the reconstruction of the mixed balls, we have not shown it here. In keeping with
the previous reconstruction we choose a value of the wavenumber (k = 4) such that the diameter of the balls
is approximately one third of a wavelength. The reconstruction shows that the LSM can reconstruct discon-
nected scatterers. The elongation of the reconstructed balls towards one another is seen for long wavelengths
as in this case. For shorter wavelengths the elongation decreases.

4.3. Camping mug. The final example is a camping mug shown in panel (c) of Fig. 4.1. The
wavenumber is k = 2 so the handle of the mug is much less than one wavelength in thickness. Initial
attempts to reconstruct the mug with N = 42 revealed multiple artifacts in the reconstruction so the
number of directions used here is N = 92. Assuming an entirely metallic mug and handle, the reconstruction
is shown in Fig. 4.5. The handle is suggested by the reconstruction, but the mug appears full! This is likely
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Fig. 4.3. Reconstruction of the cube with one face having an impedance boundary condition using the same format as Fig.
4.2. Here we use k = 2 and 42 incoming waves. As usual ε = 0.01. Compare Figure 4.2.

due to using a long wavelength. With an imperfectly conducting handle, the reconstruction shown in Fig.
4.6 has the same body, but the handle is not visible to any great degree. This suggests that an imperfectly
conducting coating does effect the visibility of structures that are already close to the limit of resolution.

5. Conclusion. We have demonstrated by mathematical analysis and numerical results that the linear
sampling method can be used to reconstruct scatterers having both perfectly conducting and imperfectly
conducting components of the boundary. As is to be expected, the quality of the reconstruction can be
influenced by the imperfectly conducting coating, but we have generally not seen much influence of the
coating on the quality of reconstruction.

The examples here are all at long wavelength compared to the size of the object. As the wavelength
decreases, our experience is that the fidelity of the reconstruction improves. The examples here show that
even objects that are less than one third of a wavelength across can be roughly reconstructed.
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(a) Contours on x = −0.5 (b) Contours on y = 0
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(c) Contours on z = 0 (d) Isosurface for C = 0.2

Fig. 4.4. Reconstruction of the balls with one face having an impedance boundary condition using the same format as Fig.
4.2. Here we use k = 4 and 42 incoming waves. As usual ε = 0.01. The bar visible in the three dimensional reconstruction
shows the wavelength of the incident field.
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(a) Contours on x = −0.5 (b) Contours on y = 0

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 z
1

 z
2

5

10

15

20

25

30

(c) Contours on z = 0 (d) Iso-surface for C = 0.2

Fig. 4.6. Reconstruction of the cup with a perfectly conducting body and coated handle at long wavelength. Here we use
k = 2 and 92 incoming waves. As usual ε = 0.01. Note that the coated handle is much less visible than the perfectly conducting
handle shown in Figure 4.5.
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