Corrigendum on "The direct and inverse scattering problems for partially coated obstacles" [Inverse Problems 17 (6), 2001, 1997-2015]

Fioralba Cakoni \dagger, David Colton \dagger, Peter Monk \dagger
\dagger Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
E-mail: cakoni@math.udel.edu, colton@math.udel.edu, monk@math.udel.edu

1. Introduction

There is an error in the proof of Lemma 2.4 in [2] (pointed out in [3]). Specifically, in equation (29) of [2] we have incorrectly stated that the double layer operators K and K^{\prime} are adjoint with respect to the L^{2} inner product. However compact perturbations of each of these operators are adjoint and this is sufficient to correct the proof. In the following we shall provide a correction to the proof of Lemma 2.4 of [2].

2. Corrected Proof of Lemma 2.4 of [2].

Let us denote by $K_{0}: H^{1 / 2+s}(\Gamma) \longrightarrow H^{1 / 2+s}(\Gamma)$ and $K_{0}^{\prime}: H^{-1 / 2+s}(\Gamma) \longrightarrow H^{-1 / 2+s}(\Gamma)$ the operators

$$
K_{0} \psi(x)=2 \int_{\Gamma} \psi(y) \frac{\partial}{\partial \nu_{y}} \Phi_{0}(x, y) d s_{y} \quad K_{0}^{\prime} \psi(x)=2 \int_{\Gamma} \psi(y) \frac{\partial}{\partial \nu_{x}} \Phi_{0}(x, y) d s_{y}
$$

where $\Phi_{0}(x, y):=\frac{1}{2 \pi} \ln \frac{1}{|x-y|}$. The operators $L_{K}:=K-K_{0}$ and $L_{K^{\prime}}:=K^{\prime}-K_{0}^{\prime}$ are compact because they are both integral operators with continuous kernels. Furthermore K_{0} and K_{0}^{\prime} are adjoint with respect to the L^{2}-inner product. Then with the notation introduced in the proof of Lemma 2.4 in [2] we define the operator

$$
A_{0} \psi=\binom{\left.\left[\left(S_{0} \tilde{\psi}_{D}\right)-i k \lambda\left(S_{0} \tilde{\psi}_{I}\right)-K_{0} \tilde{\psi}_{I}\right]\right|_{\Gamma_{D}}}{\left.\left[i k \lambda\left(S_{0} \tilde{\psi}_{D}\right)+k^{2} \lambda^{2}\left(S_{0} \tilde{\psi}_{I}\right)+\left(T_{0} \tilde{\psi}_{I}\right)+K_{0}^{\prime} \tilde{\psi}_{D}-i k \lambda\left(K_{0}^{\prime} \tilde{\psi}_{I}+K_{0} \tilde{\psi}_{I}\right)\right]\right|_{\Gamma_{I}}}
$$

and

$$
L_{A} \psi=\binom{\left.\left(-L_{S} \tilde{\psi}_{D}+i k \lambda L_{S} \tilde{\psi}_{I}-L_{K} \tilde{\psi}_{I}\right)\right|_{\Gamma_{D}}}{\left(L_{T} \tilde{\psi}_{I}-i k \lambda L_{S} \tilde{\psi}_{D}-k^{2} \lambda^{2} L_{S} \tilde{\psi}_{I}+L_{K^{\prime}} \tilde{\psi}_{D}-\left.i k \lambda\left(L_{K^{\prime}} \tilde{\psi}_{I}+L_{K} \tilde{\psi}_{I}\right)\right|_{\Gamma_{I}}\right.}
$$

such that $A=\left(A_{0}+L_{A}\right)$. With this definition, the operator $L_{A}: H \longrightarrow H^{*}$ is compact and $A_{0}: H \longrightarrow H^{*}$ defines the sesquilinear form

$$
\begin{align*}
\left\langle A_{0} \psi, \bar{\psi}\right\rangle_{H, H^{*}} & =\left(S_{0} \tilde{\psi}_{D}, \tilde{\psi}_{D}\right)_{\Gamma}+k^{2} \lambda^{2}\left(S_{0} \tilde{\psi}_{I}, \tilde{\psi}_{I}\right)_{\Gamma} \\
& -i k \lambda\left(S_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}+i k \lambda\left(S_{0} \tilde{\psi}_{D}, \tilde{\psi}_{I}\right)_{\Gamma} \\
& -\left(K_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma_{D}}+\left(K_{0}^{\prime} \tilde{\psi}_{D}, \tilde{\psi}_{I}\right)_{\Gamma} \tag{1}\\
& -i k \lambda\left(\left(K_{0}+K_{0}^{\prime}\right) \tilde{\psi}_{I}, \tilde{\psi}_{I}\right)_{\Gamma}+\left(T_{0} \tilde{\psi}_{I}, \tilde{\psi}_{I}\right)_{\Gamma} .
\end{align*}
$$

Note that $(u, v)_{\Gamma}$ is the scalar product on $L^{2}(\Gamma)$ defined by $\int_{\Gamma} u \bar{v} d s$. Let us now take the real part of (1). From equation (24) in [2], we obtain

$$
\begin{align*}
& \operatorname{Re}\left[\left(S_{0} \tilde{\psi}_{D}, \tilde{\psi}_{D}\right)_{\Gamma}+k^{2} \lambda^{2}\left(S_{0} \tilde{\psi}_{I}, \tilde{\psi}_{I}\right)_{\Gamma}-i k \lambda\left(S_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}+i k \lambda\left(S_{0} \tilde{\psi}_{D}, \tilde{\psi}_{I}\right)_{\Gamma}\right] \\
& =\operatorname{Re}\left(S_{0}\left(\tilde{\psi}_{D}-i k \lambda \tilde{\psi}_{I}\right),\left(\tilde{\psi}_{D}-i k \lambda \tilde{\psi}_{I}\right)\right)_{\Gamma} \geq C_{1}\left\|\tilde{\psi}_{D}-i k \lambda \tilde{\psi}_{I}\right\|_{H^{-1 / 2}(\Gamma)}^{2} \tag{2}
\end{align*}
$$

Furthermore, since K_{0} and K_{0}^{\prime} are adjoint we have

$$
\begin{align*}
& \operatorname{Re}\left[-\left(K_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}+\left(K_{0}^{\prime} \tilde{\psi}_{D}, \tilde{\psi}_{I}\right)_{\Gamma}\right]=\operatorname{Re}\left[-\left(K_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}+\left(\tilde{\psi}_{D}, K_{0}^{\prime} \tilde{\psi}_{I}\right)_{\Gamma}\right] \\
& =\operatorname{Re}\left[-\left(K_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}+\overline{\left(K_{0} \tilde{\psi}_{I}, \tilde{\psi}_{D}\right)_{\Gamma}}\right]=0 \tag{3}
\end{align*}
$$

and

Finally from equation (25) in [2] we have

$$
\begin{equation*}
\operatorname{Re}\left(T_{0} \tilde{\psi}_{I}, \tilde{\psi}_{I}\right)_{\Gamma} \geq C_{2}\left\|\tilde{\psi}_{I}\right\|_{H^{1 / 2}(\Gamma)}^{2} \tag{4}
\end{equation*}
$$

Combining (2), (3), (4) and (4) in (1) we conclude that

$$
\operatorname{Re}\left\langle A_{0} \psi, \bar{\psi}\right\rangle_{H, H^{*}} \geq C_{1}\left\|\tilde{\psi}_{D}-i k \lambda \tilde{\psi}_{I}\right\|_{H^{-1 / 2}(\Gamma)}^{2}+C_{2}\left\|\tilde{\psi}_{I}\right\|_{H^{1 / 2}(\Gamma)}^{2} \geq C\|\psi\|_{H}^{2}
$$

for any $\psi \in \tilde{H}^{-1 / 2}\left(\Gamma_{D}\right) \times \tilde{H}^{1 / 2}\left(\Gamma_{I}\right)$ where we have used the arithmetic geometric mean inequality in deriving the last inequality. From this and the compactness of the operator L_{A}, we can now conclude that the operator $A=A_{0}+L_{A}$ is Fredholm with index zero [4], and the proof of Lemma 2.4 continues as in our paper.
Remark 2.1 Lemma 2.4 of [2] is only used to prove the well-posedness of the associated interior mixed boundary value problem (and by analogy the exterior boundary value problem: see Theorems 2.3 and 2.5 of [2]). An alternative proof of these well-posedness results, based on a variational approach, is given in Theorems 8.4 and Theorem 8.5 in [1]. The variational approach allows variable λ and hence extends the results of [2].

References

[1] F. Cakoni and D. Colton. Qualitative Methods in Inverse Scattering Theory. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.
[2] Cakoni, F., Colton, D. and Monk, P.: The direct and inverse scattering problems for partially coated obstacles. Inverse Problems 17, 1997-2015 (2001).
[3] Krutitskii, P.A.: Wrong papers in mathematics I. Paper by Cakoni F., Colton D., Monk P. in Inverse Problems and subsequent papers, International Journal of Applied Mathematical Research, 2 (2013) 40-43.
[4] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.

