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We consider the two-dimensional electromagnetic inverse scattering prob-
lem for a dielectric medium partially coated with a thin layer of highly
conductive material. Using the linear sampling method, we show that the
approximate solution of the far field equation can be used to reconstruct
the support of the coating in addition to the shape of the scattering
obstacle. We also deduce formulaes providing point-wise reconstruction of
the surface conductivity on the coated portion and the real index of
refraction on the uncoated portion of the boundary. Numerical examples
are given for the case with constant surface conductivity and index of
refraction showing the viability of our reconstruction procedure.

Keywords: linear sampling; mixed transmission conditions; inhomogeneous
medium; inverse scattering

AMS Subject Classifications: 35R30; 35Q60; 35J40; 78A25

1. Introduction

We consider the scattering of time-harmonic electromagnetic waves with frequency !
by an inhomogeneous dielectric obstacle partially coated with a thin layer of a highly
conductive material. This problem arises in non-destructive testing and underground
interrogation.

In this work, we restrict ourselves to the case where the scatterer is an infinitely
long cylinder with axis in the z-direction and cross-section D, and the incident
electromagnetic field is a plane wave propagating in the direction the cylinder axis
such that the electric field is polarized perpendicular to the z axis. We assume that the
electric permittivity �0 and magnetic permeability �0 of the exterior background
medium are positive constants whereas inside the cylindrical scatterer the magnetic
permeability �0 is the same as of the exterior medium but the electric permittivity � is

*Corresponding author. Email: cakoni@math.udel.edu

ISSN 0003–6811 print/ISSN 1563–504X online

� 2010 Taylor & Francis

DOI: 10.1080/00036810903437820

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
0
9
:
5
7
 
1
 
M
a
r
c
h
 
2
0
1
0



a positive function independent of z and the conductivity �¼ 0. The cross-section
D�R

2 is a bounded domain with C2-boundary @D such that the exterior domain
De :¼R

2
nD is connected. We denote by � the outward unit normal to @D. The

boundary @D ¼ @Dt [ @Dc is split into two open disjoint parts @Dt and @Dc, where
@Dt corresponds to the uncoated part and @Dc corresponds to the coated part of
the surface of the scatterer. Let the positive function � defined on @Dc denote the
surface conductivity which involves the physical parameters of the coating and its
thickness. Assuming that the function � does not depend on z, then the incident,
interior and scattered magnetic fields have only one component in the z direction, i.e.
Hi
¼ (0, 0,Ui), Hint

¼ (0, 0,V) and Hs
¼ (0, 0,Us), respectively. Eliminating the electric

fields and denoting by a(x)¼ �0/�(x) the contrast, the direct scattering problem is
formulated as the following transmission problem for V and Us (see [1,2]):

r�aðxÞrVþ k2 V ¼ 0 in D
DUs þ k2 Us ¼ 0 in De

V� ðUs þUiÞ ¼ 0 on @Dt

V� ðUs þUiÞ ¼ �i�ðxÞ
@ ðUs þUiÞ

@�
on @Dc

@V

@�a
�
@ ðUs þUiÞ

@�
¼ 0 on @D

limr!1

ffiffi
r
p @Us

@r
� ikUs

� �
¼ 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where r¼ jxj, Ui is the incident plane wave given by Ui :¼ eikx�d, d2� :¼ {x : jxj ¼ 1},

@V

@�a
ðxÞ :¼ �ðxÞ � aðxÞrVðxÞ, x2�,

and the radiation condition in (1) holds uniformly with respect to x̂ ¼ x=jxj.
In the following, we assume that a2C2ðDÞ and �2C2ð@DcÞ such that a(x)� a040

for x2D and �(x)4�040 for x2 @Dc (note that @Dc is not necessarily connected).
To formulate mathematically the direct scattering problem, we recall the usual
Sobolev spaces H1(D), H1

locðDeÞ and H
1
2ð@DÞ, and for @Dc� @D we define by

H
1
2ð@DcÞ :¼ fuj@Dc

: u2H
1
2ð@DÞg

~H
1
2ð@DcÞ :¼ fu2H

1
2ð@DcÞ : supp u � @Dcg,

and denote by H�
1
2ð@DcÞ and ~H�

1
2ð@DcÞ the dual spaces ð ~H

1
2ð@DcÞÞ

0 and ðH
1
2ð@DcÞÞ

0,
respectively, with L2 as a pivot space (for details see [3]). For later use we also define
the Hilbert space

H
1
ðD, @DcÞ :¼ u2H1ðDÞ such that

@u

@�
2L2ð@DcÞ

� �
equipped with the usual graph norm

kuk2
H

1ðD,@DcÞ
:¼ kuk2H1ðDÞ þ

@u

@�

����
����2
L2ð@DcÞ

:

The forward scattering problem reads: given D, a, � and Ui as above, find
V2H1(D) and U2H1

locðDeÞ that satisfy (1) where the boundary conditions are
assumed in the sense of the trace operator. In [1] (see also [2]) it is shown that (1) has
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a unique solution depending continuously on the incident field. It is also known [4]

that the radiating field Us have the asymptotic behaviour

UsðxÞ ¼
eikrffiffi
r
p U1ðx̂, d Þ þOðr�3=2Þ, r!1, ð2Þ

where U1ðx̂, d Þ is the far field pattern of the radiating solution Us which depends on
the incident direction d2� and the observation direction x̂2�, where � is the unit

circle.
The inverse scattering problem we are concerned with is to determine the shape D,

identify the uncoated part @Dt and coated part @Dc and reconstruct � and aj@Dt
from a

knowledge of the far field pattern U1ðx̂, d Þ of the scattered field Us for x̂, d2�.
However we remark that, based on [5], the results of this article hold true if U1ðx̂, d Þ

is known on a limited aperture, i.e. for d2�0 and x̂2�1, where �1 and �0 are open

subsets of the unit circle �. Note that, except for some reasonable regularity

conditions (only for technical reasons) no a priori information is assumed. For the
uniqueness of the support D from the above data we refer the reader to [2,6] whereas

uniqueness theorems for � can be found in [2,7].
The solution of this inverse problem was first considered in [8] (see also [1]) where

the linear sampling method was used to reconstruct the shape D of a partially coated
anisotropic dielectric with non-smooth boundary. In addition, a variational method

was given for determining the essential supremum of the surface conductivity �. The
idea of [8] was further developed in [7] where � is obtained as a solution of an integral

equation. In the foundation of these approaches is the study of the so-called the

interior transmission problem (ITP) that was first investigated in [9].
An alternative approach for solving the inverse scattering problem for partially

coated perfect conductors was proposed in [10–12] based on the probe and singular

sources methods (see also [13,14]) combined with asymptotical analysis of Green’s

function related to the exterior mixed boundary value problem. A full reconstruction
of the scattering objects including the shape, the support of the coating and the

impedance coefficient is presented in the above mentioned papers.
The goal of this article is to extend the ideas of [11,12] to solve the inverse

scattering problem for partially coated dielectrics using the linear sampling method.

More precisely, we show that the approximate solution of the far field equation
can be used to distinguish between the coated and uncoated boundary points, in

addition to the reconstruction of the support of the scatterer. Furthermore, we

obtain formulaes that provide point-wise reconstruction of the index of refraction

evaluated at the uncoated boundary points and the surface conductivity at the coated
boundary points. The inversion scheme is essentially based on a detailed

asymptotical analysis of Green’s function associated with the ITP corresponding

to our scattering problem which is developed in [15]. We note that the linear

sampling method and the probe and singular source methods use the far field data
differently. However they have a common feature, whereas the linear sampling

method is based on the behaviour of Green’s function of the interior problem

corresponding to the scattering problem (in the current case ITP), the probe and

singular source methods rely on Green’s function of the exterior problem. For a
discussion on the probe and singular source methods in comparison to the linear

sampling we refer the reader to [13,16,17–19].
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The plan of the article is the following. In the following section, we derive the

solution algorithm for solving the inverse scattering problem. In order to avoid long

and tedious calculations in our presentation, we state without proof some important

results from [15] which are basic for the derivation of our reconstruction formulaes.

Section 3 is devoted to numerical implementation of the proposed algorithm where

we present some numerical examples showing the viability of the method. Given the

complexity of the inverse problem, the numerical study presented here is preliminary

and by no means comprehensive and further investigation is necessary.
We conclude by saying that our reconstructing algorithm simply start by

sampling the searching region and the information is built step by step from the

reconstruction of the support till the reconstruction of the boundary coefficients.

Parts of the algorithm can be used if more a priori information is available.

2. The inverse scattering problem

The solution method for the inverse problem is based on the study of the

approximate solution to the far field equation. To this end let us define the far field

operator F: L2(�)!L2(�) by

Fgðx̂Þ :¼

Z
�

u1ðx̂, d Þgðd Þdsðd Þ, x̂2� ð3Þ

and the far field equation

ðFgÞðx̂Þ ¼ Gð j Þ1 ðx̂, zÞ g2L2ð�Þ, x̂2�, z2R
2, j ¼ 1, 2, ð4Þ

where Gð j Þ1 ðx̂, zÞ is the far field pattern of Gð j Þðx, zÞ ¼ @
@xj

�ðx, zÞ, j¼ 1, 2, x¼ (x1, x2)

with �ðx, zÞ :¼ i
4H
ð1Þ
0 ðkjx� zjÞ being the fundamental solution of the Helmholtz

equation in R
2 with H

ð1Þ
0 being the Hankel function of the first kind of order zero.

Typically the linear sampling method is based on the far field equation with the right-

hand side the far field pattern of the fundamental solution �(x, z) [1]. Here, we use

the far field equation on the right-hand side of the far field pattern of the derivative

of the fundamental because we need singularities stronger than logarithmic to be able

to obtain the reconstruction formulaes for � and aj@Dt
.

As already known (see e.g. [1]), the study the far field equation (4) is related to the

ITP referred to in the following as

r � arV ð j Þz þ k2V ð j Þz ¼ 0 in D
DW ð j Þ

z þ k2W ð j Þ
z ¼ 0 in D

V ð j Þz � ðW
ð j Þ
z þ Gð j Þð�, zÞÞ ¼ 0 on @Dt

V ð j Þz � ðW
ð j Þ
z þ Gð j Þð�, zÞÞ ¼ �i�

@

@�
ðW ð j Þ

z þ Gð j Þð�, zÞÞ on @Dc

@V ð j Þz

@�a
�
@

@�
ðW ð j Þ

z þ Gð j Þð�, zÞÞ ¼ 0 on @D

for z2D and j¼ 1, 2. The values of k for which the homogeneous ITP (i.e. ITP with

G( j)(�, z)¼ 0) has a non-trivial solution are called transmission eigenvalues. It is shown

in [8] (see also [1]) that assuming that there exists a constant �40 such that either
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a� 1þ � or 05a05a51� � in D and k is not a transmission eigenvalue, then there

exists a unique solution of ITP such that V ð j Þz 2H
1ðDÞ and W ð j Þ

z 2H
1
ðD, @DcÞ.

We recall the definition of a Herglotz wave function vg with kernel g2L2(�)

which is an entire solution of the Helmholtz equation defined by

vgðxÞ ¼

Z
�

eikx�dgðd Þdsðd Þ, x2R
2: ð5Þ

The following theorem is the bases of the linear sampling method and the proof can

be found in [8] (see also [1, Section 8.5]).

THEOREM 2.1 Assume that k is not a transmission eigenvalue, a, � and @D satisfy the

assumptions stated in Section 1 and there exists a constant �40 such that either

a� 1þ � or 05a05a51� � in D. Let W ð j Þ
z ,V ð j Þz be the unique solution of ITP. Then

(1) For z2D and a given �40 there exists a gð j Þz,� 2L
2ð�Þ such that

kFgð j Þz,� � Gð j Þ1 ð� , zÞkL2ð�Þ5 �

and the corresponding Herglotz function v
g
ð j Þ
z,�

converges in H
1(D, @Dc) to W ð j Þ

z

as �! 0.
(2) For a fixed �40, we have that

lim
z!@D
kv

g
ð j Þ
z,�
k

H
1ðD, @DcÞ

¼ 1 and lim
z!@D
k gð j Þz,�kL2ð�Þ ! 1:

(3) For z2R
2
nD and a given �40, every gð j Þz,� 2L

2ð�Þ that satisfies

kFgð j Þz,� � Gð j Þ1 ð� , zÞkL2ð�Þ5 �

is such that

lim
�!0
kv

g
ð j Þ
z,�
k

H
1ðD, @DcÞ

¼ 1 and lim
�!0
k gð j Þz,�kL2ð�Þ ! 1:

An important remark is that, for z2D, v
g
ð j Þ
z,�

converges in H
1(D, @Dc) to W ð j Þ

z as

�! 0. Therefore, since v
g
ð j Þ
z,�

and W ð j Þ
z satisfy the same Helmholtz equation in D, then

from local regularity results for elliptic equations and interior estimates we have that

v
g
ð j Þ
z,�
ðzÞ converges to W ð j Þ

z ðzÞ pointwisely for every z2D.
Our main goal in the following is to show that v

gð j Þz,�
with gð j Þz,� the approximate

solution of (4) provided by Theorem 2.1, in the case when z2D approaches a point

on @Dc assumes different behaviour from the case when z2D approaches a point on

@Dt. A more detailed investigation of this solution reveals a connection between v
g
ð j Þ
z,�

and the boundary coefficients � and aj@Dt
. Since, v

gð j Þz,�
approximates W ð j Þ

z it suffices to

study the behaviour of W ð j Þ
z where W ð j Þ

z ,V ð j Þz is the solution of ITP. To this end, we

need to recall some results established in [15]. For sake of presentation let us fix j¼ 2.

Since @D is a C2-closed curve, we know that for every point z02 @D there exists a rigid

transformation of coordinates under which z0 is transformed to 0 :¼ (0, 0) and in

addition there exists a function f2C2(�p, p) such that f (0)¼ f 0(0)¼ 0 and

D\B(0, p)¼ {(x, y)2B(0, p); y5f (x)}. For a fixed point z0, now we consider the

new coordinative system by introducing the local coordinates transformation which

takes x to ~x ¼ TðxÞ ¼ RðxÞ þMz0 , where R is the rotation such that R(�(z0))¼ (0, 1),
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and Mz0
is the translation such that Mz0

þR(z0)¼ (0, 0). Simple calculations show

that R((0, 1))¼ (��1(z0), �2(z0)) where �1(z0) and �2(z0) are the components of the

normal vector to @D at z0. Let us set � :¼R((0, 1)). In the new coordinative system we

denote by ~að ~xÞ ¼ aðxÞ and ~�ð ~xÞ ¼ �ðxÞ for x where they are defined. Let a0¼ a(z0)

and �0¼ �(z0). Denoting by �ðx, zÞ ¼ 1
2	 ln

1
jx�zj the fundamental solution of the

Laplace equation, we consider the following problems:

D ~vð�, ~zÞ ¼ 0 in R
2
�

D ~wð�, ~zÞ ¼ 0 in R
2
�

~vð�, ~zÞ � ~wð�, ~zÞ ¼ r�ð�, ~zÞ � � on @R2
�

a0
@

@ ~x2
~vð�, ~zÞ �

@

@ ~x2
~wð�, ~zÞ ¼

@

@ ~x2
r�ð�, ~zÞ � � on @R2

�:

8>>>>><
>>>>>:

ð6Þ

D ~vð�, ~zÞ ¼ 0 in R
2
�

D ~wð�, ~zÞ ¼ 0 in R
2
�

~vð�, ~zÞ � ð ~wð�, ~zÞ þ r�ð�, ~zÞ � �Þ ¼ �i�0
@

@ ~x2
ð ~wð�, ~zÞ þ r�ð�, ~zÞ � �Þ on @R2

�

a0
@

@ ~x2
~vð�, ~zÞ �

@

@ ~x2
~wð�, ~zÞ ¼

@

@ ~x2
r�ð�, ~zÞ � �ð Þ on @R2

�

8>>>>>>>><
>>>>>>>>:

ð7Þ

where ~x ¼ ð ~x1, ~x2Þ, ~z ¼ ð ~z1, ~z2Þ and R
2
� is the half plane f ~x2R

2 : ~x2 5 0g. For x and z

near the point z02 @D, let us define

wzðxÞ :¼ ~wðTx,TzÞ and vzðxÞ ¼ ~vðTx,TzÞ: ð8Þ

The next theorem which is proven in [15] shows that wz is the dominant part of Wz

with respect to the singularity near z0 where Wz, Vz is the solution of ITP.

THEOREM 2.2 Let z02 @D and x, z2D are in the vicinity of z0. Let Wz, Vz be the

unique solution of the ITP for j¼ 2. Let ~wð�, ~zÞ, ~vð�, ~zÞ satisfy (6) if z02 @Dt and (7) if

z02 @Dc and wz is defined by (8). Then there exists a positive constant C such that:

(1) jRe(Wz�wz)(x)j �Cj lnjz� z0jj
(2) jIm(Wz�wz)(x)j �C.

Similar results can be stated if G1
1ð�, zÞ is used on the right-hand side of the far

field equation (4). Indeed, in the latter case we need to take the rotation transforming

�(z0) to the vector (1, 0) and state the problem in the half plane ~R2
� :¼ fx2R

2 :

x1 5 0g. Obviously, in (6) and (7) @=@ ~x2 is replaced by @=@ ~x1. Before proceeding with

our main result, we mention that the long technical proof of Theorem 2.2 is based on

a detailed asymptotic analysis of Green’s function associated with the ITP which is

also investigated in [15] (the latter is an important result on its own).

Now we are ready to state our main result which together with Theorem 2.1

provide the foundation of our reconstruction scheme.

THEOREM 2.3 Assume that k is not a transmission eigenvalue, a, � and @D satisfy the

assumptions stated in Section 1 and there exists a constant �40 such that a� 1þ � or
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05a05a51� � in D. Let W ð j Þ
z ,V ð j Þz be the solution of ITP and �(z0) be the outward

normal vector at z02 @D . Then for z2D we have

(1)

lim
z!z0

jImðW ð j Þ
z ðzÞÞj

j ln jðz� z0Þ � �jj
s ¼

0 if z0 2 @Dt

1 if z0 2 @Dc

�
for s2 ð0, 1Þ ð9Þ

(2)

�ðz0Þ ¼ lim
z!z0

��j ðz0Þ ln jðz� z0Þ � �ðz0Þj

	ImðW ð j Þ
z ðzÞÞ

for z0 2 @Dc ð10Þ

(3)

aðz0Þ � 1

aðz0Þ þ 1
¼ lim

z!z0

�j ðz0Þ

4	ReðW
ð j Þ
z ðzÞÞðz� z0Þ � �ðz0Þ

for z0 2 @Dt ð11Þ

(4)

�ðz0Þ ¼ lim
z!z0

�
ReðW ð1Þ

z ðzÞÞ

ReðW
ð2Þ
z ðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ ReðW
ð1Þ
z ðzÞÞ

ReðW ð2Þ
z ðzÞÞ

h i2
vuut , �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ ReðW
ð1Þ
z ðzÞÞ

ReðW ð2Þ
z ðzÞÞ

h i2
vuut

0
B@

1
CA ð12Þ

and the sign is chosen so that �(z0) is oriented outside D.

Proof To prove the theorem we need to study the asymptotic behaviour of W ð j Þ
z for

z near a fixed point z02 @D. To this end, we proceed in two steps. First we derive an

explicit form of the solution of the transformed problems in the half plane. Then we

combine these explicit formulae with the results of Theorem 2.2 to compute �(z0) if
z02 @Dc and a(z0) if z02 @Dt.

Step 1 The derivation of explicit formulaes for ~w and ~v. Our goal at this point is to

construct explicitly local solution to (6) and (7). To this end, for sake of presentation,

in the following calculations we simply use x¼ (x1, x2), z¼ (z1, z2) instead of
~x ¼ ð ~x1, ~x2Þ and ~z ¼ ð ~z1, ~z2Þ, respectively, and wz, vz instead of the solutions
~wð�, ~zÞ, ~vð�, ~zÞ to (6) and (7). However, at the end the final results will be formulated

in terms of the original notations.
By linearity, it suffices to compute separately the solutions v( j) and w( j) to (6) and

(7) where r�ð�, ~zÞ � � is replaced by @xj�(x, z) with j¼ 1, 2, respectively. We represent

both vð j Þz and wð j Þz using the Poisson operators:

vð j Þz :¼
1

2	

Z
R

eix1
þx2j
j�ð
, zÞd
 ð13Þ

wð j Þz :¼
1

2	

Z
R

eix1
þx2j
j ð
, zÞd
: ð14Þ

Let us first consider @x2
�(x, z) and represent it as

@x2�ðx, zÞ ¼ �
1

4	

Z
R

eiðx1�z1Þ
�ðx2�z2Þj
jd
: ð15Þ

The following computations can be justified in a similar way as in [12].
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First substituting (13), (14) and (15) in

vð2Þz � wð2Þz ¼ @x2�ð�, zÞ for x2 ¼ 0

implies that

��  ¼ �
1

2
e�iz1
�z2j
j: ð16Þ

Substituting (13)–(15) in

vð2Þz � ðw
ð2Þ
z þ @x2�ðx, zÞÞ ¼ �i�

@

@x2
ðwð2Þz þ @x2�ð�, zÞÞ for x2 ¼ 0

yield

1

2	

Z
R

eix1
½��  þ
1

2
e�iz1
�z2j
j	d
 ¼ �i�

1

2	

Z
R

j
jeix1
þz2j
j þ j
jeix1
þz2j
j�iz1

1

2
d


which gives

��  þ
1

2
e�iz1
�z2j
j ¼ i� �j
j �

j
j

2
e�iz1
þz2j
j

� �

and then

�ð1� i�j
jÞ þ � ¼ �
1

2
1þ i�j
jð Þe�iz1
þz2j
j: ð17Þ

Similarly, from the second transmission condition in both (6) and (7)

a
@

@x2
vz �

@

@x2
wz ¼

@

@x2

@

@x2
�ð�, zÞ

for x2¼ 0 we obtain that

ða��  Þ ¼
1

2
e�iz1
þz2j
j: ð18Þ

We first consider the solution of the problem (7). To this end, combining (17) and
(18) we now have that

 ¼ �
1

2

ðaþ 1Þ þ ia�j
j

ð1� aÞ þ ia�j
j
e�iz1
þz2j
j: ð19Þ

Substituting (19) in (14) gives

wð2Þz ðxÞ ¼ �
1

4	

Z
R

ðaþ 1Þ þ ia�j
j

ð1� aÞ þ ia�j
j
eiðx1�z1Þ
þðx2þz2Þj
j d
:

Hence, simple calculations shows that

wð2Þz ðzÞ ¼ �
1

4	

Z
R

ðaþ 1Þ þ ia�j
j

ð1� aÞ þ ia�j
j
e2z2j
j d


¼ �
a

	

Z þ1
0

e2z2r

ð1� aÞ þ ia�r
dr�

1

2	

Z þ1
0

e2z2r dr

¼ �
a

	

Z þ1
0

e2z2r

ð1� aÞ þ ia�r
drþ

1

4	z2
:
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But we have thatZ þ1
0

e2z2r

ð1� aÞ þ ia�r
dr ¼

Z 1
0

ð1� aÞ � ia�r

ð1� aÞ2 þ ða�Þ2r2
e2z2r dr

¼ Oð1Þ � i

Z 1
0

a�r

ð1� aÞ2 þ ða�Þ2r2
e2z2r dr:

By straightforward computation we obtain thatZ 1
0

a�r

ð1� aÞ2 þ ða�Þ2r2
e2z2r dr ¼ Oð1Þ �

2

a�
lnðz2Þ:

Hence,

Rewð2Þz ðzÞ ¼
1

4	z2
þOðln jzjÞ, for z near 0

Imwð2Þz ðzÞ ¼ �
1

4	� lnðjz2jÞ þOð1Þ for z near 0,

(
ð20Þ

where wð2Þz , vð2Þz solve (7) if r�ð�, ~zÞ � � is replaced by @x2�(x, z).
Next, we consider (6). Now, from (16) and (18), we have

�ð
, zÞ ¼
1

a� 1
e�iz1
þz2j
j and  ð
, zÞ ¼

1

2

aþ 1

a� 1
e�iz1
þz2j
j:

By the same procedure as above we obtain that

wð2Þz ðxÞ ¼
aþ 1

4	ða� 1Þ

Z
R

eiðx1� ~z1Þ
þðx2þz2Þj
j d
:

In particular, by simple calculation we obtain that

wð2Þz ðzÞ ¼
aþ 1

4	ða� 1Þ

Z 1
0

2e2z2r dr ¼
aþ 1

4	ða� 1Þz2
, ð21Þ

where wð2Þz , vð2Þz solve (6) if r�ð�, ~zÞ � � is replaced by @x2�(x, z).
Now we use @x1

�(x, z) and represent it as

@x1�ðx, zÞ ¼ i
1

4	

Z
R

eiðx1�z1Þ
�ðx2�z2Þj
j



j
j
d
:

Arguing as in the previous case we have that

��  ¼ i



2j
j
e�iz1
�z2j
j, ð22Þ

�ð1� i�j
jÞ þ � ¼
i

2




j
j
þ i�


� 	
e�iz1
þz2j
j, ð23Þ

and

ða��  Þ ¼ �
i


2
e�iz1
þz2 : ð24Þ

From (23) and (24) we obtain

 ¼
1

2

�a�j
j þ iðaþ 1Þ

ð1� aÞ þ ia�j
j




j
j
e�iz1
þz2j
j: ð25Þ
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Plugging (25) in (14), we now have

wð1Þz ðxÞ ¼
1

4	

Z 1
0

�a�þ iðaþ 1Þj
j

ð1� aÞ þ ia�j
j




j
j
eiðx1�z1Þ
þðx2þz2Þj
j d


and hence

wð1Þz ðzÞ ¼
1

4	

Z 1
0

�a�þ iðaþ 1Þj
j

ð1� aÞ þ ia�j
j




j
j
e2z2j
j d


which means that wð1Þz ðzÞ ¼ 0 where wð1Þz , vð1Þz solve (7) if r�ð�, ~zÞ � � is replaced by

@x1�(x, z). In a similar way it can be shown that

vð1Þz ðzÞ ¼ 0 ð26Þ

where wð1Þz , vð1Þz solve (6) if r�ð�, ~zÞ � � is replaced by @x1�(x, z).
Finally, from (20), the fact that wð1Þz ðzÞ ¼ vð1Þz ðzÞ ¼ 0 and the fact that r�(x, z)�

�¼�@x1
�(x, z)�1(z0)þ @x2

�(x, z)�1(z0), by going back to the original notations we

obtain that

Re ~wð ~z, ~zÞ ¼ �2ðz0Þ
4	 ~z2
þOðln j ~zjÞ, for ~z near 0

Im ~wð ~z, ~zÞ ¼ � �2ðz0Þ
	� lnðj ~z2jÞ þOð1Þ for ~z near 0,

(
ð27Þ

where ~wð ~z, ~zÞ and ~vð ~z, ~zÞ is a solution of (7). Similarly, from (21) we obtain that

~wð ~z, ~zÞ ¼
ðaþ 1Þ�2ðz0Þ

4	ða� 1Þ ~z � �2ðz0Þ
, ð28Þ

where ~wð ~z, ~zÞ and ~vð ~z, ~zÞ is a solution of (7).
Obviously, in a similar way, in the case where the far field pattern of G(1)(x, z) is

used on the right-hand side of the far field equation instead of G(2)(x, z), we obtain

the following formulaes:

Re ~wð ~z, ~zÞ ¼ �1ðz0Þ
4	 ~z1
þOðln j ~zjÞ, for ~z near 0

Im ~wð ~z, ~zÞ ¼ � �1ðz0Þ
	� lnðj ~z1jÞ þOð1Þ for ~z near 0

(
ð29Þ

and

~wð ~z, ~zÞ ¼
ðaþ 1Þ�1ðz0Þ

4	ða� 1Þ ~z � �1ðz0Þ
ð30Þ

for the part ~wð ~z, ~zÞ of the solution of (7) and (6), respectively.

Step 2 Reconstruction of @Dc and @Dt parts of the known boundary @D and formula

for �j@Dc
and aj@Dt

. Having computed the explicit solution of the problems in half

plane we are ready to prove the results of the theorem by using Theorem 2.2.
We proceed with the reconstruction of the support of the coating @Dc and point-

wise computation of �j@Dc
. To this end let W ð j Þ

z , V ð j Þz j¼ 1, 2 be the unique solution of

ITP corresponding to G( j)(x, z) for j¼ 1, 2, respectively. Transforming back (27) to

the original local coordinative system near z0, and using Theorem 2.2, we have that

ReðW ð j Þ
z ðzÞÞ ¼

�j ðz0Þ

4	ðz� z0Þ � �ðz0Þ
þOðln jz� z0jÞ, for z near z0 ð31Þ

ImðW ð j Þ
z ðzÞÞ ¼ �

�j ðz0Þ

	�
ln jðz� z0Þ � �ðz0Þj þOð1Þ, for z near z0 2 @Dc, ð32Þ
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where j¼ 1, 2. Doing the same for (28), we have

ImðW ð j Þ
z ðzÞÞ ¼ Oð1Þ, for z near z0 2 @Dt, for j ¼ 1, 2: ð33Þ

Hence from (32) and (33), we can distinguish @Dc from @Dt using the following

criteria:

lim
z!z0

lim
�!0

jImðvgj,�z ðzÞÞj

j ln jðz� z0Þ � �jj
s ¼

0 if z0 2 @Dt

1 if z0 2 @Dc,

�
ð34Þ

for every s2 (0, 1). Next, from (31), we obtain that

lim
z!z0

ReðW ð1Þ
z ðzÞÞ

ReðW
ð2Þ
z ðzÞÞ

¼
�1ðz0Þ

�2ðz0Þ
:

Setting t :¼ �1ðz0Þ
�2ðz0Þ

and using the relation �1(z0)
2
þ �2(z0)

2
¼ 1 we have �2ðz0Þ ¼ �

ffiffiffiffiffiffiffi
1

1þt2

q
and therefore �ðz0Þ ¼ ð�t

ffiffiffiffiffiffiffi
1

1þt2

q
, �

ffiffiffiffiffiffiffi
1

1þt2

q
Þ. Hence we obtain the following formula for

the normal vector in terms of Wj
z, for j¼ 1, 2:

�ðz0Þ ¼ lim
z!z0

�
ReðW ð1Þ

z ðzÞÞ

ReðW
ð2Þ
z ðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ ReðW
ð1Þ
z ðzÞÞ

ReðW ð2Þ
z ðzÞÞ

h i2
vuut , �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ ReðW
ð1Þ
z ðzÞÞ

ReðW ð2Þ
z ðzÞÞ

h i2
vuut

0
B@

1
CA: ð35Þ

Note that the sign is uniquely determined from the fact that the normal vector is

oriented outward to the reconstructed boundary. Finally, from (32), we deduce that

�ðz0Þ ¼ lim
z!z0

��j ðz0Þ ln jðz� z0Þ � �ðz0Þj

	 ImW
ð j Þ
z ðzÞ

, j ¼ 1, 2: ð36Þ

Finally we turn our attention to computing a(z0) for z02 @Dt. From (28) by going

back to the original local coordinative system near z0 and using Theorem 2.2 we

obtain that

aðz0Þ � 1

aðz0Þ þ 1
¼

�2ðz0Þ

4	 lim
z!z0

W
ð2Þ
z ðzÞðz� z0Þ � �ðz0Þ

: ð37Þ

Similarly, using (30) we also have

aðz0Þ � 1

aðz0Þ þ 1
¼

�1ðz0Þ

4	 lim
z!z0

W
ð1Þ
z ðzÞðz� z0Þ � �ðz0Þ

: ð38Þ

In particular, the slope of the normal vector can alternatively be computed by

�1ðz0Þ

�2ðz0Þ
¼ lim

z!z0

W ð1Þ
z ðzÞ

W
ð2Þ
z ðzÞ

: ð39Þ

This ends the proof of the theorem. g

By combining Theorems 2.1 and 2.3 we established a procedure for solving the

inverse problem. Let gð j Þz,� 2L
2ð�Þ, j¼ 1, 2 be the approximate solution of the far field

equation (4) given by Theorem 2.1 and let v
g
ð j Þ
z,�

be the corresponding
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Herglotz function. If W ð j Þ
z , V ð j Þz j¼ 1, 2 is the unique solution of ITP, from Theorem

2.1 we have that for z2D, lim�!0 vgð j Þz,� ðzÞ
¼W ð j Þ

z ðzÞ. Using this in Theorem 2.3 we

have the following reconstruction algorithm:

The reconstruction algorithm

(1) The boundary @D can be characterized as the set of points z2R where the

L2(�)-norm of gð j Þz,� start to blow up.
(2) Having reconstructed @D the coated portion @Dc can be distinguished from

@Dt using the following criteria:

lim
z!z0

lim
�!0

jImðvgj,�z ðzÞÞj

ln jðz� z0Þ � �j
s ¼

0 if z0 2 @Dt

1 if z0 2 @Dc,

�
for z2D ð40Þ

for every s2 (0, 1).
(3) The surface conductivity � on the coated part @Dc can be computed by

�ðz0Þ ¼ lim
z!z0

��j ðz0Þ ln jðz� z0Þ � �ðz0Þj

	 lim�!0 Imðvgð j Þz,�
ðzÞÞ

, for z0 2 @Dc: ð41Þ

The index of refraction a on the uncoated part @Dt can be computed by

aðz0Þ � 1

aðz0Þ þ 1
¼

�j ðz0Þ

4	 limz!z0 lim�!0 Reðv
gð j Þz,�
ðzÞÞðz� z0Þ � �ðz0Þ

, z0 2 @Dt: ð42Þ

The normal vector �(z0) is reconstructed by the following formula

�ðz0Þ ¼ lim
�!0

lim
z!z0

�
Reððv

g
ð1Þ
z,�
ðzÞÞ

Reððv
gð2Þz,�
ðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ
Reððv

g
ð1Þ
z,�
ðzÞÞ

Reððv
g
ð2Þ
z,�
ðzÞÞ

� 	2
vuuuut , �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ
Reððv

g
ð1Þ
z,�
ðzÞÞ

Reððv
g
ð2Þ
z,�
ðzÞÞ

� 	2
vuuuut

0
BBBB@

1
CCCCA, ð43Þ

where the sign is appropriately chosen such that the normal vector is directed
outward to the reconstructed boundary.

Remark 1 Note that (41) and (42) are justified assuming that � j(z0) 6¼ 0. Hence,

since the boundary is not known a priori, in principle we need to solve the far field
equation (4) for both cases on the right-hand side Gð j Þ1 ð�, zÞ.

Remark 2 Theorem 2.1 in fact provides a characterization of the boundary from the

behaviour of v
g
ð j Þ
z,�
in terms of a norm that depends on the unknown region D and this

cannot be used in practice. Instead the linear sampling method characterizes the
obstacle by the behaviour of gð j Þz,� . In practice, the approximate solution of the far

field equation is obtained using the Tikhonov regularization combined with the
Morozov discrepancy principle. In general, an open question is whether this
regularized solution behaves in the same way as v

g
ð j Þ
z,�
given by Theorem 2.1. However,

[18,19] have mathematically justified that, in certain cases, applying a regular
regularization technique to the far field equation leads to a solution g that exhibits
the desired behaviour.
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3. Numerical examples

In this section, we shall present some numerical tests of the inversion scheme using
synthetic far field data. For a given scatterer, the far field data is computed by using
a cubic finite element code to approximate the near field and then employing a near
to far field transformation [20] to compute the far field. The finite element
computational domain is terminated by a rectilinear perfectly matched layer using a
linear absorption function in the layer [21].

Having computed approximate values of the far field pattern at N uniformly
spaced points on the unit circle for N incoming waves we have an N
N matrix F of
approximate far field data

Fm,n ¼ uh,1ðdm, dnÞ, where dm ¼ ðcosð2	ðm� 1Þ=N, sinð2	ðm� 1Þ=NÞ>

for 1�m, n�N, where uh,1 is the finite element far field pattern. We add further
noise to Fm,n to obtain

ðF �Þm,n ¼ Fm,nð1þ � 
m,nÞ,

where 
m,n are complex numbers with real and imaginary part random numbers in
[�1, 1]. In this study we choose �¼ 0.02. To set up the discrete version of the far field
equation we need to compute the far field pattern Gð j Þ1 ðx̂, zÞ of

Gjðx, zÞ ¼
@

@xj

i

4
H
ð1Þ
0 ðkjx� zjÞ ¼ �

ik

4

H
ð1Þ
1 ðkjx� zjÞ

jx� zj
ðxj � zj Þ, j ¼ 1, 2:

For a given sampling point z, the discrete far field equation is then to compute
~g ¼ ð g1, g2, . . . , gNÞ such that

F � ~g ¼ ~b where bm ¼ Gð j Þ1 ðdm, zÞ, 1 � m � N: ð44Þ

This ill-conditioned problem is solved approximately using the Tikhonov regular-
ization and the Morozov discrepancy principle as described in [22]. The regularized
solution ~g ¼ ð g1, g2, . . . , gNÞ of the far field equation and the corresponding Herglotz
function are the basic ingredients of the reconstruction scheme as stated at the end of
Section 2. The numerical study of this complex problem presented here is preliminary
and by no mean comprehensive. There are open questions especially related to
stability and the best implementation strategy, and more numerical experiments are
needed.

We limit our discussion to two type of scatterers: a disc with radius R¼ 0.4 and
an ellipse given by x¼ 0.3 cos(s) and y¼ 0.2 sin(s), s2 [0, 2	]. Both scatterers maybe
uncoated, fully coated or partially coated. The index of refraction a40 inside the
scatterer and the surface conductivity �40 are assumed to be constant as will
become precise during the discussion. In all our examples we fix k¼ 5. Note that a
and � depends on the frequency also.

3.1. Reconstruction of the support D

We start by using the modified linear sampling method to approximate the boundary
of the disc. Note that the difference of our approach from the standard linear
sampling method is on the right-hand side of the far field equation (4). We recall that

Applicable Analysis 79

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
0
9
:
5
7
 
1
 
M
a
r
c
h
 
2
0
1
0



for the reconstruction of D one could use on the right-hand side of (4) the far field
pattern of the fundamental solution as in [8]. However, in order to recover � and a a
more singular behaviour of the imaginary part of the Herglotz function is needed.
Having solved the far field equation for g, we compute 1=k~gk‘2 for z on a uniform
grid in the sampling domain. In the upcoming numerical results we have arbitrarily
chosen N¼ 61, and we sample on a 101
 101 grid on the square [�1, 1]
 [�1, 1].
In Figure 1 (a) and (b) we have plotted the level curves 1=k~gk‘2 ¼ C using the
MATLAB contour command for the fully coated disc and ellipse both for a¼ 1.5
and �¼ 0.2. In Figure 2 (a)–(c) we show the reconstruction of the ellipse partially
coated on the lower part. One observes the enhancing scattering effect of the thin
conducting coating. In particular in the panel (c), although the contrast 1� a¼ 0.1 is
very small, the lower part of the ellipse is still visible due to the presence of the
coating. Note that if � is large enough (how large depends on the frequency and the
skin depth) the coating portion behaves as a perfect conductor.

3.2. Reconstruction of the normal vector on @D

Having computed the regularized solution of (44) we have a discrete level set
function 1=k~gk‘2 . Choosing a contour value C then provides a reconstruction of the
boundary @D of the scatterer. Obviously, the choice of C is very important. To date
there is no mathematical criteria how to choose C and in general an ad-hoc
procedure is implemented. Usually, the chosen C is picked by

C ¼ �ðmax
z
ð1=k~gkÞÞ þ ð1� �Þðmin

z
ð1=k~gkÞÞ

for some 05�51. For an appropriate choice of C, the boundary points are the
points z on the grid such that 1=k~gk ¼ C. For each point in the set of (reconstructed)
boundary points we can now use (43) to evaluate the outward normal vector to the
boundary. This is an important step of the algorithm since the normal vector appears
in the reconstruction formula for a and �. In Figure 3, we show our results on normal
reconstruction for the case of the fully coated ellipse with a¼ 1.5 and �¼ 0.2.

1/norm(g)(a) (b)
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Figure 1. Panel (a) shows the reconstruction of the fully coated disc. Panel (b) shows the
reconstruction of the fully coated ellipse. In both �¼ 0.2 and a¼ 1.5 and the red thick line
indicates the true obstacle.
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3.3. Detecting boundary coatings

Next we test (40) which provides a criteria to distinguish between a coated and an

uncoated part of the boundary of the dielectric medium. This needs the evaluation of

the Herglotz function vgz, having available the kernel ~g at N points on the unit circle.

This task is done by using Riemann sums with N colocation points. Panel (d) in

Figure 2 shows the behaviour of jImðv
gð2Þz
ðzÞÞj as z goes through the uncoated

boundary point (0, 0.2) and coated boundary point (0,�0.2) of the partially coated

ellipse reconstructed in Figure 2(b). One observes the behaviour predicted by (40). In

Figure 4 we show plots of jIm(vgz(z))j for sampling points z in the grid in the case of

the disc. In particular, panel (a) corresponds to the plot of jImðvg1z ðzÞÞj for the fully

1/norm(g) A=0.25, h=0.2

1/norm(g) A=0.9, h=0.2
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Abs (Im(vg)) for a partially coated ellipse 
measured in coated and uncoated directions

Uncoated direction
Coated direction
Exact boundary

Figure 2. Panel (a) shows the reconstruction of the partially coated (on the lower half ) ellipse
with a¼ 0.25 and �¼ 0.2. Panel (b) shows the reconstruction of the partially coated (on the
lower half ) ellipse with a¼ 0.25 and �¼ 1. Panel (c) shows the reconstruction of the partially
coated (on the lower half ) ellipse with a¼ 0.9 and �¼ 0.2. The graph in panel (d) shows the
behaviour of jImðv

g
ð2Þ
z
ðzÞÞj at the coated and uncoated boundary points for the ellipse

reconstructed in panel (b). In particular, the solid blue graph shows a plot of jImðv
gð2Þz
ðzÞÞj as z

approaches the point (0, 0.2) (on the uncoated part) in the vertical direction whereas the dash
red graph shows a plot jImðv

g
ð2Þ
z
ðzÞÞj as z approaches the point (0, �0.2) (on the coated part) in

the vertical direction.
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coated disc. In this case, as discussed in Remark 1, no information is obtained near
points where �1¼ 0. Thus both jImðvg1z ðzÞÞj and jImðvg2z ðzÞÞj need to be considered and
this is done in the plot shown in panel (b). Panel (c) instead corresponds to the case
of the uncoated disc, therefore jIm(vgz(z))j remains very small near the boundary.

3.4. Reconstruction of a

Having reconstructed the shape and the normal vector together with the support of
the coating, we now use (42) to recover the index of refraction on the uncoated part
of the boundary. In the current examples we reconstruct the constant index of
refraction a of an homogeneous isotropic medium. This constant a is estimated by

a� 1

aþ 1
� lim

z!z0

�j ðz0Þ

4	Reðv
g
ð j Þ
z
ðzÞÞðz� z0Þ � �ðz0Þ

, j ¼ 1, 2, ð45Þ
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Figure 3. The right plots show the reconstruction of both components of the outward unit
normal vector to the ellipse reconstructed in Figure 1(b). The reconstructed normal
components are presented by the red solid graphs. The blue dash graphs show the correct
normal vector. We use the reconstructed boundary points which lie on the level curve
presented by the red solid line on the corresponding left plot. The dash blue line on the left
plots denotes the exact boundary. The respective L2-error for the normal reconstruction in
each of the three cases is 3.338, 0.1971 and 0.7445. In the two bottom cases, the exact normal
vector and the reconstructed one are almost indistinguishable.
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where z0 is any point on the uncoated part of the boundary and vgz(z) is computed as
explained in Section 3.3. We remark that the implementation of (45) suffers an
additional numerical instability due to the fact that in practice Re(vgz(z)) becomes
finitely large near the boundary whereas (z� z0) � �(z0) is infinitely large. This
instability issue requires further numerical study. In the current numerical investiga-
tion we deal with it in an ad-hoc manner, namely by truncating the power series
expansion of 1/(z� z0) � �(z0). In particular, in the upcoming examples we consider 10
terms in the power series (this can also be seen as a sort of regularization by
truncation!). Reconstructions for the disc shown in Figure 5(a) are done by letting z
approach z0¼ (0.4795, 0) (note that the exact boundary point is (0.4, 0)) in the
horizontal direction, thus we use �1 in the formula. However, we obtain quite similar
results by approaching the boundary points in the radial direction, since the isolines
1=k~gk ¼ C are almost circles. The results for the ellipse presented in Figure 5(b) are
computed by approaching the (reconstructed) boundary point z0¼ (0.3495, 0)
(the exact boundary point is (0.3, 0)) in the horizontal direction. In both examples,
the results become worse as ja� 1j increases meaning as the scatterer becomes
stronger.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
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Circle R =0.4, observed values at
r =0.4795 (560), k = 5
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Reconstruction for ellipse, boundary at R =0.3 (q = 0),
 and values obtained at r =0.3495

Figure 5. Panel (a) shows the reconstruction of a range of a for the uncoated disk. Panel (b)
shows the reconstruction of a range of a for the uncoated ellipse. The dots represent the
reconstructed value of a versus the exact value. An exact reconstruction would lie on the
solid line.
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Figure 4. Panel (a) shows a plot of jImðv
g
ð1Þ
z
ðzÞÞj for the coated disc with a¼ 1.5 and �¼ 1.

Panel (b) shows a plot of jImðv
gð1Þz
ðzÞÞj þ jImðv

gð2Þz
ðzÞÞj for the coated disc with a¼ 1.5 and �¼ 1.

Panel (c) shows a plot of jImðv
gð1Þz
ðzÞÞj þ jImðv

gð2Þz
ðzÞÞj for the uncoated disc with a¼ 1.5.
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3.5. Reconstruction of g

Using (41) it is now possible to estimate pointwise the surface conductivity � on the
coated part of the boundary. In particular, in this numerical study the constant
conductivity is approximated by

� � lim
z!z0

��j ðz0Þ ln jðz� z0Þ � �ðz0Þj

	Imðv
g
ð j Þ
z
ðzÞÞ

, j ¼ 1, 2, ð46Þ

where z0 is any point on the coated part of the boundary. Numerical results for the
fully coated disc and the fully coated ellipse are shown in Figure 6(a) and (b),
respectively. In the case of the disc we take the exact boundary point z0¼ (0.4, 0),
whereas in the case of the ellipse we take z0¼ (0.3745, 0) (the exact boundary point
would be (0.3, 0)). Similar to Section 3.4, in (46), we replace �j(z0) lnj(z� z0)j by 10
terms in its power series expansion. In general, the reconstruction of large � are
worse since large � correspond to thick impenetrable coatings. This fact was also
observed in [8]. As a heuristic possible way to improve the reconstruction due
instability, we suggest a kind of post processing of the reconstruction results.
More precisely, one could scale reconstructed values of � with an appropriate fixed
constant chosen by correcting one value of � synthetically simulated for a given
shape, coating support and a. The table in Figure 7 is a scaled version of the plot in
Figure 6(b) where we have corrected the value of �¼ 0.1.
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h reconstructed at exact boundary for circle
(no rescale)
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h reconstructed for ellipse at
r =0.3745

Figure 6. Panel (a) (panel (b)) shows the reconstruction of a range of � for the fully coated
disk (fully coated ellipse) using z0¼ (0.4, 0) (z0¼ (0.3745, 0)). The dots represent the
reconstructed value of � versus the exact value. An exact reconstruction would lie on the
solid line. Here a¼ 1.5.

Exact Reconstructed
η , a η , a

0.1, 1.1 0.2204, 1.1407
0.1, 1.5 0.1727, 1.9848
0.2, 1.5 0.2892, 1.8904
1, 1.5 1.3147, 1.8601

Figure 7. Table showing reconstructed values of � and a for the partially coated ellipse.
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Finally, for the partially coated (on the lower half ) ellipse we use (45) and (46) to
reconstruct both � and a. The results for several combinations of � and a are shown
in the table in Figure 7.
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