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Abstract. The interior transmission problem plays a basic role in the study
of inverse scattering problems for inhomogeneous medium. In this paper we
study the interior transmission problem for the Maxwell equations in the elec-
tromagnetic scattering problem for an anisotropic inhomogeneous object. We
use a variational approach which extends the method developed in [15] to the
case when the index of refraction is less than one as well as for partially coated
scatterers. In addition, we also describe the structure of the transmission
eigenvalues.

1. Introduction

The electromagnetic scattering problem for anisotropic media presents diffi-
culties that are not present in the isotropic case. These difficulties are all connected
to the fact that the (tensor) index of refraction is not uniquely determined from
the scattering data and hence the basis inverse scattering problem to be considered
is different from the corresponding isotropic case. In particular, it has been shown
that only the support of the inhomogeneous media can be uniquely determined [3]
and this fact has led to the problem of deriving reconstruction algorithms to re-
cover the support from the measured scattering data [2], [7], [8], [15]. Central to
the derivation of both uniqueness theorems and reconstruction algorithms has been
the interior transmission problem and a better understanding of the behavior of
solutions to this problem is basic to further developments in the inverse scattering
problem for anisotropic media. Since all materials exhibit some degree of anisotropy
and many, such as human tissue, to a large degree such problems in inverse scat-
tering are not only of considerable mathematical interest but also of also of central
importance in numerous applications.

The known results on the electromagnetic interior transmission problem for
anisotropic media are contained in Haddar [15]. In this paper it was shown that
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if the real part of the index of refraction is positive definite and greater then one
then in an appropriate function space there exists a unique solution to the interior
transmission problem provided the wave number is not a transmission eigenvalue.
The crucial question of whether or not the set of transmission eigenvalues is discrete
was not answered nor was the situation considered when the real part of the index
of refraction is less then one. The class of problems when the anisotropic media is
partially coated by a thin highly conducting layer was also not considered, although
such problems arise in various areas of application [10]. The purpose of this paper
is to continue where Haddar [15] left off and to address the above problems.

In the next section of our paper we formulate the direct scattering problem
for time-harmonic electromagnetic waves in an anisotropic medium including the
case when the scattering object may be coated by a thin conducting layer. We
then show how the interior transmission problem arises when one considers the
corresponding inverse scattering problem from the far field data. In Section 3 we
consider the interior transmission problem in a homogenous background and develop
a variational approach when the index of refraction is greater or less then one
and show that this variational approach leads to a Fredholm equation. Then in
both cases we show that the set of transmission eigenvalues is discrete. In Section
4 we extend our approach to the case of anisotropic scattering objects partially
coated by a thin conducting layer. In this case additional difficulties arise due
to need to consider non-standard function spaces associated with the conducting
boundary conditions. We conclude our paper by briefly considering the case when
the scattering object is situated in a known (possibly anisotropic) inhomogenous
background.

The analysis of the interior transmission problem is more complicated than the
analysis for the Helmholtz equation [2, 4] due to the lack of compactness properties.
Earlier results on this problem in an isotopic medium under stronger assumptions
on the regularity of the index of refraction can be found in [9] and [14]. We also
note the recent paper by Kirsch [12] where he considers the interior transmission
problem for Maxwell’s equations in the isotropic case by using an integral equation
approach and assuming that the relative permeability and permeability are greater
than one. The results presented in our paper are optimal in the sense that in general
the interior transmission problem has only L2 solutions.

2. Inverse scattering and interior transmission problem

We formulate here the direct scattering problem for electromagnetic waves and
a corresponding inverse problem which lead to the interior transmission problem
considered in this paper (see [11] for more about the role of the interior transmission
problem in inverse scattering). Let D ⊂ R

3 be a bounded open set having a Lipshitz
boundary ∂D such that the exterior domain De := R3 \ D is connected. The unit
normal vector to ∂D directed into the exterior of D is denoted by ν. We assume
that the boundary ∂D = Γ1 ∪Γ2 is split in two open disjoint parts Γ1 and Γ2. The
domain D is the support of an anisotropic (possibly disconnected object) that is
partially coated on a portion Γ2 of the boundary by a very thin layer of a highly
conductive material and the incident field is a time-harmonic electromagnetic plane
wave with frequency ω (Γ2 may be the empty set!). The exterior electric and

magnetic fields Ẽext, H̃ext and the interior electric and magnetic fields Ẽint, H̃int,
satisfy
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(1)

{

curl Ẽext − iωµ0H̃
ext = 0

curl H̃ext + iωǫ0Ẽ
ext = 0

in De

(2)

{

curl Ẽint − iωµ0H̃
int = 0

curl H̃int + (iωǫ(x) − σ(x))Ẽint = 0
in D

and on the boundary ∂D

Ẽext × ν − Ẽint × ν = 0 on ∂D(3)

H̃ext × ν − H̃int × ν = 0 on Γ1(4)

H̃ext × ν − H̃int × ν = η̃(x)ν × (Ẽext × ν) on Γ2.(5)

The electric permittivity ǫ0 and magnetic permeability µ0 of the exterior dielectric
medium are positive constants whereas the scatterer has the same magnetic perme-
ability µ0 as the exterior medium but the electric permittivity ǫ and conductivity σ
are real 3 × 3 matrix valued functions. The function η̃ > 0, defined on the portion
Γ2 of the boundary, describes the physical properties of the thin coating layer [1]

and ω denotes the frequency. If we define Ẽ(ext,int) = 1√
ǫ0

E(ext,int), H̃(ext,int) =

1√
µ0

H(ext,int), k2 = ǫ0µ0ω
2, N(x) = 1

ǫ0

(

ǫ(x) + iσ(x)
ω

)

, and η(x) =
√

µ0

ǫ0
η̃(x) and

express H-fields in terms of E-fields we obtain the transmission problem

curl curl Eext − k2Eext = 0 in De

curl curl Eint − k2N(x)Eint = 0 in D

Eext × ν − Eint × ν = 0 on ∂D(6)

curl Eext × ν − curlEint × ν = 0 on Γ1

curlEext × ν − curlEint × ν − ikη(x) ν × (Eext × ν) = 0 on Γ2

where

Eext = Es + Ei,

the scattered field Es satisfies the Silver Müller radiation condition

(7) lim
r→∞

(curl Es × x − ikrEs) = 0

uniformly in x̂ = x/|x|, r = |x| and the incident field Ei is (for sake of presentation)
the electric field of time harmonic electromagnetic plane waves given by

Ei(x) :=
i

k
curl curlpeikx·d

where d is a unit vector giving the direction of propagation and p is the polarization
vector. The scattered electric field Es has the asymptotic behavior [9]

Es(x) =
eik|x|

|x|

{

E∞(x̂,d,p) + O

(

1

|x|

)}

as |x| → ∞, where E∞ is a tangential vector field defined on the unit sphere
Ω and known as the electric far field pattern. The inverse scattering problem is to
determine D and η from a knowledge of E∞(x̂,d,p) for x̂ ∈ Ω0 ⊂ Ω, d ∈ Ω1 ⊂ Ω
and three linearly independent polarization. The uniqueness of this inverse problem
is proven in [3] (we remind the reader that N is not uniquely determined by the given
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data). A solution method, the so-called the linear sampling method, for solving this
inverse problem [15], is based on the study of the far field equation

(8) (Fg)(x̂) :=

∫

Ω1

E∞(x̂,d,g(d))ds(d) = Ee,∞(x̂, z,q), g ∈ L2
t (Ω), x̂ ∈ Ω0,

where

Ee,∞(x̂, z,q) =
ik

4π
(x̂ × q) × x̂ e−ikx̂·z

is the far field of the electric dipole Ee := Ee(·, z,q) given by

Ee :=
i

k
curl x curl x q

1

4π

eik|x−z|

|x − z|
.

It is easily verified that (8) is solvable if and only if z ∈ D and E and E0 solve the
interior transmission problem

(9)

{

curl curlE− k2 N E = 0 in D

curl curlE0 − k2 E0 = 0 in D

(10)














E× ν − (E0 + Ee) × ν = 0 on ∂D

curlE× ν − curl (E0 + Ee) × ν = 0 on Γ1

curlE× ν − curl (E0 + Ee) × ν − ikην × [(E0 + Ee) × ν] = 0 on Γ2

such that E0 is a Herglotz function i.e. a solution Eg of the Maxwell equations of
the form

Eg(x) =

∫

Ω

g(d)eikx·dds(d).

In particular, the far field operator (Fg) in (8) is injective if and only if the interior
transmission problem (9)-(10) with Ee = 0 has the only trivial solution. Hence the
study of (9)-(10) is essential for solving the inverse problem.

3. Interior transmission problem

3.1. The case η = 0. In this section we consider the interior transmission problem
(9)-(10) with Γ2 = ∅, which is related to the scattering problem for an (uncoated)
anisotropic inhomogeneity. In this section we complement the results of [15] by
considering the case of N < I (where I denotes the identity matrix) and prove in
all cases that transmission eigenvalues form a discrete set.
We assume here that D ⊂ R3 is a Lipshitz bounded domain with a unit outward
normal denoted by ν. We denote by (·, ·)D the L2(D) scalar product and consider
the Hilbert spaces

H(curl , D) := {u ∈ L2(D)3 : curlu ∈ L2(D)3},
H0(curl , D) := {u ∈ H(curl , D) : u × ν = 0 on ∂D},

equipped with the scalar product (u, v)curl = (u, v)D + (curlu, curlv)D and the
corresponding norm ‖·‖curl , and define

U(D) := {u ∈ H(curl , D) : curlu ∈ H(curl , D)},
U0(D) := {u ∈ H0(curl , D) : curlu ∈ H0(curl , D)},

equipped with the scalar product (u,v)U = (u, v)curl + (curlu, curlv)curl and the
corresponding norm ‖·‖U . We recall that C∞

0 (D) is dense in U0(D) (see Appendix
of [15]).
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Let F and F0 be two vector valued functions on D and ϕ, ψ two tangential
vector fields on ∂D. Then, more generally, the interior transmission problem (ITP)
is formulated as the problem of finding two vector valued functions E and E0 such
that

(11)

{

(i) curl curlE − k2 N E = F in D,
(ii) curl curlE0 − k2 E0 = F0 in D,

(12)

{

(E − E0) × ν = ϕ on ∂D,
(curlE− curlE0) × ν = ψ on ∂D.

The existence of solutions to this problem will be studied for data that satisfy the
following assumption

Assumption 3.1. The data F, F0, ϕ and ψ are such that:

(i) F and F0 are in L2(D)3.
(ii) ϕ and ψ tangential functions defined on ∂D such that there exists a function

w in U(D) such that

w × ν = ϕ and (curlw) × ν = ψ on ∂D.

Let us denote by Y (∂D) the set of (ϕ,ψ) satisfying (ii) equipped with the norm

‖(ϕ,ψ)‖Y (∂D) := inf
w as in (ii)

‖w‖U(D).

It is proved in [15] that if ∂D is a C3 boundary then H
3/2
t (∂D) × H

1/2
t (∂D) is

continuously embedded into Y (∂D), where H
3/2
t (∂D) and H

1/2
t (∂D) are the spaces

of tangential vectors that component-wise are H3/2(∂D) and H1/2(∂D), respec-
tively. In the applications to inverse problems w can be easily constructed from the
fundamental solution Ee and a suitable cut-off function.

Definition 3.1. A strong solution to (ITP) is a pair (E,E0) ∈ L2(D)3 that satisfies
(11) in the sense of distributions such that E − E0 ∈ U(D), and E − E0 satisfies
(12).

We remark that the solutions to this problem do not belong to H(curl , D) in
general. Example of such solutions can be easily constructed by taking

E = E0 = h

where h is a function of L2(D)3 such that curl curlh = 0 in D and curlh /∈ L2(D)3.
In cylindrical coordinates (r, θ, z) and for D a bounded domain where the z axis is
tangent to ∂D and do not intersect D, one can take

h(r, θ, z) = r−α cos(α θ)ez

with 0 < α < 1, where ez denotes a vector in the z direction.
In addition to the study of the existence and uniqueness of solutions to (ITP)

we also describe the set of wave numbers k for which (ITP) may not have unique
solutions.

Definition 3.2. A wave number k > 0 is said to be a transmission eigenvalue if
(ITP) has nontrivial strong solutions when F = F0 = 0 and ψ = ϕ = 0.
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Note that in the cases where σ 6= 0 (see Section 1) ℑ(N) depends on k as well.
To study the existence and uniqueness of solutions to (ITP), we rewrite (11-12)

as a fourth order boundary value problem. For that purpose we need to assume
that N − I is invertible a.e. in D.

Setting

(13) u = E− E0, v = NE− E0,

we obtain that

(14) E = (N − I)−1(v − u), E0 = (N − I)−1(Nu − v).

Taking the difference between two equations in (11) we get

(15) curl curlu = k2v + (F− F0) in D.

In particular,

(16) E = (N − I)−1(k−2(curl curlu − (F − F0)) − u).

Substituting for E in (11) one obtains the following fourth order partial differ-
ential equation satisfied by u

(17)
(curl curl − k2N)(N − I)−1(curl curlu − k2u) =

curl curl (N − I)−1(F − F0) + k2(N − I)−1(NF0 − F)) in D.

In addition from (12), one obtains that

(18) u× ν = ϕ, (curlu) × ν = ψ on ∂D.

Hence, based on (13-15) we can state the following result.

Theorem 3.1. Assume that (N − I)−1 is a bounded matrix field in D and that
the data satisfies Assumption 3.1. Then the existence and uniqueness of strong
solutions to (ITP) is equivalent to the existence and uniqueness of u ∈ U(D) and
v ∈ L2(D)3 satisfying (15) and (17-18).

Variational formulations. The study of (17-18) will be done using a variational
framework. Using the denseness in U0(D) of regular functions with compact support
in D (see [15]), one can easily see that u ∈ U(D) satisfies (17) if and only if

(19)

(

(N − I)−1(curl curlu − k2u), (curl curlu′ − k2N̄u′)
)

D

=
(

(N − I)−1(F − F0), (curl curlu′ − k2u′)
)

D
+ k2 (F0, u′)D

for all u′ ∈ U0(D). Let us set

ℓ(u′) =
(

(N − I)−1(F − F0), (curl curlu′ − k2u′)
)

D
+ k2 (F0, u′)D

which defines an antilinear form on U(D). Using the identity N(N − I)−1 = I +
(N − I)−1, one can rewrite (19) in one the following equivalent forms

(20) Ak(u,u′) − k2B(u,u′) = ℓ(u′) for all u′ ∈ U0(D),

or

(21) − Ãk(u,u′) + k2B(u,u′) = ℓ(u′) for all u′ ∈ U0(D),
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where Ak, Ãk and B are sesquilinear forms on U(D) × U(D), respectively defined
by

Ak(u,u′) =
(

(N − I)−1(curl curlu− k2u), (curl curlu′ − k2u′)
)

D
+ k4 (u, u′)D

Ãk(u,u′) =
(

(I − N)−1(curl curlu− k2Nu), (curl curlu′ − k2N̄u′)
)

D

+ k4 (Nu, u′)D(22)

and

(23) B(u,u′) = (curlu, curlu′)D ,

where the expression of B is obtained after using the identity

(curl curlu, u′)D = (curlu, curlu′)D

for all (u,u′) ∈ U(D) × U0(D).
Our goal now is to establish the existence and uniqueness of u ∈ U(D) that

satisfies (19) and (18) by proving that (20) and (21) form a Fredholm set of equations
given suitable assumptions on N . For the study of (21) it is more convenient to use

the following equivalent expression of Ãk:

(24)
Ãk(u,u′) =

(

N(I − N)−1(curl curlu− k2u), (curl curlu′ − k2u′)
)

D

+ (curl curlu, curl curlu′)D

Lemma 3.1. Assume that there exists a constant γ > 0 such that,

ℜ(N(I − N)−1ξ, ξ) ≥ γ |ξ|2, ∀ξ ∈ C
3 and a.e. in D,(25)

(respectively, ℜ((N − I)−1ξ, ξ) ≥ γ |ξ|2, ∀ξ ∈ C
3 and a.e. in D).(26)

Then Ãk (respectively Ak) is a coercive sesquilinear form on U0(D) × U0(D).

Proof. Let us prove first the result for Ãk. Using (25) and (24) yields

ℜ(Ãk(u0,u0)) ≥ γ
∥

∥curl curlu0 − k2u0

∥

∥

2

L2(D)
+ ‖curl curlu0‖

2
L2(D) .

Setting X = ‖curl curlu0‖L2(D) and Y = k2 ‖u0‖L2(D), one has

∥

∥curl curlu0 − k2u0

∥

∥

2

L2(D)
≥ X2 − 2XY + Y 2

and therefore

(27) ℜ(Ãk(u0,u0)) ≥ (1 + γ)X2 − 2γXY + γY 2.

Using the identity

(1 + γ)X2 − 2γXY + γY 2 = (γ + 1
2 )

(

X −
γ

γ + 1
2

Y

)2

+ 1
2X2 +

γ

1 + 2γ
Y 2,

one concludes that

(28) ℜ(Ãk(u0,u0)) ≥
γ

1 + 2γ

(

X2 + Y 2
)

.

Integrating by parts, one has the following equality valid for u0 ∈ U0(D):
(29)
∥

∥curl curlu0 − k2u0

∥

∥

2

L2(D)
= ‖curl curlu0‖

2
L2(D)−2k2 ‖curlu0‖

2
L2(D)+k4 ‖u0‖

2
L2(D)

Therefore
2k2 ‖curlu0‖

2
L2(D) ≤ X2 + Y 2,
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which combined with (28) yields the existence of a constant ck0 (independent of u0

and γ) such that

(30) |Ãk(u0,u0)| ≥ ck
γ

1 + 2γ
‖u0‖

2
U .

The sesquilinear form Ak also satisfies (30) under condition (26), since (as one can
easily check)

ℜ(Ak(u0,u0)) ≥ γX2 − 2γXY + (γ + 1)Y 2

(see also [15]).

Based on the Riesz representation theorem let us define the operator B : U0(D) →
U0(D) by

(Bu0,u
′)U = B(u0 ,u′) ∀ u′ ∈ U0(D).

As shown in [15], B : U0(D) → U0(D) is a compact operator. This result is also a
special case of Lemma 3.4 proved in next subsection.

Based on this result and Lemma 3.1 we are in position to prove the first main
theorem of this section.We first need to make precise the definition of bounded
positive definite matrix fields.

Definition 3.3. A matrix field K is said to be bounded positive definite on D if
K ∈ L∞(D, C3)3×3 and if there exists a constant γ > 0 such that

(31) ℜ(Kξ, ξ) ≥ γ |ξ|2, ∀ξ ∈ C
3 and a.e. in D.

Theorem 3.2. Assume that (N−I)−1 or N(I−N)−1 is a bounded positive definite
matrix field on D and that k is not a transmission eigenvalue. Then for all data
(F,F0,ϕ,ψ) satisfying Assumption 3.1 there exists a unique solution u ∈ U(D) to
(18)-(19) such that

‖u‖U(D) ≤ C(‖F‖L2(D) + ‖F0‖L2(D) + ‖(ϕ,ψ)‖Y (∂D),

where C > 0 is a constant independent of u and (F,F0,ϕ,ψ).
Proof. Let us first prove this theorem in the case where N(I −N)−1 is a bounded

positive definite matrix field on D. In this case, one can easily see that Ãk is a
continuous sesquilinear form on U(D) × U(D). Based on the Riesz representation

theorem, one can therefore define continuous operator Ãk : U0(D) → U0(D) such
that

(Ãku0,u
′)U = Ãk(u0 ,u′) ∀ u′ ∈ U0(D).

Lemma 3.1 and the Lax-Milgram theorem prove that Ãk : U0(D) → U0(D) is a
bijective operator. The identity (N − I)−1 = N(N − I)−1 − I implies that the
antilinear form ℓ is continuous on U0(D). We denote by ℓ ∈ U0(D) the Riesz
representative of ℓ in U0(D). Let w be as in Assumption 3.1 and define t such that

−Ãk(w ,u′) + k2B(u0 ,u′) = (t,u′)U ∀ u′ ∈ U0(D).

Then (18)-(19) is equivalent to u = w + u0 where u0 ∈ U0(D) is the solution of

(32) − Ãku0 + k2Bu0 = t + ℓ in U0(D).

Since Ãk is an isomorphism and B is compact, the Fredholm alternative can be
applied to (32). Hence, assuming that k is not a transmission eigenvalue implies
the existence and uniqueness of a solution u0 to (32) satisfying the a priori estimate.
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The proof in the case (N −I)−1 is a bounded positive definite matrix carries over

in the same way by replacing −Ãk + k2B by Ak + k2B where Ãk : U0(D) → U0(D)
is defined by

(33) (Aku0,u
′)U = Ak(u0 ,u′) ∀ u′ ∈ U0(D).

Theorem 3.3. Assume that (N−I)−1 or N(I−N)−1 is a bounded positive definite
matrix field on D. Then

(i) The set of transmission eigenvalues is discrete and does not accumulate at 0.
(ii) If ℑ(Nξ, ξ) > 0, ∀ ξ ∈ C3 \ {0} and a.e. in D then the set of transmission

eigenvalues is empty.

Proof. The proof of part (i) is based on the use of the analytic Fredholm theory.
For sake of presentation we consider only the case when (N − I)−1 is a bounded
and positive definite, and therefore use formulation (20). We first prove that A−1

k is
analytic for k ∈ C in a neighborhood of the positive real axis, where Ak is defined
by (33). Let k0 > 0. Then there exists a positive constant C independent of k such
that

‖(Ak−Ak0
)u0‖ ≤ C

(

|k2 − k2
0 |‖curl curlu0‖L2(D)‖u0‖L2(D) + |k4 − k4

0 |‖u0‖
2
L2(D)

)

.

Hence, Ak is a bijective operator for |k − k0| sufficiently small. Moreover, since
k 7→ Ak is analytic, then k 7→ A−1

k is analytic in a neighborhood of k0.
It suffices to show that for k > 0 small enough, the operator Ak − B : U0(D) →

U0(D) is an isomorphism, in other words sufficiently small positive k are not trans-
mission eigenvalues. To this end let u0 ∈ U0(D) be such that

Ak(u0,u
′) − k2B(u0,u

′) = 0 for all u′ ∈ U0(D).

First we observe that since u0 × ν = 0 on ∂D, then

curlu0 · ν = 0 on ∂D.

This works for Lipshitz boundaries by interpreting the relationship curlu0 · ν =
div∂D(u0×ν) in the weak sense [16]. On the other hand, the continuous embedding
of

{u ∈ H0(curl , D) : div u = 0 in D}

into H1(D)3 implies that curlu0 ∈ H1(D)3. The Poincaré inequality now implies
the existence of a constant C > 0 such that

‖curlu0‖
2 ≤ C‖∇curlu0‖

2
L2(D).

Let ṽ0 be the extension of curlu0 by 0 outside D. Then

‖∇curlu0‖
2
L2(D) = ‖∇ṽ0‖

2
L2(R3) = ‖curl ṽ0‖

2
L2(R3) + ‖div ṽ0‖

2
L2(R3)

= ‖curl ṽ0‖
2
L2(D) + ‖div ṽ0‖

2
L2(D).

We therefore obtain that

‖curlu0‖
2
L2(D) ≤ C‖curl curlu0‖

2
L2(D).

From inequality (28) (satisfied here by Ak) we now obtain that

ℜ(Ak(u0,u0) − k2B(u0,u0)) ≥ γ
1+2γ

(

‖curl curlu0‖2
L2(D) + k4‖u0‖2

L2(D)

)

−Ck2‖curl curlu0‖2
L2(D).
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Therefore there are no eigenvalues such that k2 ≤ γ
C(1+2γ) .

Part (ii) does not require the assumption on the positive definite property of
the corresponding matrices. Note that ℑ(Nξ, ξ) > 0 implies ℑ((N − I)−1ξ, ξ) < 0.
Now assume that u0 is a solution of

Ak(u0,u
′) − k2B(u0,u

′) = 0 for all u′ ∈ U0(D).

Taking the imaginary part one deduces that

curl curlu0 − k2u0 = 0 ∈ D.

Since u0 × ν = 0 and curlu0 × ν = 0 on ∂D, the extension of u0 by 0 outside D by
0 gives an outgoing solution to Maxwell’s equation in R3 with vanishing far field.
This implies that this function is 0 in R3, and therefore u0 = 0.

Remark 3.1. Under sufficient regularity on N that allows the use of the unique
continuation principle for curl curl − k2N , one can prove that if If ℑ(Nξ, ξ) > 0,
for all ξ ∈ C3 \ {0} and a.e. in D0 where D0 ⊂ D and |D0| 6= 0, then the set of
eigenvalues is empty.

3.2. ITP for conducting boundary condition. We now generalize the results
of the previous section to the case where we have a conductive boundary condition
on a portion of ∂D. More precisely we assume that the surface conductivity sat-
isfies η(x) ≥ η0 > 0 on Γ2. Also, for technical reasons related to the conducting
boundary condition (see discussion following Definition 3.4), we shall assume that
the boundary ∂D is of class C3.

The interior transmission problem (ITP-η) is now formulated as the problem of
finding two vectorial functions E and E0 such that

{

(i) curl curlE − k2 N E = F in D,
(ii) curl curlE0 − k2 E0 = F0 in D,

(34)







(E − E0) × ν = ϕ on ∂D,
(curlE− curlE0) × ν = ψ on Γ1,
(curlE− curlE0) × ν − ik

η ν × (E × ν) = ψ + τ on Γ2.
(35)

In order to define the functional setting for this set of equations we introduce

U(D, Γ2) := {u ∈ U(D) : (curlu × ν)|Γ2
∈ L2

t (Γ2)},

which is a Hilbert space equipped with the norm

‖u‖2
U(D,Γ2)

= ‖u‖2
U(D) + ‖curlu× ν‖2

L2(Γ2)
.

Then we define the subspace

U0(D, Γ2) := {u ∈ U(D, Γ2) : (u × ν)|∂D = 0, (curlu× ν)|Γ1
= 0}.

The existence of a solution to this problem will be studied for data F, F0, ϕ and ψ
that satisfies Assumption 3.1 and τ ∈ L2

t (Γ2). We denote by w0 ∈ U(D) a lifting
associated with (ϕ,ψ).

Definition 3.4. A strong solution to (ITP-η) is a pair (E,E0) ∈ L2(D)3 that
satisfies (34) in the sense of distributions such that (E−E0 −w0) ∈ U0(D, Γ2) and
(E,E0) satisfies (35).
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This definition of strong solution requires that one can define the trace of the
tangential components of E on ∂D when E ∈ L2(D)3 and that E satisfies the first
equation in (34) which means curl curlE ∈ L2(D)3 and therefore E is in the space

Λ(D) = {E ∈ L2(D)3, such that, curl curlE ∈ L2(D)3}.

We equip this space with the norm ‖E‖2
Λ(D) = ‖E‖2

L2(D) + ‖curl curlE‖2
L2(D). By

classical duality arguments, one can prove that the tangential trace of E and curlE
is defined for E ∈ Λ(D). To this end we first note that proceeding along the lines
of the proof of Theorem 3.26 and Theorem 3.25 in [17] (see also [13]), replacing the
curl operator (respectively H(curl , D)) with the curl curl operator (respectively
Λ(D)), one can check that C∞(D) is dense in Λ(D). From the Stokes’ formula one
has
(36)

〈ν × (E× ν), (curlw × ν)〉
H

−1/2

t ,H
1/2

t
+ 〈ν × (curlE× ν), (w × ν)〉

H
−3/2

t ,H
3/2

t

= (curl curlE, w)D − (E, curl curlw)D

for all E ∈ C∞(D) and w ∈ H2(D). From Lemma 3.1 of [15] we have that the
mapping

w 7→ {(w × ν)|∂D, (curlw × ν)|∂D}

from H2(D) into H
3/2
t (∂D) × H

1/2
t (∂D) is surjective. Therefore one can conclude

from (36), by using a density argument, that the mapping

E 7→ {ν × (E× ν)|∂D, ν × (curlE× ν)|∂D}

extends to a continuous mapping from Λ(D) into H
−1/2
t (∂D) × H

−3/2
t (∂D).

In the present case, it is more convenient to directly derive the variational formu-
lation satisfied by u = E−E0 from (34)-(35) rather than just writing the equations
for u. The reason is that we need more regularity assumptions on the data so that
the boundary condition for u can be expressed in the sense of functions.

To derive this variational formulation we need to justify the use of (36) for w ∈
U0(D, Γ2). This is a conseqence of following density result.

Lemma 3.2. C∞(D) is dense in U0(D, Γ2).
Proof. We first observe that if w ∈ U0(D, Γ2) then curlw ·ν = 0 on ∂D. Therefore,
since D is a regular domain, curlw ∈ H1(D) (see [13]) and ‖ ·‖U(D) is an equivalent
norm on U0(D, Γ2). Combining this result with equality (29) that remains valid on
U0(D, Γ2) we conclude that ‖ · ‖Λ(D) is also an equivalent norm on U0(D, Γ2). The

statement of the present Lemma then follows from the density of C∞(D) functions
in Λ(D).

Variational formulation: We shall now explain how to derive the variational
formulation for u. Consider equation (34)-(i) multiplied by u′ ∈ U0(D, Γ2) and
apply (36). After using the boundary conditions satisfied by u′ we obtain that

(37)

∫

D

E·(curl curlu′−k2Nu′) dx+

∫

Γ2

(curlu′×ν)·(ν×(E×ν)) ds =

∫

D

F·u′ dx
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Next, setting λ = 1/η for convenience and using the conducting boundary condition
(35), we arrive at

∫

Γ2

(curlu′ × ν) · (ν × (E× ν)) = −
i

k

∫

Γ2

λ(curlu× ν) · (curlu′ × ν) ds

+
i

k

∫

Γ2

λ(ψ + τ ) · (curlu′ × ν)ds,

where the term in ψ needs to be interpreted as a duality pairing. We now recall
the expression of E in terms of u := E− E0,

E =
1

k2
(N − I)−1(curl curlu− k2u− (F − F0)).

Therefore, after multiplying (37) by −k2, replacing u′ by ū′, and substituting for
E one can easily check that u0 = u− w0 ∈ U0(D, Γ2), and satisfies
(38)

(

(N − I)−1(curl curlu0 − k2u0), (curl curlu′ − k2N̄u′)
)

D
−ik (λ(curlu0 × ν), (curlu′ × ν))Γ2

=
(

(N − I)−1(F − F0), (curl curlu′ − k2N̄u′)
)

D
+k2 (F, u′)D − ik (λτ , (curlu′ × ν))Γ2

−
(

(N − I)−1(curl curlw0 − k2w0), (curl curlu′ − k2N̄u′)
)

D

for all u′ ∈ U0(D, Γ2).

Theorem 3.4. Assume that N and (N − I)−1 are bounded matrix fields in D.
Then the existence and uniqueness of strong solutions to (ITP-η) is equivalent to
the existence and uniqueness of u0 = (E− E0 − w0) ∈ U0(D, Γ2) satisfying (38).

Proof. As in Section 3.1 the proof is based on the use of formulas (13) and (14).
From the above considerations we only have to check that the solution u0 = (u −
w0) ∈ U0(D, Γ2) defines a strong solution to (ITP-η). Taking u′ ∈ U0(D) we
obviously obtain that u = u0 + w0 satisfies equation (17) in the distribution sense.
Therefore E and E0 as defined by (14) are in L2(D)3 and satisfy (34). On the other
hand, the variational formulation implies that E satisfy

(

E, (curl curlu′ − k2N̄u′)
)

D
− ik (λ(curlu0 × ν), (curlu′ × ν))Γ2

= (F, u′)D − ik (λτ , (curlu′ × ν))Γ2

for all u′ ∈ U0(D, Γ2). One then obtains the conducting boundary condition by
taking u′ ∈ U0(D, Γ2) ∩ C∞(D) and using formulas (36).

The remainder of this section is devoted to the study of the variational formula-
tion (38). Our proofs hold for Lipshitz domains D (and therefoe does not need the
regularity result used in Lemma 3.2).

Let us denote by ℓ(u′) the right hand side of (38) which defines a continuous
antilinear form on U0(D, Γ2). As in the previous section depending on the sign of
N − I we will use one the following equivalent arrangements of (38)

(39) Ak(u0,u
′) − ikT (u0,u

′) − k2B(u0,u
′) = ℓ(u′) for all u′ ∈ U0(D, Γ2),

or

(40) − Ãk(u0,u
′) − ikT (u0,u

′) + k2B(u0,u
′) = ℓ(u′) for all u′ ∈ U0(D, Γ2),
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where Ak, Ãk and B have the same expression as in the previous section but are now
defined on U0(D, Γ2)×U0(D, Γ2), and where T is defined on U0(D, Γ2)×U0(D, Γ2)
by

(41) T (u0,u
′) = (λ(curlu0 × ν), (curlu′ × ν))Γ2

.

Lemma 3.3. Assume that (N − I)−1 (respectively, N(I − N)−1) is a bounded
positive definite matrix field on D such that ℑ(N) ≥ 0. Then Ak−ikT (respectively,

Ãk + ikT ) is a continuous, coercive sesquilinear form on U0(D, Γ2) × U0(D, Γ2).

Proof. The proof relies on the observations that

ℜ(Ak(u0,u0) − ikT (u0,u0)) = ℜ(Ak(u0,u0))

and

−ℑ(Ak(u0,u0) − ikT (u0,u0)) ≥ kℑ(T (u0,u0)).

The coerciveness is then a straightforward consequence of the estimate (28), the
equality (29) that remains valid for u0 ∈ U0(D, Γ2), and the obvious inequality

ℑ(T (u0,u0)) ≤ inf |λ|‖u0 × ν‖2
L2(Γ2).

Based on the Riesz representation theorem let us define the operator B :
U0(D, Γ2) → U0(D, Γ2) by

(Bu0, u′)U(D,Γ2) = B(u0 ,u′) ∀ u′ ∈ U0(D, Γ2).

Lemma 3.4. The operator B : U0(D, Γ2) −→ U0(D, Γ2) is compact.

Proof. Using the definition of B, one obtains that

‖Bu0‖U(D,Γ2)
≤ ‖curlu0‖L2(D) ∀ u0 ∈ U0(D, Γ2).

Now observe that if u0 ∈ U0(D, Γ2) then curlu0 belongs to

{u ∈ H(curl , D) / div u = 0 in D, and (u × ν)|∂D ∈ L2
t (D)}

which is compactly embedded into L2(D)3 (see [17] for instance).

Combining the results of Lemma 3.3 and Lemma 3.4, one concludes using the
same arguments as in the proof of Theorem 3.2 that the following theorem holds.

Theorem 3.5. Assume that (N−I)−1 or N(I−N)−1 is a bounded positive definite
matrix field in D and ℑ(N) ≥ 0. If k is not a transmission eigenvalue, then there
exists a unique solution u0 ∈ U0(D, Γ2) to (38) such that

‖u0‖U(D,Γ2) ≤ C(‖F‖L2(D) + ‖F0‖L2(D) + ‖τ‖L2(Γ),

where C > 0 is a constant independent of u0 and (F,F0,ϕ,ψ).

We also can state

Theorem 3.6. Assume that (N−I)−1 or N(I−N)−1 is a bounded positive definite
matrix field on D. Then

(i) The set of transmission eigenvalues for (ITP-η) is discrete and does not ac-
cumulate at 0.

(ii) If ℑ(Nξ, ξ) > 0, ∀ ξ ∈ C3 \ {0} and a.e. in D then the set of transmission
eigenvalues is empty.
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The proof of Theorem 3.6 follows from the simple observation that the set of
transmission eigenvalues for (ITP-η) is a subset of the transmission eigenvalues for
(ITP) [7] and Theorem 3.3.
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