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This article is concerned with weak solution of a mixed boundary value problem for the
biharmonic equation in the plane. Using Green’s formula, the problem is converted into a
system of Fredholm integral equations for the unknown data on different parts of the bound-
ary. Existence and uniqueness of the solutions of the system of boundary integral equations are
established in appropriate Sobolev spaces.
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1. Introduction

In the article [1], a mixed boundary value problem for the two-dimensional Laplace
equation is considered. Using Green’s formula the problem is converted into a
system of Fredholm integral equations for the missing part of Cauchy data on different
parts of the boundary. One of these boundary integral equations has a principal part
of the second kind, whereas the other is of the first kind. However, the crucial point
of the approach there is that the derived system of integral equations can be
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interpreted as a strongly elliptic system of pseudodifferential equations. Hence it can be
solved constructively by Galerkin’s method.

The purpose of the present article is to see the feasibility of extending the approach
in [1] for the Laplace equation to the biharmonic equation. Clearly for the latter, it is
much more involved; there is double the amount of Cauchy data and 16 boundary
operators needed to be considered. However, as will be seen, the recent systematic
characterization of the Calderón projector in [2] has simplified the approach in the
same manner as in the case for the Laplace equation.

The article is organized as follows: in section 1, we formulate the mixed boundary
problem and present some preliminary results for the weak solutions of the boundary
value problems for the biharmonic equation. Section 2 contains the core materials
for the four basic boundary integral equations. Theorems 3.3, 3.4 and 3.5 in section 3
are the main results concerning existence and uniqueness of the system of boundary
integral equations in section 2. Finally, in the last section, we conclude the article
by a brief discussion on the regularity results of the solutions of boundary
integral equations, and these can be served as the mathematical foundations for the
augmented Galerkin method in the same manner as in the case of Laplace equation
(see [1]).

2. Formulation of the problem

Let � � R
2 be a bounded simply connected region with C1, 1- boundary �. We assume

that the boundary � has a dissection � ¼ �D [ �c [ �N , where �D and �N are disjoint,
relatively open subsets of �, having �c as their common boundary points in �. We
denote by n ¼ ðn1, n2Þ the unit outward normal vector to �.

Now let a thin plate in elastostatic equilibrium occupy the region �. We assume that
the part �D of the boundary is clamped while the part �N is free. If we denote by u the
equilibrium state of the plate, we obtain the following mixed boundary value problems
for the biharmonic equation

�2u ¼ 0 in � ð1Þ

u ¼ f and
@u

@n
¼ g on �D ð2Þ

Mu ¼ p and Nu ¼ q on �N , ð3Þ

where the boundary operators Mj�D
and Nj�N

are the restrictions to �D and �N respec-
tively, of the following boundary differential operators

Mu ¼ ��uþ ð1� �ÞM0u ð4Þ

and

Nu ¼ �
@

@n
�u� ð1� �Þ

@

@s
N0u: ð5Þ
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Here � is the Poisson ratio, a real constant and in application (especially in the theory
of elasticity) we have 0 � � < 1. The normal and tangential derivatives are given by

@

@n
¼ n1

@

@x1
þ n2

@

@x2
and

@

@s
¼ �n1

@

@x2
þ n2

@

@x1
,

while the boundary operators M0u and N0u are defined by

M0u :¼
@2u

@x21
n21 þ 2

@2u

@x1 @x2
n1n2 þ

@2u

@x22
n22

and

N0u :¼ �

(
@2u

@x21
�
@2u

@x22

� �
n1n2 �

@2u

@x1 @x2
n21 � n22
� �)

:

Physically, Mu is the bending moment and Nu is the transverse force consisting of the
shear force and twisting moment [3]. The mixed conditions (2) and (3) may be inter-
preted that the plate is clamped on �D and has a free edge on �N. We are interested
in the weak solutions of the mixed boundary value problem, (1), (2), and (3).

Our solution space for the biharmonic equation (1) is the standard Sobolev space
H2ð�Þ of distributions that are square integrable and have square integrable derivatives
up to the second order. We first observe that since the boundary � is C1, 1, the trace
spaces H3=2ð�Þ and H1=2ð�Þ are well defined [4] and moreover for u 2 H2ð�Þ we have
that uj� 2 H3=2ð�Þ and ð@u=@nÞj� 2 H1=2ð�Þ. To discuss the boundary value problem
for (1), it is best to begin with the Green formula for (1) in �. By using integration
by parts formulas, one can obtain

Z
�

ð�2 uÞv dx ¼ aðu, vÞ �

Z
�

ðMuÞ
@v

@n
þ ðNuÞv

� �
ds, ð6Þ

for smooth functions, where the bilinear form a(u, v) is defined by

a�ðu, vÞ :¼

Z
�

��u�vdx

þ

Z
�

ð1� �Þ
@2u

@x21

@2v

@x21
þ 2

@2u

@x1 @x2

@2v

@x1 @x2
þ
@2u

@x22

@2v

@x22

� �
dx:

ð7Þ

We note that the bilinear form in (7) is well defined for functions in H2ð�Þ. Now let
u 2 H2ð�,�2Þ where

H2ð�,�2Þ :¼ fu 2 H2ð�Þ : �2 u 2 eHH�2ð�Þg
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with eHH�2ð�Þ denoting the dual space of H2ð�Þ and choose v 2 H2ð�Þ. Then the above
Green formula holds and by a duality argument one shows that Mu 2 H�1=2ð�Þ and
Nu 2 H�3=2ð�Þ are well defined, where H�1=2ð�Þ and H�3=2ð�Þ are the dual spaces of
H1=2ð�Þ and H3=2ð�Þ, respectively.

For later use we recall the following classical result by Agmon [5].

LEMMA 2.1 Assume that �3 < � < 1. Then the bilinear form að�, �Þ given by (7) satisfies
a Gårding inequality in the form

aðv, vÞ� � c0kvk
2
H2ð�Þ � �0kvk

2
L2ð�Þ

for all v 2 H2ð�Þ, where c0> 0 and �0 � 0 are constant.

In order to formulate the mixed boundary value problem (1)–(3) more precisely
we need to define the following trace spaces on an open arc �0 � �. For any
s 2 R, s � 0, we define

Hsð�0Þ :¼ fuj�0
: u 2 Hsð�Þg,

~HHsð�0Þ :¼ fu 2 Hsð�Þ : supp u � �0g

(see, e.g., [1,6]). For s>0 we denote by H�sð�0Þ the dual space of ~HHsð�0Þ and by
~HH�sð�0Þ the dual space of Hsð�0Þ with L2ð�0Þ as the pivot space. Note that ~HH�sð�0Þ

can also be identified with the space of distributions in H�sð�Þ supported in �0. The
following chain of continuous embeddings holds

~HHsð�0Þ � Hsð�0Þ � L2ð�0Þ � ~HH�sð�0Þ � H�sð�0Þ s > 0:

Now we are ready to formulate precisely the mixed boundary value problem for the
biharmonic equation: Given f 2 H3=2ð�DÞ, g 2 H1=2ð�DÞ, p 2 H�1=2ð�NÞ, and
q 2 H�3=2ð�NÞ, find u 2 H2ð�Þ that satisfies (1)–(3). We will refer to this problem
as (MBP).

THEOREM 2.2 The mixed boundary value problem MBP has at most one solution for
0 � � � 1.

Proof Let u be the solution of MBP with f ¼ g ¼ p ¼ q ¼ 0. Then an application
of Green’s formula to u and �uu yields

Z
�

�j�uj2 þ ð1� �Þ
@2u

@x21

���� ����2þ2
@2u

@x1@x2

���� ����2þ @2u

@x22

���� ����2
 !" #

dx ¼ 0:

Hence for 0 � � < 1 we have ð@2u=@x21Þ ¼ ð@2u=@x22Þ ¼ 0 in � which implies
u ¼ ax1 þ bx2 þ c and form the boundary conditions uj�D

¼ 0, @u=@n, �D ¼ 0, we
conclude that u¼ 0 in �.

In the case of �¼ 1 we obtain that �u ¼ 0 in � and u ¼ ð@u=@nÞ ¼ 0 on �D. Now let
B� be a ball of radius � with center on �D such that B� \ �N ¼ 0 and define v¼ u
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in � \ B�, v¼ 0 in ðR
2
n�Þ \ B�. Then v satisfies �v ¼ 0 in B� and hence real-analytic

in B�. We can now conclude that u � 0 in B� and thus u � 0 in �.

3. Boundary integral equations

In order to prove the existence of a solution to MBP and provide a solution formula we
will reformulate the problem as a system of boundary integral equations of the first
kind. We start with the Green representation formula of a weak solution in H2ð�Þ [2]

uðxÞ ¼ VðMu,NuÞðxÞ �W u,
@u

@n

� �
ðxÞ, x 2 � ð8Þ

in terms of simple- and double-layer potentials. Here

V : H�1=2ð�Þ �H�3=2ð�Þ �!H2ð�Þ, and W : H3=2ð�Þ �H1=2ð�Þ�!H2ð�Þ

are continuous operators defined by

Vð�1, �2ÞðxÞ :¼

Z
�

Eðx, yÞ�2ð yÞ þ
@Eðx, yÞ

@ny
�1

� 	
dsy, x 2 R

2
n �,

Wð�1,�2ÞðxÞ :¼

Z
�

MyEðx, yÞ�2ð yÞ þNyEðx, yÞ�1ð yÞ

 �

dsy, x 2 R
2
n �

where

Eðx, yÞ :¼
1

8�
jx� yj2 log jx� yj

is the fundamental solution of the biharmonic equation. Letting x ! � from inside �,
and following the standard procedure in potential theory involving jump relations,
we obtain the following integral equations on �,

uðxÞj� :¼

Z
�

Eðx, yÞNuð yÞ þ
@Eðx, yÞ

@ny
Muð yÞ

� 	
dsy

�

Z
�

MyEðx, yÞ
@u

@n
ð yÞdsy þ

1

2
uðxÞ �

Z
�

NyEðx, yÞuð yÞdsy

� � ð9Þ

@u

@n
ðxÞj� :¼

Z
�

@Eðx, yÞ

@nx
Nuð yÞ þ

@2Eðx, yÞ

@nx@ny
Muð yÞ

� 	
dsy

þ
1

2

@u

@n
ðxÞ �

Z
�

@

@nx
MyEðx, yÞ

@u

@ny
ð yÞdsy

24 35�

Z
�

@

@nx
NyEðx, yÞuð yÞdsy ð10Þ
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MuðxÞj� :¼

Z
�

MxEðx, yÞNuð yÞdsy þ
1

2
MuðxÞ �

Z
�

Mx
@Eðx, yÞ

@ny
Mu ð yÞdsy

� �

�

Z
�

MxMyEðx, yÞ
@u

@ny
ð yÞ þMxNyEðx, yÞuð yÞ

� 	
dsy ð11Þ

NðxÞj� :¼
1

2
NuðxÞ þ

Z
�

NxEðx, yÞNuð yÞdsy

24 35þ

Z
�

Nx
@Eðx, yÞ

@ny
Muð yÞdsy

�

Z
�

NxMyEðx, yÞ
@u

@ny
ð yÞ þNxNyEðx, yÞuð yÞ

� 	
dsy: ð12Þ

In order to understand the mapping properties of the above 16 boundary integral
operators we may rewrite (9)–(12) in the form

u
@u=@n
Mu
Nu

2664
3775
j�

¼

ð1=2Þ I � K11 V12 V13 V14

D21 ð1=2Þ I þ K22 V23 V24

D31 D32 ð1=2Þ I � K33 V34

D41 D42 D43 ð1=2Þ I þ K44

2664
3775

u
@u=@n
Mu
Nu

2664
3775
j�

,

where the operators are defined in an obvious manner. This matrix of integral operators
is the corresponding Calderón projector for the biharmonic equation with respect to
domain � and will be denoted by C� :¼ ððCi, j

� ÞÞ4�4. This Calderón projector in fact
consists of pseudodifferential operators on � and has been studied in detail in [2].
In particular it maps H3=2ð�Þ �H1=2ð�Þ �H�1=2ð�Þ �H�3=2ð�Þ into itself continuously.
The mapping properties of each of the operators appearing in C� can be easily obtained
from its principal symbol as

Ord ðC�Þ :¼

0 �1 �3 �3
þ1 0 �1 �3
þ1 þ1 0 �1
þ3 þ1 þ1 0

2664
3775:

We note that in particular the order of each operator C i, j
� in the matrix C� can be com-

puted from the difference of its index i � j (or i � j � 1, when ji � jj ¼ 2). The operators
of negative order are smoothing operators while the operators of positive order are
singular and the absolute value of the order shows how much regularity we gain or
loose by mapping. For instance the operator C13

� ¼ V1, 3 defined by

ðV13 ’ÞðxÞ :¼

Z
�

@Eðx, yÞ

@ny
’ð yÞ dsy

is of order �2 (in fact in this case is of order �2� 1) and hence maps continuously for
� 2 C1 from H�1=2ð�Þ to H3=2ð�Þ (H5=2ð�Þ), while the operator C42

� ¼ D42,

ðD42 ’ÞðxÞ :¼

Z
�

NxMyEðx, yÞ’ð yÞ ds
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is of order 2 (or rather 2� 1) and maps from H1=2ð�Þ to H�3=2ð�Þ (Hð�1=2Þð�Þ)
continuously.

Now we return to the mixed boundary value problem (1)–(3). We denote by
~ff 2 H3=2ð�Þ, ~gg 2 H1=2ð�Þ, ~pp 2 H�1=2ð�Þ and ~qq 2 H�3=2ð�Þ bounded extensions to the
whole of � of the corresponding boundary data f , g, p and q. Then we write

uj� ¼ �N þ ~ff
@u

@n

����
�

¼  N þ ~gg ð13Þ

Muj� ¼ �D þ ~pp Nuj� ¼ �D þ ~qq: ð14Þ

Obviously �N 2 ~HH3=2ð�NÞ,  N 2 ~HH1=2ð�NÞ, �D 2 ~HH�1=2ð�DÞ and �D 2 ~HH�3=2ð�DÞ since
�N ¼  N ¼ 0 on �D and �D ¼ �D ¼ 0 on �N.

By now restricting (9) and (10) to �D and (11) and (12) to �N we obtain the following
system of boundary integral equations of the first kind for �N , N , �D, �D

Z
�D

Eðx, yÞ�Dð yÞdsþ

Z
�D

@Eðx, yÞ

@ny
�Dð yÞds�

Z
�N

MyEðx, yÞ Nð yÞds

�

Z
�N

NyEðx, yÞ�Nð yÞds ¼ F1ðxÞ, x 2 �D ð15Þ

Z
�D

@Eðx, yÞ

@ny
�Dð yÞ dsþ

Z
�D

@2Eðx, yÞ

@nx@ny
�Dð yÞ ds�

Z
�N

@

@nx
MyEðx, yÞ Nð yÞ ds

�

Z
�N

@

@nx
NyEðx, yÞ�Nð yÞ ds ¼ F2ðxÞ, x 2 �D ð16Þ

Z
�D

MxEðx, yÞ�Dð yÞdsþ

Z
�D

Mx
@Eðx, yÞ

@ny
�Dð yÞds�

Z
�N

MxMyEðx, yÞ Nð yÞds

�

Z
�N

MxNyEðx, yÞ�Nð yÞds ¼ F3ðxÞ, x 2 �N ð17Þ

Z
�D

NxEðx, yÞ�Dð yÞdsþ

Z
�D

Nx
@Eðx, yÞ

@ny
�Dð yÞds�

Z
�N

NxMyEðx, yÞ Nð yÞds

�

Z
�N

NxNyEðx, yÞ�Nð yÞds ¼ F4ðxÞ, x 2 �N ð18Þ

Mixed boundary value problem 687



where

F1ðxÞ ¼ �

Z
�

Eðx, yÞ ~qqð yÞds�

Z
�

@Eðx, yÞ

@ny
~ppð yÞds

þ

Z
�

MyEðx, yÞ ~ggð yÞdsþ
1

2
~ff ðxÞ þ

Z
�

NyEðx, yÞ ~ff ð yÞds

24 35, x 2 �D

F2ðxÞ ¼ �

Z
�

@Eðx, yÞ

@ny
~qqð yÞds�

Z
�D

@2Eðx, yÞ

@nx@ny
~ppð yÞds

þ
1

2
~ggðxÞ þ

Z
�

@

@nx
MyEðx, yÞ ~ggð yÞds

24 35þ

Z
�

@

@nx
NyEðx, yÞ ~ff ð yÞds, x 2 �D

F3ðxÞ ¼ �

Z
�

MxEðx, yÞ ~qqð yÞds
1

2
~ppðxÞ �

Z
�

Mx
@Eðx, yÞ

@ny
~ppð yÞds

24 35
þ

Z
�

MxMyEðx, yÞ ~ggð yÞdsþ

Z
�

MxNyEðx, yÞ ~ff ð yÞds, x 2 �N

F4ðxÞ ¼
1

2
~qqðxÞ �

Z
�

NxEðx, yÞ ~qqð yÞds

24 35�

Z
�

Nx
@Eðx, yÞ

@ny
~ppð yÞds

þ

Z
�

NxMyEðx, yÞ ~ggð yÞdsþ

Z
�

NxNyEðx, yÞ ~ff ð yÞds, x 2 �N

The system of equations (15)–(18) can be written in a matrix form as follows

A

�D

�D

 N

�N

2666664

3777775 :¼

VDD
14 VDD

13 VDN
12 �KDN

11

VDD
24 VDD

23 KDN
22 DDN

21

VND
34 �KND

33 DNN
32 DNN

31

KND
44 DND

43 DNN
42 DNN

41

2666664

3777775
�D

�D

 N

�N

2666664

3777775 ¼ F ð19Þ

with F ¼ F1, F2, F3, F4½ 	
>. Here Vij ,Di, j,Kii, i ¼ 1, . . . , 4, j ¼ 1, . . . , 4 are the opera-

tors that appear in the Calderón operator, and VDN
12 stands for the operator V24 applied

to a function with support in �N and evaluated on �D, with analogous definitions for
the other operators. From the mapping properties of the Calderón operator, one
can see that the operator A defines a continuous mapping A : H ! H
 with H :¼
~HH�3=2ð�DÞ � ~HH�1=2ð�DÞ � ~HH1=2ð�NÞ � ~HH3=2ð�NÞ and H
 :¼ H3=2ð�DÞ �H1=2ð�DÞ �

H�1=2ð�NÞ �H�3=2ð�NÞ the dual space of H.
We remark that if �N , N , �D, �D satisfy (19) then, after defining u, ð@u=@nÞ,Mu,Nu

on � by (13) and (14), the representation formula (8) gives a solution to MBP which
from Theorem 2.2 is the unique solution. Hence we need to study the solvability
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of the system of integral equations of the first kind (19). For this purpose, let us first
introduce the matrix operator V : H�3=2ð�Þ �H�1=2ð�Þ ! H3=2ð�Þ �H1=2ð�Þ defined by

V :¼
V14 V13

V24 V23

� �
: ð20Þ

Then the following lemma holds.

LEMMA 3.1 There exists a compact operator CV : H�3=2ð�Þ �H�1=2ð�Þ ! H3=2ð�Þ�
H1=2ð�Þ such that

ðV þ CV Þ�,�
� 


� Ck�k2H�3=2ð�Þ�H�1=2ð�Þ for � 2 H�3=2ð�Þ �H�1=2ð�Þ

where the bracket �, �h i denotes the L2ð�Þ-duality pairing between H�3=2ð�Þ �H�1=2ð�Þ
and H3=2ð�Þ �H1=2ð�Þ.

Proof The proof follows Hsiao and Wendland [6] and Costabel and Wendland [15].
For any � ¼ ð�1, �2Þ 2 H�3=2ð�Þ �H�1=2ð�Þ, let

uðxÞ ¼

Z
�

Eðx, yÞ�1ð yÞ þ
@Eðx, yÞ

@ny
�2

� 	
dsy x 2 R

2
n �:

Then u 2 H2ð�,�2Þ, u 2 H2
locð�c,�

2Þ where �c :¼ R
2
n�. Moreover (9)–(12) yield

½u	� ¼ 0,
@u

@n

� �
�

¼ 0, ½Mu	� ¼ �2, ½Nu	� ¼ �1

where ½�	� denotes the jump across the boundary �. Next we introduce a fixed C1
0 ðR

2
Þ

cut-off function 	 with 	j� ¼ 1. Hence from the jump properties, (9)–(12) and the
Green formula (6) we can write

V�,�h i ¼

Z
�

@u

@n
½Mu	 þ u ½Nu	

� �
ds ¼ a�ðu, uÞ þ a�c

ð	u,	uÞ,

where a�ð�, �Þ and a�c
ð�, �Þ are the bilinear forms (7) corresponding to � and �c.

Note that a�c
ð	u,	uÞ is well defined since 	u has compact support. Then the result

follows from Lemma 2.1, the fact that H2 is compactly imbedded in L2 and the
Riesz representation theorem. It is important to notice that 	u ¼ u in a neighborhood
of � and therefore a Gårding inequality of the type of Lemma 2.1 holds also for a�c

ð�, �Þ
since the integrals containing 	 are simply compact perturbations (for details see the
proof of Theorem 3.7 in [8] for the case of the Laplace equation).

Next, let D : H1=2ð�Þ �H3=2ð�Þ ! H�1=2ð�Þ �H�3=2ð�Þ be the continuous mapping
defined by

D :¼
D32 D31

D42 D41

� �
: ð21Þ

Similarly, we have the following lemma.
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LEMMA 3.2 There exists a compact operator CD : H
1=2ð�Þ �H3=2ð�Þ ! H�1=2ð�Þ�

H�3=2ð�Þ such that

ðDþ CDÞ�,�
� 


� Ck�k2H1=2ð�Þ�H3=2ð�Þ for � 2 H1=2ð�Þ �H3=2ð�Þ

where the bracket �, �h i denotes the L2ð�Þ-duality pairing between H1=2ð�Þ �H3=2ð�Þ and
H�1=2ð�Þ �H�3=2ð�Þ.

Proof For any � ¼ ð 1, 2Þ 2 H1=2ð�Þ �H3=2ð�Þ, let

uðxÞ ¼

Z
�

MyEðx, yÞ 1ð yÞ þNyEðx, yÞ 2


 �
dsy x 2 R

2
n �:

Then u 2 H2ð�,�2Þ, u 2 H2
locð�c,�

2Þ and from (9)–(12) we have that

½u	� ¼  2,
@u

@n

� �
�

¼  1, ½Mu	� ¼ 0, ½Nu	� ¼ 0:

Then we can write

D�,�h i ¼

Z
�

Nx ½u	 þMxu
@u

@n

� �� �
ds

¼ a�ðu, uÞ þ a�c
ð	u,	uÞ

and the result is obtain by the same argument as in Lemma 3.1 where 	 is the cut-off
function introduced in Lemma 3.1.

THEOREM 3.3 Let H :¼ ~HH�3=2ð�DÞ � ~HH�1=2ð�DÞ � ~HH1=2ð�NÞ � ~HH3=2ð�NÞ and its dual
H
 :¼ H3=2ð�DÞ �H1=2ð�DÞ �H�1=2ð�NÞ �H�3=2ð�NÞ. Then the operator A : H ! H


is Fredholm with index zero.

Proof From Lemma 3.1 and 3.2, let V0 ¼ V þ CV and D0 ¼ Dþ CD, where V and D
are defined by (20) and (21). Then we know that V0 and D0 are bounded below and
positive. Since � :¼ ð�D, �D, N ,�NÞ 2 ~HH�3=2ð�DÞ � ~HH�1=2ð�DÞ � ~HH1=2ð�NÞ � ~HH3=2ð�NÞ

it can be extended by zero to functions ~�� :¼ ð ~��D, ~��D, ~  N , ~��NÞ in H�3=2ð�Þ �
H�1=2ð�Þ �H1=2ð�Þ �H3=2ð�Þ. Therefore we can write A in the form

A ¼ A0 þ CA :¼
V0 MDN

MND D0

� �
þ CA

where CA is compact, and

MDN :¼
VDN

12 �KDN
11

KDN
22 DDN

21

" #
and MND :¼

VND
34 �KND

33

KND
44 DDN

43

" #
:
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Furthermore from (15)–(18) we have

VDN
12  N , �D

� 

¼

Z
�D

���DðxÞ

Z
�N

My Eðx, yÞ Nð yÞ dsð yÞ dsðxÞ

¼

Z
�

�DðxÞ

Z
�

My Eðx, yÞ ~  Nð yÞ dsð yÞ dsðxÞ

¼ �

Z
�

~  Nð yÞ

Z
�

Mx Eðx, yÞ ~��DðxÞ dsðxÞ dsð yÞ

¼ �

Z
�N

 Nð yÞ

Z
�D

Mx Eðx, yÞ�DðxÞ dsðxÞ dsð yÞ

¼ � VND
34 �D, N

� 

:

In the same manner one can show that

KDN
11 �N , �D

� 

¼ KND

44 �D,�N
� 


KDN
22  N , �D

� 

¼ KND

33 �D, N

� 

and

DDN
21 �N , �D

� 

¼ � DND

43 �D,�N
� 


:

Finally, combining these equations and using Lemmas 3.1 and 3.2 we obtain

A0�,�h iH,H
 ¼ V0ð�D, �DÞ, ð�D, �DÞ
� 


þRe D0ð N ,�NÞ, ð N ,�NÞ
� 


� c1kð�D, �DÞk
2
H�3=2�H�1=2 þ c2kð N ,�NÞk

2
H1=2�H3=2

� ck�k2H

for any � 2 H where c > 0 is a constant. Hence A is a Fredholm operator with index
zero. In particular the uniqueness of (19) implies the existence of the solution to (19).

The next theorem establishes the uniqueness of (19).

THEOREM 3.4 The kernel of the operator A : H ! H
 is zero.

Let � :¼ ð�D, �D, N ,�NÞ 2 ~HH�3=2ð�DÞ � ~HH�1=2ð�DÞ � ~HH1=2ð�NÞ � ~HH3=2ð�NÞ be a
solution to the homogeneous equation A� ¼ 0, and ~�� :¼ ð ~��D, ~��D, ~  N , ~��NÞ in
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H�3=2ð�Þ �H�1=2ð�Þ �H1=2ð�Þ �H3=2ð�Þ be the extension by zero. The potential w
defined by

wðxÞ ¼ Vð ~��D, ~��DÞðxÞ �Wð ~��N , ~  NÞðxÞ x 2 R
2
n �

¼

Z
�

Eðx, yÞ ~��D þ
@Eðx, yÞ

@ny
~��D

� 	
dsy

�

Z
�

MyEðx, yÞ ~  Nð yÞ þNyEðx, yÞ ~��Nð yÞ

 �

dsy ð22Þ

is in H2ð�,�2Þ and H2
locð�cÞ and satisfies the biharmonic equation. Now let x ! �

from inside �, using the jump relations (9)–(10) we obtain:

wj� ¼ V14 ~��D þ V13 ~��D þ V12
~  N þ

1

2
~��N � K11

~��N

� �
@w

@n

����
�

¼ V24 ~��D þ V23 ~��D þ
1

2
~  N þ K22

~  N

� �
þD21

~��N

Mwj� ¼ V34 ~��D þ
1

2
~��D � K33 ~��D

� �
þD32

~  N þD31
~��N

Nwj� ¼
1

2
~��D þ K44 ~��D

� �
þD43 ~��D þD42

~  N þD41
~��N :

Using the fact that supp �D, supp �D are in �D and supp�N, supp N are in �N, the
integral equation A� ¼ 0 implies that

wj�D
¼ 0,

@w

@n

����
�D

¼ 0, Mwj�N
¼ 0, Nwj�N

¼ 0:

The latter means that (22) is a weak solution to homogeneous interior mixed boundary
value for biharmonic equation, and hence, from Theorem 2.2, w¼ 0 in �.

Now, using Green’s representation formula (8) for w 2 H2ð�Þ we have

0 ¼ VðMw,NwÞðxÞ �Wðw,
@w

@n
ÞðxÞ, x 2 �, ð23Þ

whence from the above boundary conditions � :¼ ð�D, �D, N ,�NÞ 2 ~HH�3=2ð�DÞ �
~HH�1=2ð�DÞ � ~HH1=2ð�NÞ � ~HH3=2ð�NÞ in the kernel of A satisfies

0 ¼

Z
�D

Eðx, yÞ�Dð yÞ þ
@Eðx, yÞ

@ny
�D

� 	
dsy

�

Z
�N

MyEðx, yÞ Nð yÞ þNyEðx, yÞ�Nð yÞ

 �

dsy, x 2 �:

ð24Þ
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Let us denote by

hðxÞ ¼

Z
�N

MyEðx, yÞ Nð yÞ þNyEðx, yÞ�Nð yÞ

 �

dsy: ð25Þ

From the mapping properties of the potentials, we have that h 2 H2ðR
2
n �Þ and from

the asymptotic behavior of the biharmonic double layer potential h(x)¼O(r) as
r ¼ jxj ! 1. Therefore from the uniqueness of the exterior Dirichlet problem for
the biharmonic equation with the required growth conditions (see [2]), we can represent
h in the form of a simple potential

hðxÞ ¼

Z
�

Eðx, yÞ
ð yÞ þ
@Eðx, yÞ

@ny
�ð yÞ

� 	
dsy ð26Þ

with densities � 2 H�1=2ð�Þ and 
 2 H�3=2ð�Þ subject to the constraintsZ
�


ð yÞdsy ¼ 0

Z
�

yi 
ð yÞ þ ni �ð yÞdsy ¼ 0 i ¼ 1, 2: ð27Þ

The jump relations imply that

� ¼ Mhþ �Mh�, 
 ¼ Nhþ �Nh� on �

where the � signs correspond to the interior and the exterior domain, respectively.
From the definition of h given by (25) we see that �¼ 0 and 
¼ 0 on �D, i.e., their
support is included in �N . Inserting (26) into (24) gives

Vð�, 
Þ ¼ �Vð ~��D, ~��DÞ in �

which implies that

� ¼ � ~��D and 
 ¼ � ~��D on �

are the unique solutions because of (27) (see [2]) , where ~��D 2 H�3=2ð�Þ and
~��D 2 H�1=2ð�Þ are the extension by zero to the whole � of �D and �D. But since the
support of ~��D and ~��D intersect the support of � and 
 only in a finite set of boundary
points we can conclude that

~��D ¼ ~��D ¼ � ¼ 
 ¼ 0:

Hence

hðxÞ ¼

Z
�N

MyEðx, yÞ Nð yÞ þNyEðx, yÞ�Nð yÞ

 �

dsy ¼ 0 in �:
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The jump relation and the fact that A ~�� ¼ 0, ~�� :¼ ð ~��D, ~��D, ~  N , ~��NÞ ¼ ð0, 0, ~  N , ~��NÞ
now imply

0 ¼ V12
~  N þ

1

2
~��N � K11

~��N

� �
¼

1

2
~��N

0 ¼
1

2
~  N þ K22

~  N

� �
þD21

~��N ¼
1

2
~  N :

So, we have shown that the kernel of A is zero, which proves the theorem.
Summarizing the above analysis we have proved the following result.

THEOREM 3.5 Assume that 0 < � < 1 and let f 2 H3=2ð�DÞ, g 2 H1=2ð�DÞ,
p 2 H�1=2ð�NÞ, and q 2 H�3=2ð�NÞ be given. Then the mixed boundary value problem
(1)–(3) has a weak solution in H2ð�,�2Þ. Moreover the solution satisfies the estimate

kukH2ð�Þ � cðk f kH3=2ð�DÞ
þ kgkH1=2ð�DÞ

þ kpkH�1=2ð�N Þ
þ kqkH�3=2ð�N Þ

Þ

with c a positive constant.

Remark In the same way one can treat other type of mixed boundary value
problems for the biharmonic equation that corresponds to different physical combina-
tions of the boundary conditions.

4. Remarks on the regularity of the solution

To conclude the article, we now discuss briefly the regularity of the solution of
the boundary integral equation. In general, the change of the boundary condition
causes the solution of the mixed boundary value problem for the biharmonic equation
(1)–(3) to be singular in the neighborhood of the boundary interface points in �c even
for C1-data. From Kondratjev’s theory (see e.g., [9]) we know that in suitable polar
coordinates with the origin at a point in �c (where the boundary conditions change)
the most singular part of the solution is in general of the form r3=2Fð�Þ.

However, our main concern in this section is to discuss the singularity of the solution
of the boundary integral equation of the first kind A� ¼ F near the interface point.
Ultimately our solution formula leads to a boundary element method and an under-
standing of the singularities of the solution of the integral equation is necessary to
improve the numerical scheme. In particular, one can employ an augmented
Galerkin method where the approximating space is enriched by singular functions
that have the same singularity as the solution of the integral equation (see [10] for
the Laplace equation).

For sufficiently smooth boundary it can be shown [2,3] that the Calderón operator
C� maps Hð3=2Þþsð�Þ �Hð1=2Þþsð�Þ �Hð�1=2Þþsð�Þ �Hð�3=2Þþsð�Þ into itself for s>0.
Hence, assuming smooth boundary and smooth boundary data f , g, p, q the right-
hand side F of the integral equation A� ¼ F is sufficiently smooth. In order to
obtain the local behavior of the solution near the interface point, one may use the
localization procedure of Eskin [11] and apply near the interface point in �c the
Wiener–Hopf technique which is based on the factorization of the homogeneous elliptic
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symbols in half line. Applications of this technique to the boundary integral equations
for singular boundary value problem for Helmholtz and Maxwell equations are very
well developed by Stephan [12] and [13] and Costabel and Stephan [14].

First we note that one needs to treat only the case when � coincides with y>0, �D

with R� :¼ fx : x < 0g and �N with Rþ :¼ fx : x > 0g (here ð0, 0Þ is the interface point).
It suffices to consider the following two 2� 2 systems

p�V� ¼ h1 on R� and pþD� ¼ h2 on Rþ

where pð�Þ denotes the restriction to the half line Rð�Þ, the operators V and D are
given by (20) and (21), respectively, and h1 and h2 are the respective restrictions of
F1, F2 and F3, F4. Roughly speaking, the original integral equation is separated
into two first kind integral equations on half line. Note that p�V� ¼ h1 on R�

corresponds to the crack problem on �D with Dirichlet boundary conditions while
pþD� ¼ h2 on Rþ corresponds to the crack problem on �N with Neumann boundary
condition. By using one-dimensional Fourier transform, straightforward but long
calculations [2] show that the above pseudodifferential operators are essentially similar
to those in [12,13] whence are suitable to perform a Wiener–Hopf factorization. For
instance the principal symbol �(V) of V is given by

�ðVÞ ¼
1=ð4j�1j

3Þ 0
0 �1=ð4j�1jÞ

� �
ð�1, 0Þ 2 @R

2
þ

where �1 is the dual variable of x of the Fourier transform.
In the following we only state regularity results providing that the boundary � is

sufficiently smooth. Let P1 2 �c be a point where the boundary condition change
and let f 2 Hð5=2Þþ�ð�DÞ, g 2 Hð3=2Þþ�ð�DÞ, p 2 Hð1=2Þþ�ð�NÞ and q 2 Hð�1=2Þþ�ð�NÞ

where 0 < � < 1
2
� 
 with some 
>0. Then the solution � ¼ ð�D, �D, N ,�NÞ of the

integral equation

A� ¼ F

is such that

�D ¼ c1�
�3=2	ð�Þ þ �reg on �D �reg 2 ~HH�ð1=2Þþ�0 ð�DÞ

�D ¼ c2�
�1=2	ð�Þ þ �reg on �D �reg 2 ~HHð1=2Þþ�0 ð�DÞ

 ¼ c3�
1=2	ð�Þ þ  reg on �N  reg 2 ~HHð3=2Þþ�0 ð�NÞ

� ¼ c4�
3=2	ð�Þ þ �reg on �N �reg 2 ~HHð5=2Þþ�0 ð�NÞ

where 0 < �0 < �, � is the distance to P1, 	 is a C1 cut-off function with 	¼ 1 for
j�j < 1=2 and 	¼ 0 for j�j > 1 and c1, c2, c3, c4 are constants. The above expression
provides a decomposition into regular and singular parts of the solution of the bound-
ary integral equations. In particular, even for C1 boundary data we have that the
solution exhibits singularities around the interface points in �c which needs to be
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taken into consideration in the boundary element approximations if higher order con-
vergence is desired.
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