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Abstract. The inverse electromagnetic scattering problem for anisotropic media

plays a special role in inverse scattering theory due to the fact that the (matrix) index

of refraction is not uniquely determined from the far field pattern of the scattered field

even if multi-frequency data is available. In this paper we describe how transmission

eigenvalues can be determined from the far field pattern and be used to obtain upper

and lower bounds on the norm of the index of refraction. Numerical examples will

be given for the case when the scattering object is an infinite cylinder and the

inhomogeneous medium is orthotropic.

1. Introduction

The inverse electromagnetic scattering problem for anisotropic media plays a special

role in inverse scattering theory. This is due to the fact that the (matrix) index of

refraction is not uniquely determined from the far field pattern of the scattered field

even if multi-frequency data is available. In particular, it has been shown that only the

support of the inhomogeneous media can be uniquely determined [2], [12] and this fact

has led to the derivation of the linear sampling method for recovering the support of

the scattering obstacle from the measured scattering data [13]. Although the material

properties of the scattering obstacle cannot be uniquely determined from the far field

data, there remains the possibility of obtaining upper and lower bounds for quantities

of physical interest. This problem was investigated in [5] and [6] where bounds for

the smallest and largest eigenvalues of the (matrix) index of refraction were obtained in

terms of the support of the scattering obstacle and the first transmission eigenvalue of the

anisotropic media. Since transmission eigenvalues can be determined from the far field

pattern of the scattered wave these results, together with the linear sampling method for

‡ This research was supported in part by the U.S. Air Force Office of Scientific Research under Grant
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determining the support, provide new methods for studying the inverse electromagnetic

scattering problem for anisotropic media. Indeed, unless severe a priori assumptions

are made on the permittivity tensor (e.g. that the permittivity is a constant tensor),

to our knowledge sampling methods coupled with the use of transmission eigenvalues is

the only available method to date for obtaining information on the permittivity tensor

from a knowledge of the far field pattern of the scattered wave. The purpose of this

paper is to review these new methods and to provide numerical examples showing the

practicality of this new approach for the case of simple two dimensional problems having

an anisotropic structure.

The plan of our paper is as follows. In the next section we will formulate the direct

scattering problem for time harmonic electromagnetic waves in an anisotropic medium

and present recent results on the existence and countability of transmission eigenvalues.

We then turn our attention to the inverse scattering problem and discuss the issues of

uniqueness and the use of the linear sampling method to determine the support of the

scattering obstacle. This is followed by an explanation of how transmission eigenvalues

(which can be determined from a knowledge of the far field pattern of the scattered wave)

can be used to provide estimates for the largest and smallest eigenvalue of the matrix

index of refraction. We will conclude our survey by providing numerical examples in the

case when the scattering object is an infinite cylinder and the inhomogeneous medium

is orthotropic. As well be seen from the discussion in this paper, new research is needed

from both a theoretical and numerical point of view in order to bring this new approach

in inverse scattering to fruition!

2. Transmission Eigenvalues

LetD ⊂ R3 be a bounded, simply connected open set having piecewise smooth boundary

∂D. The unit normal vector to ∂D directed into the exterior of D is denoted by ν. We

assume that the domain D is the support of an anisotropic dielectric object and the

incident field is a time-harmonic electromagnetic plane wave with frequency ω. The

exterior electric and magnetic fields Ẽext, H̃ext and the interior electric and magnetic

fields Ẽint, H̃ int satisfy

∇× Ẽext − iωµ0H̃
ext = 0

∇× H̃ext + iωǫẼext = 0

}

in R
3\D (1)

∇× Ẽint − iωµ0H̃
int = 0

∇× H̃ int + iωǫ(x)Ẽint = 0

}

in D (2)

and on the boundary ∂D we assume the continuity of the tangential component of both

fields, i.e.

Ẽext × ν − Ẽint × ν = 0

H̃ext × ν − H̃ int × ν = 0

}

on ∂D (3)
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The electric permittivity ǫ and magnetic permeability µ0 of the exterior dielectric

medium are positive constants whereas the dielectric scatterer has the same magnetic

permeability µ0 as the exterior medium but the (continuous) electric permittivity ǫ is

a real 3 × 3 symmetric matrix valued function. If we define Ẽ(ext,int) = 1√
ǫ
E(ext,int),

H̃(ext,int) = 1√
µ0

H(ext,int), k2 = ǫµ0ω
2 and N(x) = ǫ(x)/ǫ, the direct scattering problem

for an anisotropic dielectric medium reads

∇× Eext − ikHext = 0

∇×Hext + ikEext = 0

}

in R
3\D (4)

∇×Eint − ikH int = 0

∇×H int + ikN(x)Eint = 0

}

in D (5)

Eext × ν − Eint × ν = 0

Hext × ν −H int × ν = 0

}

on ∂D (6)

where

Eext = Es + Ei, Hext = Hs +H i (7)

and the scattered electric and magnetic fields Es and Hs satisfy the Silver-Müller

radiation condition

lim
r→∞

(Hs × x− rEs) = 0 (8)

uniformly in x̂ = x/|x|, r = |x|. The incident electric field Ei and incident magnetic

field H i are time harmonic plane waves given by

Ei(x) :=
i

k
∇×∇× peikx·d and H i(x) :=

1

k2
∇× peidx·d (9)

where d is a unit vector giving the direction of propagation and p is the polarization

vector.

In terms of the electric fields, (4)-(8) become

∇×∇×Eext − k2Eext = 0 in R3\D

∇×∇× Eint − k2N(x)Eint = 0 in D
(10)

Eext × ν − Eint × ν = 0

∇× Eext × ν −∇× Eint × ν = 0

}

on ∂D (11)

Eext = Es + Ei (12)

lim
r→∞

(∇× Es × x− ikrEs) = 0 (13)

where Ei is given by (9). In [16] it is shown that under the assumption that N(x) is

continuous for x ∈ D̄ then (10)-(13) has a unique solution in Hloc(curl ,R3). Moreover,

the scattered electric field has the asymptotic behavior [10]

Es(x) =
eik|x|

|x|

{

E∞(x̂, d, p) +O

(

1

|x|

)}
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as |x| → ∞ where E∞ is a tangential vector field defined for x̂ on the unit sphere Ω and

is known as the electric far field pattern. Note that E∞(x̂, d, p) depends linearly on the

polarization p. We define the electric far field operator F : L2
t (Ω) → L2

t (Ω) by

(Fg)(x̂) :=

∫

Ω

E∞(x̂, d, g(d))ds(d) , x̂ ∈ Ω (14)

for g ∈ L2
t (Ω) where L2

t (Ω) is the space of square integrable tangential vector valued

functions defined on Ω. Note that F depends linearly on g and F is injective with dense

range provided k is not a transmission eigenvalue [6], [14], i.e. a value of k for which

the interior transmission problem

∇×∇× E − k2N(x)E = 0

∇×∇×E0 − k2E0 = 0

}

in D (15)

ν × E = ν × E0

ν ×∇×E = ν ×∇× E0

}

on ∂D (16)

has a nontrivial solution E,E0 where E,E0 ∈ L2(D) and E − E0 ∈ U0(D) where

U0(D) := {u ∈ H0(curl , D) : ∇× u ∈ H0(curl , D)}

equipped with the inner product

(u, v)U0
= (u, v)L2(D) + (∇× u,∇× v)L2(D) + (∇×∇× u,∇×∇× v)L2(D)

If we further assume that N , N−1 and either (N − I)−1 or (I − N)−1 are bounded

positive definite real matrix valued functions on D, then as is shown in [7], (15)-(16) is

equivalent to finding u = E −E0 ∈ U0(D) such that

(∇×∇×−k2N)(N − I)−1(∇×∇× u− k2u) = 0 (17)

which in variational form can be written as
∫

D

(N − I)−1(∇×∇× u− k2u) · (∇×∇× v − k2Nv) dx = 0 (18)

for all v ∈ U0(D). Note that the above assumptions on N guarantee that either

1 + α ≤ (ξ̄ · N(x)ξ) < ∞ or 0 < (ξ̄ · N(x)ξ) < 1 − β for x ∈ D̄, every ξ ∈ C3

such that ||ξ|| = 1 and some positive constants α and β (recall that N(x) is continuous

in D̄).

In [6] and [8] it is shown that there exists an infinite discrete set of transmission

eigenvalues with +∞ as the only accumulation point. Let us denote by W0(D) :=

U0(D) ∩H0(div0, D) where

H0(div0, D) :=
{

u ∈ L2(D)3 : divu = 0 and ν · u = 0
}

.

The following decomposition is orthogonal with respect to L2(D)3-inner product

U0(D) = W0(D) ⊕
{

u : u = ∇ϕ, ϕ ∈ H1(D)
}

.
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In particular, in [6] and [8] it is shown that the first transmission eigenvalue k1 > 0 is

the smallest solution to the algebraic equation

λ1(τ,D,N)) − τ = 0 τ := k2 (19)

where

λ1(τ,D,N) = inf
u∈W0(D)

(Aτu, u)U
(Bu, u)U

(20)

with B : U0(D) → U0(D) and Aτ : U0(D) → U0(D) being the bounded linear operators

defined by means of Riesz representation theorem associated with the sesquilinear forms

B and Aτ if 1 +α ≤ (ξ̄ ·N(x)ξ) <∞, (and B and Ãτ if 0 < (ξ̄ ·N(x)ξ) < 1− β), where

B(u, v) =

∫

D

(∇× u) · (∇× v) dx,

Aτ(u, v) =

∫

D

(N − I)−1(∇×∇× u− τu) · (∇×∇× v − τv) dx+ τ 2

∫

D

u · v dx

Ãτ(u, v) =

∫

D

N(I −N)−1(∇×∇× u− τu) · (∇×∇× v − τv) dx

+

∫

D

(∇×∇× u) · (∇×∇× v) dx.

Note that

kernel of B =
{

u ∈ U0(D) such that u := ∇ϕ, ϕ ∈ H1(D)
}

.

As in the scalar case [1], [4], we expect that the norm of the (regularized) solution

to the far field equation

(Fg)(x̂) = Ee,∞(x̂, z, q), x̂ ∈ Ω, z ∈ D, q ∈ R
3 (21)

where

Ee,∞(x̂, z, q) =
ik

4π
(x̂× q) × x̂e−ikx̂·z

is the far field pattern of the electric field Ee of the electric dipole defined by

Ee(x, z, q) :=
i

k
∇x ×∇x × qΦ(x, z)

with

Φ(x, z) :=
1

4π

eik|x−z|

|x− z|
x 6= z,

should be large if k is a transmission eigenvalue, thus providing us with a method for

determining transmission eigenvalues from far field data.
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3. The Inverse Scattering Problem

The inverse scattering problem that we are interested in is to determine D and

information about N(x) from a knowledge of E∞(x̂, d, p) for all x̂, d ∈ Ω and three

linearly independent polarizations p1, p2, p3 ∈ R
3. In [2] it is shown that with this

knowledge D is uniquely determined by E∞(x̂, d, p). However, as in the scalar case, it is

expected that this information on E∞(x̂, d, p) is not sufficient to uniquely determine the

matrix N even if this data is known for an interval of values of k. The determination of

D from E∞(x̂, d, p) can be obtained by using the linear sampling method [13], [15]. In

particular from [13] we have the following theorem where || · ||2 denotes the Euclidean

norm:

Theorem 3.1 Let α and β be positive constants and assume that either ||N(x)||2 ≥ 1+α

for all x in D or 0 < ||N(x)||2 ≤ 1− β for all x in D. Let q ∈ R3\{0} be a fixed vector

and ǫ a given positive number. Then the following statements are true where Eg is the

Herglotz wave function defined by

Eg(x) :=

∫

Ω

eikx·dg(d)ds(d).

(i) Let z ∈ D. Then there exists gǫ ∈ L2
t (Ω) such that

||Fgǫ − Ee,∞(·, z, q)|| ≤ ǫ

and lim
ǫ→0

||Egǫ
||L2(D) <∞.

(ii) Let z ∈ R3\D̄. Then for every gǫ ∈ L2
t (Ω) such that

||Fgǫ − Ee,∞(·, z, q)|| ≤ ǫ

we have lim
ǫ→0

||Egǫ
||L2(D) = ∞.

The linear sampling method is based on keeping the wave number k fixed and

determining the support D of the scatterer by “sampling” a region containing D by

the point z. On the other hand, if z ∈ D is kept fixed and k is varied we can use the far

field equation (21) to determine the smallest transmission eigenvalue, i.e. the regularized

solution of the far field equation will have large norm when k is a transmission eigenvalue

(c.f. [1] and [4] for the scalar case). In this case if the Euclidean norm of N(x) is greater

than one we can determine a lower bound for the largest eigenvalue σ∗(x) for N(x) [5].

Theorem 3.2 If ||N(x)||2 ≥ 1 + α for all x ∈ D and some positive constant α then

sup
D
σ∗(x) ≥

λ(D)

k2
(22)

where k is a transmission eigenvalue for (15)-(16) and λ(D) is the first eigenvalue of

−∆ in D.
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Cakoni, Gintides and Haddar [6] have recently shown how the estimate in Theorem

3.2 can potentially be improved as well as providing estimates in the case when the

Euclidean norm of N(x) is less than one. In particular let σ∗(x) and σ∗(x) be the

largest and smallest eigenvalues respectively of the matrix N(x) and define n∗ and n∗
by n∗ = sup

D
σ∗(x) and n∗ = inf

D
σ∗(x) respectively. Let n > 0 be a constant such that

n 6= 1 and let k1,D,n denote the first transmission eigenvalue corresponding to

∇×∇×W − k2nW = 0

∇×∇× V − k2V = 0

}

in D (23)

W × ν = V × ν

∇×W × ν = ∇× V × ν

}

on ∂D (24)

which exists according to [6]. The possibility of improving the bound given in Theorem

3.2 rests on the following theorem [6]:

Theorem 3.3 Let k1,D,N(x) be the first transmission eigenvalue for (15)-(16) and let

α and β be positive constants. Denote by k1,D,n∗
and k1,D,n∗ the first transmission

eigenvalue of (23)-(24) for n = n∗ and n = n∗ respectively.

(i) If ||N(x)||2 ≥ α > 1 then 0 < k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗

(ii) If 0 < ||N(x)||2 ≤ 1 − β then 0 < k1,D,n∗
≤ k1,D,N(x) ≤ k1,D,n∗.

Proof. We sketch the proof for the case of ||N(x)||2 ≥ α > 1. Obviously for any

u ∈ U0(D) we have
1

n∗−1
‖∇ ×∇× u− τu‖2

D + τ 2‖u‖2
D

‖∇ × u‖2
D

(25)

≤
((N − I)−1(∇×∇× u− τu), (∇×∇× u− τu))D + τ 2‖u‖2

D

‖∇ × u‖2
D

≤
1

n∗−1
‖∇ ×∇× u− τu‖2

D + τ 2‖u‖2
D

‖∇ × u‖2
D

. (26)

Therefore we have that for an arbitrary τ > 0

λ1(τ,D, n
∗) − τ ≤ λ(τ,D,N(x)) − τ ≤ λ1(τ,D, n∗) − τ (27)

where λ1(τ,D, n
∗), λ(τ,D,N(x)) and λ1(τ,D, n∗) are given by (20) corresponding to

the index of refraction n∗, N(x) and n∗, respectively. Now using (27) for τ1 := k2
1,D,n∗

we have that λ(τ1, D,N(x)) − τ1 ≥ 0. Again using (27) for τ2 := k2
1,D,n∗

we have that

λ(τ2, D,N(x))−τ2 ≤ 0. Then by continuity of of the mapping τ → λ1(τ,D,N(x)) there

is an eigenvalue corresponding to D,N(x) between k1,D,n∗ and k1,D,n∗
. To complete

the proof we need to show that this is the first eigenvalue for D,N(x). Indeed, if

k1,D,N(x) < k1,D,n∗ then from (27) λ1(τ3, D, n
∗)− τ3 ≤ 0 for τ3 := k2

1,D,N(x). On the other

hand from (22) (see also [8]) for τ0 > 0 sufficiently small we have λ1(τ0, D, n
∗) − τ0 ≥ 0

which means that there is a transmission eigenvalue for D, n∗ less then the first one,

which is a contradiction. The theorem now follows. �
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Recalling that k1,D,N(x) can be computed from the far field measurements, our

approach to estimating n∗ and n∗ is based on computing a constant n such that k1,D,N(x)

is the first transmission eigenvalue corresponding to (23)-(24) for this n. From the above

theorem, which shows that transmission eigenvalues for n constant are monotonically

decreasing with respect to n, we have that n∗ ≤ n ≤ n∗. To fully justify this idea

we need to show that for constant index of refraction the first transmission eigenvalue

depends continuously on n. To this end, we assume that n > 1 (the case of 0 < n < 1

can be treated the same way). Then we can re-write (20) as

λ1(τ,D, n) = inf
u∈W0(D)

1
n−1

‖∇ ×∇× u− τu‖2
L2(D) + τ 2‖u‖2

L2(D)

‖∇ × u‖2
L2(D)

=
1

n− 1
inf

u∈W0(D)

‖∇ ×∇× u‖2
L2(D) + nτ 2‖u‖2

L2(D)

‖∇ × u‖2
L2(D)

−
2τ

n− 1
.

Hence, from (19) the first transmission eigenvalue k > 0 is the smallest zero τ := k2 of

f(τ, n) := µ1(nτ
2) − (n+ 1)τ = 0 (28)

where

µ1(κ) = inf
u ∈ W0(D)

‖∇ × u‖2
L2(D) = 1

(

‖∇ ×∇× u‖2
L2(D) + κ‖u‖2

L2(D)

)

Lemma 1 The continuous function µ1 : (0, +∞) → (0, +∞) is differentiable and

µ′
1(κ) = ‖uκ‖

2
L2(D) where uκ ∈ W0(D) satisfies

‖∇ ×∇× uκ‖
2
L2(D) + κ‖uκ‖

2
L2(D) = µ1(κ).

Proof. Take h ∈ (−ǫ, ǫ) and for a fixed κ ∈ (0, +∞) we have

µ1(κ+ h) − µ1(κ) ≤
(

‖∇ ×∇× uκ‖
2
L2(D) + (κ+ h)‖uκ‖

2
L2(D)

)

−
(

‖∇ ×∇× uκ‖
2
L2(D) + (κ+ h)‖uκ‖

2
L2(D)

)

≤ h‖uκ‖
2
L2(D)

and

µ1(κ+ h) − µ1(κ) ≥
(

‖∇ ×∇× uκ+h‖
2
L2(D) + (κ+ h)‖uκ+h‖

2
L2(D)

)

−
(

‖∇ ×∇× uκ+k‖
2
L2(D) + (κ+ h)‖uκ+h‖

2
L2(D)

)

≤ h‖uκ+h‖
2
L2(D).

Thus we have

‖uκ+h‖
2
L2(D) ≤

µ1(κ+ h) − µ1(κ)

h
≤ ‖uκ‖

2
L2(D).

Now, we want to show that uκ+h converges to uκ in the L2(D) norm as h→ 0. To this

end, from the above we have that ‖uκ+h‖L2(D) ≤ ‖u0‖L2(D) which means that uκ+h is

bounded in the L2(D) norm. Furthermore, from

‖∇ ×∇× uκ+h‖
2
L2(D) + (κ + h)‖uκ+h‖

2
L2(D) = µ1(κ+ h),
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continuity of µ1 and the fact that ‖∇×uκ+h‖L2(D) = 1 we conclude that uκ+h ∈ W0(D) is

bounded with respect to the U0(D) in terms of h. Since W0(D) is compactly embedded

inH0(curl , D) and in L2(D) we have that uκ+h converges to ũ, weakly in the U0(D)-norm

and strongly in the H0(curl , D)-norm and in the L2(D)-norm. But
∫

D

(∇×∇× uκ+h) · (∇×∇× ψ) dx+ (b+ h)

∫

D

uκ+h · ψ dx

= µ(κ+ h)

∫

D

(∇× uκ+h) · (∇× ψ) dx for all ψ ∈ W0(D). (29)

Letting h→ 0 in (29), we obtain that ũ satisfies

∫

D

(∇×∇× ũ) · (∇×∇× ψ) dx+ b

∫

D

ũ · ψ dx = µ(κ)

∫

D

(∇× ũ) · (∇× ψ) dx

for all ψ ∈ W0(D), whence ũ = uκ and the strong L2(D) convergence yields the result.

�

To deduce that the first transmission eigenvalue k1(n) is a continuous function of

n for n > 1 we can now apply the implicit function theorem to (28) in a neighborhood

of (τ1(n), n) where τ1(n) = k2
1(n), provided that

∂f

∂τ
:= 2nτ1‖un,τ2

1
‖2

L2(D) − (n+ 1) 6= 0.

In particular, since the divergence of un,τ2

1
is zero, from the Poincarè inequality and our

normalization of the eigenfunction we have that ‖un,τ2

1
‖2

L2(D) ≤ 1/λ(D)‖∇×un,τ2

1
‖2

L2(D) =

1/λ(D), where λ(D) is the first Dirichlet eigenvalue of the negative Laplasian in D.

Hence ∂f
∂τ
< 0 provided that τ1 <

n+1
2n
λ(D) .

In the next section of this paper we will use the above three theorems to obtain

estimates on the eigenvalues of N(x) in the case of scattering by an orthotropic infinite

cylinder.

4. Numerical Experiments

In this section we present some numerical results that illustrate the use of the techniques

outlined in the previous section. We will not show examples of reconstructing the domain

D since this has been investigated exhaustively in the past [3]. Instead we shall assume

that D is known and examine the problem of estimating the anisotropic permittivity

using the technique described after the proof of Theorem 3.3.

We restrict ourselves here to the two dimensional problem of scattering from an

orthotropic medium. Suppose D is an infinite cylinder with cross section D2 in the

(x1, x2) plane (in this section x = (x1, x2)) and suppose the magnetic field is transverse

by which we mean that Hext = (0, 0, uext(x)), Hs = (0, 0, us(x)) and H i = (0, 0, ui(x))
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where ui(x) = exp(ik(d1x1 + d2x2)), d
2
1 + d2

2 = 1. If, in addition, the relative electric

permittivity is assumed to be orthotropic so that N(x) given by

N(x) =







n1,1 n1,2 0

n1,2 n2,2 0

0 0 n3,3






, det

∣

∣

∣

∣

∣

n1,1 n1,2

n1,2 n2,2

∣

∣

∣

∣

∣

6= 0,

then it is shown in Section 5 of [3] that us and uint satisfy the Helmholtz system

∇ · A∇uint + k2uint = 0 in D2, (30)

∆us + k2us = 0 in D2,e := R
2 \D2, (31)

where

A =
1

n1,1n2,2 − n2
1,2

(

n1,1 n1,2

n1,2 n2,2

)

.

In addition the transmission conditions (11) become

∂

∂ν
(us + ui) =

∂

∂νA

uint on Γ2 := ∂D2, (32)

ui + us = uext on Γ2, (33)

where ν now denotes the two dimensional unit outward normal to D2 and ∂uint/∂νA =

ν · (A∇uint). In addition us must satisfy the standard Sommerfeld radiation condition.

Given a suitable domain D2 and matrix A, this problem is well posed and we can

define the far field pattern of the scattered field defined as usual by

us(x) =
exp ik|x|
√

|x|
(u∞(x̂, d) +O(1/|x|)) .

The analogue of the electric far field operator is then F : L2(Ω2) → L2(Ω2)

(Fg)(x̂) =

∫

Ω2

u∞(x̂, d)g(d) ds(d)

where Ω2 is the unit circle in two dimensions.

The far field operator is injective with dense range provided k is not an interior

transmission eigenvalue for the two dimensional domain. From (15), (16), k is a

transmission eigenvalue if the problem

∇ · A∇u+ k2u = 0 in D2

∆u0 + k2u0 = 0 in D2,
∂

∂ν
u0 =

∂

∂νA
u on Γ2,

u = u0 on Γ

(34)

has a non-trivial solution (u, u0). For a precise statement of these problems and a

derivation of the properties claimed here in appropriate Sobolev spaces see [3].

In the following numerical study we approximate us and uint using a cubic finite

element method with perfectly matched layer, and hence can evaluate an approximation

to u∞ which is then modified by adding random noise as in [9]. We thus have an
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approximate far field patter ua
∞. Then choosing Na uniformly spaced measurement

points on the unit circle given by

x̂j = (cos(2π(j − 1)/Na), sin(2π(j − 1)/Na)), 1 ≤ j ≤ Na,

we define the Na × Na far field matrix F by Fr,s = hua
∞(x̂r, x̂s) for 1 ≤ r, s ≤ Na

where h = 2π/Na. We set Na = 61 in this study. The matrix F discretizes the far field

operator.

Then, given any z, we can solve the discrete far field equation Fgz = b where

br = exp(−ikx̂r · z), 1 ≤ r ≤ Na (corresponding to the standard continuous far field

equation (Fgz)(x̂) = exp(−ikz · x̂)). Since the exact far field operator is compact,

the discrete equation is increasingly ill-conditioned as Na increases and so we use the

Tikhonov-Morozov scheme outlined in [9] to regularize the problem. Having computed

an approximate solution ~gz we can then use |h1/2~gz|l2 to approximate the norm of the

Herglotz kernel gz ∈ L2(Ω) resulting from solving Fgz = exp(−ikx̂ ·z) approximately. A

graph of |h1/2~gz|l2 against wave number k should then reveal the transmission eigenvalues

according to [4].

In order to help verify these transmission eigenvalues, and in order to test

the algorithm following the proof of Theorem 3.3, we need to be able to calculate

transmission eigenvalues directly. This is done by an extension of one of the methods

in [11]: the continuous finite element method. We choose this method because, on

a given grid, it results in a smaller linear system than any of the other methods in

that paper. The method is based on decomposing H1(D2) = H1
0 (D2) ⊕ S where S

is the H1 orthogonal complement of H1
0 (D2). Then we can write the transmission

eigenvalue problem (34) as the problem of finding uI ∈ H1(D2), u
B ∈ S and uI

0 ∈ H1
0

such that u = uI + uB and u0 = uI
0 + uB. The relevant weak formulation is to find

(uI , uI
0, u

B) ∈ H1
0 (D2)

2 × S such that
∫

D2

A∇(uI + uB) · ξ − k2(uI + uB)ξ dA = 0 for all ξ ∈ H1
0 (D2) (35)

∫

D2

∇(uI
0 + uB) · χ− k2(uI

0 + uB)χ d = 0 for all χ ∈ H1
0 (D2) (36)

∫

D2

A∇(uI + uB) · µ− k2(uI + uB)µ, dA =

∫

D2

A∇(uI
0 + uB) · µ− k2(uI

0 + uB)µ dA for all µ ∈ S. (37)

The last equation represents the equality of the normal derivatives on Γ given in (34).

Obviously, if k is a transmission eigenvalue then the above system is satisfied provided

the corresponding non-zero eigenfunction (u, u0) ∈ H1(D2)
2. This is not known to be

generally true for transmission eigenfunctions, except in the case we are considering

here [3]. Contrariwise, if (uI , uB, uI
0) 6= 0 and k satisfy the above weak formulation,

then k is a transmission eigenvalue.

A numerical scheme for computing transmission eigenvalues can be obtained by

using finite elements. We mesh the domain D2 using triangular elements of maximum
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diameter h and use piecewise linear elements on the resulting triangles to construct

a subspace V h ⊂ H1(D2). The subspace V h
0 ⊂ H1

0 (D2) is then constructed in the

usual way by setting the degrees of freeedom of the finite element functions on Γ

to zero. Then we have V h = V h
0 ⊕ Sh where Sh discretizes S. We seek nontrivial

(uI
h, u

B
h , u0,h) ∈ V h

0 × Sh × V h
0 and kh which satisfy (35)-(37) (kh replaces k). We expect

that kh → k as h→ 0, but the convergence theory of the method is not complete. In any

case, the resulting discrete generalized eigenproblem does not have symmetric matrices

and we have found it to be necessary to solve for all the eigenvalues and eigenvectors

of the discrete problem [11]. This full solver limits the number of elements in the mesh

because of Matlab memory constraints.

In this study we shall consider three domain used previously in [5]: a circle of unit

diameter, the unit square and an L-shaped domain D2 = (−0.5, 0.5)2\ [0, 0.5]×[0,−0.5].

4.1. Isotropic media

We start by choosing A to be an isotropic matrix as in [5]:

Aiso =

(

1/4 0

0 1/4

)

. (38)

We can then solve the forward problem for Nk wave numbers kj, 1 ≤ j ≤ Nk, between

kmin and kmax, then compute the discrete Herglotz kernel as above for randomly chosen z

inD. Finally we can read off the lowest positive real eigenvalue. Results for the circle are

shown in Fig. 1a) when we choose the single point z = (0, 0) as was used in [5]. We also

superimpose crosses to show the first few non=zero and real transmission eigenvalues

computed by the finite element method outlined earlier in this section. Clearly many

eigenvalues are missing from the graph of the Herglotz kernel (unexpected in view of

the theoretical results in [5]). However, by choosing a single source at the origin, only

eigenmodes that are proportional to the Bessel function J0 are probed. In order to

detect other eigenmodes, other choices of z are needed, and we use 25 randomly chosen

points z in the interior of the scatterer. With this choice, Fig 1b) shows that more

eigenvalues are detected.

Turning now to the inverse permittivity problem, once the first eigenvalue k1,D,N(x)

is known, we can then find the isotropic A = aI that gives the same first eigenvalue. To

do this we solve the problem of finding a such that

k1,D,a = kmeas
1,D,A(x) (39)

where kmeas
1,D,A(x) is the first eigenvalue measured from the Herglotz data, and k1,D,a is

the first eigenvalue of the isotropic medium. This is solved by the secant method

using starting guesses a1 = 1/8 and a2 = 1/2 together with the method for computing

transmission eigenvalues mentioned above. One problem is that this method is currently

quite inefficient because of the need to compute all transmission eigenvalues just to

obtain the smallest non-zero real transmission eigenvalue. For the case of an isotropic

medium we expect to compute a good approximation to A, and this is seen in Table 1.
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Figure 1. Results for the circle using the isotropic coefficient in (38). a) the norm

of the Herglotz kernel using the single auxiliary source point z = (0, 0). Crosses

show the real transmission eigenvalues predicted by the finite element code. Only the

eigenmodes associated with J0 are visible from the kernel calculation. b) the average

norm of the Herglotz kernel using 25 randomly chosen points inside the circle. Now

other eigenvalues are detected.

4.2. Anisotropic media

Turning now to the anisotropic case, we choose A to be one of three anisotropies as

follows:

A1 =

(

1/2 0

0 1/8

)

, A2 =

(

1/6 0

0 1/8

)

, (40)

A2r =

(

0.1372 0.0189

0.0189 0.1545

)

. (41)

The first two are diagonal and the third is obtained by rotating matrix A2 by 1 radian.

Thus A2 and A2r have the same eigenvalues. As in the previous sub-section we can

compute the forward problem for a range of wave numbers and predict the first non-

zero real eigenvalue from peaks in the graph of the average norm of g against k. Fig.

2b) shows the a composite plot of the norm of the Herglotz kernel ‖gz‖L2(Ω2) for the 25

random points in the square shown in Fig. 2a) using anisotropy A2r. The average norm

is plotted in Fig. 2c). It is the graph of the average norm of the Herglotz kernel that

we use to determine the first transmission eigenvalue.

Once we have determined k1,D,A(x) we can then compute a by (39) as before. From

Theorem 3.3 and the continuity of the eigenvalues, we expect that a should lie between

the upper and lower eigenvalues of A. This can be seen from the results in Table 1.

The poorest results are obtained for the L-shape domain. We have noted that, for

this shape, the agreement between our estimate of k1,D,A(x) ≈ 6.45 and the corresponding

result in [5] (k1,D,A(x) ≈ 6.3) is the worst across the domains, and in addition the finite

element estimates of this quantity produce a lowest eigenvalue k1,D,A(x) ≈ 6.77 (see Fig.

3). It appears that this is a challenging numerical problem and will require improved
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Figure 2. Results for the square using anisotropy A2r from (41). a) the position

of the 25 random z points. b) a composite plot of all ‖gz‖L2(D2) against k for each

point. We also mark the computed eigenvalues from the finite element code (shown as

+ along the bottom of the graph). Good agreement is seen with the lowest computed

eigenvalue and the first peak of the norms of gz. c) The average norm of gz over all

choics of z (and the computed eigenvalues). We use this graph to determine k1,d,A(x)

in each case.

Domain Matrix Eigenvalues Predicted k1,D,A(x) Predicted a

Circle Aiso 1/4,1/4 5.8 0.248

A1 1/2,1/8 4.81 0.188

A2 1/6,1/8 3.95 0.134

A2r 1/6,1/8 3.95 0.134

Square Aiso 1/4,1/4 5.3 0.248

A1 1/2,1/8 4.1 0.172

A2 1/6,1/8 3.55 0.135

A2r 1/6,1/8 3.7 0.145

L shape Aiso 1/4,1/4 6.45 0.228

A1 1/2,1/8 5.2 0.182

A2 1/6,1/8 4 0.125

A2r 1/6,1/8 4.1 0.130

Table 1. Table of results. Our theory implies that the scalar a reconstructed from

the first non-zero real transmission eigenvalue should lie between the eigenvalues of

the matrix A. In the case of an isotropic A, the predicted a should reconstruct the

diagonal of A. The table supports both these claims.

efficiency of the eigenvalue solver (so that we can move to a higher precision) to better

characterize the anisotropy.

5. Conclusion

Transmission eigenvalues can be reliably identified from the far field pattern of the

scattered wave provided sufficiently many source points are used for the far field

equation. Using these eigenvalues we can obtain reconstructions of the electric
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Figure 3. Results for the L-shape using anisotropy Aiso from (38). a) the position

of the 25 random z points. b) a composite plot of all ‖gz‖L2(D2) against k for each

point. We also mark the computed eigenvalues from the finite element code (shown as

+ along the bottom of the graph). Poor agreement is seen with the lowest computed

eigenvalue and the first peak of the norms of gz. c)The average norm of gz over all

choics of z (and the computed eigenvalues).

permittivity (if it is a scalar constant) or an estimate of the eigenvalues of the matrix

in the case of anisotropic permittivity (inhomogeneous media can also be considered).

This technique rests on having an efficient and robust method for computing

transmission eigenvalues for a scalar permittivity. Unfortunately the current method

is restricted because of the need to compute all numerical transmission eigenvalues.

Improving the calculation of the transmission eigenvalues is currently an important

part of our future research program.
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