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Abstract. We consider the interior transmission problem in the case when the inhomogeneous
medium has cavities, i.e. regions in which the index of refraction is the same as the host medium. In
this case we establish the Fredholm property for this problem and show that transmission eigenvalues
exist and form a discrete set. We also derive Faber-Krahn type inequalities for the transmission
eigenvalues.
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1. Introduction. The interior transmission problem is a new class of boundary
value problems for elliptic equations which was first discussed by Colton, Kirsch and
Monk in the mid nineteen eighties in connection with the inverse scattering problem
for acoustic waves in an inhomogeneous medium [6], [9]. Since that time the interior
transmission problem has come to play a basic role in inverse scattering for both
acoustic and electromagnetic waves (c. f. [2], [4], [10]). In its simplest formulation,
the interior transmission problem is to determine under what conditions the coupled
set of equations

∆w + k2n(x)w = 0 in D (1.1)

∆v + k2v = 0 in D (1.2)

w − v = f in ∂D (1.3)

∂w

∂ν
− ∂v

∂ν
= h on ∂D (1.4)

has a unique solution v, w where D is a bounded simply connected domain with C2

boundary ∂D, ν is the unit outward normal to ∂D, f ∈ H
3
2 (∂D), h ∈ H

1
2 (∂D)

and n ∈ L∞(D). Of particular interest is the transmission eigenvalue problem, i.e.
the existence of values of k > 0 such that there exists a nontrivial solution to the
homogeneous version of equations (1.1)-(1.4) (i.e. f = h = 0). Such values are called
transmission eigenvalues (see Definition 3.3 below). Note that the case when n(x) = 1
for x ∈ D is singular in the sense that in this case every k > 0 is an eigenvalue having
infinite multiplicity. Hence until recently all of the results on the interior transmission
problem have assumed that either n(x) > 1 for x ∈ D or n(x) < 1 for x ∈ D. For a
survey of known results for the interior transmission problem we refer the reader to
the survey paper [7]. It is worth noting that the existence of transmission eigenvalues
was only established very recently, again for case when either n(x) > 1 or n(x) < 1
for x ∈ D [13].
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The case when n(x) may be equal to one in a portion of D was first considered
in [1] in connection with problems in non-destructive testing. In particular, it was
demonstrated in [1] that transmission eigenvalues can be determined from the far
field pattern of the scattered wave and numerical evidence was presented suggesting
that the presence of cavities in the scattering object, i.e. regions D0 ⊂ D for which
n(x) = 1, cause the transmission eigenvalues to become larger. However, due to the
singular nature of the transmission eigenvalue problem in this case, the theoretical
results for the case when n(x) > 1 or n(x) < 1 for x ∈ D no longer apply. In particular,
when cavities are present nothing is known about either the existence of a solution
to the interior transmission problem or the existence and countability of transmission
eigenvalue nor has an analog of the Faber-Krahn inequality given in [7, Theorem 7]
been establish for transmission eigenvalue problems with cavities. The purpose of this
paper is to provide these missing theoretical results. Due to the singular nature of
the interior transmission problem with cavities, the mathematical methods we shall
employ are different than those used in the non-singular case. In particular, it is no
longer possible to write (1.1)-(1.4) as a fourth order elliptic equation for v − w in D
which is the starting point for the analysis in the non-singular case [13], [14].

2. Interior Transmission Problem. We first consider the scattering problem
of finding a function u ∈ H1

loc(R
2) such that

∆u+ k2n(x)u = 0 in R
2 (2.1)

u = us + ui (2.2)

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0 (2.3)

where x ∈ R2, r = |x|, k > 0 is the wave number, ui(x) = eikx·d with |d| = 1 is the
incident field, us is the scattered field satisfying the Sommerfeld radiation condition
(2.3) uniformly in x̂ = x/|x| and n ∈ L∞(D) such that Imn(x) ≥ 0, Re n(x) > 0 for
x ∈ D and n(x) = 1 for x ∈ R2 \D. Here D is as defined in the Introduction. Then
it can be shown [4] that us has the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂; d, k) +O(r−3/2) (2.4)

as r → ∞ uniformly in x̂ where u∞ is the far field pattern of the scattered field us

and we can define the far field operator F : L2(Ω) → L2(Ω) by

(Fg)(x̂) :=

∫

Ω

u∞(x̂; d, k)g(d) ds(d) (2.5)

where Ω is the unit circle in R2. We note that by linearity (Fg)(x̂) is the far field
pattern corresponding to (2.1)-(2.3) where the incident field eikx·d is replaced by the
Herglotz wave function

vg(x) :=

∫

Ω

eikx·dg(d)ds(d). (2.6)

The following theorem is a reformulation and strengthening of Theorem 8.9 of [4]
Theorem 2.1. The far field operator is injective with dense range if and only

if there does not exist a nontrivial solution v, w ∈ L2(D), v − w ∈ H2(D), of the
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transmission eigenvalue problem

∆w + k2n(x)w = 0 in D (2.7)

∆v + k2v = 0 in D (2.8)

w = v in ∂D (2.9)

∂w

∂ν
=
∂v

∂ν
on ∂D (2.10)

such that v is a Herglotz wave function.

Values of k > 0 such that there exists a nontrivial solution of the homogeneous
interior transmission problem (2.7)-(2.10) are called transmission eigenvalues. It can
be easily shown that if Imn(x) > 0 for x in some neighborhood contained in D then
transmission eigenvalues do not exist [4]. On the other hand, if n(x) > 1 for x ∈ D
(or n(x) < 1 for x ∈ D) it is known that the Fredholm property holds for (1.1)-(1.4)
and transmission eigenvalues exist and form a discrete set [13], [14]. In this paper we
will allow the possibility of regions D0 ⊂ D such that n(x) = 1 in D0 and in this case
these results no longer apply. We will assume that D0 is possibly multiply connected
such that D \ D0 is connected and that ∂D0 is a smooth curve. Our goal in the
following is to establish the Fredholm property for (1.1)-(1.4) in this case, to show
that transmission eigenvalues exist and form a discrete set and to establish Faber-
Krahn type inequalities for transmission eigenvalues analogous to that of [7, Theorem
7] for the case where D has no cavity. We remark that for the sake of presentation
we limit ourselves to the two dimensional case. Everything in the following analysis
holds true in the corresponding three dimensional case as well.

We now precisely formulate the interior transmission problem that is the main
subject of this study. Let D ⊂ R2 be a simply connected and bounded region with C2

boundary ∂D. Inside D we consider a region D0 ⊂ D which can possibly be multiply
connected such that D \D0 is connected and assume that its boundary ∂D0 is also a
C2 curve. Let ν denote the unit outward normal to ∂D and ∂D0 (see Fig 2.1).

o

o

D

D

D

ν

ν
ν

Fig. 2.1. Configuration of the domain.

Now let n be an L∞(D) complex valued function such that n = 1 in D0 and
Re(n) ≥ c > 0, Im(n) ≥ 0 almost everywhere in D \ D0. Given f and h we are
interested in finding v and w that satisfy

∆w + k2nw = 0 in D (2.11)

∆v + k2v = 0 in D (2.12)

w − v = f in ∂D (2.13)

∂w

∂ν
− ∂v

∂ν
= h on ∂D. (2.14)

In the following, the interior transmission problem (2.11)-(2.14) is referred to as (ITP).
Motivated by the case where D0 = ∅, it is reasonable to define a weak solution to
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(ITP) to be the pair of functions w and v in L2(D) that satisfy (2.11)-(2.12) in
the distributional sense such that u = w − v ∈ H2(D) satisfies (2.13)-(2.14), where
f ∈ H3/2(∂D) and h ∈ H1/2(∂D).

Assuming that 1/(n−1) ∈ L∞(D \D0), let w and v be a weak solution to (ITP).
Then u = w − v satisfies

∆u + k2u = −k2(n− 1)w in D \D0 (2.15)

or

∆u+ k2nu = −k2(n− 1)v in D \D0. (2.16)

Dividing both sides of (2.15) by (n−1) and applying the operator (∆+k2n) we obtain

(

∆ + k2n
) 1

n− 1

(

∆ + k2
)

u = 0 in D \D0, (2.17)

together with

u = f and
∂u

∂ν
= h on ∂D. (2.18)

Inside D0 one has

(

∆ + k2
)

u = 0 in D0, (2.19)

with the continuity of the Cauchy data across ∂D0

u+ = u− and
∂u+

∂ν
=
∂u−

∂ν
, (2.20)

where, for a generic function φ,

φ±(x) = lim
h→0+

φ(x± hνx) and
∂φ±(x)

∂νx
= lim

h→0+
νx · ∇φ(x ± hνx) (2.21)

for x ∈ ∂D0 and ν the outward unit normal to ∂D0 (see Fig 2.1).
The latter equations for u are not sufficient to define w and v inside ∂D0 and

therefore one needs to add an additional unknown inside D0, for instance the function
w that satisfies

(

∆ + k2
)

w = 0 in D0 (2.22)

with the continuity of the Cauchy data across ∂D0 that can be written using (2.15)
as
( −1

k2(n− 1)

(

∆ + k2
)

u

)+

= w− and
∂

∂ν

( −1

k2(n− 1)

(

∆ + k2
)

u

)+

=
∂w−

∂ν
. (2.23)

We note that (2.23) is interpreted as equalities between functions in H−1/2(∂D0) and
H−3/2(∂D0) respectively.

It is easily verified that the solutions u ∈ H2(D) and w ∈ L2(D0) to (2.17)-(2.23)
equivalently define a weak solution w and v to (2.11)-(2.14) by

w :=
−1

k2(n− 1)

(

∆ + k2
)

u in D \D0 and v := w − u in D. (2.24)
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3. The existence and uniqueness of a weak solution. We shall establish
existence and uniqueness results for the solution of (ITP) using a variational approach.
The main difficulty in obtaining the variational formulation is to properly choose the
function space that correctly handles the transmission conditions (2.20) and (2.23).
More precisely, classical variational formulations of equations (2.17), (2.19) and (2.22)
would require u ∈ H2(D \D0) ∩ H1(D) and v ∈ H1(D0) but this regularity is not
sufficient to variationally treat all boundary terms in (2.20) and (2.23). The proposed
variational space in the following treats equation (2.17) variationally and includes
(2.19)-(2.20) into the variational space. More precisely we define

V (D,D0, k) := {u ∈ H2(D) such that ∆u+ k2u = 0 in D0} (3.1)

which is a Hilbert space equipped with the H2(D) scalar product and look for the
solution u in V (D,D0, k). We also consider the closed subspace

V0(D,D0, k) := {u ∈ H2
0 (D) such that ∆u+ k2u = 0 in D0} (3.2)

where

H2
0 (D) := {u ∈ H2(D) such that u = 0 and

∂u

∂ν
= 0 on ∂D}. (3.3)

Let u ∈ V (D,D0, k) and consider a test function ψ ∈ V0(D,D0, k). For the sake
of presentation we assume that u and ψ are regular enough to justify the various
integration by parts and then use a denseness argument. Multiplying (2.17) by ψ and
integrating by parts we obtain

0 =

∫

D\D0

(

∆ + k2n
) 1

n− 1

(

∆ + k2
)

u ψ̄ dx (3.4)

=

∫

D\D0

(

(

∆ + k2
) 1

n− 1

(

∆ + k2
)

u+ k2(∆ + k2)u

)

ψ̄ dx

=

∫

D\D0

1

n− 1

(

∆ + k2
)

u
(

∆ + k2
)

ψ̄ dx+ k4

∫

D\D0

u ψ̄ dx+ k2

∫

D\D0

∆u ψ̄ dx

+

∫

∂D0

1

n− 1

(

∆ + k2
)

u
∂ψ̄

∂ν
ds−

∫

∂D0

∂

∂ν

(

1

n− 1

(

∆ + k2
)

u

)

ψ̄ ds.

Using the fact that ψ̄ ∈ V0(D,D0, k), the boundary conditions (2.23) and equation
(2.22) we obtain that

∫

∂D0

1

n− 1

(

∆ + k2
)

u
∂ψ̄

∂ν
ds−

∫

∂D0

∂

∂ν

(

1

n− 1

(

∆ + k2
)

u

)

ψ̄ ds = 0. (3.5)

Therefore we finally have that
∫

D\D0

1

n− 1

(

∆ + k2
)

u
(

∆ + k2
)

ψ̄ dx+ k2

∫

D\D0

(∆u+ k2u) ψ̄ dx = 0, (3.6)

which is required to be valid for all ψ ∈ V0(D,D0, k).

For given f ∈ H
3
2 (∂D) and h ∈ H

1
2 (∂D) let θ ∈ H2(D) be the lifting function [11]

such that θ = f and ∂θ/∂ν = h on ∂D and ‖θ‖H2(D) ≤ c
(

‖f‖
H

3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)

for some c > 0. Using a cutoff function we can guarantee that θ = 0 in Dθ such



6 F.CAKONI, D.COLTON AND H.HADDAR

that D0 ⊂ Dθ ⊂ D. The variational formulation amounts to finding u0 = u − θ ∈
V0(D,D0, k) such that

∫

D\D0

1

n− 1

(

∆ + k2
)

u0

(

∆ + k2
)

ψ̄ dx+ k2

∫

D\D0

(∆u0 + k2u0) ψ̄ dx

=

∫

D\D0

1

n− 1

(

∆ + k2
)

θ
(

∆ + k2
)

ψ̄ dx+ k2

∫

D\D0

(∆θ + k2θ) ψ̄ dx (3.7)

for all ψ ∈ V0(D,D0, k).
As one can see, the above variational formulation involves only u (in particular it

does not involve w). The following lemma shows that the existence of w is implicitely
contained in the variational formulation.

Lemma 3.1. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue
for −∆ in D0, and let (β, α) ∈ H− 1

2 (∂D0) ×H− 3
2 (∂D0) such that

〈β, ∂ψ/∂ν〉
H−

1
2 (∂D0),H

1
2 (∂D0)

− 〈α, ψ〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.8)

for all ψ ∈ V0(D,D0, k). Then there exists a unique w ∈ L2(D0) such that ∆w+k2w =
0 in D0 and (w, ∂w/∂ν) = (β, α) on ∂D0.

Proof. Assume that k2 is not a Dirichlet eigenvalue for −∆ in D0. Let w ∈ L2(D0)
be a weak solution of ∆w + k2w = 0 in D0 and w = β on ∂D0 (see Remark below
on how one can construct this solution from H1(D0) solutions by using a classical
duality argument, (i.e. the traces of w and ∂w/∂ν can be defined in this case by
duality argument, see also [11]). Then applying Green’s formula between w and a
test function ψ ∈ V0(D,D0, k) we get

〈w, ∂ψ/∂ν〉
H−

1
2 (∂D0),H

1
2 (∂D0)

− 〈∂w/∂ν, ψ〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.9)

and therefore

〈∂w/∂ν − α, ψ〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.10)

for all ψ ∈ V0(D,D0, k). We know that the traces of Herglotz wave functions are dense

in H
3
2 (∂D0) (see [15, Theorem 4]) provided that k2 is not a Dirichlet eigenvalue

for −∆ in D0 and, since V0(D,D0, k) contains the set of Herglotz wave functions,
we can conclude that the traces on ∂D0 of functions in V0(D,D0, k) are dense in

H
3
2 (∂D0). Hence ∂w/∂ν = g and the result follows. The case when k2 is a not a

Neumann eigenvalue can be treated by choosing w ∈ L2(D0) to be a weak solution of
∆w+ k2w = 0 in D0 such that ∂w/∂ν = α on ∂D0 and using the densness of normal

traces on ∂D0 of functions in V0(D,D0, k) in H
1
2 (∂D0) (the densness result follows

from [15, Theorem 3]). The uniqueness of w is obvious.
Remark 1. We briefly recall the construction of L2 solutions for the Helmholtz

equation in D0. Assume that k2 is not a Dirichlet eigenvalue and let g ∈ H
1
2 (∂D0)

and u ∈ H1(D0) satisfy ∆u + k2u = 0 in D0 and u = g on ∂D0. Let v ∈ H1(D0)
to be solution of ∆v + k2v = u such that v = 0 on ∂D0. Then standard regularity
results imply that v ∈ H2(D0) and there exists a constant c independent of v and u
such that ‖v‖H2(D0) ≤ c‖u‖L2(D0). Using Green’s formula one easily obtains

‖u‖2
L2(D0) =

∣

∣

∣

∣

∫

D0

g ∂v/∂ν

∣

∣

∣

∣

≤ ‖g‖
H−

1
2 (∂D0)

‖∂v/∂ν‖
H

1
2 (∂D0)

≤ C‖g‖
H−

1
2 (∂D0)

‖u‖L2(D0) (3.11)
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and therefore the solution operator g → u is continuous from H− 1
2 (∂D0) into L2(D0).

Similar arguments also show that if k2 is not an eigenvalue for the Neumann problem
then the solution operator g → u where u ∈ H1(D0) satisfying ∆u + k2u = 0 in D0

and ∂u/∂ν = g is continous from H− 3
2 (∂D0) into L2(D0).

Remark 2. If the solution of the variational problem (3.7) is in H4(D \D0) then
one can use the Calderòn projection operator to construct w in D0 and thus avoid
the assumption on k2 in Lemma 3.1.

We now can state the equivalence between weak solutions to (ITP) and solutions
to the variational formulation (3.7).

Theorem 3.2. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue
for −∆ in D0 and that 1/(n− 1) ∈ L∞(D \D0). Then the existence and uniqueness
of a weak solution w and v to the interior transmission problem (2.11)-(2.14) is
equivalent to the existence and uniqueness of a solution u0 of the variational problem
(3.7).

Proof. It remains only to verify that any solution to (3.7) defines a weak solution
w and v to the the interior transmission problem (2.11)-(2.14). Taking a test function
ψ to be a C∞ function with compact support in D \D0 one can easily verify from
(3.6) that u satisfies (2.17). In particular, the function

w+ :=

(

− 1

k2(n− 1)
(∆ + k2)u

)

|D\D0

satisfies w+ ∈ L2(D \D0) and (∆ + k2n)w+ = 0 in D \D0. For an arbitrary test
function ψ ∈ C∞(D \D0) we can apply Green’s formula and (3.6) to obtain

〈

w+, ∂ψ/∂ν
〉

H−
1
2 (∂D0),H

1
2 (∂D0)

−
〈

∂w+/∂ν, ψ
〉

H−
3
2 (∂D0),H

3
2 (∂D0)

= 0. (3.12)

Finally, applying Lemma 3.1, we now obtain the existence of w− ∈ L2(D0) satisfying
(2.22) and (2.23).

We now proceed with the proof of existence and uniqueness of a variational so-
lution. In the following we exclude the values of k for which the uniqueness does not
hold, namely the so-called transmission eigenvalues.

Definition 3.3. Values of k > 0 for which the homogeneous variational prob-
lem (3.7) (i.e. (3.7) for θ = 0) has nontrivial solutions u0 are called transmission
eigenvalues.

Remark 3. Note that by Theorem 3.2, if k2 is not both a Dirichlet and a
Neumann eigenvalue, then if k is a transmission eigenvalue there exists a nontrivial
weak solution to (2.11)-(2.14) for f = h = 0 (see also Remark 2 above).

Theorem 3.4. Let f ∈ H
3
2 (∂D) and h ∈ H

1
2 (∂D) and assume that n ∈ L∞(D)

is such that n = 1 in D0, Re(n) ≥ c > 0 and Im(n) ≥ 0 almost everywhere in D \D0.
Assume further that either Re(n − 1) ≥ 1/γ > 0 or Re(1 − n) ≥ 1/γ > 0 almost
everywhere in D \ D0 for some constant γ. Then the interior transmission problem
(3.7) has a unique solution provided that k is not a transmission eigenvalue. This
solution depends continuously on the data f and h.

Proof. Let us define the following bounded sesquilinear forms on V0(D,D0, k) ×
V0(D,D0, k):

A(u0, ψ) = ±
∫

D\D0

1

n− 1

(

∆u0 ∆ψ̄ + ∇u0 · ∇ψ̄ + u0 ψ̄
)

dx

+

∫

D0

(

∇u0 · ∇ψ̄ + u0 ψ̄
)

dx

(3.13)
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and

Bk(u0, ψ) = ±k2

∫

D\D0

1

n− 1

(

u0(∆ψ̄ + k2ψ̄) + (∆u0 + k2nu0)ψ̄
)

dx

∓
∫

D\D0

1

n− 1

(

∇u0 · ∇ψ̄ + u0 ψ̄
)

dx

−
∫

D0

(

∇u0 · ∇ψ̄ + u0 ψ̄
)

dx

(3.14)

where the upper sign corresponds to the case when Re(n) > 1 whereas the lower sign
to the case when Re(n) < 1. In terms of these forms the variational equation (3.7)
for u0 ∈ V0(D,D0, k) becomes

A(u0, ψ) + Bk(u0, ψ) = A(θ, ψ) + Bk(θ, ψ) for all ψ ∈ V0(D,D0, k). (3.15)

It is clear that if the real part of 1/(n−1) is positive definite or negative definite then
there exists a positive constant γ, that only depends on n, such that

A(u0, u0) ≥ γ(‖∆u‖2
L2(D\D0)

+ ‖u‖2
H1(D)). (3.16)

Let ǫ = 1/(1 + k4), so that 0 < ǫ < 1 and ǫk4 < 1. Since ∆u0 = −k2u0 in D0 one
also has that

A(u0, u0) ≥ γǫ‖∆u‖2
L2(D) + γ(1 − ǫk4)‖u‖2

H1(D)

= (γ/(1 + k4))(‖∆u‖2
L2(D) + ‖u‖2

H1(D)).
(3.17)

From standard elliptic regularity results we deduce that

A(u0, u0) ≥ (γ̃/(1 + k4))‖u0‖2
H2(D), (3.18)

where γ̃ only depends on D and n. Therefore A defines a continuous and positive
definite sesquilinear form on V0(D,D0, k)× V0(D,D0, k). Moreover if |1/(n− 1)| and
n are bounded then the compact embedding ofH2

0 (D) into H1(D) (Rellich’s theorem)
implies that Bk defines a compact perturbation of A while the right hand side of (3.15)
defines a continuous antilinear form on V0(D,D0, k). The result of our theorem now
follows from an application of the Fredholm alternative.

4. Transmission eigenvalues. Now we turn our attention to the study of the
homogeneous interior transmission problem and transmission eigenvalues as defined
in Definition 3.3. The assumptions on D, D0 and the index of refraction n are those
stated in Section 2. In particular, throughout this section we assume that n ∈ L∞(D)
such that n = 1 in D0 and Re(n) ≥ c > 0, almost everywhere in D \D0. In addition
we assume that either Re(n− 1) ≥ α > 0 or Re(1 − n) ≥ α > 0 almost everywhere in
D \D0 for some constant α. We first note that k is a transmission eigenvalue if and
only if the homogeneous problem

A(u0, ψ) + Bk(u0, ψ) = 0 for all ψ ∈ V0(D,D0, k) (4.1)

has a nontrivial solution u0 ∈ V0(D,D0, k). Taking ψ = u0 we obtain

0 =

∫

D\D0

1

n− 1
|∆u0 + k2u0|2 dx+ k4

∫

D\D0

|u0|2 dx (4.2)

− k2

∫

D\D0

|∇u0|2 dx− k2

∫

∂D0

ū+
0

∂u+
0

∂ν
ds.
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In order to study transmission eigenvalues it suffices to study (4.2).

We now proceed with the proof of the fact that if the index of refraction n has a
nonzero imaginary part in D \D0 then there are no transmission eigenvalues.

Theorem 4.1. If n ∈ L∞(D) is such that Im(n) > 0 almost everywhere in
D \D0, then there are no transmission eigenvalues.

Proof. Using Green’s first identity for u0 in D0 and the continuity of the Cauchy
data of u0 across ∂D0 we can re-write (4.2) as

0 =

∫

D\D0

1

n− 1
|∆u0 + k2u0|2 dx+ k4

∫

D\D0

|u0|2 dx− k2

∫

D\D0

|∇u0|2 dx

+ k4

∫

D0

|u0|2 dx− k2

∫

D0

|∇u0|2 dx. (4.3)

Since Im(1/(n − 1)) < 0 in D \D0 and all the terms in the above equation are real
except for the first one, by taking the imaginary part we obtain that ∆u0 + k2u0 = 0
in D \D0 and since u0 has zero Cauchy data zero on ∂D we obtain that u0 = 0 in
D \D0 and therefore k is not a transmission eigenvalue. Note that the proof requires
that Im(n) > 0 a.e. in all of D \D0.

From now on we assume that Im(n) = 0 and set n∗ = infD\D0
(n) and n∗ =

supD\D0
(n) (essential infimum and supremum, respectively) .

4.1. Faber-Krahn type inequalities for transmission eigenvalues. We
now want to show that if k > 0 is sufficiently small then k is not a transmission
eigenvalue. It suffices to show that if u0 ∈ V0(D,D0, k) satisfies (4.3) then u0 is zero.
To this end we first notice that since u0 ∈ H2

0 (D) we have that

‖u0‖2
L2(D) ≤

1

λ1(D)
‖∇u0‖2

L2(D) (4.4)

where λ1(D) is the first Dirichlet eigenvalue of −∆ in D.
To obtain a lower bound for the first transmission eigenvalue we rewrite (4.2) in an

equivalent form. In particular, combining terms differently, (4.2) takes the equivalent
form

∫

D\D0

1

n− 1
|∆u0 + k2nu0|2 dx− k4

∫

D\D0

n|u0|2 dx+ k2

∫

D\D0

|∇u0|2 dx

−k4

∫

D0

|u0|2 dx+ k2

∫

D0

|∇u0|2 dx = 0 u0 ∈ V0(D \D0). (4.5)

Assume first that 1 +α ≤ n∗ ≤ n(x) ≤ n∗ for x ∈ D \D0 and some positive constant
α > 0. In this case 1/(n−1) > 0 almost everywhere in D \D0 and therefore if the sum
of the last four terms in (4.5) is nonnegative then obviously k is not a transmission
eigenvalue. Hence we have

−k2

∫

D\D0

n|u0|2 dx+

∫

D\D0

|∇u0|2 dx− k2

∫

D0

|u0|2 dx+

∫

D0

|∇u0|2 dx (4.6)

≥
∫

D

|∇u0|2 dx− k2n∗

∫

D

|u0|2 dx ≥ (λ1(D) − k2n∗)‖u0‖2
L2(D).
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Therefore all k > 0 such that k2 ≤ λ1(D)

n∗
are not transmission eigenvalues. This

means that all transmission eigenvalues satisfy

k2 >
λ1(D)

n∗
(4.7)

provided n∗ = supD\D0
n > 1.

Next, if 0 ≤ n∗ ≤ n(x) ≤ n∗ < 1 − β for x ∈ D \D0 and some positive constant
β > 0 then 1/(1 − n) > 0 almost everywhere in D \D0. Hence from (4.3) after
multiplying by −1 we see that k > 0 is not a transmission eigenvalue as long as

−k2

∫

D\D0

|u0|2 dx+

∫

D\D0

|∇u0|2 dx− k2

∫

D0

|u0|2 dx+

∫

D0

|∇u0|2 dx

≥
∫

D

|∇u0|2 dx− k2

∫

D

|u0|2 dx ≥ (λ1(D) − k2)‖u0‖2
L2(D) (4.8)

which means k2 ≤ λ1(D). Hence all transmission eigenvalues satisfy

k2 > λ1(D) (4.9)

provided 0 < n∗ = infD\D0
n < 1.

For the case of 1 + α ≤ n∗ ≤ n(x) ≤ n∗ we can rewrite (4.7) in terms of the
Lp-norm of n for some p > 1. Let ñ be equal to n in D \D0 and equal to 1 in D0.
Using Hölder’s inequality we have

∫

D

ñ|u0|2 dx ≤
(∫

D

ñp dx

)1/p(∫

D

|ũ0|2p/(p−1) dx

)(p−1)/p

(4.10)

where α = 2p/(p− 1). Hence

−k2

∫

D\D0

n|u0|2 dx+

∫

D\D0

|∇u0|2 dx− k2

∫

D0

|u0|2 dx +

∫

D0

|∇u0|2 dx

≥
∫

D

|∇u0|2 dx− k2

∫

D

ñ|u0|2 dx (4.11)

≥



Λp(D) − k2

(

∫

D\D0

np dx+ area(D0)

)1/p




(∫

D

|u0|2p/(p−1) dx

)(p−1)/p

where

Λp(D) = inf
u0∈H1

0
(D)

∫

D |∇u0|2 dx
(∫

D |u0|2p/(p−1) dx
)(p−1)/p

(4.12)

which is shown to exist in [8, Theorem 9.2.8]. Therefore, all transmission eigenvalues
satisy

k2 >
Λp(D)

(

∫

D\D0
np dx+ area(D0)

)1/p
, p > 1. (4.13)
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Finally, again for the case of 1 +α ≤ n∗ ≤ n(x) ≤ n∗, we can refine (4.7) in order
to involve the geometry of D0. To this end we introduce

λ(D,D0, k) := inf
ψ∈V (D,D0,k),ψ 6=0

‖∇ψ‖2
L2(D)/‖ψ‖2

L2(D\D0)
. (4.14)

We remark that for all k ≥ 0, we have that λ1(D) ≤ λ(D,D0, k) ≤ λ1(D \D0) and
moreover lim|D0|→0 λ(D,D0, k) = λ1(D). Let

λ(D,D0) = inf
k≥0

λ(D,D0, k). (4.15)

Then λ1(D) ≤ λ(D,D0, k) ≤ λ1(D \D0) and lim|D0|→0 λ1(D,D0) = ∞. We similarly
introduce

µ(D,D0, k) = inf
u0∈V0(D,D0,k),u0 6=0

‖∇u0‖2
L2(D)/‖u0‖2

L2(D0)
. (4.16)

It is clear that for all k ≥ 0, µ(D,D0, k) > λ1(D) and lim|D0|→0 µ(D,D0, k) = ∞.
Next setting

µ(D,D0) = inf
k≥0

µ(D,D0, k) (4.17)

we have that µ(D,D0) ≥ λ1(D) and lim|D0|→0 µ(D,D0) = ∞. Hence from the defi-
nition of µ(D,D0) and λ(D,D0) it is easy to see that for any θ between 0 and 1,

−k2

∫

D\D0

n|u0|2 dx+

∫

D\D0

|∇u0|2 dx− k2

∫

D0

|u0|2 dx+

∫

D0

|∇u0|2 dx

≥ (θλ(D,D0) − k2n∗)‖u0‖2
L2(D\D0)

+ ((1 − θ)µ(D,D0) − k2)‖u0‖2
L2(D0). (4.18)

Setting

k2
1(D,D0, n

∗) : = max
0≤θ≤1

(min(θλ(D,D0)/n
∗, (1 − θ)µ(D,D0)))

=
λ(D,D0)µ(D,D0)

λ(D,D0) + n∗µ(D,D0)
(4.19)

we have that all transmission eigenvalues satisfy k2 > k2
1(D,D0, n

∗). Note that if
D0 6= ∅ then k2

1(D,D0, n
∗) > λ1(D)/n∗ and k2

1(D,D0, n
∗) → λ1(D)/n∗ as |D0| → 0.

4.2. The existence and discreteness of transmission eigenvalues.

4.2.1. Discreteness of transmission eigenvalues. First we show that the
transmission eigenvalues form at most a discrete set. To this end, with the aim of
using the analytic Fredholm theory, we first show that an operator associated with the
resolution of the ITP problem is analytic with respect to k ∈ C in some neighborhood
of the real axis.

As indicated in the previous sections, finding transmission eigenvalues is equiva-
lent to finding k > 0 such that the problem

A(u0, ψ) + Bk(u0, ψ) = 0 for all ψ ∈ V (D,D0, k) (4.20)

has non trivial solutions u0 ∈ V (D,D0, k). This is equivalent to finding the values of
k for which

Ak +Bk : V (D,D0, k) → V (D,D0, k) (4.21)
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has a nontrivial kernel where Ak and Bk denote the operators associated with A and
Bk, respectively, by using the Riesz representation theorem. According to last section
the operator Ak is invertible and the operator Bk is compact.

To avoid dealing with function spaces depending on k we shall make use of an
(analytic) operator P̃k from H2

0 (D) into V (D,D0, k) (that mimics the effects of a
projection operator) in order to build (an analytic) extension of Ak and Bk with
operators acting on H2

0 (D).
Let k be complex with positive real part. For u ∈ H2

0 (D) we define θk(u) by

(θku)(x) =
1

4

∫

D0

(∆u+ k2u)(y)Y0(k|x− y|) dy (4.22)

where Y0 denotes the Bessel function of second kind of order zero. Then, using
standard continuity properties of volume potentials, θku ∈ H2

loc(R
2) and there exists

a constant C(k) such that

‖θku‖H2(D) ≤ C(k)‖∆u+ k2u‖L2(D0). (4.23)

We recall that Y0 is analytic outside the non-positive real axis. We also observe that
t → Y0(kt) − 2/π log(t) is a smooth function for real positive t and all k ∈ C with
Re(k) > 0. We then conclude that θk : H2

0 (D) → H2
0 (D) depends analytically with

respect to k ∈ C with Re(k) > 0.
Let χ be a C∞ cutoff function that equals 1 in D0 and 0 outside D. Then we

define the continuous operator P̃k : H2
0 (D) → H2

0 (D) by

P̃ku = u− χθku. (4.24)

We first observe that

θku = 0 and P̃ku = u ∀u ∈ V (D,D0, k). (4.25)

Furthermore, since

∆θku+ k2θku = ∆u + k2u in D0, (4.26)

we also have that P̃ku ∈ V (D,D0, k) for every u ∈ H2
0 (D). We finally observe that,

by analyticity of θk, P̃k also depends analytically on complex k with positive real part.
Using the Riesz representation theorem, we now introduce the operators Ãk and

B̃k from H2
0 (D) into H2

0 (D) respectively defined by

(Ãku, v)H2(D) = A(P̃ku, P̃kv̄) + α(θku, θkv̄)H2(D)

(B̃ku, v)H2(D) = Bk(P̃ku, P̃kv̄)
(4.27)

for all u and v in H2
0 (D) where α is a sufficiently large positive constant that will

be fixed later (and is independent of k). The analyticity of Pk and θk as well as the
expression for Bk show that Ãk and B̃k depend analytically on k ∈ C with Re(k) > 0.
Moreover, the operator B̃k is compact.

Observe that, if k is real, then for v ∈ V (D,D0, k) we have that v̄ ∈ V (D,D0, k),
and hence from (4.25), we have that

Ãku = Aku B̃ku = Bku ∀u ∈ V (D,D0, k) and ∀ k ∈ R (4.28)
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Hence we conclude that for real k if Ak + Bk is not injective then Ãk + B̃k is not
injective. Consequently, in order to show that the set of transmission eigenvalues is at
most discrete, it is sufficient to prove that the set k for which Ãk + B̃k is not injective
is at most discrete. For that purpose we shall prove the following lemma:

Lemma 4.2. Assume that n satisfies the assumptions of Theorem 3.4. Let k be
positive and real and let Ãk and B̃k be the operators defined by (4.27). Then

• There exist α0 independent of k such that for all α ≥ α0 the operator Ãk is
strictly coercive for all k > 0.

• There exist k0 such that for all 0 < k ≤ k0 the operator Ãk + B̃k is injective.
Proof. Assume that k is real and consider the first statement. According to the

definition of θk and P̃k we have that θk(ū) = θk(u) and P̃k(ū) = P̃k(u). Therefore

(Ãku, u)H2(D) = A(P̃ku, P̃ku) + α‖θku‖2
H2(D). (4.29)

From the coercivity of A on V (D,D0, k) we have that

(Ãku, u)H2(D) ≥ γk‖P̃ku‖2
H2(D) + α‖θku‖2

H2(D) (4.30)

where as in (3.18) γk can be chosen such that γk = γ̃/(1 + k4) where γ̃ depends only
on n and D. From the expression of Pku one sees that there exists a constant c that
depends only of χ such that

‖P̃ku‖2
H2(D) ≥ ‖u‖2

H2(D) − 2c‖u‖H2(D)‖θku‖H2 + ‖χθku‖2
H2(D) (4.31)

(Ãku, u)H2(D) ≥ γk‖u‖2
H2(D) − 2cγk‖u‖H2(D)‖θku‖H2 + α‖θku‖2

H2(D). (4.32)

Let α0 = γ̃c2. Since γk < γ̃, we observe that (γkc)
2 < γkα for all k and α ≥ α0 and

therefore the operator Ak is strictly coercive for α ≥ α0.
We now prove the second assertion. We observe that

(Ãku, u)H2(D)+(B̃ku, u)H2(D) = A(P̃ku, P̃ku)+α‖θku‖2
H2(D)+Bk(P̃ku, P̃ku). (4.33)

Therefore (Ãku, u)H2(D) + (B̃ku, u)H2(D) = 0 implies that θku = 0 and

A(P̃ku, P̃ku) + Bk(P̃ku, P̃ku) = 0 (4.34)

According to the previous section, there exists k0 > 0 such that for all 0 < k < k0 if
(4.34) holds then P̃ku = 0. We conclude that u = Pku− χθku = 0.

Theorem 4.3. The set of transmission eigenvalues is discrete.
Proof. The previous lemma proves in particular that for α sufficiently large Ãk

is coercive in a neighborhood of the positive real axis (since Ãk is continuous with
respect to k) and therefore invertible. In this neighborhood Ã−1

k is analytic and hence

the operator I + Ã−1
k B̃k depends analytically on k and is injective for k sufficiently

small. The analytic Fredholm theory now shows that this operator is injective for all
values of k in this neighborhood except for at most a discrete set of values.

4.2.2. Existence of transmission eigenvalues. We shall prove in this section
that there exist at least one transmission eigenvalue and therefore we assume here that
k is positive. To this end, we observe that k is a transmission eigenvalue if and only
if the operator

Ak +Bk : V (D,D0, k) → V (D,D0, k) (4.35)
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has a nontrivial kernel, where Ak is the positive definite self-adjoint operator as-
sociated with the coercive bilinear form A(· , ·) and Bk is the compact self-adjoint

operator associated with the bilinear from B(· , ·). Define the operator A
−1/2
k by

A
−1/2
k =

∫∞

0
λ−1/2dEλ where dEλ is the spectral measure associated with the posi-

tive definite operator Ak. In particular, A
−1/2
k is also bounded, positive definite and

self-adjoint. Hence it is obvious that k is a transmission eigenvalue if and only if the
operator

Ik +A
−1/2
k BkA

−1/2
k : V (D,D0, k) → V (D,D0, k) (4.36)

has a nontrivial kernel. Note that A
−1/2
k BkA

−1/2
k is a compact self-adjoint operator.

Similarly to above, in order to avoid dealing with function spaces depending on k
we shall introduce this time the orthogonal projection oprator Pk from H2

0 (D) onto
V (D,D0, k) and the corresponding injection Rk : V (D,D0, k) → H2

0 (D) and then
consider the operator

I +RkA
−1/2
k BkA

−1/2
k Pk : H2

0 (D) → H2
0 (D). (4.37)

To show that a k > 0 is a transmission eigenvalue it suffices to show that for this k
the kernel of the operator (4.37) is nontrivial since the injectivity of (4.36) implies the

injectivity of (4.37). Indeed let u ∈ H2
0 (D) be such that (I+RkA

−1/2
k BkA

−1/2
k Pk)u =

0. Then u = Pku + (u − Pku) where Pku ∈ V (D,D0, k) and w := u − Pku is in the
orthogonal complement of V (D,D0, k). In particular Pkw = 0 and

0 = (u, w)H2 +
(

RkA
−1/2
k BkA

−1/2
k Pku, w

)

H2
(4.38)

= (w, w)H2 +
(

A
−1/2
k BkA

−1/2
k Pku, Pkw

)

H2
= ‖w‖2

H2 ,

whence w = 0. The injectivity of A
−1/2
k BkA

−1/2
k now implies that Pku = 0 which

means that (4.37) is injective.

Our next goal is to prove that RkA
−1/2
k BkA

−1/2
k Pk depends continuously on k.

To this end, in the following two lemmas we prove the continuity of the projection
operator Pk.

Lemma 4.4. Assume that 0 < k ≤ k0. Then there exists a constant C(k0) such
that

‖u− Pku‖H2(D) ≤ C(k0)‖∆u+ k2u‖L2(D0) (4.39)

for all u ∈ H2
0 (D).

Proof. Let u ∈ H2
0 (D) and let P̃k be the operator defined by (4.24). Then

‖Pku− u‖H2(D) ≤ ‖Pku− u‖H2(D) = ‖χθku‖H2(D)

≤ C‖θku‖H2(D) ≤ CC(k)‖∆u + k2u‖L2(D0). (4.40)

Since θk depends continuously on k, one can bound CC(k) by a constant that only
depends on k0 for all k ≤ k0

Theorem 4.5. The projection operator Pk : H2
0 (D) → V (D,D0, k) is continuous

with respect to k > 0.
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Proof. Let k and k′ be positive numbers less than k0 and let u be in H2
0 (D). Set

uk := Pku and uk′ := Pk′u. Then

‖uk − uk′‖2
H2(D) = ‖Pk(uk − uk′)‖2

H2(D) + ‖(I − Pk)(uk − uk′)‖2
H2(D). (4.41)

On the one hand, using Lemma 4.4,

‖(I − Pk)(uk − uk′)‖H2(D) = ‖(I − Pk)uk′)‖H2(D)

≤ C(k0)‖∆uk′ + k2uk′‖L2(D0)

= C(k0)|k2 − k′2|‖uk′‖L2(D0)

≤ C(k0)|k2 − k′2|‖u‖H2(D)

(4.42)

and, on the other hand,

‖Pk(uk − uk′)‖2
H2(D) = (Pk(uk − uk′), Pk(uk − uk′))H2(D)

= (Pk(uk − uk′), uk − uk′)H2(D)

= (Pk(uk − uk′), uk − u+ u− uk′)H2(D)

= (Pk(uk − uk′), u− uk′)H2(D)

= ((I − Pk′ )Pk(uk − uk′), u)H2(D).

(4.43)

Applying Lemma 4.4, we have

‖(I − Pk′ )Pk(uk − uk′)‖H2(D) ≤ C(k0)‖(∆ + k′2)Pk(uk − uk′)‖L2(D0)

= C(k0)|k′2 − k2|‖Pk(uk − uk′)‖L2(D0)

≤ C(k0)|k′2 − k2|‖uk − uk′‖H2(D).
(4.44)

Therefore we conclude that

‖Pk(uk − uk′)‖2
H2(D) ≤ C(k0)|k′2 − k2|‖uk − uk′‖H2(D)‖u‖H2(D). (4.45)

Using the previous estimates in the first equality yields

‖uk − uk′‖H2(D) ≤
√

5 + 1

2
C(k0)|k′2 − k2|‖u‖H2(D) (4.46)

which proves in particular that k → Pku is continuous.

Corollary 4.6. The operator valued function k → RkA
−1/2
k BkA

−1/2
k Pk ∈

L(H2
0 (D), H2

0 (D)) is continuous with respect to k > 0.
Proof. It is more convienient to introduce the operator Âk = (I − RkPk) +

RkAkPk : H2
0 (D) → H2

0 (D) and observe that it is a selfadjoint and positive definite
operator and also depends continuously on k. We deduce that the positive definite

selfajoint operator Â
−1/2
k also continuously depends on k (this follows immediately

from the continuity of Pk and the definition of Ak). Simple calculations show that

Â
−1/2
k = (I −RkPk) +RkA

−1/2
k Pk and therefore

RkA
−1/2
k BkA

−1/2
k Pk = Â

−1/2
k RkBkPkÂ

−1/2
k .

We now only need to prove that k → RkBkPk is continuous. The latter follows
immediately from the expression for Bk and the continuity of Pk.

From the max-min principle for the eigenvalues λ(k) of the compact and self-

adjoint operator RkA
−1/2
k BkA

−1/2
k Pk and from Corollary 4.6 we can conclude that

λ(k) is a continuous function of k. The proof of the existence of transmission eigen-
values is based on the following theorem which was first proved in [13] and we include
here for reader’s convenience.

Theorem 4.7. Let Tk := RkA
−1/2
k BkA

−1/2
k Pk. Assume that
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1) There is a κ0 such that I + Tκ0
is positive on H2

0 (D).
2) There is a κ1 > κ0 such that I + Tκ1

is non positive on a p-dimensional
subspace Wk of H2

0 .
Then there are p transmission eigenvalues in [κ0, κ1] counting their multiplicity.

Proof. If I + Tκ0
is positive it means that it has a trivial kernel and so does the

operator given by (4.36), whence κ0 is not a transmission eigenvalue. In particular
0 is not an eigenvalue of I + Tκ0

and hence all eigenvalues satisfy λj(κ0) > 0. Next
the assumption 2) guaranties that the operator I + Tκ1

has p negative eigenvalues
λj(κ1) < 0 for j = 1 . . . p, counting the multiplicity. The continuity of the spectrum
implies that there is a k ∈ [κ0, κ1] such that λj(k) = 0, for each 1 ≤ j ≤ p. This
means that I + Tk has a non trivial kernel for those p values of k, whence we can
conclude that there are p transmission eigenvalues counting the multiplicity.

Let us denote by µp(D \D0) > 0 the p− th clamped plate eigenvalue (counting
the multiplicity) on D/D0 and set

θp(D \D0) := 4
µp(D \D0)

1/2

λ1(D)
+ 4

µp(D \D0)

λ1(D)2
(4.47)

where again λ1(D) is the first eigenvalue of −∆ in D.
Theorem 4.8. Let n ∈ L∞(D) satisfying either one of the following assumptions

for x ∈ D \D0

1) 1 + θp(D \D0) ≤ n∗ ≤ n(x) ≤ n∗ <∞,
2) 0 < n∗ ≤ n(x) ≤ n∗ < 1

1+θp(D\D0)
.

Then, there exist p transmission eigenvalues (counting the multiplicity).
Proof. First we assume that the assumption 1) holds. Then from (4.7) and the

fact that Ak+Bk is positive if and only if I+RkA
−1/2
k BkA

−1/2
k Pk is positive we have

that k > 0 such that k2 > λ1(D)/n∗ is not a transmission eigenvalue and for those
k > 0 the assumption 1) of Theorem 4.7 is valid.

Next set M = supD\D0
( 1
n−1 ) = 1

n∗−1 . Then, restricting ourselves to functions in

V (D,D0, k) such that ‖u‖L2 = 1, and using the Cauchy-Schwarz inequality, we have

(Aku+Bku, u)H2(D) =

∫

D\D0

1

n− 1
|∆u|2 dx+ k4

∫

D\D0

n

n− 1
|u|2 dx+ k4

∫

D0

|u|2 dx

+k2

∫

D\D0

1

n− 1
(u∆u+ u∆u) dx− k2

∫

D

|∇u|2 dx (4.48)

≤M‖∆u‖2
L2(D\D0)

+ k4(1 +M) + 2k2M‖∆u‖L2(D\D0)
− k2‖∇u‖2

L2(D).

Applying the Poincaré inequality to u ∈ H1
0 (D) one has

‖∇u‖2
L2(D) ≥ λ1(D). (4.49)

Now denote by Vp the p dimensional eigenspace associated with the first p clamped
plate eigenvalues in the doubly connected domain D \D0. In particular, for any
u ∈ Vp such that ‖u‖L2(D\D0)

= 1 then ‖∆u‖2
L2(D\D0)

≤ µp. If ũ is the extension

by zero of u ∈ Vp to the whole of D then since the Cauchy data of u are zero on
∂D0 we have that ũ ∈ V (D,D0, k) ⊂ H2

0 (D). Hence for these p linearly independent
functions ũ we have

(Akũ+Bkũ, ũ)H2(D) ≤ k4(1 +M) − k2
(

λ1(D) − 2Mµp(D \D0)
1/2
)

+ Mµp(D \D0) (4.50)
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for any k2 > 0. In particular, the value of k2
1 =

λ1(D)−2Mµp(D\D0)1/2

2+2M minimizes the
right hand side, whence we obtain

(Akũ+Bkũ, ũ)H2
0
≤ −

(

λ1(D) − 2Mµp(D \D0)
1/2
)2

4 + 4M
+Mµp(D \D0) (4.51)

which becomes non positive if M ≤ λ1(D)2

4µp(D\D0)1/2(λ1(D)+µp(D\D0)1/2)
which means that

inf
D\D0

(n) ≥ 1 + 4
µp(D \D0)

1/2

λ1(D)
+ 4

µp(D \D0)

λ1(D)2
= 1 + θp(D \D0). (4.52)

Since Ak + Bk and I + RkA
−1/2
k BkA

−1/2
k Pk coincide in V (D,D0,K) we conclude

that the assumption 2) of Theorem 4.7 is valid and therefore the result follows from
Theorem 4.7.

Now we assume that the assumption 2) holds. Then from Section 4.1 and the

fact that Ak+Bk is positive if and only if I+RkA
−1/2
k BkA

−1/2
k Pk is positive we have

that k > 0 such that k2 > λ1(D) are not transmission eigenvalues and for those k > 0
the assumption 1) of Theorem 4.7 is valid.

Let us now define M = max
{

supD\D0

n
1−n , 1

}

= max
{

n∗

1−n∗
, 1
}

and observe

that 1
1−n ≤M + 1. Then doing the same type of calculations as above assuming that

u ∈ Vp and ‖u‖2
L2 = 1, and denoting by ũ ∈ V (D,D0, k) the extension by zero to the

whole of D, we obtain
(

Ãkũ+Bkũ, ũ
)

H2
=

∫

D\D0

1

1 − n
|∆ũ|2 dx+ k4

∫

D\D0

n

1 − n
|ũ|2 dx+ k4

∫

D0

|ũ|2 dx

+ k2

∫

D\D0

n

1 − n
(ũ∆ũ+ ũ∆ũ) dx− k2

∫

D

|∇ũ|2 dx (4.53)

≤ (M + 1)‖∆u‖2
L2 + k4M + 2k2M‖∆u‖L2 − k2‖∇u‖2

L2

≤ k4M − k2
(

λ1(D) − 2Mµp(D \D0)
1/2
)

+ (M + 1)µp(D \D0).

The minimizing value of k2 of the right hand side is now k2
1 =

λ1(D)−2Mµp(D\D0)1/2

2M
which gives

(Akũ+Bkũ, ũ)H2
0
≤ −

(

λ1(D) − 2Mµp(D \D0)
1/2
)2

4M
+ (M + 1)µp(D \D0). (4.54)

Hence the latter becomes non positive if M ≤ λ1(D)2

4µp(D\D0)1/2(λ1(D)+µp(D\D0)1/2)
which

means that supD\D0
(n) ≤ 1/(1 + θp(D \D0)). Consequently if assumption 2) holds

then Ak +Bk is non positive on a p dimensional subspace of V (D,D0, k) and so does

I + RkA
−1/2
k BkA

−1/2
k Pk on on a p dimensional subspace of H2

0 (D) and the result is
proven in this case again by an application of Theorem 4.7

Remark 4. From the proof of the above estimate we have that the first trans-
mission eigenvalue satisfies

λ1(D)

supD\D0
(n)

≤ k2
1 <

λ1(D) − 2Mµ1(D \D0)
1/2

2 + 2M
(4.55)



18 F.CAKONI, D.COLTON AND H.HADDAR

where M = 1/(infD\D0
n− 1), provided that

inf
D\D0

(n) ≥ 1 + 4
µ1(D \D0)

1/2

λ1(D)
+ 4

µ1(D \D0)

λ1(D)2
(4.56)

where λ1(D) is the first Dirichlet eigenvalue for the Laplasian on D and µ1(D \D0)
is the first clamped plate eigenvalue on D/D0.
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