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Abstract. We consider the inverse problem of determining the spherically symmetric index
of refraction n(r) from a knowledge of the corresponding transmission eigenvalues (which can be
determined from field pattern of the scattered wave). We also show that for constant index of
refraction n(r) = n, the smallest transmission eigenvalue suffices to determine n, complex eigenvalues
exist for n sufficiently small and, for homogeneous media of general shape, determine a region in the
complex plane where complex eigenvalues must lie.
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1. Introduction. The transmission eigenvalue problem has come to play an im-
portant role in inverse scattering theory for non-absorbing media. This is due to the
fact that these eigenvalues can be determined from the far field pattern of the scat-
tered wave and used to determine lower bounds for the index of refraction [1], [2],
[9]. In particular, if k > 0 is the wave number and n(x) the index of refraction such
that n(x) = 1 for x ∈ Rd \ D, d = 2, 3 where D is simply connected bounded do-
main with piecewise smooth boundary ∂D, then the transmission eigenvalue problem

corresponding to the scattering problem (c.f. [8])

∆u + k2n(x)u = 0 in R
3 (1.1)

u(x) = exp(ikx · d) + us(x) (1.2)

lim
r→∞

r

(

∂us

∂r
− ikus

)

= 0 (1.3)

where r = |x| and d is a unit vector, is to determine values of k > 0 such that there
exists a nontrivial solution to

∆w + k2n(x)w = 0 in D (1.4)

∆v + k2v = 0 in D (1.5)

w = v in ∂D (1.6)

∂w

∂ν
=

∂v

∂ν
on ∂D (1.7)

where ν is the unit outward normal to ∂D. Such values of k are called transmission
eigenvalues. It is known that transmission eigenvalues exist and form a discrete set
whose only accumulation point is plus infinity [4], [11], [14]. Note that in our definition
transmission eigenvalues are positive. Until now it was not known whether or not
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complex eigenvalue can exist. We will provide an example in Section 3 of this paper
showing that complex eigenvalues can exist.

In this paper we will consider the inverse spectral problem corresponding to the
transmission eigenvalue problem for the special case when the index of refraction
is spherically stratified. In particular, we ask the question does a knowledge of all
transmission eigenvalues uniquely determine the spherically stratified index of refrac-
tion n(r)? Under the assumption that the eigenfunction w and v depend only on
r = |x|, this problem was previously considered by McLaughlin and Polyakov [12] and
McLaughlin, Polyakov and Sachs [13] who showed that in general n(r) is uniquely
determined only if certain restrictions are made on the magnitude of n(r) and the
distribution of the transmission eigenvalues in the complex plane. Here we will show,
under the assumption that n(0) is known but without assuming that w and v are
spherically stratified, that the transmission eigenvalues (including the possible com-
plex eigenvalues) uniquely determine n(r). We will also show that if n(r) = n is a
constant than the smallest real transmission eigenvalue uniquely determines n. Fi-
nally, in this case we will determine a region in the complex plane where complex
transmission eigenvalues must lie.

2. The Transmission Eigenvalue Problem for Spherically Stratified Me-

dia.

2.1. The inverse spectral problem. We are interested in the inverse spectral
problem for the interior transmission problem

∆w + k2n(r)w = 0 in B (2.1)

∆v + k2v = 0 in B (2.2)

w = v in ∂B (2.3)

∂w

∂r
=

∂v

∂r
on ∂B (2.4)

where B :=
{

x ∈ R3 : |x| < a
}

and n(r) > 1 or n(r) < 1 for r < a, 0 < n(r) = 1
for r > a and n ∈ C2[0, ∞). Introducing spherical coordinates (r, θ, ϕ) we look for
solutions of (2.1)-(2.4) in the form

v(r, θ) = aℓjℓ(kr)Pℓ(cos θ)

w(r, θ) = bℓyℓ(r)Pℓ(cos θ)

where Pℓ is Legendre’s polynomial, jℓ is a spherical Bessel function, aℓ and bℓ are
constants and yℓ is a solution of

y′′ +
2

r
y′ +

(

k2n(r) − ℓ(ℓ+ 1)

r2

)

yℓ = 0

for r > 0 such that yℓ(r) behaves like jℓ(kr) as r → 0, i.e.

lim
r→0

r−ℓyℓ(r) =

√
πkℓ

2ℓ+1Γ(ℓ+ 3/2)
.

From [7], pp. 261-264, in particular Theorem 9.9, we can deduce (note that in equa-
tion (9.35) of Theorem 9.9, λ should be λ = ℓ + 1

2 ) that k is a (possibly complex)



INTERIOR TRANSMISSION EIGENVALUE PROBLEM 3

transmission eigenvalue if and only if

dℓ(k) = det





yℓ(a) −jℓ(ka)

y′ℓ(a) −kj′ℓ(ka)



 = 0 (2.5)

and that dℓ(k) has the asymptotic behavior

dℓ(k) =
1

a2k [n(0)]ℓ/2+1/4
sin k

(

a−
∫ a

0

[n(r)]1/2dr

)

+O

(

ln k

k2

)

(2.6)

From [6] (see also [5], pp. 46-50) we can also represent yℓ(r) in the form

yℓ(r) = jℓ(kr) +

∫ r

0

G(r, s, k)jℓ(ks)ds (2.7)

where G(r, s, k) satisfies the Goursat problem

r2
[

∂2G

∂r2
+

2

r

∂G

∂r
+ k2n(r)G

]

= s2
[

∂2G

∂s2
+

2

s

∂G

∂s
+ k2G

]

(2.8)

G(r, r, k) =
k2

2r

∫ r

0

ρm(ρ)dρ (2.9)

G(r, s, k) = O
(

(rs)1/2
)

(2.10)

and m := 1 − n (see Fig. 2.1). It is shown in [5] and [6] that G can be solved

Fig. 2.1. Configuration of the Goursat problem. Here L(G) = 0 denotes (2.8).

by iteration, is an even function of k and is an entire function of exponential type
satisfying

G(r, s, k) =
k2

2
√
rs

∫

√
rs

0

ρm(ρ) dρ
(

1 +O(k2)
)

. (2.11)

We now return to the determinant (2.5) and compute the coefficient c2ℓ+2 of the term
k2ℓ+2. A short computation using using (2.5), (2.7), (2.11) and the order estimate

jℓ(kr) =

√
π(kr)ℓ

2ℓ+1Γ(ℓ+ 3/2)

(

1 + O(k2r2)
)

(2.12)
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shows that

c2ℓ+2

[

2ℓ+1Γ(ℓ + 3/2)√
πa(ℓ−1)/2

]2

= a

∫ a

0

d

dr

(

1

2
√
rs

∫

√
rs

0

ρm(ρ) dρ

)

r=a

sℓ ds (2.13)

− ℓ

∫ a

0

1

2
√
as

∫

√
as

0

ρm(ρ) dρ sℓ ds+
aℓ

2

∫ a

0

ρm(ρ) dρ.

After a rather tedious calculation involving a change of variables and interchange of
orders of integration, the identity (2.13) remarkably simplifies to

c2ℓ+2 =
πa2

2ℓ+1Γ(ℓ+ 3/2)

∫ a

0

ρ2ℓ+2 m(ρ) dρ. (2.14)

We now note that jℓ(r) is odd if ℓ is odd and even if ℓ is even. Hence, since G is an
even function of k, we have that dℓ(k) is an even function of k. Furthermore, since
both G and jℓ are entire function of k of exponential type, so is dℓ(k). From the
asymptotic behavior of dℓ(k) for k → ∞, i.e. (2.6), we see that the rank of dℓ(k) is
one and hence by Hadamard’s factorization theorem [15],

dℓ(k) = k2ℓ+2eaℓk+bℓ

∞
∏

n = −∞

n 6= 0

(

1− k

knℓ

)

ek/knℓ

where aℓ, bℓ are constants or, since dℓ is even,

dℓ(k) = k2ℓ+2c2ℓ+2

∞
∏

n=1

(

1− k2

k2nℓ

)

(2.15)

where c2ℓ+2 is a constant given by (2.14) and knℓ are zeros in the right half plane (pos-
sibly complex). In particular, knℓ are the (possibly complex) transmission eigenvalues

in the right half plane. Thus if the transmission eigenvalues are known so is

dℓ(k)

c2ℓ+2
= k2ℓ+2

∞
∏

n=1

(

1− k2

k2nℓ

)

as well as (from (2.6)) a nonzero constant γℓ independent of k such that

dℓ(k)

c2ℓ+2
=

γℓ
a2k

sin k

(

a−
∫ a

0

[n(r)]1/2 dr

)

+O

(

ln k

k2

)

,

i.e.

1

c2ℓ+2 [n(0)]
ℓ/2+1/4

= γℓ.

From (2.14) we now have

∫ a

0

ρ2ℓ+2 m(ρ) dρ =

(

2ℓ+1Γ(ℓ+ 3/2)
)2

[n(0)]
ℓ/2+1/4

γℓπa2
.

If n(0) is given then m(ρ) is uniquely determined by Müntz’s theorem [10].
Theorem 2.1. If n(0) is given then n(r) is uniquely determined from a knowledge

of the transmission eigenvalues.
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2.2. Complex transmission eigenvalues. In the previous section of this paper
we showed that for a spherically symmetric index of refraction the real and complex
transmission eigenvalues uniquely determine the index of refraction up to a normaliz-
ing constant. As noted in the Introduction, the existence of real transmission eigenval-
ues is well known. This raises the question as to whether or not complex transmission
eigenvalues can exist. The following simple example shows that in general complex
transmission eigenvalues exist.

Consider the interior transmission problem in a disk Ω of radius one in R2 and
constant index of refraction n 6= 1, i.e.

∆w + k2nw = 0 in Ω (2.16)

∆v + k2v = 0 in Ω (2.17)

w = v in ∂Ω (2.18)

∂w

∂r
=

∂v

∂r
on ∂Ω (2.19)

We will show that if n is sufficiently small there exist complex transmission eigenvalues
to (2.16)-(2.19). To this end we note that k is a transmission eigenvalue to (2.16)-
(2.19) provided

d0(k) = k
(

J1(k)J0(k
√
n)−

√
nJ0(k)J1(k

√
n)
)

= 0.

Viewing d0 as a function of
√
n we compute

d′0(k) = k
(

kJ1(k)J
′
0(k

√
n)− J0(k)J1(k

√
n)− k

√
nJ0(k)J

′
1(k

√
n)
)

where differentiation is with respect to
√
n. Hence

d′0(k)|√n=1 = k (kJ1(k)J
′
0(k)− J0(k)J1(k)− kJ0(k)J

′
1(k)) .

But J ′
0(t) = −J1(t) and

d
dt (tJ1(t)) = tJ0(t) and hence

d′0(k)|√n=1 = −k2
(

J2
1 (k) + J2

0 (k)
)

(2.20)

i.e.

f(k) = lim√
n→1+

d0(k)√
n− 1

= −k2
(

J2
1 (k) + J2

0 (k)
)

(2.21)

Since J1(k) and J0(k) do not have any common zeros, f(k) is strictly negative for
k 6= 0 real, i.e. the only zeros of f(k), k 6= 0, are complex. Furthermore, f(k) is an
even entire function of exponential type that is bounded on the real axis and hence
by Hadamard’s factorization theorem [15] f(k) has an infinite number of complex
zeros. By Hurwitz’s theorem in analytic function theory (c.f. [7], p. 213) we can
now conclude that for n close enough to one d0(k) = 0 has complex roots, thus
establishing the existence of complex transmission eigenvalues for (2.16)-(2.19) for
n > 1 sufficiently small (Note that by Montel’s theorem ([7], p. 213) the convergence
in (2.21) is uniform on compact subsets of the complex plane).

3. The Interior Transmission Problem for Homogeneous Media of Gen-

eral Shape.
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3.1. A uniqueness result. We now consider the interior transmission problem
corresponding to the scattering problem for a homogeneous medium with support
D ∈ Rd, d = 2, 3, which satisfies the assumptions in the Introduction, i.e (1.4)-(1.7)
with n(x) := n being a constant such that 0 < n 6= 1. As shown in [4], the homogenous
eigenvalue problem (1.4)-(1.7) can be written as the fourth order equation

(

∆+ k2n
) 1

n− 1

(

∆+ k2
)

u = 0 (3.1)

for u = w − v ∈ H2
0 (D) where

H2
0 (D) =

{

u ∈ H2(D) : u = 0 and
∂u

∂ν
= 0 on ∂D

}

.

In the variational form (3.1) is formulated as the problem of finding a function u ∈
H2

0 (D) such that
∫

D

1

n− 1
(∆u+ k2u)(∆v + k2nv) dx = 0 for all v ∈ H2

0 (D). (3.2)

Setting k2 := τ , it is shown in [3] that k1,n > 0 such that k21,n = τ1,n is the first
transmission eigenvalue corresponding to n if and only if τ1,n is the smallest zero of

λ(τ, n) − τ = 0 (3.3)

where

λ(τ, n) = inf
u ∈ H2

0 (D)
‖∇u‖D = 1

(

1

n− 1
‖∆u+ τu‖2D + τ2‖u‖2D

)

, if n > 1 (3.4)

λ(τ, n) = inf
u ∈ H2

0 (D)
‖∇u‖D = 1

(

n

1− n
‖∆u+ τu‖2D + ‖∆u‖2D

)

, if 0 < n < 1. (3.5)

Here ‖ · ‖D denotes the L2(D)-norm. Obviously λ(τ, n) is a continuous function of
τ ∈ (0, +∞).

Theorem 3.1. The constant index of refraction n is uniquely determined from

a knowledge of the corresponding smallest transmission eigenvalue k1,n > 0 provided

that it is known a priori that either n > 1 or 0 < n < 1.
Proof. We first consider the case of n > 1 and assume that we have two homoge-

neous media with constant index of refraction n1 and n2 such that 1 < n1 < n2. It
is obvious that λ(τ, n2) ≤ λ(τ, n1) for all τ > 0. Now let k1,n1 , be the first transmis-
sion eigenvalue for (1.4)-(1.7) with n(x) := n1 and let u1 := w1 − v1 where w1 and
v1 are the corresponding nonzero solution of (1.4)-(1.7). We normalize u1 such that
‖∇u1‖D = 1. Setting τ1 = k21 , we first notice that, by definition (see [3], [4])

1

n− 1
‖∆u1 + τ1u1‖2D + τ21 ‖u1‖2D − τ1 = 0

(u1 is the minimizer of (3.4)). Furthermore, we have

1

n2 − 1
‖∆u+ τu‖2D + τ2‖u‖2D <

1

n1 − 1
‖∆u+ τu‖2D + τ2‖u‖2D
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for all u ∈ H2
0 (D) such that ‖∇u‖D = 1 and all τ > 0. Now, for u = u1 and τ = τ1

1

n2 − 1
‖∆u1 + τ1u1‖2D + τ21 ‖u1‖2D <

1

n1 − 1
‖∆u1 + τ1u1‖2D + τ21 ‖u1‖2D = λ(τ1, n1).

But

λ(τ1, n2) ≤
1

n2 − 1
‖∆u1 + τ1u1‖2D + τ21 ‖u1‖2D < λ(τ1, n1)

and hence for this τ1 we have a strict inequality, i.e.

λ(τ1, n2) < λ(τ1, n1). (3.6)

Next we look for zeros of the equation λ(τ, n2) − τ = 0. As shown in [3] and [4], for
all τ̃ > 0 small enough such that τ̃ ∈ (0, λ(D)/n2) where λ(D) is the first Dirichlet
eigenvalue of −∆ in D, we have that λ(τ̃ , n2) − τ̃ > 0. On the other hand from the
above λ(τ1, n2)− τ1 < λ(τ1, n1)− τ1 = 0. Hence by continuity there is a τ2 ≤ τ1 such
that λ(τ2, n2)− τ2 = 0, and k2 > 0 such that k22 = τ2 is a transmission eigenvalue for
(1.4)-(1.7) with n(x) := n2. We can choose τ2 such that τ2 < τ1. Indeed if τ2 = τ1
then 0 = λ(τ2, n2)− τ2 = λ(τ1, n2)− τ1 and since also λ(τ1, n1)− τ1 = 0, we conclude
that λ(τ1, n2) = λ(τ1, n1) which contradicts (3.6). Hence we proved that if n1 > 1
and n2 > 1 are such n1 6= n2 then k1 6= k2, which proves the uniqueness. The case
of 0 < n < 1 can be treated exactly in the same way using (3.5) for the definition of
λ(τ, n).

3.2. Eigenvalue free zones in the complex plane. Now that we know that
complex transmission eigenvalues can exist it is natural to investigate where in the
complex plane they may lie. To this end we again consider the case where n(x) := n
is a constant and D ⊂ Rd, d = 2.3 is a bounded simply connected region. Here
a transmission eigenvalue k ∈ C may be a complex number k := x + iy. We set
k2 := τ + iµ, i.e. τ := x2 − y2 and µ = 2xy. As mentioned in Section 3.1, the interior
transmission eigenvalue problem can be written in the following equivalent variational
form

∫

D

1

n− 1
(∆u+ k2u)(∆v + k2nv) dx = 0 for all v ∈ H2

0 (D). (3.7)

We ask the question that under what conditions can we guarantee the uniqueness of
the variational equation (3.7). To this let we assume that n > 1 (note that similar
estimates using the same techniques can be obtained if 0 < n < 1). Now taking (3.7)
for v = u ∈ H2

0 (D), regrouping terms and integrating by parts we obtain

0 =

∫

D

1

n− 1
(∆u + k2u)(∆u+ k2nu) dx =

∫

D

1

n− 1
|∆u+ k2nu|2 dx

+

∫

D

1

n− 1
(∆u + k2nu)(k2 − k2)nu) dx−

∫

D

k2u(∆u+ k2nu) dx

=

∫

D

1

n− 1
|∆u + k2nu|2 dx+ k2

∫

D

|∇u|2 dx− k4
∫

D

n|u|2 dx

− (k2 − k2)

∫

D

n

n− 1
|∇u|2 dx + k2(k2 − k2)

∫

D

n2

n− 1
|u|2 dx. (3.8)
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Setting k2 := τ + iµ we now have that

0 =

∫

D

1

n− 1
|∆u+ (τ + iµ)nu|2 dx+

∫

D

(

τ + iµ− 2µ
n

n− 1
i

)

|∇u|2 dx

−
∫

D

n

(

τ2 − µ2 + 2τµi+ 2µ2 n

n− 1
− 2τµ

n

n− 1
i

)

|u|2 dx. (3.9)

Taking the imaginary part of (3.9), and dividing by µ 6= 0 yields

0 = −
∫

D

n+ 1

n− 1
|∇u|2 dx + 2τ

∫

D

n

n− 1
|u|2 dx (3.10)

whence we obtain that u = 0 in D as long as τ ≤ 0 which in terms of the real and
imaginary part of k, x and y respectively, means that x2 ≤ y2. Thus a complex
number k = x+ iy can be a transmission eigenvalue only if x2 > y2. Now taking the
real part of (3.9) we obtain

0 =

∫

D

1

n− 1
|∆u+ (τ + iµ)nu|2 dx+ τ

∫

D

|∇u|2 dx

−
∫

D

[

(τ2 − µ2)n+ 2µ2 n2

n− 1

]

|u|2 dx.

But

τ

∫

D

|∇u|2 dx−
∫

D

[

(τ2 − µ2)n+ 2µ2 n2

n− 1

]

|u|2 dx

≥
(

τλ(D) − (τ2 − µ2)n− 2µ2 n2

n− 1

)

‖u‖2L2(D). (3.11)

Hence we have the uniqueness of the homogeneous interior transmission problem
provided that

τλ(D) − (τ2 − µ2)n− 2µ2 n2

n− 1
≥ 0

where λ(D) = inf
u∈H1

0 (D)

‖∇u‖2
L2(D)

‖u‖2
L2(D)

is the first Dirichlet eigenvalue for −∆ in D. Thus

the real and imaginary part of a complex eigenvalue k must satisfy

τλ(D) − (τ2 − µ2)n− 2µ2 n2

n− 1
< 0, (3.12)

where again k2 = τ + iµ. We can rewritten (3.12) as

τ2 − λ(D)

n
τ +

n+ 1

n− 1
µ2 > 0. (3.13)

For the case of real transmission eigenvalues (i.e. µ = 0) (3.13) recovers the known
Faber-Krahn estimate k2 > λ(D)/n [9]. The relation (3.12) in terms of the real and
imaginary part of k, x and y respectively, can be written as

x4 + y4 +
2n+ 6

n− 1
x2y2 − λ(D)

n
(x2 − y2) > 0. (3.14)
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Combining both conditions we can conclude that complex transmission eigenvalues
k = x+ iy (if they exist) lie in the region Σ of the complex plane (x, y) defined by

Σ :=











x4 + y4 +
2n+ 6

n− 1
x2y2 − λ(D)

n
(x2 − y2) > 0

x2 > y2.

(3.15)

The first inequality defines a region in the complex plane in the exterior of a lemnis-
cate centered at the origin, whereas the second inequality defines a symmetric sector
about the x-axis the intersection of these two region defines the possible location of
transmission eigenvalues (see Fig. 3.1). The lemniscate intersect the real axis at
±
√

λ(D)/n, where λ(D) is the smallest Dirichlet eigenvalue of −∆ in D which states
the known fact that the real positive transmission eigenvalues (which are known to
exist [4]) are bigger than ±

√

λ(D)/n.
Similar results can be obtained for the case of negative contrast, i.e if 0 < n < 1.

We do not present here the calculations to avoid repetition.

-4 -2 2 4
x

-4

-2

2

4

iy

-4 -2 2 4
x

-4

-2

2

4

iy

(a) (b)

Fig. 3.1. A plot of the region in the complex plane C where transmission eigenvalues lie for
the rectangle D := [−0.5, 0.5] × [0.4, 0.4], and for n = 8 in panel (a) and n = 1.1 in panel (b).
The unshaded region is an eigenvalue free zone; transmission eiegnvalues can lie only in the shaded
region. The lemniscate intersects the x-axis at ±

√

λ(D)/n which corresponds to ±
√

25.3/8 = ±1.8

for the case of panel (a) and ±
√

25.3/1.1 = ±4.8 for the case of panel (b). This is in agreement
with the known location of real positive eigenvalues.

Remark 3.1. Similar calculations can be done for smooth n(x) not equal to a
constant in which case the lemniscate in Figure 3.1 remains the same but the lines
x = ±y now become hyperbolas with x = ±y as asymptotes and the shape of the
hyperbolas depend on n and ∇n.
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[9] D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse
Problems and Imaging 1 (2007), 13-28.

[10] P.J. Davis, Interpolation and Approximation, Dover, New York, 1975.
[11] A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging 3

(2009), pp. 155-172.
[12] J. McLaughlin and P. Polyakov, On the uniqueness of a spherically symmetric speed of

sound from transmission eigenvalues, J. Differential Equations 107 (1994), 351-382.
[13] J. McLaughlin, P. Polyakov and P. Sachs, Reconstruction of a spherically symmetric speed

of sound, SIAM J. Appl. Math. 54 (1994), 1203-1223.
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