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Abstract

We show how transmission eigenvalues can be determined from
electromagnetic scattering data and used to determine the presence of cavities
in a dielectric.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we would like to suggest a new method for nondestructive testing of dielectrics.
This method is based on determining transmission eigenvalues from electromagnetic scattering
data and deducing the presence of cavities in the dielectric from the location of the eigenvalues.
The model problem we have in mind (although many others are possible!) is the location of
cavities in tree trunks, which for E-polarized electromagnetic waves polarized parallel to the
axis of the tree trunk, the scattering problem can be modeled by the Helmholtz equation with
variable permittivity (note that, since wood is orthotropic, H-polarized waves would lead to a
different equation to the Helmholtz equation).

Transmission eigenvalues have appeared only recently in the world of scattering theory
and for an introduction to this unusual spectral problem in partial differential equations we
refer the reader to sections 8.4 and 8.6 of [6] and the survey paper [7]. In [1] it was shown
that, under the assumption that the relative permittivity εr was greater than one, transmission
eigenvalues could be determined from scattering data and used to give a lower bound for
εr . In the present paper we will encounter a transmission eigenvalue problem that has
not been considered before, i.e. the case when εr = 1 in a portion D0 of the scattering
obstacle D. In particular D0 corresponds to the location of cavities in the obstacle. We will
provide numerical evidence showing that the presence of a nonempty cavity D0 ⊂ D causes
the transmission eigenvalues to increase with the magnitude of the increase depending on the
size of D0. Although we have been unable to prove this fact analytically, we will establish in
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the following section that this relationship does hold asymptotically. We draw attention to the
fact that in this paper we are primarily considering the simple scattering problem where the
incident field is a time harmonic plane wave and the measured data are far field data. The more
realistic problem of point source as incident fields and near field scattering data can be handled
in the same way by measuring both the electric and magnetic fields and using the reciprocity
gap functional instead of the far field operator to determine the transmission eigenvalues. We
will discuss this problem in section 3 of this paper.

The plan of our paper is as follows. In the following section, we formulate the direct
scattering problem for electromagnetic waves by a dielectric inhomogeneous infinite cylinder
with cross section D having cavities with cross section D0 ⊂ D such that in D0 we have εr = 1.
We will establish that as either εr → 1 or area (D\D0) → 0 the transmission eigenvalues tend
to infinity (in particular, this implies that in the Born approximation transmission eigenvalues
do not exist—see also [7]). We then consider the case of near field data. We conclude
by presenting a number of numerical examples that indicate that amount of the shift of the
transmission eigenvalues due to the presence of a cavity depends on the size of the cavity or,
if the same size, how near the surface the cavity is. We also present evidence that this shift
can also be detected even if the scattering obstacle has a moderate amount of absorption.

2. Scattering by a cylinder and transmission eigenvalues

We consider the scattering of a time harmonic electromagnetic plane wave by an
inhomogeneous dielectric infinite cylinder with cross section D such that the electric field
E = (0, 0, u e−iωt ) is polarized parallel to the axis of the cylinder. Thus, assuming that the
relative permittivity is independent of the position along the axis of the cylinder, and factoring
out the harmonic term e−iωt , u = u(x) satisfies [6]

�u + k2εr(x)u = 0 in R
2, (1)

u(x) = eikx·d + us(x) in R
2, (2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (3)

where x ∈ R
2, r = |x|, k > 0 is the wave number, d is a vector on the unit circle S in R

2 and the
Sommerfeld radiation condition (3) is assumed to hold uniformly with respect to x̂ = x/|x|.
The relative permittivity εr = εr(x) is required to be a piecewise continuously differentiable
function with jumps along piecewise smooth curves ∂D0 bounding a region D0 such that
εr(x) = 1 in R

2\D and D0 and εr(x) > 1 in D\D0 where D is compact, the complement of
D is connected and D\D0 has piecewise smooth boundary with unit outward normal ν. (D0

can be the empty set. The region D0 represents the possibly multiply connected portion of
D in which there is a cavity.) Without loss of generality we assume that D\D0 contains the
origin.

The existence of a unique solution u ∈ H 1
loc(R

2) to (1)–(3) can be established by either
variational methods or the use of integral equations [6]. It can be shown that the scattered field
us has the asymptotic behavior

us(x) = eikr

√
r
u∞(x̂; d, k) + O(r−3/2) (4)

as r → ∞ uniformly in x̂ where u∞ is the far field pattern of the scattered field us . Given the
far field pattern, we can now define the far field operator F : L2(S) → L2(S) by

(Fg)(x̂) :=
∫

S

u∞(x̂; d, k)g(d) dsd . (5)
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We note that (Fg)(x̂) is the far field corresponding to (1)–(3) where the incident field eikx·d is
replaced by the Herglotz wavefunction

vg(x) :=
∫

S

eikx·dg(d) dsd . (6)

The following theorem is a reformulation and slight strengthening of theorem 8.9 of [6].

Theorem 2.1. The far field operator is injective with dense range if and only if there does not
exist a solution v,w ∈ L2(D), v−w ∈ H 2(D) of the interior transmission problem

�w + k2εr(x)w = 0 in D, (7)

�v + k2v = 0 in D, (8)

w = v on ∂D, (9)

∂w

∂ν
= ∂v

∂ν
on ∂D, (10)

such that v is a Herglotz wavefunction.

Values of k such that there exists a nontrivial solution of the interior transmission problem
are called transmission eigenvalues. If εr(x) > 1 + σ for x ∈ D and a positive constant
σ > 0, and D0 = ∅ it is known that transmission eigenvalues exist and they form a discrete set
[7, 8]. In our problem εr(x) = 1 for x ∈ D0 ⊂ D where D0 is in general not the empty set
and these results no longer apply. However, assuming that transmission eigenvalue exists, we
can prove the following theorem which is the main result of the section (see [9] for estimates
of a similar nature).

Theorem 2.2. Let k be a transmission eigenvalue. If either (a) supD\D0
εr(x) → 1 or (b) the

area of (D\D0) → 0 then k → ∞.

Proof. Assume that k is a transmission eigenvalue and let v,w ∈ H 1(D) be a nontrivial
solution of (7)–(10). Then from Green’s formula v and w satisfy the integral equation

v = w − k2T w, (11)

where

(Tf )(x) := i

4

∫
D\D0

H
(1)
0 (k|x − y|)m(y)f (y) dy,

m = εr − 1 and H
(1)
0 is a Hankel function of the first kind of order zero. Note that from

(7)–(10) we see that Tf can be continued as a radiating solution of (7) into R
2\D such that

Tf = 0 in R
2\D and hence letting |x| → ∞ we have that∫

D\D0

e−ikx̂·ym(y)w(y) dy = 0, x̂ ∈ S. (12)

Now let

L2
m(D\D0) :=

{
u : u measurable,

∫
D\D0

m(x)|u(x)|2 dx < ∞
}

and let ‖·‖m be the corresponding norm in L2
m(D\D0). Let

H := span{Jn(kr) einθ : n = 0,±1,±2, . . .} (13)

3



Inverse Problems 24 (2008) 065016 F Cakoni et al

where Jn is a Bessel function of order n and let H denote the closure of H in L2
m(D\D0).

Then from (12) and the Jacobi–Anger expansion we see that w ∈ H⊥ and hence if
P : L2

m(D\D0) → H⊥ is the projection operator of L2
m(D\D0) onto H⊥ we have from

(11) that

0 = w + k2PT w.

It follows that if k is a transmission eigenvalue then k2‖T ‖m > 1.
We now estimate ‖T ‖m. To this end we have that

|(Tf )(x)|2 =
∣∣∣∣ i

4

∫
D\D0

H
(1)
0 (k|x − y|)m(y)f (y) dy

∣∣∣∣
2

� 1

4

∫
D\D0

∣∣H(1)
0 (k|x − y|)∣∣2

m(y) dy

∫
D\D0

m(y)|f (y)|2 dy

� M

4

[∫
D

∣∣H(1)
0 (k|x − y|)∣∣4

dy

]1/2

[area(D\D0)]
1/2 ‖f ‖m

� C(1 + |log k|)2(area(D\D0))
1/2‖f ‖m,

where M := supD\D0
m(x) and C > 0 is a constant independent of m,D0 and k such that

sup
D

1

4

[∫
D

∣∣H(1)
0 (k|x − y|)∣∣4

dy

]1/2

< C(1 + |log k|)2.

The fact that such a constant C exists and is independent of m,D0 and k follows from lemma 2.4
of [1]. We now have that

‖Tf ‖2
m =

∫
D\D0

m|Tf |2 dx � CM2(1 + | log k|)2(area(D\D0))
3/2‖f ‖m,

i.e.

‖T ‖m � CM2(1 + | log k|)2(area(D\D0))
3/2

and the theorem follows. �

The proof of the above theorem shows that if k is a transmission eigenvalue, i.e.
v,w ∈ H 1(D) is a nontrivial solution of (7)–(10), then v can be approximated in L2

m(D\D0)

by an element of H, in particular a Herglotz wavefunction. But from theorem 2.1 the far field
operator is not injective when k is a transmission eigenvalue and v is a Herglotz function.
Hence, since we are assuming that D\D0 contains the origin, we can expect as in [1] that the
norm of the regularized solution g ∈ L2(S) of

(F (g))(x̂) = 1 (14)

will be large if k is a transmission eigenvalue. Although we cannot prove this, the numerical
examples given in section 4 support this expectation and the above procedure thus provides
a heuristic method for determining the transmission eigenvalues from far field data. These
same numerical examples indicate that the transmission eigenvalues increase when a cavity
D0 is present and that the size of the increase depends on the size of D0. Again, we cannot
prove that this observed behavior is in fact always true except for the limiting case of part (b)
of theorem 2.2.
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Figure 1. Configuration with near field measurements.

3. Near field data

In nondestructive testing problems the object is typically interrogated by using point sources
as incident waves and the total field is measured near the scatterer. In this section we show
that the ideas introduced in section 2 can be applied to the case of near field measurements,
in which case the far field equation is replaced by an equation based on the reciprocity gap
functional [4]. To treat near field data we could of course use the far field equation (14)
with u∞ replaced by us measured on a curve outside D and the right-hand side replaced by
H

(1)
0 (k|x|). However, this approach assumes a homogeneous background whereas the gap

reciprocity approach that we use in this section does not assume this. In particular, due to
the fact that both the electric and magnetic fields are used, the presence of the antenna and
other objects in the exterior of the measurement surface does not affect the proposed inversion
procedure. The main results of this section show that the reciprocity gap operator exhibits
similar properties as the far field operator.

Assuming that εr satisfies the properties stated at the beginning of section 2, the total field
u(x; x0) now satisfies

�u(x; x0) + k2εr(x)u(x; x0) = 0 in R
2\{x0}, (15)

u(x; x0) = 	(x; x0) + us(x; x0) in R
2, (16)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (17)

where us(·; x0) ∈ H 1
loc(R

2) is the scattered field due to the obstacle D,	(x; x0) =
i
4H

(1)
0 (k|x − x0|) is a point source located at x0 ∈ R

2\D and the Sommerfeld radiation
condition (17) is again assumed to hold uniformly with respect to x̂ = x/|x|.

We now suppose that we know u(·; x0) and ∂u(·;x0)

∂ν
on ∂
 for all x0 ∈ � where ∂
 and �

are two smooth closed curves such that ∂
 is the boundary of the open region 
 containing
D inside whereas � is the boundary of a bounded domain containing 
 in the interior. (Note
that � can also be only part of an analytic closed curve surrounding 
.) The configuration of
the location of the receivers and transmitters is shown in figure 1.

We define

U := {u(x; x0) satisfies (15)–(17) for all x0 ∈ �}
5
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and the reciprocity gap functional R on U × H(
) by

R(u(·; x0), v) =
∫

∂


(
u(·; x0)

∂v

∂ν
− v

∂u(·; x0)

∂ν

)
ds, (18)

where

H(
) := {v ∈ H 1(
) : such that �v + k2v = 0}.
We note that the integrals in (18) are interpreted in the sense of duality between H 1/2(∂
) and
H−1/2(∂
). Finally, we introduce the reciprocity gap operator R : H(
) → L2(�) defined
by

(R(v))(x0) := R(u(·; x0), v) (19)

which is obviously a bounded and compact linear operator.
The next two theorems play a fundamental role in our method. (For the case of Maxwell’s

equations, see [2].)

Theorem 3.1. The reciprocity gap operator R : H(
) → L2(�) is injective if and only if k
is not a transmission eigenvalue.

Proof. Let Rv = 0 which means that R(u(·; x0), v) = 0 for all x0 ∈ �. Using Green’s
formulae we have

0 =
∫

∂


(
u(·; x0)

∂v

∂ν
− v

∂u(·; x0)

∂ν

)
ds

=
∫

∂D

(
u(·; x0)

∂v

∂ν
− v

∂u(·; x0)

∂ν

)
ds = k2

∫
D

(εr − 1)u(·; x0)v dx. (20)

Now let w̃ ∈ H 1
loc(R

2) be the solution of the scattering problem

�w̃ + k2εr(x)w̃ = k2(εr(x) − 1)v in R
2, (21)

lim
r→∞

√
r

(
∂w̃

∂r
− ikw̃

)
= 0. (22)

Then (20) can be rewritten as∫
D

(�w̃ + k2εrw̃)(	(·; x0) + us(·; x0)) dx = 0. (23)

Using Green’s formula, the equation satisfied by us := us(·; x0) and the fact that us and w̃ are
radiating solutions, we obtain∫

D

(�w̃ + k2εrw̃)us dx =
∫

D

(�us + k2εru
s)w̃ dx +

∫
∂D

(
us ∂w̃

∂ν
− w̃

∂us

∂ν

)
ds

= k2
∫

D

(εr − 1)	(·; x0)w̃ dx. (24)

On the other hand∫
D

�w̃	(·; x0) dx =
∫

D

�	(·; x0)w̃ dx +
∫

D

(
	(·; x0)

∂w̃

∂ν
− w̃

∂	(·; x0)

∂ν

)
ds. (25)

Substituting (25) and (24) into (23) and using the Green’s representation formula in R
2\D we

obtain

0 =
∫

D

w̃(�	(·; x0) + k2	(·; x0)) dx +
∫

∂D

(
	(·; x0)

∂w̃

∂ν
− w̃

∂	(·; x0)

∂ν

)
ds = w̃(x0).

6
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Hence, w̃(x0) = 0 for all x0 ∈ � and since w̃ is a radiating solution of the Helmholtz
equation outside �, we can conclude from the uniqueness of the exterior Dirichlet problem
that w̃ = 0 outside the domain bounded by �. Finally, by the unique continuation principle,
we have that w̃ = 0 outside D. Hence v and w =: w̃ + v satisfy the homogeneous interior
transmission problem (7)–(10). We have shown that any function v ∈ H(
) such that Rv = 0
is together with w := w̃ + v a solution of the homogeneous interior transmission problem and
consequently v = 0 if and only if k is not a transmission eigenvalue. This ends the proof. �

Theorem 3.2. If k is not a transmission eigenvalue, then the reciprocity gap operator
R : H(
) → L2(�) has dense range.

Proof. Let β ∈ L2(�) and assume that

(Rv, β)L2(�) = 0 for all v ∈ H(
).

Then from (18) and (19) and the bi-linearity of R, we have 0 = (Rv, β)L2(�) = R(Q, v)

where

Q(x) =
∫

�

β(x0)u(x; x0) dsx0

=
∫

�

β(x0	(x; x0) dsx0 +
∫

�

β(x0)u
s(x; x0) dsx0 .

Obviously, Q = Qi + Qs is the total field satisfying the direct scattering problem

�Qs + k2εrQs = k2(1 − εr)Qi in R
2

and Qs satisfies the Sommerfeld radiation condition where

Qi (x) :=
∫

�

β(x0)	(x; x0) dsx0 and Qs(x) :=
∫

�

β(x0)u
s(x; x0) dsx0 .

Hence from Green’s formula we have that

0 = R(Q, v) = k2
∫

D

(εr − 1)Qv dx for all v ∈ H(
).

From the proof of theorem 2.2, the fact that H(
) contains the space H defined by (13) and
the fact that k is not a transmission eigenvalue, we conclude that Q = 0 in D. Hence by the
unique continuation principle Q = 0 inside the domain bounded by �. Furthermore, since
Q is continuous across �, we have that Q = 0 outside � from the uniqueness of the exterior
Dirichlet problem. Finally, computing the jump of Q across �, we conclude that β = 0 which
proves the theorem. �

If instead of the whole space H(
) we consider the dense set of H(
) containing all
Herglotz wavefunctions [5]

{vg given by (6) for all g ∈ L2(S)}
we can define the near field integral operator N : L2(S) → L2(�) by Ng := R(vg).
Assuming that D\D0 contains the origin we expect that, as in the case of the far field equation
described in section 2, the regularized solution g ∈ L2(S) of ill-posed integral equation

(Ng)(x0) = (x0) x0 ∈ �

where (x0) := R (u(·; x0),	(·, 0)) will be large if k is a transmission eigenvalue. This
provides a method to determine the transmission eigenvalues using near field measured data
and point sources as incident fields.

We end this section by remarking that, in contrast to the case of far field data where
one considers the far field equation, it is now possible to derive different integral equations

7
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(a) (b)

Figure 2. Panel (a) shows the hosting medium D which has the index of refraction εr = 16. Panel
(b) shows the same hosting medium with a cavity D0. The radius of the cavity is R0 = 0.05.

depending on the choice of dense sets of H(
). In particular, instead of the set of Herglotz
functions, one can use single layer potentials of the form

(Sϕ)(x) :=
∫

�̃

ϕ(x)	(x, y) dsy, for all ϕ ∈ L2(�̃),

where �̃ is a closed curve (or part of a closed analytic curve) enclosing � inside. In this case
the near field operator N : L2(�̃) → L2(�) is defined by Nϕ := R(Sϕ) and the ill-posed
integral equation

(Nϕ)(x0) = (x0) x0 ∈ �

is solved for ϕ for a range of wave numbers k. The best choice of the dense set will be
examined in a future paper.

Finally, we again emphasize that due to the use of Cauchy data of the total field as
measurements the gap reciprocity functional method is not affected by inhomogeneities that
may be present in the background outside 
.

4. Numerical examples

We shall now present some simple numerical tests using the far field pattern as data. This
numerical study is preliminary and not comprehensive by any means. Our main goal is to
determine in simple simulations if what is suggested from our theoretical investigation actually
happens. In particular, we want to answer the following questions: are the transmission
eigenvalues retrievable from the far field data? Do transmission eigenvalues shift to the right
if voids are present in the hosting medium and if so how does this shift depend on the size and
the position of the void? What happens in the case of limited aperture data? Note that the
theory developed in section 2 suggests answers to the above questions but does not resolve
them.

We use a cubic finite element code to compute the far field pattern u∞(x̂; d, k) of a
given scatterer for many incident directions d and observation directions x̂ (more precisely,

8
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||g
(.

)||

Figure 3. The transmission eigenvalues detected from the far field pattern for geometries shown
in figure 2. Both plots show a graph of ‖g‖L2(
) against k; the black plot corresponds to the disk
without any cavity shown in figure 2(a) whereas the gray plot corresponds to the disk with the
cavity shown in figure 2(b). The peaks are good candidates for the first and second eigenvalues in
both cases. This claim is confirmed using the exact values determined by the determinant criteria
(27) and (28) marked as dashed lines.

60 directions for each k uniformly distributed on the unit circle) and a range of wave numbers
k. The same finite element grid is used for all wave numbers (the grid is suitable for the
highest wave number) and a perfectly matched layer (PML) of fixed width and parameters is
used to truncate the domain. This limits the range of wave numbers at the top (grid size) and
bottom (PML accuracy). Once the approximate far field pattern is known (with roughly 1%
noise added as in [3]) we can solve the far field equation

∫
S

u∞(x̂; d, k)g(d) dsd = 1 x̂ ∈ S (26)

using Tikhonov regularization and the Morozov discrepancy principle as in [3] for each wave
number, and try to determine the transmission eigenvalues from peaks in a graph of the L2

norm of g against k. We then compare the transmission eigenvalues corresponding to a given
D and εr for D0 = ∅ with those of the same D and εr with a cavity D0 inside.

In our first example the host medium D is the disk of radius R = 0.5 centered at the origin
with index of refraction εr = 16 and the void D0 is the concentric disk of radius R0 = 0.05
as shown in figure 2. This example allows us to compare analytically computed transmission
eigenvalues with the results of numerical experiments and verify that the procedure works
in this special case. For the homogeneous disk with radius R constant εr the transmission

9
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Figure 4. The hosting medium is the disk centered at the origin with radius 0.5 and εr = 16. In
the left panel we show D with the cavity D0 the ellipse with the axis a = 0.05, b = 0.1 centered at
(0.2, 0). In the right panel we show D with the cavity D0 the ellipse with the axis a = 0.05, b = 0.2
centered at (0.2, 0)
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Figure 5. Here we show the plot of ‖g‖L2(S) against k for the obstacles shown in figure 4: black
dashed line corresponds to circle without cavity shown in figure 2(a), gray solid line corresponds
to the circle with the cavity the small ellipse shown in figure 4(a) and black solid line corresponds
to the circle with the cavity the larger ellipse shown in figure 4(b)

eigenvalues are the positive value of k2 for which (see [7])

det

(
J0(kR) J0(k

√
εrR)

−J1(kR) −√
εrJ1(k

√
εrR)

)
= 0. (27)

10
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(a) (b) (c)
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− − −
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−

Figure 6. Panel (a) shows the tested medium which is a dielectric with εr = 16. Panels (b)
and (c) show the medium of panel (a) with a void presented by the inner disk. Both voids are of
radius 0.1.
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Figure 7. Here we show the plot of ‖g‖L2(S) against k for the obstacles shown in figure 6: black
dashed line corresponds to square without cavity shown in figure 6(a), black solid line corresponds
to the square with the cavity the circle centered at the origin shown in figure 6(b) and gray solid
line corresponds to the square with the cavity the circle centered at (0.1, 0) shown in figure 6(c).

When εr = 16 and R = 0.5 this gives an estimate for the first and second transmission
eigenvalues k0 = 1.99 and k1 = 3.74, respectively. If there is a concentric circular cavity with
radius R0 < R then the transmission eigenvalues are the positive values of k2 for which
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Figure 8. Here we plot ‖g‖L2(S) against k for obstacle of the shapes shown in figures 6(a) and (b)
for complex-valued index of refraction εr = 16 + i

k
and real-valued index of refraction εr = 16.

Black dashed line corresponds to the square shown in figure 6(a) with εr = 16 whereas black solid
line corresponds to the same obstacle with εr = 16 + i

k
. Similarly, gray dashed line corresponds

to the square shown in figure 6(b) with εr = 16 whereas gray solid line corresponds to the same
obstacle with εr = 16 + i

k
.

det

⎛
⎜⎜⎝

J0(kR0) −J0(k
√

εrR0) −H0(k
√

εrR0) 0
−J1(kR0)

√
εrJ1(k

√
εrR0)

√
εrH1(k

√
εrR0) 0

0 −J0(k
√

εrR) −H0(k
√

εrR) J0(kR)

0
√

εrJ1(k
√

εrR)
√

εrH1(k
√

εrR) −J1(kR)

⎞
⎟⎟⎠ = 0. (28)

When εr = 16, R = 0.5 and R0 = 0.05 this gives an estimate for the first and second
transmission eigenvalues k0 = 2.05 and k1 = 3.96, respectively. These eigenvalues are
marked in figure 3 as dashed lines. In figure 3 we show a plot of ‖g‖L2(S) against k where g,
the approximate regularized solution of (26), is computed as described above for 201 wave
numbers equally distributed in [0.5, 4.5] (data from the finite element solver is used). It is
clear that candidates for transmission eigenvalues are visible as peaks in the plot. We also
superimpose the true value of k. The match between the eigenvalues computed by the far field
pattern and the exact values is very good. The black plot corresponds to the disk without the
cavity and the gray plot corresponds to the same disk with the cavity. This example shows
that the far field equation (26) in principle provides a means of detecting the transmission
eigenvalues. This example also shows that the transmission eigenvalues are shifted to the right
if a cavity is present and the shift is larger for the second eigenvalue. Note that the size void
for this example is very small.

The next example is for the configurations shown in figure 4. The host medium is the same
as for the previous example, i.e. the disk shown in 2(a). The cavities are ellipses with the axis
a = 0.05, b = 0.1 (figure 4(a)) and a = 0.05 and b = 0.2 (figure 4(b)) both centered at the
point (0.2, 0). The far field patterns for both cases are again computed using the finite element
method. The results are shown in figure 5 where we plot the L2 norm of the regularized
solution of the far field equation (26) for three domains: the disk D without cavity (shown by
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Figure 9. Here we show the transmission eigenvalues for the objects in figures 6(a) and (b) with
εr = 16 + i

10k
for limited aperture data and compare the results for the same scatterers with full

aperture data. The graphs in black correspond to the square without void (shown in figure 6(a));
dashed black line with full aperture data whereas solid black line with limited aperture data. The
graphs in gray correspond to the square with the void (shown in 6(b)); dashed gray line with full
aperture data whereas solid gray line with limited aperture data. In the case of limited aperture
data we have d,−x̂ ∈ [0, π ]. In this case we observe that, although the profile of the transmission
eigenvalues changes with the aperture of data, it is still possible to distinguish between the medium
without and with a void.

dashed line), D with the cavity the small ellipse in figure 4(a) (shown by the black solid line)
and D with the cavity the bigger ellipse in figure 4(b) (shown by the gray solid line). The
transmission eigenvalues are again shifted to the right if voids are present and the larger the
void is the bigger the shifting. However, for this example the shifting of the first transmission
eigenvalue is very small and probably not reliable to detect cavities. The shifting of the second
transmission eigenvalue is more visible especially for the larger cavity. In both cases in this
example the cavities are still of relatively small size. As the next example shows the shifting
of the first eigenvalue is more significant for larger voids. However our results suggest that it
is better to look for larger transmission eigenvalues. We remark that in our computations the
range of k is limited by our ability to compute the simulated data which does not present a
problem in practice since data can be measured for a large range of frequencies.

Our third example is the square [−0.50.5]× [−0.50.5] shown in figure 6(a) with εr = 16.
We consider two cases: the square with a circular cavity centered at the origin of radius 0.1
shown in figure 6(b) and the square with circular cavity of radius 0.1 centered at (0.1, 0)

shown in figure 6(c). The corresponding plots of ‖g‖L2(S) where g is the regularized solution
of the far field equation (26) are shown in figure 7. The results presented in figure 7 show
that the shifting to the right of the transmission eigenvalues is more prominent for voids
of bigger size as compared to the example of figure 5. The position of the cavities of the
same size changes the profile of the plot, in particular the location of higher eigenvalues, but
nevertheless the eigenvalues corresponding to the medium with cavity are always shifted to the
right.
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Although not covered by our theory (transmission eigenvalues do not exist if Im(εr) > 0
in a small ball in D [7]), it is interesting to consider how absorption affects the algorithm. In
figure 8 we plot the norm of g against k when εr = 16 + i

k
using data from the finite element

solver for the obstacles in figures 6(a) and (b). We superimpose these plots with those for
the same obstacles but with real index of refraction εr = 16. We observe that the peaks for
the absorbing medium are decreased in amplitude but they occur for the same values of k. In
particular, the transmission eigenvalues are clearly visible suggesting that the algorithm can
potentially be used in detecting cavities inside a low absorbing medium.

Our final test is to use limited aperture data. We now solve the far field equation

∫
S0

u∞(x̂; d, k)g(d) dsd = 1 −x̂ ∈ S0,

where S0 is now part of the unit circle. Typically, since the approximation of v satisfying (8)
by Herglotz functions with kernel supported on part of the unit sphere deteriorate, we expect
that the performance our algorithm worsen with the decrease of the aperture of the far field
data. We test this for S0 the unit half circle corresponding to the polar angle θ ∈ [0, π ] for
the obstacles in figures 6(a) and (b) with εr = 16 + i

10k
. The results are shown in figure 9. We

still observe the shift to the right of the transmission eigenvalues if a cavity is present.

5. Conclusions

We have introduced a simple algorithm to detect cavities in dielectrics using multistatic data
for a range of frequencies. This algorithm is based on the shifting of transmission eigenvalues
if a cavity appears in the medium. It is assumed that the eigenvalues are known for the
dielectric medium without the defect. We have shown that the transmission eigenvalues can
be computed from the far field data and we expect the same for near field data using the
reciprocity gap functional method developed in section 3. However, the case of near field data
still needs to be numerically tested. We have also shown that the method is still valid if the
host medium is slightly absorbing. An attracting feature of this method is that there is no need
to know Green’s function of the host medium. The implementation of the method is very fast
and simple and both detects the present of a cavity and gives some indication of its size.

The goal of this paper is to introduce our method and show with simple examples its
potential use in the non-destructive testing of dielectrics. More numerical tests are needed
to establish the viability of the method. This method also suggests many interesting and
challenging mathematical questions to be studied. In particular, the question of the existence
of the transmission eigenvalues in the presence of cavities and the mathematical justification
of the dependence of the transmission eigenvalues on the size of cavities are still open.
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