
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 19 (2003) 279–295 PII: S0266-5611(03)53167-7

The linear sampling method for cracks

Fioralba Cakoni and David Colton1

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

E-mail: colton@math.udel.edu

Received 9 September 2002, in final form 17 January 2003
Published 7 February 2003
Online at stacks.iop.org/IP/19/279

Abstract
We consider the inverse scattering problem of determining the shape of an
infinite cylinder having an open arc as cross section from a knowledge of the
TM-polarized scattered electromagnetic field corresponding to time-harmonic
incident plane waves propagating from arbitrary directions. We assume that
the arc is a (possibly) partially coated perfect conductor and develop the linear
sampling method, which was originally developed for solving the inverse
scattering problem for obstacles with nonempty interior, to include the above
case of obstacles with empty interior.

1. Introduction

In this paper we consider the scattering of an electromagnetic time-harmonic plane wave by
an infinite cylinder having an open arc in R

2 as cross section. We assume that the cylinder is
a perfect conductor that is (possibly) coated on one side by a material with surface impedance
λ. This corresponds to the situation when a thin cylindrical object is (possibly) coated on one
side to avoid detection using probes facing this coating. Assuming that the electric field is
polarized in the TM mode, this leads to a (possibly) mixed boundary value problem for the
Helmholtz equation defined in the exterior of an open arc in R

2. Our aim is to establish the
existence and uniqueness of a solution to this scattering problem and to then use this knowledge
to study the inverse scattering problem of determining the shape of the open arc (or ‘crack’)
from a knowledge of the far-field pattern of the scattered field. In particular, we propose to use
the linear sampling method [5] to arrive at the solution of this inverse scattering problem and
difficulties arise from the fact that the crack has an empty interior. The aim of this paper is to
overcome this difficulty by using the ideas of Kirch and Ritter [12] who used the factorization
method to study the case of a perfectly conducting crack.

The inverse scattering problem for cracks was initiated by Kress [14]. In particular,
Kress considered the inverse scattering problem for a perfectly conducting crack and used
Newton’s method to reconstruct the shape of the crack from a knowledge of the far-field
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pattern corresponding to a single incident wave. In order to do this it is necessary to know the
type of singularity the scattered field has at the tip of the crack. The case of a sound-hard crack
was considered by Mönch [17]. The investigations initiated by Kress were continued by Kirsch
and Ritter in [12] who, as mentioned above, used the factorization method to reconstruct the
shape of the open arc from a knowledge of the far-field pattern. The advantage of this approach
over Newton’s method is that it is no longer necessary to solve a forward problem at each step
of an iterative process to reconstruct the arc but instead only involves the solution of an integral
equation of the first kind with right-hand side dependent on a ‘sampling point’ z. However,
its implementation requires a knowledge of the far-field pattern for a set of incident directions
that is dense on the unit sphere and the method is not applicable to cracks with mixed boundary
conditions.

In this paper we shall adapt the linear sampling method, which was originally developed
for obstacles with nonempty interior, to the case of cracks (which have empty interior). The
advantages of this method over Newton’s method and the factorization method are that iterative
methods are avoided while at the same time it is possible to consider limited-aperture scattering
data and mixed boundary conditions (without knowing a priori what these conditions are).
However, in contrast to Newton’s method, it is still necessary to have data corresponding to
incident waves from many directions. The plan of our paper is the following. In the next
section we shall use integral equations of the first kind to study the direct scattering problem
for both perfectly conducting and partially coated cracks. Then, in section 3, we shall examine
the approximation properties of Herglotz wavefunctions in Sobolev spaces defined on open
arcs. These results will then be used in section 4 to develop the basis of the linear sampling
method for scattering of plane waves by cracks. Central to this analysis is the factorization
of the far-field operator into a product of injective operators with dense range and a Herglotz
integral operator (cf [8, p 147]). Finally, in section 5, we will present some numerical examples
that establish the viability of our approach.

Although the analysis of this paper is done in R
2 all the results remain valid in R

3,
i.e. (scalar) screens can be handled in the same way as cracks.

2. The direct scattering problems for cracks

Let � ⊂ R
2 be an oriented piecewise smooth nonintersecting arc without cusps, i.e.

� = {�(s) : s ∈ [s0, s1]} where � : [s0, s1] → R
2 is an injective piecewise C1 function.

The normal vector pointing to the right side of � is denoted by ν and is defined everywhere
except a finite number of points on �. We denote the right-hand side of � with respect to
the chosen orientation by �+ and the left-hand side by �−. The scattering of time-harmonic
electromagnetic plane waves from a thin infinitely long cylindrical perfect conductor with the
electromagnetic field E-polarized leads to the following problem:

�U + k2U = 0 in R
2\� (1a)

U± = 0 on �±, (1b)

where U±(x) = limh→0+ U(x ± hν) for x ∈ �. The total field U is decomposed U = u + ui

into the given incident field ui (x) = eikx·d , |d| = 1, and the unknown scattered field u which
is required to satisfy the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0 (2)

uniformly in x̂ = x/|x | with r = |x |. In the case where the positive side �+ of the thin
cylindrical obstacle � is coated by a material with surface impedance λ > 0 we obtain the
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following mixed crack problem for the total field U(x) = u(x) + eikx·d :

�U + k2U = 0 in R
2\� (3a)

U− = 0 on �−, (3b)
∂U +

∂ν
+ ikλU + = 0 on �+, (3c)

where again ∂U±
∂ν
(x) = limh→0+ ν · ∇U(x ± hν) for x ∈ �, and u satisfies the Sommerfeld

radiation condition (2).
We remark that the scattering problem (1a), (1b) can be seen as a particular case of the

scattering problem by a one-side-coated crack (3a)–(3c) if the surface impedance λ is very
large. In this case as λ → ∞ the condition (3c) says that U + = 0 as well.

For further considerations we extend the arc � to an arbitrary piecewise smooth, simply
connected, closed curve ∂D enclosing a bounded domain D such that the normal vector ν on
� coincides with the outward normal vector on ∂D which we again denote by ν. In order
to formulate the above scattering problems more precisely we need to properly define the
trace spaces on �. The classical reference for such trace spaces is Lions and Magenes [15].
The notation there is different from that in [16] and [19]. However, we use the notation
of McLean [16] because this is our main reference for the potential theory needed here. If
H 1

loc(R
2), L2(∂D), H

1
2 (∂D) and H − 1

2 (∂D) denote the usual Sobolev spaces we define the
following spaces (see [16, p 99, 91]):

L2(�) := {u|� : u ∈ L2(∂D)}
H

1
2 (�) := {u|� : u ∈ H

1
2 (∂D)}

H̃
1
2 (�) := {u ∈ H

1
2 (�) : supp u ⊆ �}.

In other words, H̃
1
2 (�) contains functions u ∈ H

1
2 (�) such that their extension by zero to the

whole boundary ∂D is in H
1
2 (∂D) (theorem 3.33 in [16]). As noted in [4, p 43], and [1] (among

many others) H̃
1
2 (�) coincides with the space H

1
2

00(�) introduced by Lions and Magenes in [15]:

H
1
2

00(�) := {u ∈ H
1
2 (�) : ρ− 1

2 u ∈ L2(�)}.
Now we denote by H − 1

2 (�) the dual space of H̃
1
2 (�) and by H̃ − 1

2 (�) the dual space of H
1
2 (�).

Hence we have the chain

D(�) ⊂ H̃
1
2 (�) ⊂ H

1
2 (�) ⊂ L2(�) ⊂ H̃ − 1

2 (�) ⊂ H − 1
2 (�) ⊂ D′(�)

where D(�) := C∞
0 (�). We note that H̃ − 1

2 (�) can also be identified with H
− 1

2

�
(∂D) := {u ∈

H − 1
2 (∂D) : supp u ∈ �} (theorems 3.29 in [16]).
To be able to compare our results with previous work done for the Dirichlet crack

problem [12] and [14] we will consider both Dirichlet and mixed crack problems.

Dirichlet crack problem (DCP)

Given f ∈ H
1
2 (�) find u ∈ H 1

loc(R
2\�) such that

�u + k2u = 0 in R
2\� (4a)

u± = f on �± (4b)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (4c)
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Mixed crack problem (MCP)

Given f ∈ H
1
2 (�) and h ∈ H − 1

2 (�) find u ∈ H 1
loc(R

2\�) such that

�u + k2u = 0 in R
2\� (5a)

u− = f on �− (5b)
∂u+

∂ν
+ ikλu+ = h on �+ (5c)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (5d)

First we establish uniqueness for the DCP and MCP.

Theorem 2.1. The DCP and MCP have at most one solution.

Proof. Denote by BR a sufficiently large ball with radius R containing D and by ∂BR its
boundary. Let u be a solution to the homogeneous Dirichlet or MCP, i.e. u satisfies DCP
with f = 0 or MCP with f = h = 0. Obviously, this solution u ∈ H 1(BR\D) ∪ H 1(D)
satisfies the Helmholtz equation in BR\D and D and the following transmission conditions on
the complementary part ∂D\� of ∂D:

u+ = u− and
∂u+

∂ν
= ∂u−

∂ν
on ∂D\� (6)

where the ‘+’ denotes the limit approaching ∂D from inside D and ‘−’ the limit approaching
∂D from outside of D. An application of the Green formula for u and u in D and BR\D and
using the transmission conditions (6) then yields∫
∂BR

u
∂u

∂ν
ds =

∫
BR\D

|∇u|2 dx +
∫

D
|∇u|2 dx − k2

∫
BR\D

|u|2 dx

− k2
∫

D
|u|2 dx +

∫
�

u+ ∂u+

∂ν
ds −

∫
�

u− ∂u−

∂ν
ds. (7)

Now, for the DCP the boundary condition (4b) implies∫
�

u+ ∂u+

∂ν
ds −

∫
�

u− ∂u−

∂ν
ds = 0,

while for the MCP, since k > 0 and λ > 0, the boundary conditions (5c) and (5b) imply∫
�

u+ ∂u+

∂ν
ds −

∫
�

u− ∂u−

∂ν
ds = ikλ

∫
�

|u+|2 ds.

Hence, for both problems we can conclude that

Im
∫
∂BR

u
∂u

∂ν
ds � 0,

whence from [8, theorem 2.12] and a unique continuation argument we obtain that u = 0 in
R

2\�. �

We define by [u] := u+ − u− and
[
∂u
∂ν

]
:= ∂u+

∂ν
− ∂u−

∂ν
, the jump of u and ∂u

∂ν
respectively,

across the crack �.

Lemma 2.2. If u is a solution of the DCP and MCP then [u] ∈ H̃
1
2 (�) and

[
∂u
∂ν

] ∈ H̃ − 1
2 (�).
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Proof. The proof for the Dirichlet case can be found in [18] and [19]. Following [18] and [19]
we give the proof for the MCP. To this end let u ∈ H 1

loc(R
2\�) be a solution to MCP. Then

[u] ∈ H
1
2 (∂D) and

[
∂u
∂ν

] ∈ H − 1
2 (∂D). Now by local regularity for solutions of Helmholtz

equation we have that u ∈ C∞ away from �, whence [u] = [
∂u
∂ν

] = 0 on ∂D\�. The assertion

of the lemma now follows from the definition of H̃
1
2 (�) and H̃ − 1

2 (�). �
We are now ready to prove the existence of a solution for the above crack problems by

using an integral equation approach. We start with the Green representation formula

u(x) =




∫
∂D

∂u(y)

∂νy
�(x, y) dsy −

∫
∂D

u(y)
∂

∂νy
�(x, y) dsy, x ∈ D

−
∫
∂D

∂u(y)

∂νy
�(x, y) dsy +

∫
∂D

u(y)
∂

∂νy
�(x, y) dsy, x ∈ R

2\D
(8)

where � is the fundamental solution to the Helmholtz equation defined by

�(x, y) := i

4
H (1)

0 (k|x − y|) (9)

with H (1)
0 being a Hankel function of the first kind of order zero. Next by making use of the

known jump relations of the single- and double-layer potentials across the boundary ∂D [16],
and by eliminating the integrals over ∂D\� from (6) we obtain

u− + u+ = −S�

[
∂u

∂ν

]
+ K�[u] on � (10)

∂u−

∂ν
+
∂u+

∂ν
= −K ′

�

[
∂u

∂ν

]
+ T�[u] on �, (11)

where S, K , K ′, T are boundary integral operators

S : H − 1
2 (∂D) −→ H

1
2 (∂D) K : H

1
2 (∂D) −→ H

1
2 (∂D)

K ′ : H − 1
2 (∂D) −→ H − 1

2 (∂D) T : H
1
2 (∂D) −→ H − 1

2 (∂D),

defined by

Sψ(x) := 2
∫
∂D
ψ(y)�(x, y) dsy Kψ(x) := 2

∫
∂D
ψ(y)

∂

∂νy
�(x, y) dsy

K ′ψ(x) := 2
∫
∂D
ψ(y)

∂

∂νx
�(x, y) dsy Tψ(x) := 2

∂

∂νx

∫
∂D
ψ(y)

∂

∂νy
�(x, y) dsy

and S�, K�, K ′
�, T� are the corresponding operators restricted to �. These restricted operators

have the mapping properties [16]

S� : H̃ − 1
2 (�) −→ H

1
2 (�) K� : H̃

1
2 (�) −→ H

1
2 (�)

K ′
� : H̃ − 1

2 (�) −→ H − 1
2 (�) T� : H̃

1
2 (�) −→ H − 1

2 (�).

In the case of the DCP, since [u] = 0 and u+ = u− = f , the relation (10) gives the following
first-kind integral equation for the unknown jump of the normal derivative of the solution across
�:

2 f = −S�

[
∂u

∂ν

]
. (12)

In the case of the MCP the unknowns are both [u] ∈ H̃
1
2 (�) and

[
∂u
∂ν

] ∈ H̃ − 1
2 (�). Using the

boundary conditions (5b) and (5c), together with the relations (10) and (11), we obtain the
following integral equation of the first kind for the unknowns [u] and

[
∂u
∂ν

]
:(

S� −K� + I
K ′
� − I −T� − 2ikλI

) ( [
∂u
∂ν

]
[u]

)
=

( −2 f
2ikλ f − 2h

)
. (13)
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We define H := H̃ − 1
2 (�) × H̃

1
2 (�), H ∗ := H

1
2 (�) × H − 1

2 (�) (which is the dual space of
H ), ζ := ([

∂u
∂ν

]
, [u]

) ∈ H and denote by A the matrix operator on the left-hand side of (13).
In particular, A maps H continuously into H ∗.

Note again that, in the case of the scattering problem, (13) becomes (12) as λ → ∞
because f − 1

ikλh := − 1
ikλ

∂uinc

∂ν
→ 0 and, from the second equation of (13), [u] = 0.

Lemma 2.3. The operator A is Fredholm with index zero. In addition A has a trivial kernel.

Proof. Letφ ∈ H − 1
2 (∂D) andψ ∈ H

1
2 (∂D)be the extension by zero to ∂Dof

[
∂u
∂ν

] ∈ H̃ − 1
2 (�)

and [u] ∈ H̃
1
2 (�) respectively. It is known [16] that the operators S and −T are positive and

bounded below up to a compact perturbation. We denote by L S and LT the compact operators

L S : H − 1
2 (∂D) −→ H

1
2 (∂D), LT : H

1
2 (∂D) −→ H − 1

2 (∂D)

such that

Re〈(S + L S)φ, φ̄〉 � C‖φ‖2

H − 1
2 (∂D)

for φ ∈ H − 1
2 (∂D) (14)

Re〈−(T + LT )ψ, ψ̄〉 � C‖ψ‖2

H
1
2 (∂D)

for ψ ∈ H
1
2 (∂D) (15)

where 〈·, ·〉 denotes the duality pairing between H − 1
2 (∂D) and H

1
2 (∂D). We define S0 :=

S + L S and T0 := −(T + LT ). Then S0 and T0 are bounded below and positive. Furthermore,
let K0 and K ′

0 be the operators corresponding to the Laplace operator, i.e. defined as K and
K ′ with kernel �(x, y) replaced by �0(x, y) = − 1

2π ln |x − y|. Then L K = K0 − K and
L K ′ = K ′

0−K ′ are compact since they have continuous kernels and K0 and K ′
0 are adjoint since

their kernels are real. Collecting together all the compact terms we can write A = (A0 + L A)

where for ζ := ([
∂u
∂ν

]
, [u]

) ∈ H

A0ζ =
(

S0φ|� + (−K0 + I )ψ|�
(K ′

0 − I )φ|� + (T0 − 2ikλI )ψ|�
)

and L Aζ =
( −L Sφ|� + L Kψ|�

−L K ′φ|� + LTψ|�
)
.

In this decomposition L A : H → H ∗ is compact and A0 : H → H ∗ defines the sesquilinear
form

〈A0ζ, ζ 〉H,H ∗ = (S0φ, φ) + (−K0ψ,φ) + (ψ, φ) + (K ′
0φ,ψ)

− (φ,ψ) + (T0ψ,ψ) − 2ikλ(ψ,ψ) (16)

where (u, v) denotes the scalar product on L2(�) defined by
∫
�

uv̄ ds. We now take the real
part of (16). From (14) and (15) and the fact that supp φ ⊆ � and supp ψ ⊆ �, we obtain

Re[(S0φ, φ) + (T0ψ,ψ)] � C
(‖φ‖2

H − 1
2 (�)

+ ‖ψ‖2

H
1
2 (�)

) = C‖ζ‖2
H . (17)

Furthermore, since K0 and K ′
0 are adjoint, we have

Re[(−K0ψ,φ) + (K ′
0φ,ψ)] = Re[(−K0ψ,φ) + (φ, K0ψ)]

= Re[(−K0ψ,φ) + (K0ψ,φ)] = 0 (18)

and furthermore

Re[(ψ, φ)− (φ,ψ) − 2ikλ(ψ,ψ)] = Re[(ψ, φ)− (ψ, φ)− 2ikλ‖ψ‖2] = 0. (19)

Combining (17), (18) and (19) we obtain that the sesquilinear form defined by the operator A0

is coercive, i.e.

Re〈(A − L A)ζ, ζ 〉H,H ∗ � C‖ζ‖2
H for ζ ∈ H̃ − 1

2 (�)× H̃
1
2 (�), (20)

whence the operator A is Fredholm with index zero (theorem 2.33 in [16]).
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We now want to show that the kern A = {0}. To this end let ζ = (α, β) ∈ H be such that
Aζ = 0. Define the potential

u(x) = −
∫
�

α(y)�(x, y) dsy +
∫
�

β(y)
∂

∂νy
�(x, y) dsy x ∈ R

3\�. (21)

This potential is well defined in R
2\� since the densities α and β can be extended by zero

to functions in H − 1
2 (∂D) and H

1
2 (∂D) respectively. Moreover, u ∈ H 1

loc(R
2\�) satisfies the

Helmholtz equation in R
2\� and the Sommerfeld radiation condition. One can in fact show

by computing the jump of u and ∂u
∂ν

across � (cf [16, p 203]) that α = [
∂u
∂ν

]
and β = [u]. In

particular, the jump relations of the single- and double-layer potentials and the first equation
of Aζ = 0 imply

2u−|� = −S

[
∂u

∂ν

]
+ K [u] − [u] = 0. (22)

Moreover, we also have

2
∂u+

∂ν

∣∣∣∣
�

= −K ′
[
∂u

∂ν

]
+ T [u] +

[
∂u

∂ν

]

and from the fact that u+ = [u] on � (22) and the second equation of Aζ = 0 we have

2
∂u+

∂ν
+ 2ikλu+

∣∣∣∣
�

= −K ′
[
∂u

∂ν

]
+

[
∂u

∂ν

]
+ T [u] + 2ikλ[u] = 0. (23)

Hence u defined by (21) is a solution of MCP with zero boundary data and from the uniqueness
theorem 2.1 u ≡ 0 in R

2\� and so ζ := ([
∂u
∂ν

]
, [u]

) ≡ 0. �

It follows from this lemma that the operator A has a bounded inverse A−1 : H ∗ → H .
We also note that from (14) it follows that the operator S is a Fredholm operator with index
zero and therefore S−1 : H

1
2 (�) → H̃ − 1

2 (�) exists and it is bounded.

Theorem 2.4. The DCP has a unique solution. Moreover, this solution satisfies the estimate

‖u‖H 1(BR\�) � C
(‖ f ‖

H
1
2 (�)

)
(24)

where the positive constant C depends on R but not on f .

Proof. Uniqueness follows from theorem 2.1. The solution of the DCP is given by

u(x) = −
∫
�

[
∂u(y)

∂ν

]
�(x, y) dsy, x ∈ R

3\�

where
[
∂u(y)
∂νy

]
is the unique solution of (12). The estimate (24) is a consequence of the continuity

of S−1 from H
1
2 (�) to H̃ − 1

2 (�) and the continuity of the single-layer potential between H̃ −1
2 (�)

and H 1
loc(R

2\�). �

Theorem 2.5. The MCP has a unique solution. Moreover, this solution satisfies the estimate

‖u‖H 1(BR\�) � C
(‖ f ‖

H̃
1
2 (�)

+ ‖h‖
H̃ − 1

2 (�)

)
x ∈ R

3\� (25)

where the positive constant C depends on R but not on f and h.
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Proof. Uniqueness follows from theorem 2.1. The solution of the MCP is given by

u(x) = −
∫
�

[
∂u(y)

∂νy

]
�(x, y) dsy +

∫
�

[u(y)]
∂

∂νy
�(x, y) dsy x ∈ R

3\�,

where
([
∂u
∂ν

]
, [u]

)
is the unique solution of (13). The estimate (25) is a consequence of the

continuity of A−1 from H
1
2 (�)× H − 1

2 (�) to H̃ − 1
2 (�)× H̃

1
2 (�), the continuity of the single-

layer potential from H̃ − 1
2 (�) to H 1

loc(R
2\�) and the continuity of the double-layer potential

from H̃
1
2 (�) to H 1

loc(R
2\�). �

We end this section with a remark on the regularity of solutions to crack problems. It
is in fact known that the solution of the crack problem with Dirichlet boundary conditions
has a singularity near a crack tip no matter how smooth the boundary data. In particular, the
solution does not belong to H

3
2 (R2\�) due to the fact that this solution has a singularity of

the form r
1
2φ(θ), where (r, θ) are the polar coordinates centred at the crack tip [11, 13]. In

the case of the crack problem with mixed boundary conditions one would expect a stronger
singular behaviour of the solution near the tips. Indeed, for this case the solution of the MCP
with smooth boundary data belongs to H

5
4 −ε(R2\�) for all ε > 0 but not to H

5
4 (R2\�) due

to the presence of a term of the form r
1
4 +iηφ(θ) in the asymptotic expansion of the solution in

a neighbourhood of the crack tip where η is a real number. A complete investigation of crack
singularities can be found in the recent paper by Costabel and Dauge [11].

3. Approximation properties

Approximation properties of Herglotz wavefunctions are a fundamental ingredient of the linear
sampling method for solving the inverse problem. A Herglotz wavefunction is a solution of
the Helmholtz equation in R

2 of the form

vg(x) :=
∫
�

g(d)eikx·d ds(d) (26)

where � := {x ∈ R
2 : |x | = 1} is the unit sphere and g ∈ L2(�) is called the kernel of

vg . In [9] and [10] it is shown that a solution of Helmholtz equation in a bounded domain D
with connected boundary can be approximated by a Herglotz wavefunction with respect to the
H 1(D) norm. For crack problems we cannot make use of this result. However, we can show
that the traces corresponding to DCP or MCP of the solution on the both sides of � can be
approximated by the appropriate traces of vg . To this end we define the corresponding trace
operator H : L2(�) → H ∗ := H

1
2 (�)× H − 1

2 (�) by

Hg(x) :=




∫
�

g(d)eikx·d ds(d) x ∈ �−

∂

∂νx

∫
�

g(d)eikx·d ds(d) + ikλ
∫
�

g(d)eikx·d ds(d) x ∈ �+.

(27)

Theorem 3.1. The range of the operator H : L2(�) → H ∗ is dense.

Proof. By the change of variables d → −d it suffices to show that the operator H̃ : L2(�) →
H ∗ defined by

H̃g(x) :=




∫
�

g(d)e−ikx·d ds(d) x ∈ �−

∂

∂νx

∫
�

g(d)e−ikx·d ds(d) + ikλ
∫
�

g(d)e−ikx·d ds(d) x ∈ �+



The linear sampling method for cracks 287

has dense range. To this end we need to show that the dual operator H̃� : H :=
H̃ − 1

2 (�)× H̃
1
2 (�) → L2(�) satisfying

〈H̃g, (α, β)〉H ∗,H = 〈g, H̃�(α, β)〉L2(�),L2(�) (28)

for g ∈ L2(�) and (α, β) ∈ H , is injective. Then the assertion of the theorem follows from
the fact that the range of H̃ can be characterized as [16, p 23]

(range H̃) = akern H̃�

where
akern H̃� := {( f, h) ∈ H ∗ : 〈( f, h), (α, β)〉H ∗,H = 0 ∀(α, β) ∈ kern H̃�}.

One can easily see from (28) by changing the order of integration that

H̃�(α, β)(d) :=
∫
�

α(x)e−ikx·d dsx + ikλ
∫
�

β(x)e−ikx·d dsx

+
∫
�

β(x)
∂

∂νx
e−ikx·d dsx, d ∈ �.

Hence H̃�(α, β) coincides with the far-field pattern of the potential

γ−1V (z) :=
∫
�

α(x)�(z, x) dsx + ikλ
∫
�

β(x)�(z, x) dsx

+
∫
�

β(x)
∂

∂νx
�(z, x) dsx, z ∈ R

2\�
where γ = eiπ/4√

8πk
. Note that V is well defined in R

2\� since the layers α and β can be extended

by zero to functions in H − 1
2 (∂D) and H

1
2 (∂D) respectively. Moreover, V ∈ H 1

loc(R
2\�)

satisfies the Helmholtz equation in R
2\� and the Sommerfeld radiation condition. Now assume

that H̃�(α, β) = 0. This means that the far-field pattern of V is zero and from Rellich’s lemma
and the unique continuation principle we conclude that V = 0 in R

2\�. By now using the
jump relations across ∂D for the single- and double-layer potentials with α and β defined to
be zero on ∂D\� we obtain that

β = [V ]� α + ikλβ = −
[
∂V

∂ν

]
�

and hence α = β = 0. Thus H̃� is injective and the theorem is proven. �
As a special case of the above theorem we obtain the following theorem.

Theorem 3.2. Every function in H
1
2 (�) can be approximated by the trace of a Herglotz

wavefunction vg|� on � with respect to the H
1
2 (�) norm.

4. Inverse scattering problem

We now consider the scattering of an electromagnetic time-harmonic wave by a perfectly
conducting infinite cylindrical surface that is possibly coated on one side by a material with
surface impedance λ. Assuming the electric field is polarized in the TM mode and the plane
wave is propagating in the direction d , the scattered field u satisfies MCP with f := −eikx·d |�−

and h := −(
∂
∂ν

+ ikλ
)
eikx·d ∣∣

�+ (or DCP with f := −eikx·d |�± if there is no coating). It is easy
to show [8] that the scattered field has the asymptotic behaviour

u(x) = eikr

√
r

u∞(x̂, d) + O(r−3/2) (29)

where u∞ is the far-field pattern of the scattered wave x̂ = x/|x | and r = |x |.
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The inverse scattering problem we will consider in this section of our paper is to determine
� from a knowledge of u∞(x̂, d) for x̂ and d on the unit circle �. By using the ideas of [3]
we could also easily consider the limited aperture case where x̂, d ∈ �0 ⊂ �. We will adapt
the linear sampling method developed for scattering from objects with nonempty interior
(see [2, 6, 7]) to solve the inverse problem for cracks. Let us define the far-field operator
F : L2(�) → L2(�) by

(Fg)(x̂) :=
∫
�

u∞(x̂, d)g(d) ds(d) (30)

and consider the far-field equation

(Fg) = �e
∞, (31)

where �e∞ is the far-field pattern of a suitable (to be defined later) solution to the scattering
problem. We want to characterize the crack � by the behaviour of an approximate solution g
of the far-field equation (31). To understand the far-field equation better we define an operator
B : H ∗ → L2(�)which maps the boundary data ( f , h) ∈ H ∗ (recall H ∗ := H

1
2 (�)×H − 1

2 (�))
to the far-field pattern of the solution to the corresponding MCP. By superposition we have the
following relation:

(Fg) = −B(Hg)

where Hg is defined by (27). We now define the compact operator F : H −→ L2(�) by

F(α, β)(x̂) =
∫
�

α(y)e−ikx̂ ·y dsy +
∫
�

β(y)
∂

∂νy
e−ikx̂ ·y dsy (32)

with H := H̃ − 1
2 (�) × H̃

1
2 (�) and observe that for a given pair (α, β) ∈ H , the function

F(α, β)(x̂) is the far-field pattern of the radiating solution γ−1 P(α, β)(x) of the Helmholtz
equation in R

2\� where γ = eiπ/4√
8πk

and the potential P is defined by

P(α, β)(x) :=
∫
�

α(y)�(x, y) dsy +
∫
�

β(y)
∂

∂νy
�(x, y) dsy. (33)

Proceeding as in the proof of lemma 2.3 by using the jump relations across ∂D for the single-
and double-layer potential with densities extended by zero to ∂D we obtain that α := −[

∂P
∂ν

]
�

and β := [P]� . Moreover, P satisfies(
P−(α, β)|�−(

∂
∂ν

+ ikλ
)
P+(α, β)|�+

)
= M

(
α

β

)
(34)

where the operator M : H → H ∗ is given by

1
2

(
S� K� − I

K ′
� − I + ikλS� T� + ikλ(I + K�)

)
.

The operator M is related to the operator A of section 2 by M = 1
2

(
I 0

iλk I I

)
A

(
I 0
0 −I

)
,

whence M−1 : H ∗ → H exists and is bounded. In particular, we have that

F(α, β) = γ−1BM(α, β). (35)

In the special case of DCP we have FD(α) = γ−1BS�(α) where α ∈ H̃ − 1
2 (�), B : H

1
2 (�) →

L2(�) and FD : H̃ − 1
2 (�) → L2(�) is defined by

FD(α)(x̂) :=
∫
�

α(y)e−ikx̂ ·y dsy . (36)
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Lemma 4.1. The operator F : H → L2(�) defined by (32) is injective and has dense range.

Proof. Injectivity follows from the fact that F(α, β) is the far-field pattern of P(α, β) for
(α, β) ∈ H . Hence F(α, β) = 0 implies P(α, β) = 0 and so α := −[

∂P
∂ν

]
�

= 0 and
β := [P]� = 0. Next the dual operator F� : L2(�) → H ∗ is given by

F�g(y) :=




∫
�

g(x̂)e−ikx̂ ·y ds(x̂) y ∈ �−

∂

∂νy

∫
�

g(x̂)e−ikx̂ ·y ds(x̂) y ∈ �+.
(37)

As in the proof of theorem 3.1, it is enough to show thatF� is injective. In particular,F�g = 0
implies that there exists a Herglotz wavefunction vg (with kernel g(−x̂)) such that vg|� = 0
and ∂vg

∂ν

∣∣
�

= 0 (note that the limit of vg and its normal derivative from both sides of the crack is
the same). From the Green representation formula and the analyticity of vg the latter implies
that vg ≡ 0 in R

2 and therefore g = 0. This proves the lemma. �
We obtain a similar result for the operator FD corresponding to the DCP. But in this case

it has dense range under some restriction. More precisely, the following result holds.

Lemma 4.2. The operator FD : H̃ − 1
2 (�) → L2(�) defined by (36) is injective. The range of

FD is dense in L2(�) if and only if there does not exist a Herglotz wavefunction which vanishes
on �.

Proof. The injectivity can be proved in the same way as in lemma 4.1 if one replaces the
potential V by the single-layer potential.

The dual operator F�
D : L2(�) → H

1
2 (�) in this case coincides with vg|� . Hence F�

D is
injective if and only if there does not exist a Herglotz wavefunction which vanishes on �. �

A similar result for the Dirichlet case is obtained by Kress in [14] (theorem 3.2).
From the above analysis we can factorize the far-field operator (30) corresponding to the

MCP as

(Fg) = −γFM−1Hg, g ∈ L2(�). (38)

In the case of the DCP we have

(Fg) = −γFD S−1
� (vg|�), g ∈ L2(�). (39)

The following lemma will help us to choose the right-hand side of the far-field equation (31).

Lemma 4.3. For any piecewise smooth nonintersecting arc L without cusps and two functions
αL ∈ H̃ − 1

2 (L), βL ∈ H̃
1
2 (L) we define�L∞ ∈ L2(�) by

�L
∞(x̂) :=

∫
L
αL (y)e−ikx̂ ·y dsy +

∫
L
βL(y)

∂

∂νy
e−ikx̂ ·y dsy. (40)

Then, �L∞(x̂) ∈ range(F) if and only if L ⊂ �.

Proof. First assume that L ⊂ �. Then since H̃ ± 1
2 (L) ⊂ H̃ ± 1

2 (�) it follows directly from the
definition of F that �L∞(x̂) ∈ range(F).

Now let L �⊂ � and assume, on the contrary, that �L∞(x̂) ∈ range(F), i.e. there exists
α ∈ H̃ − 1

2 (�) and β ∈ H̃
1
2 (�) such that

�L
∞(x̂) =

∫
�

α(y)e−ikx̂ ·y dsy +
∫
�

β(y)
∂

∂νy
e−ikx̂ ·y dsy.
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Hence by Rellich’s lemma and the unique continuation principle we have that the potentials

�L (x) =
∫

L
αL(y)�(x, y) dsy +

∫
L
βL(y)

∂

∂νy
�(x, y) dsy x ∈ R

2\L

P(x) =
∫
�

α(y)�(x, y) dsy +
∫
�

β(y)
∂

∂νy
�(x, y) dsy x ∈ R

2\�

coincide in R
2\(� ∪ L). Now let x0 ∈ L, x0 /∈ �, and let Bε(x0) be a small ball with centre at

x0 such that Bε(x0) ∩ � = ∅. Hence P is analytic in Bε(x0) while �L has a singularity at x0

which is a contradiction. This proves the lemma. �
We note that the statement and proof of lemma 4.3 remain valid for the DCP if we set

βL = 0 and F = FD .
Now let us denote by L the set of open nonintersecting piecewise smooth arcs without

cusps and look for a solution g ∈ L2(�) of the far-field equation

−γ−1 Fg = FM−1Hg = �L
∞ for L ∈ L (41)

where �L∞ is the far-field pattern of �L . If L ⊂ � then the corresponding (αL , βL) is
in H := H̃ − 1

2 (�) × H̃
1
2 (�). Since M(αL , βL ) ∈ H ∗ := H

1
2 (�) × H − 1

2 (�) then, from
theorem 3.1, for every ε > 0 there exists a gL

ε ∈ L2(�) such that

‖M(αL , βL )− HgL
ε ‖H ∗ � ε

whence from the continuity of M−1

‖(αL , βL )− M−1HgL
ε ‖H ∗ � Cε (42)

with a positive constant C . Finally, (38), the continuity of F and the fact thatF(αL , βL) = �L∞
imply that

‖γ−1 FgL
ε +�L

∞‖L2(�) � C̃ε. (43)

Next, we assume that L �⊂ �. In this case �L∞ does not belong to the range of F . But, from
theorem 4.1 and the fact that F is compact, by using Tikhonov regularization we can construct
a regularized solution of

F(α, β) = �L
∞. (44)

In particular, if (αρL , β
ρ

L ) ∈ H is the regularized solution of (44) corresponding to the
regularization parameter ρ (chosen by a regular regularization strategy, e.g. the Morozov
discrepancy principle), we have for a given δ > 0

‖F(αρL , βρL )−�L
∞‖L2(�) < δ, (45)

and

lim
ρ→0

‖(αρL , βρL )‖H = ∞. (46)

Now the above considerations for (αL , βL) can be applied to (αρL , β
ρ

L ). In particular, let
gL
ε,ρ ∈ L2(�) be such that

‖M(αρL , β
ρ

L )− HgL
ε,ρ‖H ∗ � ε ′

and

‖(αρL , βρL )− M−1HgL
ε,ρ‖H ∗ � ε ′′. (47)

Combining (45) and (47) we obtain that for every ε > 0 and δ > 0 there exists a gL
ε,ρ ∈ L2(�)

such that

‖γ−1 FgL
ε,ρ +�L

∞‖L2(�) � ε + δ. (48)
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Furthermore, from (46) and the boundness of M and M−1 we have that

lim
ρ→0

‖HgL
ε,ρ‖H ∗ = ∞ and lim

ρ→0
‖vgL

ε,ρ
‖H 1(BR) = ∞

where vgL
ε,ρ

is the Herglotz wavefunction with kernel gL
ε,ρ ,

lim
ρ→0

‖gL
ε,ρ‖L2(�) = ∞.

We summarize these results in the following theorem, noting that for L ∈ L we have that
ρ → 0 as δ → 0.

Theorem 4.4. Assume that � is an oriented nonintersecting piecewise smooth arc without
cusps. Then if F is the far-field operator corresponding to the scattering problem for mixed
boundary conditions, i.e. (3a)–(3c) and (2), the following are true:

(1) If L ⊂ � then for every ε > 0 there exists a solution gL
ε ∈ L2(�) of the inequality

‖γ−1 FgL
ε +�L

∞‖L2(�) � ε.

(2) If L �⊂ � then for every ε > 0 and δ > 0 there exists a solution gL
ε,δ ∈ L2(�) of the

inequality

‖γ−1 FgL
ε,δ +�L

∞‖L2(�) � ε + δ

such that

lim
δ→0

‖gL
ε,δ‖L2(�) = ∞ and lim

δ→0
‖vgL

ε,δ
‖H 1(BR) = ∞

where vgL
ε,δ

is the Herglotz wavefunction with kernel gL
ε,δ.

The statement and proof of theorem 4.4 remain valid for the DCP if we set βL = 0 in the
definition of�L∞ and assume that there does not exist a Herglotz wavefunction which vanishes
on �.

In particular, if L ⊂ � we can find a bounded solution to the far-field equation (41)
with discrepancy ε whereas if L �⊂ � then there exist solutions of the far-field equation with
discrepancy ε + δ with arbitrary large norm in the limit as δ → 0. For numerical purposes we
need to replace �L∞ in the far-field equation (41) by an expression independent of L. To this
end, assuming that there does not exist a Herglotz wavefunction which vanishes on L, we can
conclude from lemma 4.2 that the class of potentials of the form∫

L
α(y)e−ikx̂ ·y dsy, α ∈ H̃ − 1

2 (L) (49)

is dense in L2(�) and hence for numerical purposes we can replace�L∞ in (41) by an expression
of the form (49). Finally, we note that as L degenerates to a point z with αL an appropriate
delta sequence we have that the integral in (49) approaches −γ e−ikx̂ ·z . Hence, it is reasonable
to replace �L∞ by −�∞ where �∞ := −γ e−ikx̂ ·z when numerically solving the far-field
equation (41). (This is perhaps not too surprising since from [2] we can reconstruct the
shape of an arbitrary thin domain surrounding the crack � by solving the far-field equation
Fg = γ�∞.)
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Figure 1. The true object (top), reconstruction with 0.5% noise (middle) and with 5% noise
(bottom). The wavenumber is k = 3.

5. Numerical examples

In this section we will give some results of numerical experiments to reconstruct an open
arc. The far-field data are synthetic, but corrupted by random noise added pointwise to the
measurements. We test our method only for the case of the Dirichlet boundary condition
since a forward solver for the mixed boundary value problem for cracks needed to produce the
corresponding far-field data is not available to us.

The forward data for the Dirichlet boundary conditions have been computed by the
Nyström method presented in [14].

For the inverse problem we first select an open curve � and compute the far-field pattern.
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Figure 2. The true object (top), reconstruction with 0.5% noise (middle) and with 5% noise
(bottom). The wavenumber is k = 3.

This is obtained as a trigonometric series

u∞ =
N∑

n=−N

u∞,n exp(inθ).

We then add random noise to the Fourier coefficients of u∞ to obtain the approximate far-field
pattern

u∞,a =
N∑

n=−N

u∞,a,n exp(inθ)

where u∞,a,n = u∞,n(1 + εχn) with χn a random variable in [−1 1] and ε = 0.005 and 0.05 in
our examples. The inverse problem is solved using Tikhonov regularization and the Morozov
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discrepancy principle as in [6]. In particular, using the above expression for u∞,a the far-field
equation ∫

�

u∞,a(x̂, d)g(d) ds(d) = e−ikx̂ ·z

is rewritten as an ill-conditioned matrix equation for the Fourier coefficients of g which we
write in the form

Agz = fz . (50)

As already noted, this equation needs to be regularized. To do this, we begin by computing
the singular value decomposition of A, i.e. A = U�V ∗ where U and V are unitary and � is
real diagonal with �l,l = σl, 1 � l � n, where σl are the singular values of A. The solution
of (50) is then equivalent to solving

�V ∗gz = U∗ fz . (51)

Now let ρ = (ρz,1, ρz,2, . . . , ρz,n)
� = U∗ fz . Then the Tikhonov regularization of (51) leads

to the problem of solving

min
gz∈Rn

‖�V ∗gz − ρ‖2
l2 + α‖gz‖2

l2

where α > 0 is the Tikhonov regularization parameter. Defining uz = V ∗gz, we see that the
solution to this problem is

uz,l = σl

σ 2
l + α

ρz,l , 1 � l � n,

and hence

‖gz‖l2 = ‖u‖l2 =
( n∑

l=1

σ 2
l

(σ 2
l + α)2

‖ρz,l‖2

) 1
2

.

Note that we use the discrete l2 norm of gz rather than the L2(�) norm of g. The regularization
parameter α depends on both z and the error in the data {u∞,a}. In order to choose α, we use
the Morozov discrepancy principle. In particular, suppose that we know an estimate for the
error in the far-field operator so that ‖F − Fa

h ‖L2(�) � δ for some δ > 0 (for example in the
left-hand side of figure 1, δ = 0.008 when ε = 0.5% and δ = 0.09 when ε = 5%). Then,
ignoring the error in the right-hand side of the far-field equation, the Morozov procedure picks
α = α(z) to be the zero of

µz(α) =
n∑

j=1

δ2σ 2
j − α2

(α + σ 2
j )

2
‖ρz,l‖2, α > 0.

In order to compare the performance of the linear sampling method with the factorization
method [12] and the Newton method [14], in the following numerical examples we consider
the reconstruction of the open arc (figure 1, top left)

� :=
{
�(s) =

(
2 sin

s

2
, sin s

)
:
π

4
� s � 7π

4

}
,

of the line (figure 1, top right)

� := {�(s) = (−2 + s, 2s) : −1 � s � 1},
both used by Kirsch in [12] and of the curve (figure 2, top left)

� :=
{
�(s) =

(
s, 0.5 cos

πs

2
+ 0.2 sin

πs

2
− 0.1 cos

3πs

2

)
: −1 � s � 1

}

chosen by Kress in [14].
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In our examples we fix the wavenumber k = 3. The sampling domain is the square
[−5, 5]2 and we use a uniform grid for the sampling points z with 201 × 201 points. The far-
field data are given for 32 incident directions and 32 observation directions equally distributed
on the unit circle.

An attractive feature of the linear sampling method is that neither the boundary conditions
nor number of components need to be known a priori. In particular, even though we have
only given examples of reconstruction for Dirichlet boundary conditions, for mixed boundary
conditions one would still solve the same far-field equation. In figure 2 we give an example of
the reconstruction of two disconnected open arcs. As in [12] the forward data are computed
separately for each arc. Then the far-field data inserted in the inverse code are the superposition
of the far-field patterns of the two arcs.
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