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Abstract. We consider the inverse problem to recover a part Γc of the bound-

ary of a simply connected planar domain D from a pair of Cauchy data of a
harmonic function u in D on the remaining part ∂D \ Γc when u satisfies a

homogeneous impedance boundary condition on Γc. Our approach extends a

method that has been suggested by Kress and Rundell [17] for recovering the
interior boundary curve of a doubly connected planar domain from a pair of

Cauchy data on the exterior boundary curve and is based on a system of non-

linear integral equations. As a byproduct, these integral equations can also be
used for the problem to extend incomplete Cauchy data and to solve the in-

verse problem to recover an impedance profile on a known boundary curve. We

present the mathematical foundation of the method and illustrate its feasibility
by numerical examples.

1. Introduction

We consider a simply connected bounded domainD ⊂ R2 with piece-wise smooth
boundary ∂D. By ν we denote the outward unit normal to ∂D. We assume that
the boundary ∂D is written as ∂D = Γm ∪ Γc where Γm and Γc are two open
and connected disjoint portions of ∂D and consider the following boundary value
problem

∆u = 0 in D,(1.1)
u = f on Γm,(1.2)

∂u

∂ν
+ λu = 0 on Γc,(1.3)

where λ is a nonnegative L∞ function on Γc. The inverse problem we are concerned
with is: given the Dirichlet data f on Γm and the (measured) Neumann data

g :=
∂u

∂ν
on Γm

determine the shape of the portion Γc of the boundary or the impedance function λ.
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This problem arises in electrostatic or thermal imagining methods in nonde-
structive testing and evaluations. For instance, one can think of u as representing
the electrostatic potential in a conducting body D of which only the portion Γm

of the boundary is accessible to measurements. Hence, in this application, the
above inverse problem can be interpreted as to determine the shape of the inac-
cessible portion Γc of the boundary from a knowledge of the imposed voltage u|Γm

and the measured resulting current ∂u/∂ν|Γm on Γm. Various applications of this
problem (or slightly modified versions) are discussed in [1, 2, 5] (see also the ref-
erences therein) where, in general, the authors consider only the reconstruction of
the boundary impedance λ as a function of space on the inaccessible portion of the
boundary.

Remark 1.1. In particular, in the above formulation we can consider the cases
λ = 0 and λ = ∞ which correspond to a homogeneous Neumann boundary condition
and a homogeneous Dirichlet boundary condition, respectively, on the unknown part
Γc of the boundary.

In order to formulate (1.1)–(1.3) and the corresponding inverse problem more
precisely we need to define the trace u|Γ for u ∈ H1(D) where Γ is a generic open
subset of ∂D. To this end, let H

1
2 (∂D) be the trace space of H1(D) and H− 1

2 (∂D)
the dual of H

1
2 (∂D) with L2(∂D) as a pivot space. We define

H
1
2 (Γ) := {u|Γ : u ∈ H 1

2 (∂D)}

with the norm
‖u‖

H
1
2 (Γ)

= inf
U ∈ H 1

2 (∂D)
U |Γ = u

{‖U‖
H

1
2 (∂D)

}

and
H̃

1
2 (Γ) := {u ∈ H 1

2 (Γ) : suppu ⊆ Γ}.

In other words, H̃
1
2 (Γ) contains functions u ∈ H

1
2 (Γ) such that their extension

by zero to the whole boundary ∂D is in H
1
2 (∂D) (Theorem 3.33 in [18]). Now

we denote by H− 1
2 (Γ) the dual space of H̃

1
2 (Γ) and by H̃− 1

2 (Γ) the dual space of
H

1
2 (Γ). The following chain of inclusions holds

H̃
1
2 (Γ) ⊂ H

1
2 (Γ) ⊂ L2(Γ) ⊂ H̃− 1

2 (Γ) ⊂ H− 1
2 (Γ).

We note that H̃− 1
2 (Γ) can also be identified with H

− 1
2

Γ
(∂D) := {u ∈ H− 1

2 (∂D) :
suppu ∈ Γ} (Theorem 3.29 in [18]).

It is known [4, 21] that for f ∈ H
1
2 (Γm) there exists a unique solution u ∈

H1(D) of (1.1)–(1.3). Hence, our inverse problem can be formulated as: given
u|Γm

= f ∈ H
1
2 (Γm) and ∂u/∂ν|Γm

= g ∈ H− 1
2 (Γm) determine Γc. Our approach

for solving it is based on a system of nonlinear and ill-posed integral equations for
the unknown boundary and the density of a single-layer potential on ∂D that is
solved using regularized iterations. This method has been recently suggested by
Kress and Rundell [17] to determine the shape of a perfectly conducting obstacle
in a homogeneous background from overdetermined Cauchy data. Ivanyshyn and
Kress [8] have extended it to the Neumann boundary condition and to cracks.
Furthermore, this method has also been employed for inverse obstacle scattering
problems [9, 11].
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Our presentation is organized as follows. In Section 2 we briefly discuss the
open issue of uniqueness. Then, although a general uniqueness result is lacking,
in Section 3, we proceed with deriving our system of nonlinear integral equations.
Then we pause with the inverse problem by an intermezzo on the completion of
Cauchy data in Section 4. Then in Section 5, this is followed by details on an
iterative solution procedure. The paper is concluded with some numerical examples
in Section 6.

2. Uniqueness for the inverse problem

In this section, we begin by discussing the question of whether a single pair of
Cauchy data on Γm uniquely determines the missing part Γc of the boundary ∂D. In
general, for λ ∈ (0,∞) this is not the case as can be seen from the following simple
example for non-uniqueness. More precisely we show that, for a fixed constant
impedance λ, a single measurement of f, g on Γm can give rise to infinitely many
different domains D.

Example 2.1. Let D be a rectangle defined by

D =
{
(x1, x2) ∈ R2 : 0 < x1 < π/2, −a < x2 < 1

}
for some a > 0 and set

Γm := {(0, x2) : 0 < x2 < 1} ∪ {(π/2, x2) : 0 < x2 < 1} ∪ {(x1, 1) : 0 < x1 < π/2} .

We consider the entire harmonic function u given by

u(x1, x2) = (cosx1 + sinx1) ex2

and choose λ = 1. Then, elementary calculations show that on Γc := ∂D \ Γm we
have that

∂u

∂ν
+ u = 0

with the outward normal ν to ∂D. Hence, if we choose as Cauchy data on Γm the
restrictions f = u|Γm

and g = ∂u/∂ν|Γm
we have infinitely many solutions to the

inverse problem, since a > 0 can be chosen arbitrarily.

The following example indicates that it is impossible to simultaneously recover
the shape and the impedance.

Example 2.2. Let D be the rectangle with corners (0, 0), (π, 0), (0, a), and (π, a)
for some positive a. Then the entire harmonic function u given by

u(x1, x2) = cosx1

(
coshx2 −

λ cosh a+ sinh a
cosh a+ λ sinh a

sinhx2

)
has Dirichlet values u(x1, 0) = cosx1 on the lower horizontal part of ∂D, and
satisfies a homogeneous Neumann condition on the two vertical parts of ∂D and
a homogeneous impedance boundary condition with constant impedance λ on the
upper horizontal part of ∂D. From

∂u

∂x2
(x1, 0) = −λ cosh a+ sinh a

cosh a+ λ sinh a
cosx1

we observe that we cannot recover simultaneously both a and λ from the normal de-
rivative of u on the lower horizontal boundary since this provides only one equation
for two unknowns.

Inverse Problems and Imaging Volume 1, No. 2 (2007), 229–245
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However, in the particular case when homogeneous Dirichlet or Neumann bound-
ary conditions are assumed on the unknown part of the boundary, which corresponds
to λ = ∞ and λ = 0, respectively, it is easy to show that one pair of Cauchy data
uniquely determines the missing part of the boundary.

Theorem 2.3. Assume that in (1.1)–(1.3) we have u = 0 on Γc, then f = u|Γm

and g = ∂u/∂ν|Γm
uniquely determine Γc provided that f 6= 0.

Proof: We suppose that there are two bounded domains D1 and D2 having Γm as
part of their boundary such that the corresponding solutions ui for i = 1, 2 satisfy
∆ui = 0 in Di, ui = 0 on ∂Di \ Γm and u1 = u2 = f and ∂u1/∂ν = ∂u2/∂ν = g on
Γm. Then Holmgren’s theorem implies that u1 = u2 in D1 ∩D2.

Without loss of generality we may assume that there exists a nonempty connected
component Ω of D2 \ D1. Then from u1 = u2 in D1 ∩ D2 and the boundary
conditions for u1 and u2 we can conclude that u2 = 0 on the boundary of Ω. Now
the maximum-minimum principle for harmonic functions implies that u2 = 0 in Ω
and consequently, by analyticity, u2 = 0 in D2. However, this contradicts the fact
that f is not identically zero. �

Remark 2.4. In the case of Neumann boundary data on Γc, i.e. for λ = 0 by
using the boundary value problem for the harmonic conjugate of u one can prove
that f = u|Γm and g = ∂u/∂ν|Γm uniquely determine Γc provided that f is not a
constant.

We note that as a consequence of Holmgren’s theorem it is easy to show [5]
that for a fixed D the impedance coefficient λ as a function of space is uniquely
determined from one pair of Cauchy data on an open subset of the boundary ∂D.

3. Nonlinear integral equations

To derive nonlinear integral equations that are equivalent to the inverse problem
we represent the solution u of (1.1)–(1.3) as surface superposition of point sources
given by the fundamental solution

Φ(x, y) =
1
2π

ln
1

|x− y|
, x 6= y,

with an unknown density ϕ defined on the boundary ∂D. In particular, we write

(3.1) u(x) =
∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ D,

with a density ϕ ∈ H− 1
2 (∂D). From now on, without loss of generality, we assume

that there exists a point x0 ∈ D such that |x − x0| 6= 1 for all x ∈ ∂D. Then
Theorem 3.16 in [12] guarantees that the corresponding single-layer boundary inte-
gral operator is injective. (An alternative approach to guarantee the injectivity via
boundedness of u at infinity is to modify the above definition (3.1) by adding an
appropriate term as in Theorem 7.30 in [16].)

In (3.1) the portion Γc = ∂D \ Γm of the boundary and the density ϕ are the
unknowns. To set up a system of equations to solve for these two unknowns we take
the traces of (3.1) on the boundary ∂D requiring that u|Γm = f and ∂u/∂ν|Γm = g.
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Hence we obtain

(3.2)
Sϕ = f on Γm,

K ′ϕ+
ϕ

2
= g on Γm

where S : H− 1
2+s(∂D) → H

1
2+s(∂D) and K ′ : H− 1

2+s(∂D) → H− 1
2+s(∂D),

−1/2 ≤ s ≤ 1/2, are continuous boundary integral operators defined by

(Sϕ)(x) :=
∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

and

(K ′ϕ)(x) :=
∫

∂D

∂Φ(x, y)
∂ν(x)

ϕ(y) ds(y), x ∈ ∂D.

In addition, on the unknown part Γc = ∂D \ Γm of the boundary ∂D the equation

(3.3) K ′ϕ+
ϕ

2
+ λSϕ = 0 on Γc

is satisfied.
Conversely, if ∂D and ϕ ∈ H− 1

2 (∂D) satisfy the system (3.2) and (3.3) then
Γc = ∂D \ Γm solves the inverse problem. Indeed, if we define u by (3.1) then we
obtain an H1(D) solution of the Laplace equation [18]. Furthermore, approaching
the boundary ∂D from inside D from (3.2) and (3.3) we also have that u satisfies the
mixed boundary value problem (1.1)–(1.3) and ∂u/∂ν|Γm

= g. Hence, Γc = ∂D\Γm

provides a solution of the inverse problem and we can state the following result.

Theorem 3.1. The inverse problem and the system of integral equations (3.2) and
(3.3) are equivalent.

The system of integral equations (3.2) and (3.3) equivalent to our inverse problem
is not unique. For instance, representing the solution u as a combination of a single-
and double-layer potential one can derive a different system of integral equations
equivalent to our inverse problem [17]. The benefit of the approach presented here
is that it avoids hypersingular integral equations.

For the further investigation of the nonlinear integral equations and, in particular,
for the numerical solution a parameterization is required. In this preliminary study,
for the sake of simplicity we confine ourselves to smooth boundaries ∂D of class C2,
that is, we represent

(3.4) ∂D := {z(t) : t ∈ [0, 2π]}

with a 2π periodic C2–smooth function z : R → R2 such that z is injective on
[0, 2π) and satisfies z′(t) 6= 0 for all t. Without loss of generality we may assume
that the known part of the boundary Γm and the unknown part of the boundary
Γc are given by

Γm := {z(t) : t ∈ (0, π)} and Γc := {z(t) : t ∈ (π, 2π)} .

In order to incorporate possible singularities of the solutions at the end points of
Γc and Γm, in principle, we could use suitable transformations such as the cosine
transform introduced in [22] and used in [14, 19] or sigmoidal transformations as
investigated in [6] and used in [7, 13] for domains with corners. However, for the
present paper we have chosen not to pursue this idea any further.
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In view of (3.4), setting

(3.5) ψ(t) := |z′(t)|ϕ(z(t))

we obtain the parameterized integral operators

(3.6) (S̃ψ)(t) =
1
2π

∫ 2π

0

ln
1

|z(t)− z(τ)|
ψ(τ) dτ

and

(3.7) (K̃ ′ψ)(t) =
1

2π |z′(t)|

∫ 2π

0

[z′(t)]⊥ · [z(τ)− z(t)]
|z(t)− z(τ)|2

ψ(τ) dτ +
ψ(t)

2 |z′(t)|
for t ∈ [0, 2π]. Here, we used the notation a⊥ = (a2,−a1) for any vector a =
(a1, a2), that is, a⊥ is obtained by rotating a counter clockwise by 90 degrees. The
parameterized form of the equations (3.2) and (3.3) now reads

(3.8)
S̃ψ = f ◦ z on [0, π],

K̃ ′ψ = g ◦ z on [0, π],

and

(3.9) K̃ ′ψ + λ S̃ψ = 0 on [π, 2π].

For the discretization of the integral operators we note that the 2π periodic kernel
of S̃ can be decomposed in the form

ln
1

|z(t)− z(τ)|
= − ln

∣∣∣∣sin t− τ

2

∣∣∣∣+ ln

∣∣∣∣sin t− τ

2

∣∣∣∣
|z(t)− z(τ)|

where the second term is smooth with diagonal values

lim
τ→t

ln

∣∣∣∣sin t− τ

2

∣∣∣∣
|z(t)− z(τ)|

= − ln 2|z′(t)|.

Hence, the well established trigonometric interpolation quadrature rules on equidis-
tant meshes for logarithmic singularities as described in [16] are available. The 2π
periodic kernel of K̃ ′ is smooth with diagonal term

[z′(t)]⊥ · z′′(t)
4π |z′(t)|3

and therefore the trapezoidal rule (which is also a trigonometric interpolation quad-
rature) can be employed.

4. Completion of Cauchy data

A particular case of our setting is the completion of Cauchy data. This problem
can be formulated as follows: Given f ∈ H

1
2 (Γm) and g ∈ H− 1

2 (Γm) find α ∈
H

1
2 (Γc) and β ∈ H− 1

2 (Γc) such that there exists a harmonic function u ∈ H1(D)
satisfying

u = f and
∂u

∂ν
= g on Γm

and u = α and
∂u

∂ν
= β on Γc. Note that this Cauchy problem admits at most

one solution and is known to be ill-posed. In the literature many approaches have
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been developed to address the completion of Cauchy data (see e.g. [3, 10] and the
references therein). Our integral equation method provides an alternative solution.
In particular, if ϕ ∈ H− 1

2 (∂D) solves the system of linear integral equations

(4.1)
Sϕ = f on Γm,

K ′ϕ+
ϕ

2
= g on Γm,

then α = u|Γc
and β = ∂u/∂ν|Γc

where u ∈ H1(D) is given by

(4.2) u(x) =
∫

∂D

Φ(x, y)ϕ(y) dy, x ∈ D,

provides the solution of the Cauchy problem.
In practice, given the measured data f and g we solve the ill-posed equation

(4.1) by using regularization methods such as Tikhonov regularization. Since the
L2-norm is the appropriate norm to measure the data error, it is natural to apply the
regularization scheme in the space of square integrable functions. For this reason,
we consider the operator A : L2(∂D) → L2(Γm)× L2(Γm) defined by

Aϕ =

 Sϕ

K ′ϕ+
ϕ

2

 .

Note that S : L2(∂D) → H1(∂D) whereas K ′ : L2(∂D) → L2(∂D). In order to
apply the Tikhonov regularization scheme to (4.1) we need the following result.

Theorem 4.1. The operator A is injective with dense range.

Proof: Injectivity follows from Holmgren’s theorem. Indeed, if Aϕ = 0 for some
ϕ ∈ L2(∂D) then u defined by (4.2) satisfies u|Γm

= 0 and ∂u/∂ν|Γm
= 0 from

inside D whence u = 0 in D follows. The trace theorem now implies that Sϕ = 0.
Since our geometric assumptions on D guarantee injectivity of S we conclude that
ϕ = 0.

Next we prove that A has dense range. To this end, we consider the adjoint
operator A∗ : L2(Γm)× L2(Γm) → L2(∂D) defined by

(Aϕ, [α, β])L2(Γm)×L2(Γm),L2(Γm)×L2(Γm) = (ϕ,A∗[α, β])L2(∂D),L2(∂D)

where (·, ·) denotes the respective L2 inner product. We want to show that A∗ is
injective which implies that A has dense range. Let α̃ ∈ L2(∂D) and β̃ ∈ L2(∂D)
be the extensions of α ∈ L2(Γm) and β ∈ L2(Γm) by zero to the whole boundary
∂D. Then, for every ϕ ∈ L2(∂D) we have that

(Aϕ, [α, β]) = (ϕ, Sα̃) +
(
ϕ,Kβ̃

)
+

(
ϕ,
β̃

2

)
=
(
ϕ, Smα+Kmβ +

β

2

)
where Sm and Km are defined by

(Smα)(x) :=
∫

Γm

Φ(x, y)α(y) ds(y), x ∈ ∂D,

and

(Kmβ)(x) :=
∫

Γm

∂Φ(x, y)
∂ν(y)

β(y) ds(y), x ∈ ∂D.
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Hence, we conclude that

A∗(α, β) = Smα+Kmβ +
β

2
.

Now, let A∗(α, β) = 0 for some α ∈ L2(Γm) and β ∈ L2(Γm). We define

u(x) =
∫

Γm

Φ(x, y)α(y) ds(y) +
∫

Γm

∂Φ(x, y)
∂ν(y)

β(y) ds(y)

which is a solution of the Laplace equation in R2 \ Γm. Letting x → ∂D from
outside D and using the jump relations for single- and double-layer potentials with
L2 densities we obtain that

(4.3) u|∂D = Smα+Kmβ +
β

2
= 0.

Following the proof of Theorem 3.16 in [12] to deal with the logarithmic behavior
of the single-layer potential at infinity, from (4.3) we obtain that u = 0 in R2 \D
and consequently, by analyticity, u = 0 in D as well. From this, finally, the jump
relations across ∂D imply that α = β = 0 which proves that A∗ is injective. �

In order to indicate the feasibility of this approach to completing Cauchy data
we illustrate its application to the inverse problem of determining the impedance
for a fixed domain D, that is, we want to recover the impedance function λ on Γc

from a Cauchy pair (f, g) on Γm. To this end, using the notations introduced at the
beginning of this section, we just observe that after completing the Cauchy data,
that is, after determining α and β on Γc we obtain the impedance function from
the equation

(4.4) β + λα = 0 on Γc.

Therefore, we have to carry out three steps: first we need to solve the ill-posed
equation (4.1), for example, by Tikhonov regularization for the density ϕ on ∂D. For
this, of course, we use the parameterized version (3.8) of (4.1) and the trigonometric
quadratures based on a equidistant mesh tj = jπ/n, j = 1, . . . , 2n, for the parameter
t in (3.4) as mentioned at the end of Section 3. Then we obtain α and β as the
traces of the potential (4.2) on Γc, that is, α = Sϕ|Γc

and β = (K ′ϕ + ϕ/2)|Γc
.

Finally, we compute the impedance function λ at the collocation points xi = z(tn+i),
i = 1, . . . , n, on Γc by solving

(4.5) β(xi) + λ(xi)α(xi) = 0, i = 1, . . . , n.

In order to avoid instabilities arising from dividing by small values of α(xi) we
represent the unknown λ as a linear combination

(4.6) λ =
K∑

k=1

akwk

of appropriate basis functions wk and solve the equation that is obtained by inserting
(4.6) into (4.5) in the least squares sense for the coefficients ak.

In numerical examples we used cubic B-splines on an equidistant subdivision
(with respect to the parameter in the parameterization (3.4)). The example is for
an ellipse with parameterization

z(t) = (a cos t, b sin t), t ∈ [0, 2π],

Inverse Problems and Imaging Volume 1, No. 2 (2007), 229–245
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and the impedance profile

λ(t) =


0, t ∈ [0, π],

sin4 t, t ∈ [π, 2π].

The synthetic Cauchy data (f, g) on Γm were obtained by solving the impedance
problem in D with boundary condition

∂u

∂ν
+ λu = h

with

h(t) =

 sin4 t, t ∈ [0, π],

0, t ∈ [π, 2π],

by the double-layer boundary integral equation approach (avoiding an inverse crime!).
The numerical solution of the resulting hypersingular integral equation was obtained
via trigonometric collocation and quadratures as described in [15]. The reconstruc-
tions were performed by using 64 grid points for discretizing the single-layer poten-
tial. The Figures 1 and 2 show the reconstructed profile both for exact data and for
3% random noise added to the Neumann data g (with respect to the L2 norm). The
Tikhonov regularization parameter was chosen by trial and error as 10−9 for exact
data and 10−6 for noisy data. For the B-spline approximation of the impedance
profile the dimension K = 10 was used. The reconstructions are for a = 0.3 and
b = 0.2 in Figure 1 and for a = 0.3 and b = 0.4 in Figure 2. As to be expected,
the reconstructions are slightly better for the smaller ellipse since here the Cauchy
problem has to be solved over a smaller distance.

5. The iteration scheme

We now return to the inverse problem to determine the part Γc of the boundary
curve ∂D assuming that the impedance is known. For the sake of simplicity, from
now on we only consider the case where λ is constant. Because of the linearity of
the integral operators with respect to ψ, the linearization of (3.8) and (3.9) leads to

(5.1)
S̃(ψ, z) + S̃(χ, z) + dS̃(ψ, z; ζ) = f ◦ z on [0, π],

K̃ ′(ψ, z) + K̃ ′(χ, z) + dK̃ ′(ψ, z; ζ) = g ◦ z on [0, π]

and

(5.2)
K̃ ′(ψ, z) + K̃ ′(χ, z) + dK̃ ′(ψ, z; ζ)

+λ[S̃(ψ, z) + S̃(χ, z) + dS̃(ψ, z; ζ)] = 0 on [π, 2π].

Given a current approximation for z and ψ, the linear system (5.1) and (5.2) needs
to be solved for ζ and χ to obtain the update z + ζ for the parameterization of Γc

and ψ + χ for the single-layer density. Of course, the perturbation ζ is assumed
different from zero only on the unknown part Γc of ∂D. Then, in an obvious way,
this procedure is iterated.

The following alternative approach is more in the spirit of Section 3 on the
Cauchy problem and it resembles a decomposition method in the sense that it
decomposes the inverse problem into a severely ill-posed linear problem and an at
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Figure 1. Reconstruction of an impedance profile for an ellipse
with semi-axis a = 0.3 and b = 0.2.

most mildly ill-posed nonlinear problem. For this, given a current approximation z
for the parameterization, we first solve the ill-posed linear equation

(5.3)
S̃ψ = f ◦ z on [0, π],

K̃ ′ψ = g ◦ z on [0, π]

for ψ and then, keeping ψ fixed, we solve the linearized equation

(5.4) K̃(ψ, z) + dK̃ ′(ψ, z; ζ) + λ[S̃(ψ, z) + dS̃(ψ, z; ζ)] = 0 on [π, 2π]

to obtain the update z + ζ for the boundary parameterization. In principle, this
second method has the advantage that the computational cost of one iteration step
is smaller as compared to the above full linearization. In our numerical examples
described at the end of the paper we only used this second approach.

Clearly, in both approaches the ill-posedness requires that a stabilization is in-
corporated. Since we are only performing an initial analysis, we restrict ourselves
to the well-established Tikhonov regularization.

The Fréchet derivatives of the integral operators S̃ and K̃ ′ with respect to z can
be obtained by differentiating their kernels with respect to z (see Potthast [20]). In
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Figure 2. Reconstruction of an impedance profile for an ellipse
with semi-axis a = 0.3 and b = 0.4.

particular we have

dS̃(ψ, z; ζ)(t) = − 1
2π

2π∫
0

[z(t)− z(τ)] · [ζ(t)− ζ(τ)]
|z(t)− z(τ)|2

ψ(τ) dτ, t ∈ [0, 2π],

and

dK̃ ′(ψ, z; ζ)(t) =
1

2π|z′(t)|

2π∫
0

{
2[z′(t)]⊥ ·[z(t)− z(τ)][z(t)− z(τ)]·[ζ(t)− ζ(τ)]

|z(t)− z(τ)|4

− [z′(t)]⊥ · [ζ(t)− ζ(τ)] + [ζ ′(t)]⊥ · [z(t)− z(τ)]
|z(t)− z(τ)|2

}
ψ(τ) dτ

−z
′(t) · ζ ′(t)
|z′(t)|2

K̃ ′(ψ, z)(t), t ∈ [0, 2π].

We note that in both expressions we need to keep in mind that both for the inte-
gration and for the evaluation, the perturbation ζ is different from zero only in the
interval [π, 2π]. We also note that the kernels of dS̃ and dK̃ ′ are smooth with their
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diagonal values given by

−z
′(t)·ζ ′(t)

2π |z′(t)|2
and − [z′(t)]⊥ ·z′′(t) z′(t) · ζ ′(t)

2π |z′(t)|5
+

[z′(t)]⊥ ·ζ ′′(t) + [ζ ′(t)]⊥ ·z′′(t)
4π |z′(t)|3

,

respectively.
We complete our analysis with proving the injectivity of the full linearization

at the exact solution for the limiting case λ = ∞. Note that injectivity for the
linearization in the general case 0 < λ <∞ is open.

Theorem 5.1. Let z be the parameterization of the exact boundary ∂D and let
ψ = |z′|ϕ ◦ z where ϕ satisfies (3.2)–(3.3) for λ = ∞. Assume that χ ∈ H− 1

2 [0, 2π]
and ζ ∈ C2[0, 2π] with ζ = 0 on [0, π] and ζ(t) · ν(z(t)) 6= 0 for t ∈ (π, 2π) satisfy
the homogeneous system

(5.5)
S̃(χ, z) + dS̃(ψ, z; ζ) = 0 on [0, π],

K̃(χ, z) + dK̃ ′(ψ, z; ζ) = 0 on [0, π]

and

(5.6) S̃(χ, z) + dS̃(ψ, z; ζ) = 0 on [π, 2π].

Then χ = 0 and ζ = 0.

Proof: Let us define

W (x) =

2π∫
0

Φ(x, z(τ))χ(τ) dτ +

2π∫
0

ψ(τ) gradx Φ(x, z(τ)) · ζ(τ) dτ, x ∈ D.

Taking the boundary values of W and the normal derivative of W when approach-
ing the boundary ∂D from inside D, from (5.5) we obtain that W |Γm = 0 and
∂W/∂ν|Γm = 0. Therefore Holmgren’s theorem implies that W = 0 in D. Now
subtracting W = 0 on Γc from (5.6) we observe that ζ · gradu = 0 on Γc for the
solution u of (1.1)–(1.3) (for λ = ∞). In view of the boundary condition u = 0 on
Γc and ζ(t) · ν(z(t)) 6= 0 for t ∈ (π, 2π) a second application of Holmgren’s theorem
yields ζ = 0. Finally, due to our geometric assumption on D, from the injectivity
of the single-layer operator for ∂D we obtain χ = 0. �

6. Numerical examples

In this final section we present some numerical results to illustrate the feasibility
of the reconstruction method as described in the previous section. We confine
ourselves to the second method, that is, each iteration step consists of first solving
(5.3) for the density ψ and then solving (5.4) to update the boundary.

For further simplicity we assume that the unknown part Γc can be represented
in polar coordinates, that is, we express

z(t) = r(t)(cos t, sin t), t ∈ [π, 2π],

with a C2 function r : [π, 2π] → (0,∞). For the numerical examples we approximate
r by a cubic B-splines on an equidistant subdivision of [π, 2π].

We begin with presenting examples for the homogeneous Dirichlet boundary
condition on the unknown boundary part Γc, that is, for the limiting case λ = ∞.
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The synthetic Cauchy data (f, g) on Γm were obtained by solving the Dirichlet
problem in D with boundary condition u = f with

f(t) =

 sin4 t, t ∈ [0, π],

0, t ∈ [π, 2π].

by the double-layer boundary integral equation approach (avoiding again an in-
verse crime!). For the solution of the ill-posed integral equation (5.3) via Tikhonov
regularization the single-layer potential was discretized as indicated at the end of
Section 3 using 64 equidistant grid points. The corresponding regularization pa-
rameter γ1 was chosen by trial and error. For the solution of (5.4) we also used
a regularization with an H1 penalty term on r with regularization parameter γ2.
Furthermore, we observed the need of an additional regularization by updating the
density ψ by ψnew = γψ + (1− γ)ψold where ψ denotes the solution of (5.3) and γ
had to be chosen from an interval close to [0.4, 0.7].

Figure 3. Reconstruction of (6.1) for exact (left) and noisy data (right).

We started the iterations by choosing as an initial approximation for Γc the half
circle in the lower half plane with end points coinciding with the end points z(0) and
z(π) of Γm. We started the iteration by performing L iteration steps for the cubic
spline approximation of r on a subdivision of [π, 2π] in five equidistant intervals.
Then we successively increased the number of equidistant subintervals of [π, 2π] for
the spline approximation of r, using the result for a subdivision into m subintervals
as an initial guess for Γc and performed again L iterations on m + 1 subintervals.
This process was repeated until a final number M of subintervals was reached. We
note that the iteration number L and the disretization level M can be considered
as additional regularization parameters. In the following three examples, by trial
and error, we chose L = 8 and M = 10. The figures give reconstructions for exact
data and for 1% random noise added to the Neumann data.

Figure 3 shows reconstructions for an apple shaped contour with the parameter-
ization

(6.1) z(t) =
0.5 + 0.4 cos t+ 0.07 sin 2t

1 + 0.7 cos t
(cos t, sin t), t ∈ [0, 2π].

The full lines represent the exact boundary and the broken lines the reconstructions.
The reconstructions with exact data are for γ1 = 10−9 and γ2 = 10−6 and the
reconstructions with random noise for γ1 = 10−7 and γ2 = 10−4.
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Figure 4. Reconstruction of (6.2) for exact (left) and noisy data (right).

Figure 5. Reconstruction of (6.3) for exact (left) and noisy data (right).

Reconstructions for a perturbed circle with the parameterization

(6.2) z(t) =


(0.3 cos t, 0.3 sin t), t ∈ [0, π],

(0.3 cos t, 0.3 sin t+ 0.15 sin6 t), t ∈ [π, 2π].

are shown in Figure 4. The regularization parameters are γ1 = 10−7 and γ2 = 10−5

for exact data and γ1 = 10−4 and γ2 = 10−3 for noisy data.
Finally, Figure 5 illustrates reconstructions for a kite shaped contour with the

parameterization

(6.3) z(t) = (0.3 cos t+ 0.15 cos 2t, 0.3 sin t), t ∈ [0, 2π].

The reconstructions are obtained with γ1 = 10−7 and γ2 = 10−5 for exact data and
with γ1 = 10−4 and γ2 = 10−3 for noisy data.

Summarizing, the numerical experiments show rather satisfying reconstructions
for the Dirichlet boundary condition with reasonable stability against noisy data.
Further research is required on a more sophisticated choice of the regularization
parameters including the dimension of the space for the boundary approximation
and a stopping rule for terminating the iterations. In addition, we expect better
reconstructions by incorporating graded meshes in the neighborhood of the end
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Figure 6. Reconstruction of (6.1) for λ = 5 (upper left), λ = 10
(upper right), λ = 50 (lower left) and λ = 100 (lower right).

Figure 7. Reconstruction of (6.2) (left) and (6.3) (right) for λ = 10.

points of Γm and Γc do deal with the singularities of the solutions as mentioned in
Section 3. This also would open up the possibility of using different Cauchy data
sets.

We finish the paper with a few examples for the homogeneous impedance bound-
ary condition on Γc. In principle, we proceeded as in the case of the Dirichlet
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boundary condition. The synthetic Cauchy data (f, g) on Γm were obtained as in
the examples for recovering the impedance at the end of Section 4, but with con-
stant impedance λ. The reconstructions were obtained with M = 8 and L = 6.
Figure 6 shows the reconstructions for the apple shaped contour for different values
of the impedance constant λ with γ1 = 10−6 and γ2 = 10−4. Figure 7 shows the
reconstructions for the perturbed circle and the kite for λ = 10 with γ1 = 10−6 and
γ2 = 10−8.

For smaller values of λ the reconstructions start to deteriorate which could be
due to the way the synthetic data were created since for small λ we get close to
the not uniquely solvable Neumann problem. In general, as mentioned above for
the Dirichlet problem, even more research is required in order to improve on the
performance of the algorithm for the impedance boundary condition.
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