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Abstract

In a simply connected planar domain D a pair of Cauchy data of a harmonic
function u is given on an accessible part of the boundary curve, and on the non-
accessible part u is supposed to satisfy a homogeneous impedance boundary
condition. We consider the inverse problems to recover the non-accessible
part of the boundary or the impedance function. Our approach extends the
method proposed by Kress and Rundell [21] for the corresponding problem
to recover the interior boundary curve of a doubly connected planar domain
and can be considered complementary to the potential approach developed by
Cakoni and Kress [7]. It is based on a system of nonlinear and ill-posed integral
equations which is solved iteratively by linearization. We will present the
mathematical foundation of the method and, in particular, establish injectivity
for the linearized system at the exact solution when the impedance function is
known. Numerical reconstructions will show the feasibility of the method.

1 Introduction
We consider an inverse problem originating from corrosion detection. Let D ⊂ R2

be a simply connected bounded domain with piece-wise smooth boundary ∂D. By
ν we denote the outward unit normal to ∂D. We assume that the boundary is
composed of ∂D = Γm ∪ Γc where Γm and Γc are two open disjoint portions of ∂D.
The electrostatic potential u in a conductor D with the non-accessible boundary
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part Γc affected by corrosion is modeled by the following boundary value problem

∆u = 0 in D, (1.1)

u = f on Γm, (1.2)
∂u

∂ν
+ λu = 0 on Γc, (1.3)

where λ is a nonnegative L∞ function on Γc which can be interpreted as the corrosion
coefficient and f is the imposed voltage on the accessible boundary part Γm.

The inverse problem we are concerned with is to determine the shape of Γc or the
impedance function λ from an imposed voltage f on Γm and the measured current

g =
∂u

∂ν
on Γm,

i.e. the resulting Neumann data. Various applications of this problem and modified
versions are discussed in the literature (see e.g. [1, 3, 8]). In general, only the
reconstruction of the impedance function λ as a function in space on the inaccessible
portion of the boundary is considered whereas in [7] both inverse problems were
investigated.

To formulate the boundary value problem (1.1)–(1.3) and the inverse problems
more precisely we recall the definitions of some Sobolev spaces. Let Γ ⊂ ∂D be a
generic open subset of the boundary. If H1(D) denotes the usual Sobolev space and
H1/2(∂D) its usual trace space, then we define

H1/2(Γ) := {u|Γ : u ∈ H1/2(∂D)},
H̃1/2(Γ) := {u ∈ H1/2(Γ) : suppu ⊆ Γ},
H−1/2(Γ) := (H̃1/2(Γ))′ the dual space of H̃1/2(Γ),

H̃−1/2(Γ) := (H1/2(Γ))′ the dual space of H1/2(Γ).

The norm on H1/2(Γ) is given by

‖u‖H1/2(Γ) = inf{‖v‖H1/2(∂D) : v ∈ H1/2(∂D), v|Γ = u}

and the following chain of inclusion holds

H̃1/2(Γ) ⊂ H1/2(Γ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ) ⊂ H−1/2(Γ)

(see [22] for further discussion on these Sobolev spaces). It is known [6, 14] that for
f ∈ H1/2(Γm) there exists a unique solution u ∈ H1(D) of (1.1)–(1.3). Hence our
inverse problems can be formulated as: given λ as a function in space, f ∈ H1/2(Γm)
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and g ∈ H−1/2(Γm) determine Γc such that the unique solution u ∈ H1(D) of (1.1)–
(1.3) satisfies ∂u/∂ν|Γm = g. We call this inverse problem the inverse shape problem.
By the inverse impedance problem we understand the determination of the impedance
function from a given pair of Cauchy data (f, g) on Γm assuming the whole boundary
∂D is known. That means, given Γc, f ∈ H1/2(Γm) and g ∈ H−1/2(Γm), we want to
determine λ such that the unique solution u ∈ H1(D) of (1.1)–(1.3) again satisfies
∂u/∂ν|Γm = g. In [7], by two of us, it was suggested to solve these problems using an
approach based on a single-layer potential with a density on ∂D leading to a system
of nonlinear and ill-posed integral equations that is solved using regularized iterations.
In general, for direct and inverse boundary value problems in potential theory one
has the choice between two complementary solution methods via boundary integral
equations: the potential approach and the direct approach via Green’s representation
theorem. To establish this principle for the inverse problems under consideration, in
this paper we follow a method suggested by Kress and Rundell [21] based on Green’s
theorem to determine the shape of a perfectly conducting inclusion in a homogeneous
background from overdetermined Cauchy data. Extensions of that method to inverse
problems with other boundary conditions were given among others in [11, 15]. The
inverse problem to simultaneously recover the shape and impedance was recently
considered by Rundell in [24] where, in particular, an algorithm was proposed which
is also based on [21].

Addressing the ill-posedness of the inverse problems different stability estimates
for the impedance λ were proved in [1, 8, 9] and recently reviewed by Alessandrini et
al. [2]. The question of uniqueness for the inverse shape problem was considered in
[7] where by a counterexample it was shown that a single pair of Cauchy data on
Γm does not uniquely determine the missing part Γc. However, Bacchelli [5] recently
established that two pairs of Cauchy data on Γm, that is, (f1, g1), (f2, g2) uniquely
determine both the impedance function λ and the shape of the domain D provided
that f1, f2 are linearly independent and one of them, say f1, is positive. Given one
pair of Cauchy data the inverse impedance problem is known to be uniquely solvable
(see [8]).

The plan of the paper is as follows. In section 2 we will derive our systems
of integral equations and prove equivalence to the inverse shape and the inverse
impedance problem in a Sobolev space setting. However, the ill-posedness of the
inverse problems suggests to treat these systems in an L2 setting appropriate for
the discussion of their regularization. We then proceed considering the regulariza-
tion of the inverse impedance problem in section 3 including numerical examples.
After describing the linearization and the iteration scheme for the inverse shape
problem in section 4 the paper is concluded with some numerical examples for shape
reconstructions in section 5.

3



2 Integral equations
In this section we will develop the systems of integral equations that we are going to
employ for the solution of the two inverse problems. We begin by noting that the
inverse problems are related to the following problem of completion of Cauchy data:
Given f ∈ H1/2(Γm) and g ∈ H−1/2(Γm) find α ∈ H1/2(Γc) and β ∈ H−1/2(Γc) such
that there exists a harmonic function u ∈ H1(D) satisfying

u = f and
∂u

∂ν
= g on Γm

and u = α and ∂u/∂ν = β on Γc. Note that this Cauchy problem admits at most
one solution and is known to be ill-posed. In the literature many approaches have
been developed for its solution (see e.g. [4], [7] and the references therein). Our
solution method is based on Green’s theorem and provides an alternative approach.

To this end, in terms of the fundamental solution

Φ(x, y) =
1

2π
ln

1

|x− y|
, x 6= y, (2.1)

we introduce the single- and double-layer potential operators

S : H−1/2(∂D)→ H1/2(∂D) and K : H1/2(∂D)→ H1/2(∂D)

defined by

(Sϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D, (2.2)

and
(Kϕ)(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D, (2.3)

as well as their restrictions to the boundary portions given by

(Skjϕ)(x) :=

∫
Γk

Φ(x, y)ϕ(y) ds(y), x ∈ Γj, (2.4)

and
(Kkjϕ)(x) :=

∫
Γk

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γj, (2.5)

for k, j = m, c.
From now on, without loss of generality because of the possibility of scaling, we

assume that there exists a point x0 ∈ D such that |x− x0| 6= 1 for all x ∈ ∂D. Then
Theorem 3.16 in [17] guarantees that the operator S defined by (2.2) is injective.
Now we can state the following theorem.
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Theorem 2.1 Let α ∈ H1/2(Γc) and β ∈ H−1/2(Γc) be a solution to the Cauchy
problem. Then there exist ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D) such that

ϕ

2
+Kϕ− Sψ = 0 (2.6)

and ϕ and ψ have restrictions ϕ|Γm = f , ϕ|Γc = α and ψ|Γm = g, ψ|Γc = β,
respectively. Conversely, for any solution ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D) of
(2.6) satisfying ϕ|Γm = f and ψ|Γm = g we have that α := ϕ|Γc and β := ψ|Γc is a
solution of the Cauchy problem.

Proof. Let u ∈ H1(D) correspond to a solution to the Cauchy problem. Then
for ϕ := u|∂D ∈ H1/2(∂D) and ψ := ∂u/∂ν|∂D ∈ H−1/2(∂D) clearly we have that
ϕ|Γm = f , ϕ|Γc = α and ψ|Γm = g, ψ|Γc = β. From Green’s representation formula
for u ∈ H1(D) it follows that

u(x) =

∫
∂D

{
ψ(y)Φ(x, y)− ϕ(y)

∂Φ(x, y)

∂ν(y)

}
ds(y), x ∈ D,

and (2.6) is obtained by restricting this to ∂D with the aid of the jump relations.
Conversely, if ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D) solve (2.6) then we see that ũ

defined by

ũ(x) =

∫
∂D

{
ψ(y)Φ(x, y)− ϕ(y)

∂Φ(x, y)

∂ν(y)

}
ds(y), x ∈ R2 \ ∂D,

belongs to H1(D) and H1
loc(R2 \D) and satisfies ∆ũ = 0 in D and R2 \D. From (2.6)

we conclude ũ+|∂D = 0 where by + we indicate the limit obtained by approaching ∂D
from outside D. Using our assumption that there exists x0 ∈ D such that |x−x0| 6= 1
for all x ∈ ∂D, following and modifying the proof of Theorem 3.16 in [17] to deal
with the logarithmic behavior of the single-layer potential at infinity from ũ+ = 0 on
∂D we obtain that ũ vanishes in R2 \D. Approaching the boundary ∂D from inside
D by the jump relations from ũ = 0 in R2 \ D we conclude that ũ−|∂D = ϕ and
∂ũ−/∂ν|∂D = ψ on ∂D. Therefore, in view of the condition ϕ|Γm = f and ψ|Γm = g
it follows that α := ϕ|Γc and β := ψ|Γc provide a solution of the Cauchy problem.�

Corollary 2.2 The inverse shape problem is equivalent to solving (2.6) under the
constraints ϕ|Γm = f and ψ|Γm = g and

ψ + λϕ = 0 on Γc

for Γc and ϕ|Γc .
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Corollary 2.3 The inverse impedance problem is equivalent to solving (2.6) for ϕ|Γc

and ψ|Γc. The unknown impedance follows from

ψ|Γc + λϕ|Γc = 0.

The question of existence of a solution to the ill-posed integral equation (2.6)
stated in the Corollaries 2.2 and 2.3, that is, a characterization of Cauchy data
(f, g) for which a solution to the inverse shape and the inverse impedance problem,
respectively, exists, is the wrong question to ask. Instead of this, assuming that
we have correct data or small perturbations thereof, for a stable numerical solution
regularization schemes need to be applied. Since the L2-norm is the appropriate norm
to measure the data error, it is natural to consider the equation in L2 spaces rather
than in the trace spaces that are appropriate only for the corresponding forward
problems. Hence, for the remainder of the paper we will assume that the data f and
g are in L2(Γm) and look for solutions of (2.6) with ϕ|Γc and ψ|Γc in L2(Γc).

To simplify notations, in terms of the given functions f and g we define the
combined single- and double-layer potential

w(x) :=

∫
Γm

{
f(y)

∂Φ(x, y)

∂ν(y)
− g(y)Φ(x, y)

}
ds(y), x ∈ R2 \ Γm. (2.7)

Then, after separating and renaming the unknowns, in view of Corollary 2.2 we
solve the inverse shape problem by a regularized solution Γc and ϕ ∈ L2(Γc) of the
system of integral equations

ϕ

2
+Kccϕ+ Scc(λϕ) = −w|Γc (2.8)

and
Kcmϕ+ Scm(λϕ) = −w|Γm , (2.9)

where w|Γm in (2.9) represents the limit obtained by approaching Γm from outside
D. Clearly, these equations are nonlinear with respect to Γc. For convenience we
note that

w|Γc = Kmcf − Smcg and w|Γm =
f

2
+Kmmf − Smmg. (2.10)

Analogously, in view of Corollary 2.3 the inverse inverse impedance problem is
solved by a regularized solution ϕ, ψ ∈ L2(Γc) of the system of integral equations

ϕ

2
+Kccϕ− Sccψ = −w|Γc ,

Kcmϕ− Scmψ = −w|Γm .
(2.11)

6



For the further investigation of the integral equations and, in particular, for the
numerical solution a parameterization is required. For the sake of simplicity we
confine ourselves to smooth boundaries ∂D of class C2, that is, we represent

∂D = {z(t) : t ∈ [0, 2π]}

with a 2π periodic C2-smooth function z : R→ R2 such that z is injective on [0, 2π)
and satisfies z′(t) 6= 0 for all t. Without loss of generality we may assume that Γc
and Γm are given by

Γc = {z(t) : t ∈ (0, π)}, Γm = {z(t) : t ∈ (π, 2π)}.

From now on we denote by zc the parameterization function z for t ∈ (0, π) and by
zm for t ∈ (π, 2π). In applications it is natural that at the connection points of Γc
and Γm corners can develop. In order to incorporate the corresponding singularities
of the solution u one can employ sigmoidal transformations as investigated in [12]
and used in [13] and [19]. For the following analysis we did not pursue this idea.
However, in sections 3 and 5 we will show some numerical examples for corner
domains where we have incorporated sigmoidal transformations in order to improve
the accuracy. Setting ψ = ϕ ◦ zc we obtain from (2.4) and (2.5) the parameterized
integral operators

(S̃cjψ)(t) =
1

2π

∫ π

0

ln
1

|zj(t)− zc(τ)|
|z′c(τ)|ψ(τ) dτ

and

(K̃cjψ)(t) =
1

2π

∫ π

0

[z′c(τ)]⊥ · [zj(t)− zc(τ)]

|zj(t)− zc(τ)|2
ψ(τ) dτ +

δcj
2
ψ(t)

for t ∈ [0, 2π]. Here we used the convention

δcj =

1 if j = c,

0 if j = m,

and the notation a⊥ = (a2,−a1) for any vector a = (a1, a2), that is, a⊥ is obtained
by rotating a clockwise by 90 degrees. For the discretization of the integral operators
we note that the kernel of S̃cc can be decomposed in the form

ln
1

|zc(t)− zc(τ)|
= − ln

∣∣∣∣sin t− τ2

∣∣∣∣+ ln

∣∣sin t−τ
2

∣∣
|zc(t)− zc(τ)|

,

where the second term is smooth with diagonal values

lim
t→τ

ln

∣∣sin t−τ
2

∣∣
|zc(t)− zc(τ)|

= − ln 2|z′c(t)|.

7



Hence, the well established trigonometric interpolation quadrature rules on equidis-
tant meshes for logarithmic singularities as described in [20] are available. The
kernels of K̃cj are smooth with the diagonal values for K̃cc given through the limit

lim
τ→t

[z′j(τ)]⊥ · [zj(t)− zj(τ)]

|zj(t)− zj(τ)|2
=

[z′j(t)]
⊥ · z′′j (t)

2|z′j(t)|2
, j = c,m, (2.12)

for j = c. For the parameterized form of the combined single- and double-layer
potentials wj = w ◦ zj evaluated on Γj , j = c,m, due to the jump relations, we have

wm(t) =
1

2π

∫ 2π

π

f(zm(τ))
[z′m(τ)]⊥ · [zm(t)− zm(τ)]

|zm(t)− zm(τ)|2
dτ +

1

2
f(zm(t))

−
∫ 2π

π

g(zm(τ))Φ(zm(t), zm(τ))|z′m(τ)| dτ, t ∈ [π, 2π]

and

wc(t) =
1

2π

∫ 2π

π

f(zm(τ))
[z′m(τ)]⊥ · [zc(t)− zm(τ)]

|zc(t)− zm(τ)|2
dτ

−
∫ 2π

π

g(zm(τ))Φ(zc(t), zm(τ))|z′m(τ)| dτ, t ∈ [0, π].

The kernel of wc is smooth and in the kernel of wm, the term arising from the
single-layer potential has again a logarithmic singularity which can be treated as
the one for the operator S̃cc. The term stemming from the double-layer potential is
smooth with diagonal values given by (2.12) for j = m. For the smooth kernels in
all the operators, of course, the trapezoidal rule can be employed for the numerical
approximation.

With the identification of λ = λ ◦ zc the parameterized form of the equations
(2.8) and (2.9) now reads

K̃ccψ + S̃cc(λψ) = −wc (2.13)

and
K̃cmψ + S̃cm(λψ) = −wm. (2.14)

Analogously, the system (2.11) has a similar transformed version.

3 Solution of the inverse impedance problem
We continue with the discussion of the inverse impedance problem, i.e. the completion
of Cauchy data. For this we recall the ill-posed linear system (2.11) and consider the
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corresponding operator A : L2(Γc)× L2(Γc)→ L2(Γc)× L2(Γm) defined by

A(ϕ, ψ) =

(
1
2

I +Kcc −Scc

Kcm −Scm

)(
ϕ

ψ

)
.

Theorem 3.1 The operator A is injective with dense range.

Proof. Let A(ϕ, ψ) = 0 for some ϕ ∈ L2(Γc) and ψ ∈ L2(Γc). We define

v(x) =

∫
Γc

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y)−

∫
Γc

Φ(x, y)ψ(y) ds(y) (3.1)

which is a solution of the Laplace equation in R2 \ Γc. For x → ∂D from outside
D by the jump relations for single- and double-layer potentials with L2 densities it
follows from A(ϕ, ψ) = 0 that v+ = 0 on ∂D. By our geometric assumption as in the
proof of theorem 2.1 we obtain that v = 0 in R2 \D. Now, by analyticity, it follows
that v = 0 in D and from this the jump relations across ∂D imply that ϕ = ψ = 0.

To prove that A has dense range we consider the adjoint operator A∗ : L2(Γc)×
L2(Γm)→ L2(Γc)× L2(Γc) which is given by

A∗(α, β) =

(
1
2

I +K ′cc K ′mc

−Scc −Smc

)(
α

β

)
.

Here K ′cc and K ′mc denote obvious restrictions of the normal derivative of the single-
layer potential

K ′ : L2(∂D)→ L2(∂D)

defined by

(K ′ϕ)(x) :=

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D. (3.2)

Now we define χ ∈ L2(∂D) by

χ :=

α on Γc,

β on Γm,

and obtain that A∗(α, β) = Ã∗(χ) where

Ã∗χ :=

(
K ′χ+ χ

2

−Sχ

)∣∣∣∣∣
Γc

.
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If Ã∗χ = 0 for some χ ∈ L2(∂D) then u defined by

u(x) =

∫
∂D

Φ(x, y)χ(y) ds(y), x ∈ D,

satisfies u|Γc = 0 and ∂u/∂ν|Γc = 0 from inside D whence u = 0 in D follows by
Holmgren’s theorem. The trace theorem now implies that Sχ = 0. By our geometric
assumption on D we have injectivity of S and therefore we conclude that χ = 0.
Hence, α = β = 0 follows which proves that A∗ is injective. �

To show the feasibility of this approach to completing Cauchy data we want to use
it for the inverse problem of determining the impedance for a fixed domain D, i.e.
we want to recover the impedance function λ on Γc from a pair of Cauchy data (f, g)
on Γm. To this end, we just recall that after completing the Cauchy data, i.e. after
determining ϕ and ψ on Γc, we obtain the impedance function from the equation

ψ + λϕ = 0 on Γc. (3.3)

Therefore, we have to carry out two steps: first we need to solve the ill-posed equation
(2.11), for example, by Tikhonov regularization for the densities ϕ and ψ on Γc. For
this, of course, we use the parameterized version of (2.11) and the trigonometric
quadratures based on a graded mesh with a sigmoidal transformation

ω : [0, π]→ [0, π],

which is bijective, strictly monotonically increasing and sufficiently smooth (see [19]).
We will use two different transformations in the examples. The first one is a modified
version of a transformation introduced by Korobov [18]

ωp(t) =
2p− 1

2(2π)2p−2

(
2p− 2
p− 1

)∫ 2t

0

[s(2π − s)]p−1 ds, t ∈ [0, π], (3.4)

and the second one is a modification of a rational transformation introduced by Kress
[19]

ωp(t) = π
[v(t)]p

[v(t)]p + [v(2π − 2t)]p
, t ∈ [0, π], (3.5)

with the cubic polynomial v given by

v(t) =

(
2

p
− 1

)
(π − 2t)3

π2
+

2

p
(2t− π) + π, t ∈ [0, π].

The parameter p in the substitution functions is the so-called grading parameter.
For larger values of p the grid points are more densely accumulated at the end points
of the integration interval.
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The final step in the computation is to obtain the impedance function λ at the
collocation points xi = zc(ω(ti)), i = 1, . . . , n, on Γc by solving

ψ(xi) + λ(xi)ϕ(xi) = 0, i = 1, . . . , n. (3.6)

In order to avoid instabilities arising from dividing by small values of α(xi) we
represent the unknown λ as a linear combination

λ =
K∑
k=1

akwk (3.7)

of appropriate basis functions wk and solve the equation that is obtained by inserting
(3.7) into (3.6) in the least squares sense for the coefficients ak. In numerical examples
we used cubic B-splines on an equidistant subdivision with respect to the parameter
t in the parameterization

Γc = {z(ω(t)) : t ∈ (0, π)}.

In the first example we consider an ellipse with parameterization

zc(t) = − (0.3 cos t, 0.2 sin t) , t ∈ [0, π],

zm(t) = − (0.3 cos t, 0.2 sin t) , t ∈ [π, 2π],

whereas in the second example the boundary is parameterized by half of an ellipse

zc(t) = − (0.3 cos t, 0.2 sin t) , t ∈ [0, π],

and half of a bowl shaped contour

zm(t) = −(1 + sin t)(0.3 cos t, 0.2 sin t), t ∈ [π, 2π].

We note that in the second example there are corners at the connection of the two
boundary parts. The impedance profile in both examples is

λ(t) =

{
sin4 t, t ∈ [0, π],

0, t ∈ [π, 2π],

and the synthetic Cauchy data (f, g) on Γm were obtained by solving the impedance
problem in D with boundary condition

∂u

∂ν
+ λu = h,
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with

h(t) =

{
0, t ∈ [0, π],

sin4 t, t ∈ [π, 2π],

by a method based on Green’s formula with double the number of discretization
points than in the inverse solver and the sigmoidal transformation (3.4) with grading
parameter p = 4 (to avoid an inverse crime). The reconstructions were performed by
using 2n = 128 grid points for discretizing the integral operators on the boundary
∂D and the transformation function (3.5) with p = 6. The figures 3.1 and 3.2 show
the reconstructed profile both for exact data and for 3% random noise added to
the Neumann data g (with respect to the L2-norm). The exact impedance profile is
represented by the full (blue) lines and the reconstructions by the dash-dotted (green)
lines for exact data and the dotted (red) lines for perturbed data. The Tikhonov
regularization parameter was chosen by trial and error as 10−9 for exact data and
10−6 for noisy data. For the B-spline approximation of the impedance profile the
dimension K = 11 was used. As to be expected, the quality of the reconstructions in
the vicinity of the corner points in the case of the bowl-ellipse shaped contour (figure
3.2) is not as accurate as the one for the smooth boundary in the example of the
ellipse (figure 3.1).
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Figure 3.1: Reconstruction of an impedance profile for an ellipse with semi-axis
a = 0.3 and b = 0.2.

12



0.5 1 1.5 2 2.5 3

−0.2

0.2

0.4

0.6

0.8

1

 

 
exact
reconstructed
3% noise

0

0

Figure 3.2: Reconstruction of an impedance profile for a bowl-ellipse shaped contour.

4 The iteration scheme for the inverse shape prob-
lem

We now return to the inverse shape problem, i.e. to determine the non-accessible
part Γc of the boundary curve ∂D assuming that the impedance as a function of
space is known. Because of the linearity of the integral operators with respect to ψ,
the linearization of (2.13) and (2.14) with respect to ψ and zc leads to

K̃cc(ψ, zc) + K̃cc(χ, zc) + dK̃cc(ψ, zc; ζ) + S̃cc(λψ, zc)

+ S̃cc(λχ, zc) + dS̃cc(λψ, zc; ζ) = −wc − dwc(zc, ζ)
(4.1)

and

K̃cm(ψ, zc) + K̃cm(χ, zc) + dK̃cm(ψ, zc; ζ) + S̃cm(λψ, zc)

+ S̃cm(λχ, zc) + dS̃cm(λψ, zc; ζ) = −wm.
(4.2)

Given an approximation for zc and ψ, the linear system (4.1) and (4.2) needs to be
solved for ζ and χ to obtain the update zc + ζ for the parameterization of Γc and
ψ + χ for the boundary values. Then, in an obvious way, this procedure is iterated.
Clearly, the ill-posedness requires to incorporate a regularization in order to achieve
stability. For this, we employed Tikhonov regularization with a Sobolev penalty term
on the parameterization and an L2 penalty term on the boundary values.

The Fréchet derivatives of the operators S̃cj , K̃cj and the potential wc with respect
to zc can be obtained by formally differentiating their kernels with respect to zc (see

13



[23]). In particular, we have

dS̃cc[ψ, zc; ζ](t) =− 1

2π

∫ π

0

[zc(t)− zc(τ)] · [ζ(t)− ζ(τ)]

|zc(t)− zc(τ)|2
|z′c(τ)|ψ(τ) dτ

+
1

2π

∫ π

0

ln
1

|zc(t)− zc(τ)|
ψ(τ)

z′c(τ) · ζ ′(τ)

|z′c(τ)|
dτ, t ∈ [0, π].

We note that the perturbation ζ is different from zero only on Γc and that ζ(0) =

ζ(π) = 0. The kernel of the first term of dS̃cc is smooth with diagonal values

lim
τ→t

[zc(t)− zc(τ)] · [ζ(t)− ζ(τ)]

|zc(t)− zc(τ)|2
=
z′c(t) · ζ ′(t)
|z′c(t)|2

.

The second term can be treated as in the case of the operator S̃cc. The derivative of
K̃cc in direction ζ is given by

dK̃cc[ψ, zc; ζ] =− 1

π

∫ π

0

[z′c(τ)]⊥ · [zc(t)− zc(τ)][zc(t)− zc(τ)] · [ζ(t)− ζ(τ)]

|zc(t)− zc(τ)|4
ψ(τ) dτ

+
1

2π

∫ π

0

[z′c(τ)]⊥ · [ζ(t)− ζ(τ)] + [ζ ′(τ)]⊥ · [zc(t)− zc(τ)]

|zc(t)− zc(τ)|2
ψ(τ) dτ

for t ∈ [0, π]. The kernel H(t, τ) of the operator dK̃cc is smooth with the diagonal
values

H̃(t) := lim
τ→t

H(t, τ)

given by

H̃(t) =
[z′c(τ)]⊥ · ζ ′′(t) + [ζ ′(τ)]⊥ · z′′c (t)

2|z′c(t)|2
− [z′c(τ)]⊥ · z′′c (t)z′c(t) · ζ ′(t)

|z′c(t)|4
.

Analogously, the Fréchet derivatives of the operators S̃cm, K̃cm and the potential wc
are given by

dS̃cm[ψ, zc; ζ](t) =
1

2π

∫ π

0

[zm(t)− zc(τ)] · ζ(τ)

|zm(t)− zc(τ)|2
|z′c(τ)|ψ(τ) dτ

+
1

2π

∫ π

0

ln
1

|zm(t)− zc(τ)|
ψ(τ)

z′c(τ) · ζ ′(τ)

|z′c(τ)|
dτ,

for t ∈ [π, 2π],

dK̃cm[ψ, zc; ζ] =
1

π

∫ π

0

[z′c(τ)]⊥ · [zm(t)− zc(τ)][zm(t)− zc(τ)] · ζ(τ)

|zm(t)− zc(τ)|4
ψ(τ) dτ

+
1

2π

∫ π

0

[ζ ′(τ)]⊥ · [zm(t)− zc(τ)]− [z′c(τ)]⊥ · ζ(τ)

|zm(t)− zc(τ)|2
ψ(τ) dτ,
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for t ∈ [π, 2π] and

dwc[zc; ζ](t) =
1

2π

∫ 2π

π

f(zm(τ))
[z′m(τ)]⊥ · ζ(t)

|zc(t)− zm(τ)|2
dτ

− 1

π

∫ 2π

π

f(zm(τ))
[z′m(τ)]⊥ · [zc(t)− zm(τ)][zc(t)− zm(τ)] · ζ(t)

|zc(t)− zm(τ)|4
dτ

+
1

2π

∫ 2π

π

g(zm(τ))
[zc(t)− zm(τ)] · ζ(t)

|zc(t)− zm(τ)|2
|z′m(τ)| dτ, t ∈ [0, π].

The operators dS̃cm, dK̃cm and dwc all have smooth kernels and, of course, dwc[zc; ζ] =
ζ · (gradw) ◦ zc.

For the following theorem on injectivity of the linearization (4.1)–(4.2) at the
exact solution we need some restricting assumptions on the geometry of the domain
and the regularity of the solution u on the boundary. We assume that a subset of
Γm is part of a closed analytic curve such that Γc does not intersect with the closed
interior of that curve. Then, by the uniqueness for the interior Dirichlet problem
and analyticity, any harmonic function defined in R2 \ Γc that vanishes on Γm is
identically zero. Further we assume that the exact solution u is continuous on Γc. In
view of the regularity results for the direct problem (see [10]) the latter regularity
assumption is not too restrictive.

Theorem 4.1 Let zc be the parameterization of Γc, let ψ ∈ C([0, π]) satisfy (2.13)–
(2.14) for a nonnegative λ ∈ C([0, π]) and let Γm satisfy the above geometric assump-
tion. Then for any solution ζ ∈ C2([0, π]) and χ ∈ L2([0, π]) to the homogeneous
system

K̃cc(χ, zc) + dK̃cc(ψ, zc; ζ) + S̃cc(λχ, zc) + dS̃cc(λψ, zc; ζ) + dwc(zc, ζ) = 0 (4.3)

and

K̃cm(χ, zc) + dK̃cm(ψ, zc; ζ) + S̃cm(λχ, zc) + dS̃cm(λψ, zc; ζ) = 0 (4.4)

we have that ζ = 0 and χ = 0.

Proof. We begin by noting that, for sufficiently small ζ, the perturbed boundary
part Γc as given by

Γzc+ζ = {z(t) + ζ(t) : t ∈ [0, π]}

can be represented in the form

Γzc+ζ = {z(t) + q(t)[z′(t)]⊥ : t ∈ [0, π]}

15



in terms of the normal vector [z′(t)]⊥ to the unperturbed boundary and a function q
with q(0) = q(π) = 0 (for a proof in the case of closed curves see [16]). Therefore in the
Fréchet derivatives dS̃cc, dS̃cm, dK̃cc, dK̃cm and dwc we can replace the perturbation
vector ζ by ζ = q[z′c]

⊥.
We define a harmonic function V in R2 \ Γc by

V (x) =−
∫ π

0

χ(τ)∇xΦ(x, z(τ)) · [z′(τ)]⊥ dτ

+

∫ π

0

ψ(τ)∇x

(
∇xΦ(x, z(τ)) · [z′(τ)]⊥

)
· ζ(τ) dτ

−
∫ π

0

ψ(τ)∇xΦ(x, z(τ)) · [ζ ′(τ)]⊥ dτ

+

∫ π

0

λ(τ)χ(τ)Φ(x, z(τ))|z′(τ)| dτ

−
∫ π

0

λ(τ)ψ(τ)∇xΦ(x, z(τ)) · ζ(τ) |z′(τ)| dτ

+

∫ π

0

λ(τ)ψ(τ)Φ(x, z(τ))
z′(τ) · ζ ′(τ)

|z′(τ)|
dτ, x ∈ R2 \ Γc.

(4.5)

Then from the representation of the involved operators it can be seen that
equation (4.4) implies that V = 0 on Γm. Hence, V = 0 in R2 \ Γc as consequence of
our geometric assumption. Inserting ζ = q[z′c]

⊥ in (4.5) we observe that in addition
to single-layer potentials the definition of V contains double-layer potentials in line
one and five, the normal derivative of a double-layer potential in line two and a
derivative of a single-layer potential in line three. Therefore, the jump relations
imply the relation

χ+
ζ ′ · z′

|z′|2
ψ + λqψ |z′| = 0 on Γc

and from this, by the assumptions on ψ and λ, we can conclude that χ is continuous
on Γc.

Since the single- and double-layer potentials with continuous density in (4.5)
represent continuous bounded functions in D, the only parts of V that can be become
unbounded are the second and the third term. We rewrite V = 0 in D into the form

V1 + V2 + V3 + Vr = 0 in D (4.6)
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where Vr is the sum of the bounded terms of V corresponding to single- and double-
layer potentials and

V1(x) := 2

∫ π

0

[(x− z(τ)) · ν(z(τ))]2

|x− z(τ)|4
q(τ)ψ(τ) dτ,

V2(x) := −
∫ π

0

1

|x− z(τ)|2
q(τ)ψ(τ) dτ,

V3(x) :=

∫ π

0

[x− z(τ)] · [ζ ′(τ)]⊥

|x− z(τ)|2
ψ(τ) dτ

for x ∈ D. The kernel in the integral for V1 coincides with the square of the kernel
of the double-layer potential. Hence, one can proceed as in the proof of Theorem
6.17 in [20] to see that the function V1 is bounded in D. Therefore, in view of (4.6),
the sum V2 + V3 also must be bounded.

Now observing that the singularity in the integral for V2 is stronger than the
singularity for V3, following the proof of theorem 4.1 in [16], the assumption that
qψ 6= 0 can be brought to a contradiction to the boundedness of V2 +V3 in D. Hence,
qψ = 0. An application of Holmgren’s theorem and the homogeneous impedance
boundary condition for u on Γc leads to the conclusion that u cannot vanish on an
open subset of Γc. Therefore, in view of ψ = u ◦ zc, we see that q = 0 which also
gives ζ = 0.

So V reduces to

V (x) = −
∫ π

0

χ(τ)∇xΦ(x, z(τ)) · [z′(τ)]⊥ dτ +

∫ π

0

λ(τ)χ(τ)Φ(x, z(τ))|z′(τ)| dτ

for x ∈ R2 \ Γc. Since V = 0 in R2 \ Γc by approaching Γc from inside D in view of
the jump relations for single- and double-layer potentials we conclude that

−χ+ K̃cc(χ, zc) + S̃cc(λχ, zc) = 0.

This together with (4.3) finally yields χ = 0 and this concludes the proof. �

5 Numerical examples
In this final section we present some numerical results to illustrate the feasibility of
the reconstruction method. The direct data were obtained using a solver based on
Green’s formula using the sigmoidal transformation (3.4) in the parameterization of
the boundary parts with parameter p = 6 and twice the number of discretization
points than in the inverse solver. Furthermore, in the inverse solver we used the
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substitution function (3.5) with parameter p = 4. This clearly avoids an inverse
crime. In all the examples the synthetic Cauchy data (f, g) on Γm were obtained by
solving the impedance boundary value problem with given Neumann data

g(t) = sin4 t, t ∈ [π, 2π],

on Γm and with different impedance functions λ on Γc, namely

λ1(t) = 0.5,

λ2(t) = 2.5,

λ3(t) = sin4 t+ 1

for t ∈ [0, π]. The system of integral equations (4.1)–(4.2) was solved using Tikhonov
regularization with an H2 penalty term on ζ with regularization parameter β and an
L2 penalty term on the density ψ with parameter α. The parameters were found by
trial and error and are indicated in the figures below. The potentials were discretized
using 2n = 64 grid points on each boundary part. The update ζ of the boundary
part Γc is given by

ζ =
N∑
j=1

ajqj ∈ QN ,

with basis elements of the approximation space QN , N ≥ 3, chosen as

qj(t) = −rj(t)(cos t, sin t), j = 1, . . . , N, 0 ≤ t ≤ π,

with radial parts
r1(t) = t(π − t)2, r2(t) = t2(π − t)

and
rj(t) = sin(j − 2)t, j = 3, . . . , N,

(see [25]). We started the iterations with an initial approximation for Γc given by the
half circle in the lower half plane with end points coinciding with the end points z(π)
and z(2π) of Γm. The iteration was started by performing L iteration steps on a
subdivision of [0, π] in five intervals, graded by the sigmoidal transformation, for the
approximation of qj. Then we successively increased the number of subintervals of
[0, π] for the approximation of qj using the result for a subdivision into m subintervals
as initial guess for Γc and performed again L iterations on m+ 1 subintervals. This
process was repeated until a final number M of subintervals was reached. We fixed
the parameters M,L to be M = 10 and L = 8 in all the examples. The figures give
reconstructions for exact data and for 3% random noise added to the Neumann data
(with respect to the L2-norm).
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We start with two examples where the boundary is smooth. Figures 5.1–5.3 show
reconstructions for an apple shaped contour with parameterization

z(t) = 0.5
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.8 cos t
(cos t, sin t), t ∈ [0, 2π]. (5.1)

In all figures the dash-dotted (blue) lines represent the exact Γc and the full (red)
lines the reconstructions. The initial guess is given by the dotted (blue) lines.
Reconstructions for a kite with parameterization

z(t) = (0.3 cos t+ 0.15 cos 2t, 0.3 sin t) , t ∈ [0, 2π], (5.2)

are shown in figures 5.4-5.6.
Finally, in the last example the boundary is only piecewise smooth with corners

at the connections of Γm and Γc. The boundary part Γm has the form of half a
peanut

zm(t) =

(
1− 1

3
sin t+

1

6
sin 3t

)
(a cos t, b sin t), t ∈ [π, 2π]

and Γc has the form of a sink

zc(t) =

(
a

2t− π
π

,−b sin t

)
, t ∈ [0, π], (5.3)

with a = 0.3 and b = 0.2. The reconstructions are shown in figures 5.7–5.9.
We can summarize that the numerical experiments show satisfactory reconstruc-

tions for the case of a constant impedance on Γc with also reasonable stability
against noisy data. For a non-constant impedance the reconstructions are slightly
worse but still reasonable. We expect that by a more sophisticated choice of the
regularization parameters the reconstructions can be improved. Compared to [7]
the numerical results were improved using our method in combination with graded
meshes. Furthermore we were able to justify our numerical experiments by showing
a local uniqueness result in theorem 4.1 for a general impedance function whereas in
[7] a similar result was obtained only for the limiting case λ =∞.
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Figure 5.2: Reconstruction of (5.1) for λ = 2.5
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Figure 5.3: Reconstruction of (5.1) for λ(t) = sin4 t+ 1, t ∈ [0, π]
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Figure 5.4: Reconstruction of (5.2) for λ = 0.5
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Figure 5.5: Reconstruction of (5.2) for λ = 2.5
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Figure 5.6: Reconstruction of (5.2) for λ(t) = sin4 t+ 1, t ∈ [0, π]
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Figure 5.7: Reconstruction of (5.3) for λ = 0.5
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Figure 5.9: Reconstruction of (5.3) for λ(t) = sin4 t+ 1, t ∈ [0, π]
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