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Abstract

Corrosion detection can be modelled by the Laplace equation for an elec-
tric or a heat potential in a simply connected planar domain D with a ho-
mogeneous impedance boundary condition on a non-accessible part of the
boundary ∂D. We consider the inverse problem to simultaneously recover the
non-accessible part of the boundary and the impedance function from two
pairs of Cauchy data on the accessible part of the boundary. Our approach
extends the method proposed by Kress and Rundell [16] for the correspond-
ing problem to recover the interior boundary curve of a doubly connected
planar domain and is based on our previous work on reconstruction of the
impedance function for a known shape or the shape for a known impedance
function [4, 5]. Based either on a potential approach or on a Green’s integral
formulation the inverse problem is equivalent to a system of nonlinear and
ill-posed integral equations that can be solved iteratively by linearization. We
will present the mathematical foundation of the method and, in particular,
establish injectivity for the linearized system at the exact solution. Numerical
reconstructions will show the feasibility of the method.

1 Introduction

We consider an inverse problem that models corrosion detection. Let D ⊂ R2 be a
simply connected bounded domain with piece-wise smooth boundary ∂D. By ν we
denote the outward unit normal to ∂D. We assume that the boundary is composed
of ∂D = Γm ∪ Γc where Γm and Γc are two connected open disjoint portions of
∂D of class C2 without cusps at the two intersection points. The electrostatic or
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heat potential u in a conducting medium D with a non-accessible boundary part Γc
affected by corrosion is modeled by the following boundary value problem

∆u = 0 in D, (1.1)

u = f on Γm, (1.2)

∂u

∂ν
+ λu = 0 on Γc, (1.3)

where λ is a nonnegative L∞ function on Γc which can be interpreted as the corrosion
coefficient and f is the imposed voltage or temperature, i.e., the Dirichlet data on
the accessible boundary part Γm. The resulting (and measured) current or heat flux,
i.e., the Neumann data on Γm is denoted by

g =
∂u

∂ν
on Γm. (1.4)

For a detailed discussion of this model and related inverse problems we refer to
Kaup and Santosa [11], Kaup, Santosa and Vogelius [12] and Inglese [10] and for a
recent bibliography to Fasino and Inglese [8]. The inverse problem we are concerned
with in this paper is to determine both the shape of Γc and the impedance function
λ from two pairs (f1, g1) and (f2, g2) of Cauchy data according to (1.1)–(1.4).

To formulate the boundary value problem (1.1)–(1.3) and the inverse problem
more precisely we recall the definitions of some Sobolev spaces (see [17]). Let Γ ⊂ ∂D
be a generic open subset of the boundary. If H1(D) denotes the usual Sobolev space
and H1/2(∂D) its usual trace space, then we define

H1/2(Γ) := {u|Γ : u ∈ H1/2(∂D)},
H̃1/2(Γ) := {u ∈ H1/2(Γ) : suppu ⊆ Γ},
H−1/2(Γ) := (H̃1/2(Γ))′ the dual space of H̃1/2(Γ),

H̃−1/2(Γ) := (H1/2(Γ))′ the dual space of H1/2(Γ).

Note that the extension by zero of functions in H̃1/2(Γ) to the whole of ∂D belongs
to H1/2(∂D) (which is not the case in general for elements in H1/2(Γ)). The norm
on H1/2(Γ) is given by

‖u‖H1/2(Γ) = inf{‖v‖H1/2(∂D) : v ∈ H1/2(∂D), v|Γ = u}

and the following chain of inclusion holds

H̃1/2(Γ) ⊂ H1/2(Γ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ) ⊂ H−1/2(Γ).

It is known [3, 9] that for f ∈ H1/2(Γm) there exists a unique solution u ∈ H1(D)
of (1.1)–(1.3). Hence we can formulate the inverse problem as follows: given two
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pairs f1, f2 ∈ H1/2(Γm) and g1, g2 ∈ H−1/2(Γm), determine Γc and a nonnegative
L∞ function λ on Γc such that the unique solutions uj ∈ H1(D) of (1.1)–(1.3) with
Dirichlet data uj = fj on Γm satisfy ∂uj/∂ν = gj on Γm for j = 1, 2.

As a preparatory version of this inverse shape and impedance problem, in [4, 5]
we considered the inverse shape problem where we reconstructed only the shape
assuming λ to be known as a function of the parameter describing the boundary part
Γc. In general, for direct and inverse boundary value problems in potential theory
one has the choice between two complementary solution methods via boundary
integral equations: the potential approach and the direct approach via Green’s
representation theorem. In [4], by two of us, it was suggested to solve the inverse
shape problem using an approach based on a single-layer potential with a density on
∂D leading to a system of nonlinear and ill-posed integral equations that is equivalent
to the inverse shape problem and can be solved using regularized iterations. As the
complimentary approach, in [5] we derived another equivalent system of nonlinear
and ill-posed integral equations based on Green’s representation theorem. This
second approach extends a method suggested by Kress and Rundell [16] to determine
the shape of a perfectly conducting inclusion in a homogeneous background from
a pair of Cauchy data on the accessible exterior boundary. The inverse problem
to simultaneously recover the shape and impedance of an inclusion was recently
considered by Rundell in [20] where, in particular, an algorithm was proposed which
also can be considered as extension of [16]. It is the aim of the current paper
to extend the analysis of [4, 5] to the simultaneous inverse shape and impedance
problem for the case of corrosion detection.

The question of uniqueness for the inverse shape and impedance problem was
addressed by Bacchelli [2] who established that two pairs of Cauchy data on Γm,
that is, (f1, g1) and (f2, g2) uniquely determine both the shape of the domain D and
the impedance function λ on ∂D provided that f1 and f2 are linearly independent
and one of them, say f1, is positive. In a recent paper Pagani and Pierotti [18]
extended this analysis.

The plan of the paper is as follows. In section 2 we will derive our systems of
integral equations and prove equivalence to the inverse shape and impedance prob-
lem in a Sobolev space setting. However, the ill-posedness of the inverse problem
suggests to treat these systems in an L2 setting that is appropriate for quantify-
ing measurement errors on the data g in the image space and the discussion of the
Tikhonov regularization for their stabilization. After describing the linearization
and the iteration scheme for the inverse shape and impedance problem in section
3 we show injectivity of the linearization at the exact solution using two Cauchy
pairs. Whereas for the Green’s representation approach, the local injectivity result
is a straightforward extension of the corresponding theorem from [5] for shape recon-
struction alone, it is a completely new result in the case of the single-layer potential
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approach. For the latter case in [4] local injectivity was only considered for the lim-
iting case λ = ∞ of a Dirichlet boundary condition. The paper is concluded with
some numerical examples for simultaneous shape and impedance reconstructions.

2 Nonlinear integral equations

In this section we present the equivalent systems of integral equations that we employ
for the solution of the inverse problem. We begin by noting that the inverse problem
is closely related to the following Cauchy problem: Given the pair f ∈ H1/2(Γm)
and g ∈ H−1/2(Γm) find α ∈ H1/2(Γc) and β ∈ H−1/2(Γc) such that there exists a
harmonic function u ∈ H1(D) satisfying

u = f and
∂u

∂ν
= g on Γm

and u = α and ∂u/∂ν = β on Γc. Note that this Cauchy problem admits at most
one solution and is known to be ill-posed. Our two solution methods for the Cauchy
problem are based on Green’s representation theorem and on a single-layer potential
approach, respectively. They provide alternatives to the numerous approaches that
have been developed in the literature (see e.g. [1], [4] and the references therein).

For the presentation of these two methods, in terms of the fundamental solution

Φ(x, y) =
1

2π
ln

1

|x− y|
, x 6= y,

we introduce the single- and double-layer potential operators

S : H−1/2(∂D)→ H1/2(∂D) and K : H1/2(∂D)→ H1/2(∂D)

defined by

(Sϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D, (2.1)

and

(Kϕ)(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D, (2.2)

as well as their restrictions to the boundary portions given by

(Skjϕ)(x) :=

∫
Γk

Φ(x, y)ϕ(y) ds(y), x ∈ Γj, (2.3)

and

(Kkjϕ)(x) :=

∫
Γk

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γj, (2.4)

for k, j = m, c.
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2.1 Green’s theorem approach

From now on, without loss of generality because of the possibility of scaling, we
assume that there exists a point x0 ∈ D such that |x−x0| 6= 1 for all x ∈ ∂D. Then
Theorem 3.16 in [13] guarantees that the operator S defined by (2.1) is injective
which is essential for the validity of the converse part of the following theorem
taken from [5]. We note that its statements are immediate consequences of Green’s
representation theorem for harmonic functions.

Theorem 2.1 Let α ∈ H1/2(Γc) and β ∈ H−1/2(Γc) be a solution to the Cauchy
problem. Then there exist ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D) such that

ϕ

2
+Kϕ− Sψ = 0 (2.5)

and ϕ and ψ have restrictions ϕ|Γm = f , ϕ|Γc = α and ψ|Γm = g, ψ|Γc = β,
respectively. Conversely, for any solution ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D) of
(2.5) satisfying ϕ|Γm = f and ψ|Γm = g we have that α := ϕ|Γc and β := ψ|Γc is a
solution of the Cauchy problem.

Corollary 2.2 The inverse shape and impedance problem is equivalent to solving

ϕi
2

+Kϕi − Sψi = 0, i = 1, 2, (2.6)

for Γc, ϕi|Γc, ψi|Γc and λ under the constraints ϕi|Γm = fi, ψi|Γm = gi and

ψi|Γc + λϕi|Γc = 0

for i = 1, 2.

The question of existence of a solution to the ill-posed integral equation (2.6)
as stated in Corollary 2.2, that is, a characterization of two Cauchy pairs (f1, g1)
and (f2, g2) for which a solution to the inverse shape and impedance problem exists,
is the wrong question to ask since, in general, it cannot be answered. Instead of
this, assuming that we have correct data or small perturbations thereof, for a stable
numerical solution regularization schemes need to be applied. Since the L2-norm
is the appropriate norm to measure the data error, it is natural to consider the
equation in L2 spaces rather than in the trace spaces that are appropriate only for
the corresponding forward problems. Hence, for the remainder of the paper we will
assume that the data fi and gi are in L2(Γm) and look for solutions of (2.6) with
ϕi|Γc and ψi|Γc in L2(Γc).

To simplify notations, in terms of the given Cauchy data we define the combined
single- and double-layer potentials

wi(x) :=

∫
Γm

{
fi(y)

∂Φ(x, y)

∂ν(y)
− gi(y)Φ(x, y)

}
ds(y), x ∈ R2 \Γm, i = 1, 2. (2.7)
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Then, after separating and renaming the unknowns, in view of Corollary 2.2 we
solve the inverse shape and impedance problem by a regularized solution Γc, λ and
ϕ1, ϕ2 ∈ L2(Γc) of the system of integral equations

ϕi
2

+Kccϕi + Scc(λϕi) = −wi|Γc i = 1, 2, (2.8)

and
Kcmϕi + Scm(λϕi) = −wi|Γm , i = 1, 2, (2.9)

where wi|Γm in (2.9) represents the limit obtained by approaching Γm from outside
D. Clearly, these equations are nonlinear with respect to Γc. For convenience we
note that

wi|Γc = Kmcfi − Smcgi and wi|Γm =
fi
2

+Kmmfi − Smmgi.

For the further investigation of the integral equations and, in particular, for
their numerical solution a parameterization is required. For the sake of simplicity
we confine ourselves to smooth boundaries ∂D of class C2, that is, we represent

∂D = {z(t) : t ∈ [0, 2π]} (2.10)

with a 2π periodic C2-smooth function z : R→ R2 such that z is injective on [0, 2π)
and satisfies z′(t) 6= 0 for all t. Without loss of generality we may assume that Γc
and Γm are given by

Γc = {z(t) : t ∈ (0, π)}, Γm = {z(t) : t ∈ (π, 2π)}.

From now on we denote

zc := z|(0,π) and zm := z|(π,2π).

Setting ψ = ϕ◦zc we obtain from (2.3) and (2.4) the parameterized integral operators

(S̃cjψ)(t) =
1

2π

∫ π

0

ln
1

|zj(t)− zc(τ)|
|z′c(τ)|ψ(τ) dτ (2.11)

and

(K̃cjψ)(t) =
1

2π

∫ π

0

[z′c(τ)]⊥ · [zj(t)− zc(τ)]

|zj(t)− zc(τ)|2
ψ(τ) dτ +

δcj
2
ψ(t) (2.12)

for t ∈ [0, 2π] and j = m, c. Here we used the notation a⊥ = (a2,−a1) for any vector
a = (a1, a2), that is, a⊥ is obtained by rotating a clockwise by 90 degrees, and the
convention δj` = 1 if j = ` and δj` = 0 if j 6= ` for j, ` = c,m. For the explicit
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parameterized form of the combined single- and double-layer potentials wij = wi ◦zj
evaluated on Γj, j = c,m, corresponding to (2.11) and (2.12) we refer to [5].

With the identification of λ = λ ◦ zc the parameterized form of the equations
(2.8) and (2.9) now reads

K̃ccψi + S̃cc(λψi) = −wic, i = 1, 2, (2.13)

and
K̃cmψi + S̃cm(λψi) = −wim, i = 1, 2. (2.14)

2.2 Potential approach

We now proceed with nonlinear integral equations based on an alternative solution
method for the Cauchy problem by a single-layer potential approach

u(x) =

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ D, (2.15)

with a density ϕ ∈ H−1/2(∂D). After defining the normal derivative operator

K ′ : H−1/2(∂D)→ H−1/2(∂D)

by

(K ′ϕ)(x) :=

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D, (2.16)

and recalling our assumption that there exists a point x0 ∈ D such that |x−x0| 6= 1
for all x ∈ ∂D, we can state the following theorem.

Theorem 2.3 Let α ∈ H1/2(Γc) and β ∈ H−1/2(Γc) be a solution to the Cauchy
problem. Then there exists ϕ ∈ H−1/2(∂D) such that

Sϕ = f on Γm,

K ′ϕ+
ϕ

2
= g on Γm,

(2.17)

and u defined by (2.15) has the restrictions u|Γm = f , u|Γc = α and ∂u/∂ν|Γm = g,
∂u/∂ν|Γc = β, respectively. Conversely, for any solution ϕ ∈ H−1/2(∂D) of (2.17)
we have that α = u|Γc and β = ∂u/∂ν|Γc with u ∈ H1(D) defined by (2.15) provide
a solution to the Cauchy problem.

Proof. Let u ∈ H1(D) correspond to a solution to the Cauchy problem. Clearly,
u|Γm = f , u|Γc = α and ∂u/∂ν|Γm = g, ∂u/∂ν|Γc = β. Now we represent u by (2.15)
with a density ϕ ∈ H−1/2(∂D). By approaching the boundary ∂D from inside D we
obtain (2.17) with the aid of the jump relations.
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Conversely, if ϕ ∈ H−1/2(∂D) solves (2.17) clearly u defined by (2.15) is an
H1(D) solution of the Laplace equation. Furthermore, approaching the boundary
∂D from inside D the system (2.17) yields that u|Γm = f and ∂u/∂ν|Γm = g. Hence,
α = u|Γc and β = ∂u/∂ν|Γc provide a solution to the Cauchy problem. �

Corollary 2.4 The inverse shape and impedance problem is equivalent to solving

Sϕi = fi on Γm, i = 1, 2,

K ′ϕi +
ϕi
2

= gi on Γm, i = 1, 2,
(2.18)

and

K ′ϕi +
ϕi
2

+ λSϕi = 0 on Γc, i = 1, 2, (2.19)

for Γc, ϕ1, ϕ2 and λ.

Since again the question of existence of a solution to the ill-posed integral equa-
tions stated in Corollary 2.4 is the wrong question to ask, in the context of regular-
ization methods we will assume that the data fi and gi are in L2(Γm) and we look
for solutions of (2.18)–(2.19) with ϕi in L2(∂D).

We recall the boundary parameterization (2.10) and set ψ = |z′| (ϕ ◦ z). Then
we obtain from (2.1) and (2.16) the parameterized integral operators

(S̃ψ)(t) =
1

2π

∫ 2π

0

ln
1

|z(t)− z(τ)|
ψ(τ) dτ

and

(K̃ ′ψ)(t) = − 1

2π|z′(t)|

∫ 2π

0

[z′(t)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)|2
ψ(τ) dτ +

ψ(t)

2|z′(t)|
for t ∈ [0, 2π]. After the identifications λ = λ ◦ z on [0, π], fi = fi ◦ z and gi = gi ◦ z
on [π, 2π] for i = 1, 2 the parameterized form of the system (2.18)–(2.19) reads

S̃ψi = fi on [π, 2π],

K̃ ′ψi = gi on [π, 2π]
(2.20)

and
K̃ ′ψi + λS̃ψi = 0 on [0, π] (2.21)

for i = 1, 2.
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3 Iterative solution

3.1 Green’s theorem approach

We now turn to the iteration scheme for solving the system (2.13)–(2.14) and start
by linearizing the equations with respect to ψ1, ψ2, λ and Γc (note that the integral
operators are linear with respect to ψi, i = 1, 2, and λ). This leads to

K̃cc(ψi, zc) + K̃cc(χi, zc) + dK̃cc(ψi, zc; ζ)

+S̃cc(λψi, zc) + S̃cc(λχi, zc) + dS̃cc(λψi, zc; ζ) + S̃cc(µψi, zc)

= −wic − ζ · (gradwi) ◦ zc, i = 1, 2,

(3.1)

and
K̃cm(ψi, zc) + K̃cm(χi, zc) + dK̃cm(ψi, zc; ζ)

+S̃cm(λψi, zc) + S̃cm(λχi, zc) + dS̃cm(λψi, zc; ζ) + S̃cm(µψi, zc)

= −wim, i = 1, 2.

(3.2)

Here, we have indicated the dependence of the operators both on the density
and the boundary parameterization. The operators dK̃cc, dK̃cm, dS̃cc, dK̃cm de-
note the Fréchet derivatives with respect to zc in direction ζ of the operators
K̃cc, K̃cm, S̃cc, K̃cm, respectively. They are obtained by formally differentiating the
kernels of the integral operators with respect to zc (see [19]) and for their explicit
representation we refer to [5]. Note that the perturbation ζ is different from zero
only on Γc.

Solving the inverse shape and impedance problem via equations (3.1)–(3.2) can
be summarized by the following algorithm:

1. We make an initial guess for the non-accessible boundary part Γc, parameter-
ized by zc, and for the impedance function λ. Then we find the densities ψ1

and ψ2 for the two pairs of Cauchy data (f1, g1) and (f2, g2) by solving (2.13).

2. Given an approximation for zc, ψ1, ψ2 and λ, the linear system (3.1) and (3.2) is
solved for ζ, χ1, χ2 and µ to obtain the update zc + ζ for the parameterization,
ψ1 + χ1, ψ2 + χ2 for the boundary values and λ+ µ for the impedance.

3. The second step is repeated until a suitable stopping criterion is satisfied.

Clearly, the ill-posedness requires to incorporate a regularization in order to
achieve stability. For this, we propose Tikhonov regularization with a Sobolev
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penalty term on the parameterization as well as on the impedance and an L2 penalty
term on the boundary values.

For the following results on injectivity of the linearization (3.1)–(3.2) at the
exact solution we need some assumptions on the regularity of the solution u on
the boundary. We assume that the exact solution u is continuous on Γc and twice
continuously differentiable on Γc such that ψ = u ◦ zc satisfies

tδ(π − t)δ|ψ′(t)| ≤ c, 0 < t < π, (3.3)

for some positive constants c and δ < 1. In view of the regularity results for the
direct problem (see [7]) this regularity assumption is not too restrictive. We also
assume that Γc is of class C3 to ensure that ζ = q[z′c]

⊥ ∈ C2[0, π] for a scalar function
q ∈ C2[0, π]. (Recall that ∂D is assumed to be of class C2.)

Theorem 3.1 Let zc be the parameterization of Γc, let ψ1, ψ2 ∈ C1[0, π] ∩ C2(0, π)
satisfy the condition (3.3) and the integral equations (2.13)–(2.14) for a nonnegative
λ ∈ C[0, π] and linearly independent Dirichlet data f1 and f2. Then for any solution
ζ = q[z′c]

⊥ ∈ C2[0, π], χ1, χ2 ∈ L2[0, π] and µ ∈ C[0, π] to the homogeneous system

K̃cc(χi, zc) + dK̃cc(ψi, zc; ζ) + S̃cc(λχi, zc) + dS̃cc(λψi, zc; ζ)

+S̃cc(µψi, zc) + ζ · (gradwi) ◦ zc = 0, i = 1, 2,
(3.4)

and

K̃cm(χi, zc) + dK̃cm[ψi, zc; ζ] + S̃cm(λχi, zc) + dS̃cm(λψi, zc; ζ)

+S̃cm(µψi, zc) = 0, i = 1, 2,
(3.5)

we have that χ1 = χ2 = 0, ζ = 0 and µ = 0.

Proof. Analogous to [5, Theorem 4.4] it can be shown that

χi = −|z′|λqψi (3.6)

and
[qψ′i]

′ + |z′|2λ(λ+ κ)qψi − µψi|z′| = 0 (3.7)

for i = 1, 2, where κ denotes the curvature of Γc. Note, that the additional term
µψi|z′| in (3.7), as compared to [5], is due to the jump µψi of the normal derivative
of the single-layer potential∫ π

0

µ(τ)ψi(τ)Φ(x, zc(τ))|z′c(τ)| dτ, x ∈ R2 \ Γc.
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This potential corresponds to the additional operators S̃cc(µψi, zc) and S̃cm(µψi, zc)
in the homogeneous system (3.4)–(3.5) (compared to the system for the inverse
shape problem as treated in [5]). Linearly combining (3.7) for ψ1 and ψ2 we find

ψ2[qψ′1]′ − ψ1[qψ′2]′ = 0

and from this as in [5, Theorem 4.8] we can conclude q = 0. (We note that in this
step the assumption (3.3) is essential.) Then (3.6) implies that χ1 = χ2 = 0.

Now, by (3.7) we conclude that also µψi|z′| = 0 for i = 1, 2. An application
of Holmgren’s theorem and the homogeneous impedance boundary condition (1.3)
for ui on Γc lead to the conclusion that ui cannot vanish on an open subset of Γc.
Therefore, in view of ψi = ui ◦ zc, it follows that µ = 0. �

3.2 Potential approach

Based on Corollary 2.4 now we present a second iteration scheme for solving the
inverse shape and impedance problem that is obtained by linearizing the parame-
terized equations (2.20)–(2.21) with respect to ψ1, ψ2, λ and Γc. This leads to

S̃(ψi, z) + S̃(χi, z) + dS̃(ψi, z; ζ) = fi on [π, 2π],

K̃ ′(ψi, z) + K̃ ′(χi, z) + dK̃ ′(ψi, z; ζ) = gi on [π, 2π],
(3.8)

and

K̃ ′(ψi, z) + K̃ ′(χi, z) + dK̃ ′(ψi, z; ζ)

+ λ{S̃(ψi, z) + S̃(χi, z) + dS̃(ψi, z; ζ)}+ µS̃(ψi, z) = 0 on [0, π]
(3.9)

for i = 1, 2. Here, the operators dK̃ ′ and dS̃ denote the Fréchet derivatives with
respect to z in direction ζ of the operators K̃ ′ and S̃, respectively. Again, they
are obtained by formally differentiating the kernels of the integral operators with
respect to z and are given by

dS̃(ψ, z; ζ)(t) =
1

2π

∫ 2π

0

[z(τ)− z(t] · [ζ(t)− ζ(τ)]

|z(t)− z(τ)|2
ψ(τ) dτ, t ∈ [0, 2π], (3.10)

and

dK̃ ′(ψ, z; ζ)(t)

=
1

2π|z′(t)|

∫ 2π

0

{
2[z′(t)]⊥ · [z(t)− z(τ)] [z(t)− z(τ)] · [ζ(t)− ζ(τ)]

|z(t)− z(τ)|4

− [z′(t)]⊥ · [ζ(t)− ζ(τ)] + [ζ ′(t))]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)|2

}
ψ(τ) dτ

− z′(t) · ζ ′(t)
|z′(t)|2

K̃ ′(ψ, z)(t), t ∈ [0, 2π].

(3.11)
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Recall that the perturbation ζ is different from zero only on Γc.
Solving the inverse shape and impedance problem via equations (3.8)–(3.9) can

be summarized by the following algorithm:

1. We make an initial guess for the non-accessible boundary part Γc, parameter-
ized by zc, and for the impedance function λ. Then we find the densities ψ1

and ψ2 for the two pairs of Cauchy data (f1, g1) and (f2, g2) by solving (2.20).

2. Given an approximation for zc, ψ1, ψ2 and λ, the linear system (3.8)–(3.9) is
solved for ζ, χ1, χ2 and µ to obtain the update zc + ζ for the parameterization,
ψ1 + χ1, ψ2 + χ2 for the densities and λ+ µ for the impedance.

3. The second step is repeated until a suitable stopping criterion is satisfied.

Again, the ill-posedness requires the incorporation of a regularization in order to
achieve stability and as above we propose Tikhonov regularization with a Sobolev
penalty term on the parameterization and on the impedance and an L2 penalty term
on the densities.

To establish a result on local injectivity we require some preparations. As above
we assume that Γc is of class C3.

For ψ ∈ H1[0, 2π] and ζ ∈ C[0, 2π] we define

v(x) :=

∫ 2π

0

ψ(τ)Φ(x, z(τ)) dτ (3.12)

and

V (x) := −
∫ 2π

0

ψ(τ) gradx Φ(x, z(τ)) · ζ(τ) dτ (3.13)

for x ∈ D.

Lemma 3.2 For ψ ∈ H1[0, 2π] and ζ of the form ζ = q[z′]⊥ with q ∈ C[0, 2π] such
that q|[0,π] ∈ C2[0, π] and q|[π,2π] = 0 we have that

dS̃(ψ, z; ζ) = V ◦ z + |z′|q(grad v · ν) ◦ z. (3.14)

Proof. This follows straightforwardly from the jump relations for single–layer po-
tentials.

Lemma 3.3 Under the assumptions of Lemma 3.2 we have that

dK̃ ′(ψ, z; ζ) = |z′|κ q (grad v · ν) ◦ z − 1

|z′|
d

dt
q
d

dt
(v ◦ z) + (gradV · ν) ◦ z (3.15)

where κ denotes the curvature of ∂D.
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Proof. The operators K̃ and K̃ ′ are adjoint in the sense of∫ 2π

0

ψ K̃(ϕ, z) dt =

∫ 2π

0

|z′|ϕ K̃ ′(ψ, z) dt

for all ϕ, ψ ∈ H1[0, 2π]. From this, differentiating with respect to z in direction ζ,
we find that∫ 2π

0

ψ dK̃(ϕ, z; ζ) dt =

∫ 2π

0

{
|z′|ϕdK̃ ′(ψ, z; ζ) +

z′ · ζ ′

|z′|
ϕ K̃ ′(ψ, z)

}
dt (3.16)

for all ϕ, ψ ∈ H1[0, 2π]. We use the representation

dK̃(ϕ, z; ζ)(t) =

∫ 2π

0

ϕ′(τ) gradx Φ(z(t), z(τ)) · {[ζ(τ)]⊥ − [ζ(t)]⊥} dτ, t ∈ [0, 2π],

from equation (4.8) in the proof of Lemma 4.1 in [5] (where due to periodicity the
terms at the end points of the interval cancel). Interchanging the order of integration
we obtain∫ 2π

0

ψ dK̃(ϕ, z; ζ) dt =

∫ 2π

0

ϕ′(t)

∫ 2π

0

gradx Φ(z(t), z(τ))·{[ζ(τ)]⊥−[ζ(t)]⊥}ψ(τ) dτ dt.

After a partial integration, together with (3.16) this implies

|z′(t)| dK̃ ′(ψ, z; ζ)(t) +
z′(t) · ζ ′(t)
|z′(t)|

K̃ ′(ψ, z)(t)

=
d

dt

∫ 2π

0

gradx Φ(z(t), z(τ)) · {[ζ(t)]⊥ − [ζ(τ)]⊥}ψ(τ) dτ.

(3.17)

In view of ζ = q [z′]⊥, that is, ζ⊥ = −q z′, using the jump relations for the derivative
of single-layer potentials, we compute∫ 2π

0

gradx Φ(z(t), z(τ)) · [ζ(t)]⊥ ψ(τ) dτ = −q(t) d

dt
v(z(t)). (3.18)

A further partial integration yields∫ 2π

0

gradx Φ(z(t), z(τ)) · [ζ(τ)]⊥ ψ(τ) dτ = −
∫ 2π

0

d

dτ
[q(τ)ψ(τ)] Φ(z(t), z(τ)) dτ

whence, from Maue’s formula for the normal derivative of double-layer potentials
(see also equation (4.9) in the proof of Lemma 4.1 in [5]) it follows that

d

dt

∫ 2π

0

gradx Φ(z(t), z(τ)) · [ζ(τ)]⊥ ψ(τ) dτ = −|z′(t)| (gradV · ν)(z(t)). (3.19)
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Finally, from the jump relations for the normal derivative of single-layer potentials,
we note that

z′ · ζ ′

|z′|
K̃ ′(ψ, z) = −κ |z′|2 q (grad v · ν) ◦ z (3.20)

where for the curvature κ we have used the expression

κ =
z′′ · [z′]⊥

|z′|3
.

Now, combining (3.17)–(3.20) yields the assertion (3.15). �

Lemma 3.4 Let ψ solve (2.20)–(2.21) for a nonnegative λ ∈ C[0, π] and let the
single-layer potential u with density ψ satisfy the condition (3.3). Assume that ζ is
of the form given in Lemma 3.2 and that χ ∈ L2[0, 2π], µ ∈ C[0, π] and ζ solve the
homogeneous system

S̃(χ, z) + dS̃(ψ, z; ζ) = 0 on [π, 2π],

K̃ ′(χ, z) + dK̃ ′(ψi, z; ζ) = 0 on [π, 2π]
(3.21)

and

K̃ ′(χ, z) + dK̃ ′(ψ, z; ζ) + λS̃(χ, z)

+λdS̃(ψ, z; ζ) + µS̃(ψ, z) = 0 on [0, π].
(3.22)

Then
[q(u ◦ z)′]′ + |z′|2λ(λ+ κ)q(u ◦ z)− µ(u ◦ z) |z′| = 0. (3.23)

If q = 0 on Γc then χ = 0.

Proof. Recalling definition (3.12), we identify u = v and note that u satisfies the
impedance boundary condition (3.3) since ψ solves (2.20)–(2.21). We define

V0(x) :=

∫ 2π

0

χ(τ)Φ(x, z(τ)) dτ

for x ∈ D and set
W := V0 + V.

Then, in view of ζ = 0 on Γm, combining (3.14), (3.15) and (3.21) we observe that
W = 0 and ∂W/∂ν = 0 on Γm. Hence, Holmgren’s theorem implies that W = 0 in
D.
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From Lemma 3.2 and 3.3, the integral equation (3.22) and W = 0 in D we
conclude that

1

|z′|
[q(u ◦ z)′]′ − |z′|(λ+ κ)q(gradu · ν) ◦ z − µu ◦ z

= −dK̃ ′(ψi, z; ζ) + (gradV · ν) ◦ z − λ dS̃(ψi, z; ζ) + λV ◦ z − µS(ψ, z)

= K̃ ′(χ, z) + (gradV · ν) ◦ z + λ(S̃(χ, z) + V ◦ z) = (gradW · ν) ◦ z + λ(W ◦ z) = 0.

The differential equation (3.23) now follows by observing the impedance boundary
condition (1.3) for the solution u.

If q = 0 on Γc then W = V0. Now V0 = 0 in D implies χ = 0 because of the
injectivity of S̃. �

Finally we can state the injectivity result on the linearized system (3.8)–(3.9) at
the exact solution.

Theorem 3.5 Let z be the parameterization of the boundary ∂D, let ψ1, ψ2 solve
(2.20)–(2.21) for a nonnegative λ ∈ C[0, π] and for linearly independent Dirichlet
data f1 and f2 such that the corresponding single-layer potentials satisfy the condition
(3.3). Assume that ζ is of the form given in Lemma 3.2 and that χ1, χ2 ∈ L2[0, 2π],
µ ∈ C[0, π] and ζ solve the homogeneous system

S̃(χi, z) + dS̃(ψi, z; ζ) = 0 on [π, 2π],

K̃ ′(χi, z) + dK̃ ′(ψi, z; ζ) = 0 on [π, 2π]
(3.24)

and

K̃ ′(χi, z) + dK̃ ′(ψi, z; ζ) + λS̃(χi, z)

+λdS̃(ψi, z; ζ) + µS̃(ψi, z) = 0 on [0, π].
(3.25)

Then χ1 = χ2 = 0, ζ = 0 and µ = 0.

Proof. The proof is analogous to that of Theorem 3.1. First from the differential
equation (3.23) we conclude that q = 0 and from the second statement of Lemma 3.4
we observe that χ1 = χ2 = 0. Then, from (3.23) we have that µ(ui◦z) |z′| = 0 and the
proof is concluded as in Theorem 3.1 using Holmgren’s theorem and the impedance
boundary condition. �

Of course, the occurrence of the same ordinary differential equation in the injec-
tivity proofs for both approaches further illuminates their close connection.
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4 Numerical method and examples

For the numerical solution of the integral equations arising in the two algorithms, in
principle, we propose to use the usual Nyström and collocation methods based on
trigonometric interpolations for boundary value problems for the Laplace equation
as described in [15]. However, because of singularities of the solution to (1.1)–(1.3)
at the two intersection points, discretizing the equations with equidistant points on
[0, 2π] would lead to a poor accuracy. For this reason, it is more appropriate to use a
mesh that is graded towards the intersections points. Such a grading can be achieved
most efficiently by using a sigmoidal transformation, i.e., a strictly monotonically
increasing function ω : [0, 2π] → [0, 2π] with the derivatives vanishing up to a
certain order p−1, p ≥ 2, at the two intersection points t = 0 and t = π. For details
we refer to [5, 6, 14] and note that the discretization is obtained by replacing the
parameterization z in the integral operators by z̃ = z ◦ ω and then discretizing on
an equidistant mesh.

The synthetic data were obtained by reversing the roles of f and g and, given
f , interpreting the integral equation of Theorem 2.1 as an integral equation of the
second kind for the unknown u|∂D. To avoid an inverse crime we used different
grading parameters, i.e., p = 6 for the forward problem and p = 4 for the inverse
algorithms and twice the number of discretization points in the forward solver. In
our examples the synthetic Cauchy data (fi, gi), i = 1, 2, were obtained for the
Neumann conditions

g1(t) = sin4 t, g2(t) = cos2 t, t ∈ [π, 2π],

respectively, and with the impedance function λ on Γc given by

λ(t) = sin4 t+ 1, t ∈ [0, π]. (4.1)

As boundary shapes we considered two cases: firstly, an apple-shaped smooth
contour with parameterization

z(t) = 0.5
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.8 cos t
(cos t, sin t), t ∈ [0, 2π], (4.2)

and, secondly, a piece-wise smooth boundary with corners at the intersection points.
For the latter the upper part Γm is a peanut-shaped contour given by

zm(t) = −
(

1 +
1

3
sin t− 1

6
sin 3t

)
(0.3 cos t, 0.2 sin t), t ∈ [π, 2π], (4.3)

and the lower part Γm is a sink-shaped contour given by

zc(t) =

(
0.3

2t− π
π

,−0.2 sin t

)
, t ∈ [0, π]. (4.4)
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In the iterative inverse algorithm at each iteration step we solve the system (3.1)–
(3.2) or the system (3.8)–(3.9) approximately via Tikhonov regularization with an
H2 penalty term on ζ with regularization parameter β, an L2 penalty term on the
densities ψ1, ψ2 with parameter α and an H2 penalty term on the impedance µ with
parameter γ.

The potentials and densities, respectively, were discretized using 2n = 64 grid
points on each boundary part. The update ζ of the boundary part Γc was given by

ζ =
N∑
j=1

ajqj ∈ QN ,

where the basis elements of the approximation space QN , N ≥ 3, were chosen as

qj(t) = rj(t)(cos t, sin t), j = 1, . . . , N, 0 ≤ t ≤ π,

with radial parts
r1(t) = t(π − t)2, r2(t) = t2(π − t)

and
rj(t) = sin(j − 2)t, j = 3, . . . , N.

In the examples we choose N = 10.
We started the iterations with an initial approximation for Γc given by the half

circle in the lower half plane with end points coinciding with the end points z(π)
and z(2π) of Γm and with an initial approximation for λ given by a constant. In
our examples we used different constants λinitial ∈ {3, 5, 10}. For the approximation
space of the impedance function we choose the space of trigonometric polynomials
of degree less than or equal to L = 4.

We performed 30 iteration steps and present reconstructions after 1, 5 and 10
steps in Figures 4.1–4.4. In Figure 4.4 we also show the reconstructions using Green’s
theorem approach after the 30th iteration since the results could still be improved
after the first 10 steps. The exact boundary curve and impedance function are
represented by the full lines and the reconstructions by dotted lines for one iteration,
the dash-dotted lines for five iterations, the dashed lines for ten iterations and the
initial guess is given by the sparsely dotted curve. The regularization parameters
were chosen by trial and error and are presented in Table 4.1.
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Green’s theorem Potential

Γc λinitial α β γ α β γ

(4.4)
5 10−9 10−3 10−7 10−9 10−4 10−7

10 10−9 10−4 10−8 10−8 10−4 10−7

(4.2)
3 10−7 10−4 10−6 10−9 10−4 10−7

5 10−8 10−3 10−6 10−9 10−4 10−7

Table 4.1: Regularization parameters

In Table 4.2 the relative L2-error between the true impedance function and its
reconstruction is presented for both contours and various initial approximations for λ
after a certain number of iteration steps. Furthermore, Table 4.3 shows the smallest
relative L2-error before it started to increase and the number of iterations needed
to reach this error level.

Based on these examples and further numerical experiments we can observe that,
in general, the potential approach produces good reconstructions in fewer iterations
than the Green’s theorem approach. Furthermore it can be seen that the potential
approach shifts the initial guess of the impedance function immediately to the correct
level whereas the Green’s theorem approach first moves it to zero and thereafter to
the correct level.

To also illustrate the stability of both methods we have generated 10 sets of noisy
data with noise of the form

gδ := g + δ
‖g‖L2

‖η‖L2

η

added to the Neumann data where g is the unperturbed data, η is a normally
distributed random variable and δ is the relative noise level. As an example we
consider the apple-shaped contour (4.2) and the impedance function (4.1). As initial
approximation for the boundary we took the lower half-circle as above and for the
impedance we have chosen the constant λinitial = 5. The regularization parameters
are given in Table 4.4.

Figure 4.5 shows the best and the worst reconstructions with respect to the
relative L2-error between the reconstructed and the true impedance function. Here,
we used the noise level δ = 0.03. In Figure 4.6 the same is shown for the noise
level δ = 0.06. For the purpose of illustration, although this is not practical, the
iterations were stopped as soon as the L2-error started to increase. The actual errors
and numbers of iterations are presented in Table 4.5.

The dash-dotted lines show the best reconstruction and the dotted lines the
least accurate reconstruction. The solid lines represent the exact boundary and
impedance, respectively. The initial approximations are again given by the dotted
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Relative L2 error

Γc λinitial iterations Green’s theorem Potential

(4.4)

5
5 0.0811 0.0533
10 0.0737 0.0648
30 0.0779 0.0761

10
5 0.2667 0.0179
10 0.1115 0.0191
30 0.1053 0.0350

(4.2)

3
5 0.0844 0.0537
10 0.0825 0.0529
30 0.0785 0.0551

5
5 0.1419 0.0792
10 0.0605 0.0782
30 0.0550 0.0804

Table 4.2: Relative L2-error between true and reconstructed impedance

Green’s theorem Potential

Γc λinitial least L2-error iterations least L2-error iterations

(4.4)
5 0.0726 7 0.0451 3
10 0.0202 15 0.0175 7

(4.2)
3 0.0785 30 0.0529 12
5 0.0515 13 0.0780 8

Table 4.3: Smallest relative L2-error between true and reconstructed impedance

curves. For perturbed Neumann data with 3% and 6% noise we achieved fairly
good reconstructions. However, with noise levels above 6% the accuracy of the
reconstructions deteriorated.

We can summarize that both approaches show accurate reconstructions with a
reasonable stability against noisy data. Only a few iterations are needed to obtain
good reconstructions. Furthermore, it seems that the potential approach does not
depend as crucially on a good initial guess and on the choice of the regularization
parameters as the Green’s theorem approach. For both approaches it turned out
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Green’s theorem Potential

noise level α β γ α β γ

δ = 0.03 10−7 10−2 10−5 10−7 10−3 10−5

δ = 0.06 10−6 10−2 10−4 10−7 10−3 10−5

Table 4.4: Regularization parameters for noisy data

Green’s theorem Potential

noise level rel. L2-error iterations rel. L2-error iterations

δ = 0.03
least 0.1603 5 0.1074 3

highest 0.3242 6 0.2832 3

δ = 0.06
least 0.0644 15 0.1564 2

highest 0.6196 2 0.3412 3

Table 4.5: Relative L2-error between true and reconstructed impedance for different
noise levels

that, in general, a smaller regularization parameter can be taken for the densities in
comparison to that for the boundary and the impedance.
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(c) Shape from potential approach
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(d) Impedance from potential approach

Figure 4.1: Reconstruction of shape (4.2) and impedance (4.1) with λinitial = 3
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(b) Impedance from Green’s theorem approach

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

exact
initial
1 iter
5 iter
10 iter

(c) Shape from potential approach

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

exact
initial
1 iter
5 iter
10 iter

(d) Impedance from potential approach

Figure 4.2: Reconstruction of shape (4.2) and impedance (4.1) with λinitial = 5
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(b) Impedance from Green’s theorem approach

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

exact
initial
1 iter
5 iter
10 iter

(c) Shape from potential approach
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(d) Impedance from potential approach

Figure 4.3: Reconstruction of shape (4.4) and impedance (4.1) with λinitial = 5
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(b) Impedance from Green’s theorem approach
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(c) Shape from potential approach
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(d) Impedance from potential approach

Figure 4.4: Reconstruction of shape (4.4) and impedance (4.1) with λinitial = 10
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(a) Shape from Green’s theorem approach
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(b) Impedance from Green’s theorem approach
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(c) Shape from potential approach
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(d) Impedance from potential approach

Figure 4.5: Reconstruction of shape (4.2) and impedance (4.1) with λinitial = 5 and
3% noise
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(a) Shape from Green’s theorem approach
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(b) Impedance from Green’s theorem approach
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(c) Shape from potential approach
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(d) Impedance from potential approach

Figure 4.6: Reconstruction of shape (4.2) and impedance (4.1) with λinitial = 5 and
6% noise
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