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Abstract. In this paper, we consider the inverse scattering problem of recovering

the shape of a perfectly conducting cavity from one source and several measurements

placed on a curve inside the cavity. Under restrictive assumptions on the size of

the cavity, a uniqueness theorem for finitely many excitations is given. Based on a

system of nonlinear and ill-posed integral equations for the unknown boundary, we

apply a regularized Newton iterative approach to find the boundary. We present the

mathematical foundation of the method and give several numerical examples to show

the viability of the method.

1. Introduction

Inverse obstacle scattering problems are typically viewed as exterior boundary value

problems, see [2, 6], and such problems arise in many areas of applications including

radar and sonar, medical imaging, geophysical exploration, and non-destructive testing.

However, in some industrial applications of non-destructive testing it is important to

test the structural integrity of cavities using acoustic or electromagnetic waves emitted

and measured by sources and receivers respectively, placed inside the cavity [14]. In

this case, the forward model of the scattering problem becomes an interior boundary

value problem for the scattered field. The interior scattering problem was considered

in [20,21] for the Dirichlet and impedance cavities respectively, where the authors applied

the linear sampling method to recover the shape of the cavity from a knowledge of

measured scattered fields on a curve inside the cavity due to sources placed on the same

curve (see [2, 5, 7] for a discussion on the linear sampling method and other qualitative

approaches). The advantage of the linear sampling method applied to this problem is
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that it does not require any a priori knowledge of the size and physical properties of

the cavity. Unfortunately, this method essentially needs a lot of data corresponding

to multiple sources and receivers and the reconstruction is typically blurred. However,

in some practical applications of non-destructive testing, it is important to resolve fine

details of the surface of the cavity. Motivated by such a situation, in this paper we

consider Newton type regularized iterative methods to reconstruct the boundary. These

methods can be implemented with measurements corresponding to one probing source,

provided that the type of the boundary condition on the surface of the cavity is known a

priori and a good initial guess is available. If multiple probing is plausible, it is natural to

apply a combination of a qualitative approach and optimization scheme; more precisely

one could for instance first use the linear sampling method to obtain an initial guess

and then initiate a Newton method to resolve more details. We remark that, as noted

in [20], the interior scattering problem is physically more complicated in some way

than the usual exterior scattering problem, since now all of the scattered waves are

”trapped”, i.e. the waves are repeatedly reflected off the boundary of the domain D.

Also, the existence of eigenfrequencies associated with the cavity complicates the matter

from physical and mathematical point of view.

To fix our ideas, we consider the scattering of an electromagnetic time harmonic

point source located inside a perfectly conducting infinite cylinder with cross section a

bounded simply connected domain D ⊂ R2 with a C2 boundary ∂D. Assuming that the

electric field is polarized in the TM mode this leads to an interior Dirichlet boundary

value problem for the R2-Helmholtz equation inside D. The goal is to determine the

boundary ∂D from a knowledge of the measured scattered field on a smooth curve C

inside D due to a single point source situated on C. Based on a single-layer potential

ansatz for the scattered field with density ϕ living on the boundary ∂D we transform

our inverse problem into a system of nonlinear and ill-posed integral equations, and

then use a regularized Newton type iterative approach to reconstruct the shape of the

cavity. Nonlinear integral equation approach was suggested in [16] to determine the

shape of a perfectly conducting inclusion within a homogeneous conducting medium

modeled by the Laplace equation. Then, this idea has been further developed and

applied to variety of inverse boundary value problems in scattering and electrostatics

[3, 4, 10–13, 15, 17]. Our single layer potential approach follows the ideas in [3]. An

alternative nonlinear integral equation method based on Green’s representation formula

similar to the approach in [16] could be developed for our interior inverse scattering

problem, but this method is not subject of our study.

The plan of our paper is as follows. In the next section we formulate mathematically

the inverse problem, then following the idea of [8], show that under size restriction the

boundary of the cavity is uniquely determined from one measurement, and finally derive

a system of nonlinear integral equations equivalent to our inverse problem. In Section

3 we describe the linearization process, show the injectivity of the linearized system

and give two iteration schemes to reconstruct the boundary. We conclude our paper by

providing several numerical examples to show the feasibility of the proposed methods.
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2. Formulation of the problem

Let a simply connected domain D ⊂ R2 with C2 boundary ∂D be the cross section of

an infinite cylinder, and consider a TM polarized time harmonic electric dipole located

inside this cylinder. Then the only component us of the scattered electric field inside

the cylinder satisfies

∆us + k2us = 0 in D, (1)

us = −Φ(·, d) on ∂D, (2)

i.e. the total field u = us + Φ(·, d) satisfies u = 0 on ∂D, where k > 0 is the wave

number, d ∈ D is a fixed point, and Φ(·, d) is the fundamental solution of the Helmholtz

equation defined by

Φ(x, d) =
i

4
H

(1)
0 (k|x− d|)

with H
(1)
0 being a Hankel function of the first kind of order zero. It is well known (see

e.g. [2]) that for Φ(·, d) ∈ H 1
2 (∂D) there exists a unique solution us ∈ H1(D) for the

direct problem (1)-(2) provided k2 is not a Dirichlet eigenvalue for −∆ in D. From now

on we assume that k2 is not a Dirichlet eigenvalue for −∆ in D. We remark that for

the Dirichlet interior scattering problem the presence of eigenfrequencies is detrimental

to the problem as oppose to the exterior scattering problem. Physically, if the cavity is

a perfect reflector, probing with a source at an eigenfrequency resolves to a resonance

state. An impedance type boundary condition could be a good physical model for the

cavity since in practice waves always penetrate a little bit through the boundary. Such

a model does not suffer from the existence of eigenfrequencies.

Now let C ⊂ D be a closed smooth curve inside D, and assume that for a fixed

d ∈ C we know

us|C := us(x, d), for all x ∈ C. (3)

The inverse problem we are concerned with in this paper is to determine ∂D from the

measured data us on the curve C. A general uniqueness theorem is provided in [20]

where it is proven that a knowledge of us(·, d)|C for all d ∈ C (or if C is analytic for

d ∈ C0 ⊂ C) uniquely determines ∂D (under more general assumption of ∂D being

Lipshitz). A general uniqueness theorem with one (or finitely many) measurements

for the interior scattering problem is still an open problem. However, in the following

theorem we are able to adapt the idea of Colton and Sleeman [8] (see also [6]) to show

that the boundary of a small cavity can be uniquely determined from finitely many

measurements. To this end for the purpose of the theorem and in the following, we

assume that k2 is not a Dirichlet eigenvalue for the negative Laplacian in the interior of

C (this is not a restriction since we can modify the measurement curve C see Remark

2.4). Also, due to the nature of the problem we assume a priori that D contains the

domain, hereafter denoted by Ċ, circumscribed by the measurements curve C.
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Theorem 2.1. Assume that D1 and D2 are two bounded simply connected regions

containing C and contained in a disk of radius R, and let

N :=
∑
t0l<kR

1 +
∑

tnl<kR,n 6=0

2, (4)

where tnl (l = 0, 1, · · · ; n = 0, 1, · · ·) denote the positive zeros of the Bessel functions Jn,

i.e. Jn(tnl) = 0. Denote by us1(·, d) and us2(·, d) the scattered field corresponding to D1

and D2 respectively, due to the point source Φ(·, d). If us1(·, d) and us2(·, d) coincide on

C for N + 1 distinct locations d ∈ C and one fixed wave number k, then D1 = D2.

Proof. Assume by contradiction thatD1 6= D2 are two bounded domains and usi , i = 1, 2,

satisfy (1)-(2) with D replaced by Di, respectively. Proceeding as in the proof of

Theorem 2.1 in [20], if for a fixed d ∈ C, us1(x, d) = us2(x, d) for all x ∈ C and letting

v = us1 − us2, we have that

∆v + k2v = 0 in Ċ,

v = 0 on C.

Since k2 is not a Dirichlet eigenvalue for the interior of C, we can conclude that v = 0 in

Ċ
⋃
C. Let D0 = D1

⋂
D2, which by the nature of the problem is assumed to contain Ċ.

In the case when D0 has multiple components we consider the component containing Ċ

(still denoted by D0); such a component always exists due to the assumption that both

D1 and D2 contain Ċ. The by the unique continuation principle, we have that v = 0 in

D0 and an application of the trace theorem yields v = 0 on ∂D0, i.e. us1(·, d) = us2(·, d)

on ∂D0. Without loss of generality, we assume that D2 \ (D1

⋂
D2) is nonempty and

denote by D∗ one of the simply connected components of D2 \ (D1

⋂
D2). Then, us2(·, d)

satisfies

∆us2 + k2us2 = 0 in D∗,

us2(·, d) = −Φ(·, d) on ∂D∗

due to the fact that us2(·, d) equals to us1(·, d) on ∂D0 and the boundary condition for

us2(·, d) on ∂D2. Now let w(·, d) = us2(·, d) + Φ(·, d), for fixed d ∈ C. Since d is not in

D
∗

then

∆w + k2w = 0 in D∗, (5)

w(·, d) = 0 on ∂D∗. (6)

Hence, w ∈ H1
0 (D∗) is a Dirichlet eigenfunction for the negative Laplacian in the

domain D∗ corresponding to the eigenvalue k2. Next we show that the eigenfunctions

w(·, dn), dn ∈ C, n = 1, · · · , N + 1 corresponding to the same eigenvalue k2 are linearly

independent provided that D1 and D2 are included in a ball of radius R and N is defined

by (4). To this end consider

N+1∑
n=1

cnw(·, dn) = 0 (7)
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in D∗. By the unique continuation principle, the equation (7) holds also in a

neighborhood of C exterior to Ċ. Now for a fixed m ∈ [1, N + 1], choose h > 0

sufficiently small, such that xms = dm + h
s
ν(dm), s = 1, 2, · · ·, is in a neighborhood of dm.

Then we have

cmΦ(xms , dm) = −
N+1∑

n=1,n 6=m

cnΦ(xms , dn).

Note that Φ(xms , dm) becomes unbounded whereas
N+1∑

n=1,n6=m
cnΦ(xms , dn) remains bounded

as s tends to infinity. Hence, cm = 0 for 1 ≤ m ≤ N + 1, i.e. w(·, dn), n = 1, · · · , N + 1,

are linearly independent.

We now proceed exactly in the same way as in the proof of Theorem 5.2 in [6]. Let

BR be a disk of radius R containing both D1 and D2 and let 0 < λ1 ≤ λ2 ≤ · · · ≤
λm = k2 be the Dirichlet eigenvalues of D∗ less than or equal to k2. Based on the

the strong monotonicity property for the Dirichlet eigenvalues of the negative Laplacian

we can obtain that the multiplicity M of λm is less than or equal to the sum of the

multiplicities N of the eigenvalues for the disk BR which are less than k2, i.e. M ≤ N ,

which contradicts the fact that N+1 distinct directions yield N+1 linearly independent

eigenfunctions with eigenvalue k2 for D∗. Hence, D1 = D2.

The following corollary is a straight forward consequence of the previous theorem.

Corollary 2.2. Assume that D1 and D2 are two bounded simply connected regions

containing C and contained in a disk of radius R such that kR < t0, where t0(≈ 2.40483)

is the smallest positive zero of the Bessel function J0. If the measured data us(·, d) on

C coincide for one location d ∈ C and one fixed wave number k, then D1 = D2.

Remark 2.3. Following the idea of [9] for a given R it is possible to reduce by half

the number of probing sources in Theorem 2.1 and replace t0 in Corollary 2.2 by the

first positive zero of J1, i.e. t10 ≈ 3.83171. In general the uniqueness with finitely many

incident waves is an open question.

Remark 2.4. The assumption that k2 is not a Dirichlet eigenvalue for the negative

Laplacian in the interior of C is not a restriction since we have the freedom to choose

such a measurement curve C. In particular by virtue of the Faber-Krahn inequality for

the first Dirichlet eigenvalue of Ċ (the latter is greater than πk201/|Ċ| where k201 is the

first zero of the Bessel function J0) it is always possible to reduce the size of C so that

the given k2 is not an eigenvalue. Also note that Theorem 2.1 and everything in the

following hold valid if C is replaced by an open arc C0 ⊂ C if C ia an analytic curve for

which k2 is not a Dirichlet eigenvalue.

Now we turn our attention to the reconstruction of ∂D from a knowledge of the

measured scattered field us(·, d)|C for one single point source located at d ∈ C. We start

by representing the scattered field as a single layer potential

us(x) = (Sϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ D (8)
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with a unknown density ϕ ∈ L2(∂D) over the unknown boundary ∂D, and introducing

the boundary integral operators

Sj : L2(∂D) 7→ L2(Γj), j = 0, 1

defined by

(Sjϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ Γj, (9)

where Γ0 = ∂D and Γ1 = C. Note that the ansatz (8) is always possible since due to

the assumption that k2 is not a Dirichlet eigenvalue for the negative Laplacian in D,

we have that S : L2(∂D)→ H
3/2
loc (R2 \ ∂D), is invertible (see e.g. [18]). Letting x in (8)

approach ∂D (from inside) and using (2) we obtain

S0ϕ = − Φ(·, d)|∂D . (10)

From (3) we also have

S1ϕ = us(·, d)|C . (11)

Hence, we have that the boundary ∂D and the density ϕ ∈ L2(∂D) in the representation

(8) of the corresponding scattered field us(·, d), satisfy the system of (nonlinear) integral

equations (10) and (11). Conversely, if the closed curve ∂D and the density ϕ satisfy

the system (10)-(11) then ∂D is the solution of the inverse problem. Indeed, if we define

us by (8) then from (10) and (11) we have that us satisfies equations (1)-(3). Hence we

can state the following theorem.

Theorem 2.5. The inverse problem and the system of integral equations (10) and (11)

are equivalent.

We note that for a given ∂D the operator S1 : L2(∂D) → L2(C) is a compact

integral operator with analytic kernel, thus (11) is severely ill-posed. To solve the system

of nonlinear integral equations (10) and (11) we propose two possible techniques. The

first technique (referred to as Method A in Section 3) is to solve simultaneously both

equations using a regularized iterative Newton linearization method. Alternatively, we

can use an alternating scheme (referred to as Method B in Section 3), for which, given

∂D, we solve the ill-posed equation (11) for ϕ then plug the solution in (10) and solve the

linearized version of (10) to find an update for ∂D and then iterate (the latter could be

seen as a way to separate nonlinearity from the ill-posedness). The following lemma is

needed to apply the Tikhonov regularization technique to the severely ill-posed integral

equation (11) in particular in the implementation of Method B.

We recall that we have assumed that k2 is not a Dirichlet eigenvalue for −∆ in D

as well in the region bounded by C.

Theorem 2.6. The operator S1 : L2(∂D)→ L2(C) is injective and has dense range.

Proof. Let S1ϕ = 0 on C. Define

v(x) =

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ R2\∂D.

6
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Note that v satisfies4v+k2v = 0 inside the region bounded by the curve C and v|C = 0.

Since k2 is not an interior Dirichlet eigenvalue we obtain that v = 0 in the interior of C

(cf. [1]). The unique continuation principle leads to v = 0 in D and then v|∂D = 0 from

inside D. Furthermore, we also have that v satisfies 4v + k2v = 0 in R2\D̄ together

with the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂v

∂r
− ikv

)
= 0,

where r = |x|. By continuity of the single layer potential across ∂D we in addition have

that v|∂D = 0 from outside of D. By uniqueness of the exterior Dirichlet boundary

value problem for the Helmholtz equation we conclude that v = 0 in R2\D̄. Hence,

an application of the jump relation for the gradient of the single layer potential yields

ϕ = 0 on ∂D, i. e. the operator S1 is injective. Next, we show that S1 has dense

range. Straightforward calculation show that the L2- adjoint S∗1 : L2(C) → L2(∂D) of

the operator S1 is given by

(S∗1φ)(x) =

∫
C

Φ(x, y)φ(y)ds(y), x ∈ ∂D.

Since N(S∗1)⊥ = S1(L2(∂D)), to complete the proof of the theorem we need to show

that S∗1 is injective. To this end let now S∗1φ = 0 on ∂D and define

w(x) =

∫
C

Φ(x, y)φ(y)ds(y), x ∈ R2\C.

Then w = 0 on ∂D. By the similar argument employed to show the injectivity of

S1 (first using the uniqueness of the exterior problem for D, then after an analyticity

argument using the uniqueness for interior problem inside C) we can obtain that φ = 0

on C, concluding that S∗1 is injective whence S1 has dense range.

3. Iterative solution of the inverse problem

The main goal in this section is to develop iterative solution schemes to solve the

system of nonlinear integral equations (10) and (11) for the unknown boundary ∂D.

Due to nonlinearity with respect to ∂D we need to linearize the system which requires

computing the Fréchet derivative of integral operators with respect to the boundary. To

this end we first need to parametrize the boundary and the involved integral operators.

3.1. Parameterization of the integral equations

We start by a parameterization of the boundary ∂D and the measurements curve C

which are assumed to be C2-smooth curves, namely

∂D := {z(t) = (z1(t), z2(t)) : t ∈ [0, 2π]} (12)

and

C := {ρ(t) = (ρ1(t), ρ2(t)) : t ∈ [0, 2π]}

7
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where the 2π periodic C2-smooth functions z, ρ : R 7→ R2 are injective on [0, 2π]

satisfying z′(t) 6= 0 and ρ′(t) 6= 0 for all t. We set

ψ(t) := |z′(t)|ϕ(z(t))

and for any vector a = (a1, a2) we denote by a⊥ = (a2,−a1), that is a⊥ is obtained by

rotating a clockwise by 90 degrees. We obtain the parameterized form of the integral

operators (9), denoted now by Aj (j = 0, 1) and given by

[A0(z, ψ)](t) =
i

4

∫ 2π

0

H
(1)
0 (k|z(t)− z(τ)|)ψ(τ)dτ (13)

[A1(z, ψ)](t) =
i

4

∫ 2π

0

H
(1)
0 (k|ρ(t)− z(τ)|)ψ(τ)dτ (14)

for t ∈ [0, 2π], where ψ ∈ L2[0, 2π] and z ∈ C2[0, 2π]. For simplicity we set

ω0(z) := −Φ(z, d) which assumes the form

[ω0(z)](t) = − i
4
H

(1)
0 (k|z(t)− d|), t ∈ [0, 2π]. (15)

and write the measured data ω1(ρ(t)) := us(ρ(t), d) as a function of t ∈ [0, 2π]. Then

the system (10)-(11) is transformed to

A0(z, ψ) = ω0(z), (16)

A1(z, ψ) = ω1. (17)

The kernel of the operator A1 is of course analytic whereas in order to analyze the kernel

of the operator A0 which is

M(t, τ) =
i

4
H

(1)
0 (k|z(t)− z(τ)|)

for t 6= τ , we split it into [6]

M(t, τ) = M1(t, τ) ln

(
4 sin2 t− τ

2

)
+M2(t, τ),

where

M1(t, τ) := − 1

4π
J0(k|z(t)− z(τ)|)

and the diagonal term for M2 is given by

M2(t, t) =
i

4
− E

2π
− 1

4π
ln

(
k2

4
|z′(t)|2

)
,

where E denotes the Euler’s constant.

8
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3.2. Two iteration schemes

We now turn to the iteration schemes for solving (16)-(17). In this paper, we consider

two ways to solve the system (16) - (17), which are also discussed in [11] for the exterior

scattering problem.

Method A. This method involves the full linearization of the system (16) - (17)

with respect to ψ and z which leads to

A0(z, ψ) + A0(z, χ) + A
′

0[z, ψ]ζ = ω0(z) + ω
′

0(z)ζ, (18)

A1(z, ψ) + A1(z, χ) + A
′

1[z, ψ]ζ = ω1. (19)

The operators A
′
0[z, ψ]ζ, A

′
1[z, ψ]ζ and ω

′
0(z)ζ denote the Fréchet derivatives with respect

to z in the direction ζ of the operators A0(z, ψ), A1(z, ψ) and ω0(z), respectively. Solving

the inverse problem for ∂D via (18) and (19) can be summarized by the following

algorithm:

(i) We make an initial guess for the boundary ∂D, i.e. for z(t), t ∈ [0, 2π] and solve

the severely ill-posed equation (17) to get the corresponding initial guess for ψ.

(ii) Having now an approximation for z and ψ, the linear system (18) - (19) is solved

for ζ and χ to obtain the update z + ζ and ψ + χ.

(iii) The second step is repeated until a suitable stopping criterion is satisfied.

Method B. This method is to decompose the inverse problem into a severely ill-posed

linear problem and a mildly ill-posed nonlinear problem (cf. [3]). Here only the equation

(16) is linearized with respect to z, and the procedure alternates between

A1(z, ψ) = ω1 (20)

and

A0(z, ψ) + A
′

0[z, ψ]ζ = ω0(z) + ω
′

0(z)ζ. (21)

The algorithm can be summarized as follows:

(i) We start with an initial guess for the boundary ∂D, i.e. for z(t), t ∈ [0, 2π].

(ii) Solve the severely ill-posed linear equation (17) to get the density ψ.

(iii) Plug in (21), ψ found in step 2 and solve (21) for ζ to obtain the update z + ζ for

the boundary.

(iv) The second and the third steps are repeated until a suitable stopping criterion is

satisfied.

We remark that there is also a third possibility for iterative solution of (16) and

(17) which we do not investigate in this paper. Reversing the roles of the equations in

Method B, one can first solve the well-posed equation (16) for the the density and then

linearize the ill-posed equation (17) to update the boundary. This method corresponds

to the version proposed in [15] for the exterior scattering problem. Note that Method B

resembles the hybrid method that has investigated by Kress and Serranho in a number

of papers (see e.g. [10] and the references therein).

9
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The Fréchet derivatives of the operators A0, A1 are computed by formally

differentiating the kernels of integral operators with respect to z (see [19]) whereas

ω′0 is obtained by direct differentiation with respect to z. Their explicit expressions are

given by

A
′

0[z, ψ]ζ(t) = −ik
4

∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|)(z(t)− z(τ)) · (ζ(t)− ζ(τ))

|z(t)− z(τ)|
ψ(τ)dτ,

A
′

1[z, ψ]ζ(t) =
ik

4

∫ 2π

0

H
(1)
1 (k|ρ(t)− z(τ)|)(ρ(t)− z(τ)) · ζ(τ)

|ρ(t)− z(τ)|
ψ(τ)dτ,

ω
′

0(z)ζ(t) =
ik

4
H

(1)
1 (k|z(t)− d|)(z(t)− d) · ζ(t)

|z(t)− d|

for t ∈ [0, 2π]. We note that the kernel for the operator A
′
1 is analytic whereas to

understand the singularity of the kernel of the operator A
′
0 which is

L(t, τ) = −ik
4
H

(1)
1 (k|z(t)− z(τ)|)(z(t)− z(τ)) · (ζ(t)− ζ(τ))

|z(t)− z(τ)|
.

We split it into

L(t, τ) = L1(t, τ) ln

(
4 sin2 t− τ

2

)
+ L2(t, τ),

where

L1(t, τ) =
k

4π
J1(k|z(t)− z(τ)|)(z(t)− z(τ)) · (ζ(t)− ζ(τ))

|z(t)− z(τ)|
and notice that the diagonal term L2(t, t) is given by

L2(t, t) = − 1

2π

z′(t) · ζ ′(t)
|z′(t)|2

.

Next we show the injectivity for the linearized system (18) - (19) at the exact

solution. We remind the reader once more that the assumption that k2 is not a Dirichlet

eigenvalue for −∆ in D as well in the region bounded by C, is still in place. In the

following, without loss of generality we can assume that the perturbation ζ is in the

direction of the normal to the boundary.

Theorem 3.1. Let z be the parameterization of the exact boundary ∂D and let ψ =

|z′|ϕ ◦ z where ϕ satisfies equations (10)-(11). Assume that ζ = q[z′]⊥ ∈ C2[0, 2π] for a

scalar q and χ ∈ L2[0, 2π] satisfy the homogeneous system

A0(z, χ) + A
′

0[z, ψ]ζ = ω
′

0(z)ζ, (22)

A1(z, χ) + A
′

1[z, ψ]ζ = 0. (23)

Then χ = 0 and ζ = 0.

Proof. Following [16] we define

W (x) :=

∫ 2π

0

Φ(x, z(τ))χ(τ)dτ −
∫ 2π

0

∇xΦ(x, z(τ)) · ζ(τ)ψ(τ)dτ, x ∈ R2\∂D. (24)

10
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From (23) we obtain that W |C = 0 and since W satisfies ∆W + k2W = 0 inside C and

since k2 is not an interior Dirichlet eigenvalue we have that W = 0 inside C (cf. [1]).

The unique continuation principle leads to W = 0 in D and an application of the

trace theorem leads to W |∂D = 0. Then by the jump relations for the single-layer and

double-layer potentials, letting x tend to the boundary ∂D from inside D, we obtain∫ 2π

0

Φ(z(t), z(τ))χ(τ)dτ − 1

2
ζ(t) · ν(z(t))

ψ(t)

|z′(t)|

−
∫ 2π

0

∇z(t)Φ(z(t), z(τ)) · ζ(τ)ψ(τ)dτ = 0, (25)

where ν denotes the outward unit normal to ∂D. Combining (22) and (25), we have

1

2
ζ(t) · ν(z(t))

ψ(t)

|z′(t)|
+ ζ(t) ·

∫ 2π

0

∇z(t)Φ(z(t), z(τ))ψ(τ)dτ − ω′

0(z)ζ = 0.

Thus

ζ · ∇(us + Φ(·, d)) ◦ z = 0 on ∂D

which means that

ζ · ν(z)

(
∂(us + Φ(·, d))

∂ν
◦ z
)

= 0 on ∂D.

On the other hand we also have us + Φ(·, d) = 0 on ∂D. Now if ζ · ν(z) 6= 0 on an

open interval I ⊂ [0, 2π], then the Holmgren’s theorem implies that us + Φ(·, d) = 0 in

a neighborhood of C exterior to C. In particular,

us(xn) = −Φ(xn, d)

where xn = d+ h
n
ν(d), n = 1, 2, · · · are chosen in a neighborhood of d ∈ C for sufficiently

small h > 0. Letting now n → ∞ we observe that us is bounded but Φ is unbounded,

which leads to a contradiction. Hence ζ · ν(z) = 0, i. e. q[z′]⊥ · [z′]⊥ = 0 which means

ζ = 0. Now W becomes

W (x) =

∫ 2π

0

Φ(x, z(τ))χ(τ)dτ, x ∈ R2\∂D.

From (23) we have W |C = 0. Since k2 is not an interior Dirichlet eigenvalue W = 0

inside C and, by the unique continuation principle, also in D and hence W |∂D = 0. Since

W satisfies the Sommerfeld radiation condition and by the uniqueness of the exterior

Dirichlet boundary value problem for the Helmholtz equation, we have that W = 0 in

R2\D. Finally, by the jump relation for the gradient of the single-layer potential we

obtain that χ = 0.

Remark 3.2. Our approach is based on the use of single- and double- layer potentials

with kernel the fundamental solution of the Helmholtz equation, which is a natural

choice for the given homogeneous medium inside the cavity. The integral equation

approach typically brings into the analysis both the interior and exterior problems.

11
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Since our potentials satisfy the Sommerfeld radiation condition we use it. If a different

representation is considered one has to use respective external conditions.

We end this section by remarking that the mathematical justification of the use of

Tikhonov regularization for solving the severely ill-posed linear equation (17) for a fixed

∂D is provided by Theorem 2.6.

4. Numerical examples

In this section we present several numerical examples to show the effectiveness of

both Method A and Method B. For the sake of simplicity, in the following numerical

computations we assume that the interior curve C is a circle, i. e. C = {ρ(t)|ρ(t) =

rc(cos t, sin t), t ∈ [0, 2π]} where rc > 0 is a constant. The synthetic data us on the

curve C is obtained by solving the direct problem (1)-(2) using a double-layer potential

approach in which the involved integral equation is solved by Nyström’s method [6]. For

the solution of the inverse problem we use the iteration procedures described in Section

3.2 to obtain an approximation for the boundary ∂D. We apply the trapezoidal rule

to discretize integral equations occurring in (18)-(19) and (20)-(21) with N equidistant

grid points and use Tikhonov regularization technique to solve them with L2 penalty

term for the density ψ, and the updates χ and ζ. Recalling the form ζ = q[z′]⊥ of the

boundary perturbation, the magnitude q of the normal perturbation is approximated

by a trigonometric polynomial of degree less than or equal to m ∈ N, i.e.

q(t) ≈
m∑
j=0

aj cos (jt) +
m∑
j=1

bj sin (jt).

The corresponding regularization parameters are denoted as αψ, αχ and αζ , which

are chosen by trial and error. In the implementation of Method B, the regularization

parameters αψ and αζ once chosen are kept constant in each iteration, whereas in the

implementation of Method A we find out that it is best to change the regularization

parameters at each step of iterations according to α̃χ,j = (1/6)jαχ and α̃ζ = (1/6)jαζ ,

j = 1, · · · , itera, where the ”itera” denotes the number of iterations. For Method B

we need an additional regularization by updating the density ψ according to ψnew =

λψ + (1 − λ)ψold where ψ is the solution of equation (17) and λ is chosen between 0.4

and 0.6; the need for such correction is also observed in [3] and [16].

Of course, as mentioned in the description of Method A and Method B, a suitable

stopping criterion is needed. In our numerical examples we chose the number of

iterations by trial and error. We study the sensitivity of the relative `2 error of

the reconstructions with respect to the number of the iterations, and the results are

presented in Fig. 9.

In our computations, we always take the source point d = rc(−1, 0) and choose as

the initial guess for the boundary a circle centered at the origin with radius ro to start

the iterations.

12
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As a first example we consider a peanut parametrized by

∂Dp = 0.8
√

cos2 t+ 0.25 sin2 t (cos t, sin t) , 0 ≤ t ≤ 2π. (26)

The numerical results are shown in Figs. 1 - 2 where the involved parameters are chosen

according to rc = 0.1, ro = 0.3, m = 11, N = 56 and k = 2. For the reconstructions

shown in Figs. 1(a) and 2(a) we use exact data and pick αψ = αχ = 10−10 and αζ = 10−4.

In Figs 1(b) and 2(b) we display the reconstructions with 1% random noise in the data

and αψ = αχ = 10−7 and αζ = 10−3 using Method A and Method B respectively,

whereas in Fig. 1(c) we display the reconstructions with 3% random noise in the data

and αψ = αχ = 10−6 and αζ = 10−1.
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(a) Exact data;
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(b) 1% noise data.
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(c) 3% noise data.

Figure 1: Reconstruction for ∂Dp with k = 2, d = rc(−1, 0) and itera = 8 for Method

A. Here the radius of the measurement circle C is given by rc = 0.1.

The second example involves the reconstruction of a peach parametrized by

∂Da = (1.2− 1/3 sin t− 1/7 sin(3t))(cos t, sin t)

:= r(t)(cos t, sin t), 0 ≤ t ≤ 2π

where we choose rc = 0.4, ro = 0.8, N = 60, m = 10 and k = 1. The results are shown

in Figs. 3 - 4, more specifically Figs. 3(a) and 4(a) display the reconstructions with
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(b) 1% noise data.

Figure 2: Reconstruction for ∂Dp with k = 2, d = rc(−1, 0) and itera = 8 for Method

B. Here the radius of the measurement circle C is given by rc = 0.1.

exact data and αψ = αχ = 10−9 and αζ = 10−6, whereas Figs. 3(b) and 4(b) with 1%

random noise data and αψ = αχ = 10−7 and αζ = 10−4.
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(a) Exact data;
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(b) 1% noise data.

Figure 3: Reconstruction for ∂Da with k = 1, d = rc(−1, 0) and itera = 12 for Method

A. Here the radius of the measurement circle C is given by rc = 0.4.

The third example considered here is a pear parametrized by

∂Dr = (1.2 + 0.25 cos(3t))(cos t, sin t), 0 ≤ t ≤ 2π. (27)

The numerical results are shown in Figs. 5 - 6 where the choice of the involved

parameters is rc = 0.48, ro = 0.6, m = 10, N = 64. In the example displayed in Figs. 5

and 6(a)-6(b), we choose k = 1.25 whereas in Figs. 6(c)-6(d) we choose k = 2.25. The

reconstructions in Figs. 5(a) and 6(a) are done with exact data αψ = αχ = 10−8 and

αζ = 10−2, and the reconstructions in Figs. 5(b) and 6(b) with 3% random noise data

and αψ = αχ = 10−5 and αζ = 10−1. Finally for the reconstructions in Fig. 6(c) we use
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(a) Exact data;

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

guess

reconstructed

exact

(b) 1% noise data.

Figure 4: Reconstruction for ∂Da with k = 1, d = rc(−1, 0) and itera = 12 for Method

B. Here the radius of the measurement circle C is given by rc = 0.4.

exact data with αψ = 3 × 10−4 and αζ = 2 × 10−2, and in Fig. 6(d) 3% random noise

data with αψ = 6× 10−4 and αζ = 10−1.
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(a) Exact data with k = 1.25;
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(b) 3% noise data with k = 1.25;

Figure 5: Reconstruction for ∂Dr with d = rc(−1, 0) and itera = 7 for method A. Here

the radius of the measurement circle C is given by rc = 0.48.

The next example involves the reconstruction of a kite parametrized by

∂Dk = (0.6 cos t+ 0.3 cos(2t), 0.6 sin 2t), 0 ≤ t ≤ 2π (28)

where we choose rc = 0.1, ro = 0.4, N = 64, m = 8 and k = 2.05. The results are

shown in Fig. 7, more specifically Fig. 7(a) displays the reconstruction with exact data

and αψ = 10−7 and αζ = 3 × 10−1, whereas Fig. 7(b) with 1% random noise data

and αψ = 10−6 and αζ = 1. Note that q(t) for ∂Dk can not be accurately represented

as linear combination of few trigonometric basis functions as oppose to the previous

examples. In this case the reconstruction is somewhat worse.
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(a) Exact data with k = 1.25;
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(b) 3% noise data with k = 1.25;
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(c) Exact data with k = 2.25;
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(d) 3% noise data with k = 2.25;

Figure 6: Reconstruction for ∂Dr with d = rc(−1, 0) and itera = 7 for method B. Here

the radius of the measurement circle C is given by rc = 0.48.

Although the interior scattering problem (1)-(2) is not properly formulated if k2 is

a Dirichlet eigenvalue of the negative Laplacian we tested the Method B for the case of

a circle and k2 close to an eigenvalue. In particular we consider the circle parametrized

by

∂Dc = 2 (cos t, sin t) , 0 ≤ t ≤ 2π. (29)

We use N = 60, k = 1.91585, rc = 0.5 and choose two different curves as initial guess,

namely

∂Dell = {x(t)|x(t) = (cos t, 0.5 sin t)}, 0 ≤ t ≤ 2π (30)

where the involved parameters are m = 10, αψ = 10−5, αζ = 10−1, itera = 8, and

∂Dcir = {x(t)|x(t) = (1.2 cos t− 0.12, 1.2 sin t+ 0.1)}, 0 ≤ t ≤ 2π (31)

where the involved parameters are m = 8, αψ = 10−5, αζ = 10−3 and itera = 8.

The results and the chosen regularization parameters are shown in Fig. 8
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Figure 7: Reconstruction for ∂Dk with k = 2.05, d = rc(−1, 0) and itera = 18 for

Method B. Here the radius of the measurement circle C is given by rc = 0.1.
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(b) with the initial guess ∂Dcir;

Figure 8: Reconstruction for ∂Dc with k = 1.91585 (which is close to a Dirichlet

eigenvalue for −∆ inside ∂Dc), d = rc(−1, 0) and 1% noise in the data using Method

B. Here the radius of the measurement circle C is given by rc = 0.5.

Since our stopping criterion was chosen in ad-hoc manner, we present a sensitivity

analysis of the reconstruction with respect to the number of iterations. To this end,

we introduce the relative `2 error between the computed polar radius rcom(t) for the

boundary and the exact r(t) given by

Error :=

(
2n+1∑
i=1

|rcom(ti)− r(ti)|2
) 1

2

(
2n+1∑
i=1

|r(ti)|2
) 1

2

,

where ti = π
n
(i − 1), i = 1, · · · , 2n + 1. In Fig. 9 we present a plot of the `2 - error

against the number of iterations for ∂Da with 1% random noise data, n = 30.
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The presented examples show that the proposed iterative numerical approaches

work well, although Method A appears to perform somehow better than Method B. Of

course, the results deteriorate as the noise level increases. We also observe that as the

wave number increases the reconstruction worsen. Note that for all examples the size of

the scatterer and the wave number are such that kR is small enough so that uniqueness

with one source holds true, see Corollary 2.2 and Remark 2.3. Finally, our last example

indicates that the proposed Newton iterative approachs (at least Method B) works well

if k2 is close to a Dirichlet eigenvalue for the cavity, despite the fact that the scattering

problem is not properly formulated and the method is not theoretically justified (we use

synthetic data computed based on a double-layer potential approach as for the other

examples).
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(a) Method A;
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Figure 9: Relative error for ∂Da with k = 1, d = rc(−1, 0) and the radius rc = 0.4 of

the measurement circle C.
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