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Abstract. We develop a factorization method to obtain an explicit characterization of a (pos-
sibly nonconvex) Dirichlet scattering object from measurements of time-dependent causal scattered
waves in the far field regime. In particular, we prove that far fields of solutions to the wave equation
due to particularly modified incident waves characterize the obstacle by a range criterion involving
the square root of the time derivative of the corresponding far field operator. Our analysis makes
essential use of a coercivity property of the solution of the Dirichlet initial boundary value problem
for the wave equation in the Laplace domain. This forces us to consider this particular modification
of the far field operator. The latter in fact can be chosen arbitrarily close to the true far field operator
given in terms of physical measurements.
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1. Introduction. Reconstructing the shape of an obstacle from measurements
of time-dependent scattered waves is an important classical inverse scattering prob-
lem with many potential applications such as in nondestructive testing and medical
imaging by ultrasound waves. Commonly used inversion methods, such as Kirchhoff
or travel time migration (see, for instance, [6, 8, 9] and references therein), are usually
based on high frequency or weak scattering approximations. More recently, new fam-
ilies of imaging techniques that avoid these approximations by relying on the use of
multistatic measurements have been proposed (see, for instance, [1, 11, 12, 16, 29, 36]
and references therein). They are commonly referred to as sampling methods. How-
ever, most of these techniques have been developed only in the frequency domain.
One of the prominent members of this family is the so-called factorization method
[27, 29]. The main advantage of this method, as opposed to other sampling techniques,
is that it yields a mathematically rigorous characterization of the scatterer's shape
in terms of the data. Therefore, in addition to suggesting a fast numerical inversion
algorithm that is justified for noisy data, it also implies a uniqueness result for the
associate inverse problem. Designing a mathematically justified sampling method, in
particular a factorization method, in the time domain is still an open problem. Our
intention here is to provide a theoretical framework that would help in clarifying why
this is a hard problem. Indeed here we prove the factorization method for a (small)
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FACTORIZATION METHOD FOR WAVE EQUATION 855

perturbation of the far field operator that is more conducive to analyzing the problem
using the Laplace transform instead of the Fourier transform. In order to ensure a
symmetric factorization that is a fundamental requirement for the method, we con-
sider waves associated with ``conjugated"" wave numbers. The latter transforms in the
time domain as a multiplicative factor involving the imaginary part of the frequency.
Hence our result should be seen as a step forward toward the goal of developing a
time domain mathematically justified linear sampling type method.

What is the benefit of developing the factorization method in the time domain?
In fact, linear sampling methods can be formulated at a single frequency, but it is
well-known that to achieve reasonable reconstruction they need multistatic data on a
large spatial aperture. On the other hand, the resolution of reconstructions heavily
depends on the interrogating frequency, and for a discrete set of frequencies (inte-
rior eigenvalues) these methods do not work, which becomes an issue because good
or bad frequencies depend on the unknown scatterer. Using time-domain data can
be a remedy for these issues. In fact preliminary numerical results using the linear
sampling method indicate that using time domain data reduces the spacial aperture
as well as the number of receivers/transmitters without compromising the quality of
the reconstructions [13, 14, 15, 21, 22, 24]. When given time-dependent scattering
data, one might also be tempted to take formal Fourier transforms of the data and
then to apply single frequency reconstruction methods at several frequencies. The
paper [23] shows that this can lead to numerical difficulties for sampling methods. In
addition, superimposing single frequency images does not respect the causality prop-
erty of the fields. Thus the natural way to handle time-domain data is to develop
reconstruction methods in the framework of a time-dependent wave equation. A first
attempt to consider sampling methods (more precisely, the linear sampling method)
in a somewhat different time-dependent setting was made in [15]. Unfortunately, the
method proposed in [15] and subsequently in [22, 24] does not provide a rigorous
mathematical characterization of the obstacle, due to an approximation argument
used in the mathematical justification of the method. (See [12] for the time-harmonic
case.) The characterization provided in the present paper is designed for the far field
full aperture setting as opposed to the near-field (possibly partial aperture) setting
considered in [15]. The far field full aperture setting introduces an additional mathe-
matical structure that allows one to go beyond the results of [15]. Roughly speaking,
since incident and scattered fields are only adjoint if one additionally reverses time, in
the near field setting or partial aperture one loses symmetry, which in turn determines
important factorization properties of the measurement operator. We also mention the
work in [39] as an attempt to develop a factorization method in the time domain for
the Robin problem.

Finally, we would like to mention other works related to inverse problems for waves
in the time domain. Apart from the above-mentioned sampling methods, other tech-
niques for inverse scattering problems, namely, the probe method and the point-source
method [10, 32] as well as the enclosure method [25, 26], also have been extended to
time domain problems. Furthermore, many authors investigated time reversal tech-
niques, partially linked with control theoretic approaches (see, e.g., [5, 7, 9, 17, 30, 33,
34, 35]). It is worth noting that many of these results rely on geometric assumptions
for the obstacle, whereas we only suppose that the scatterer is a Lipschitz domain
with connected complement. Of course, the price to pay is that our characterization
requires measurements of the causal wave for all (positive) times.

The outline of the paper is as follows. In the next section, we formulate the direct
and inverse scattering problem for the wave equation with a Dirchlet obstacle and

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

65
.2

30
.2

24
.1

62
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

856 F. CAKONI, H. HADDAR, AND A. LECHLEITER

define the concept of the far field pattern for causal waves as well as the time domain
far field operator. In section 3, we introduce the time domain retarded Herglotz func-
tion, derive the basic factorization of the far field operator, and define the analytical
framework to study this factorization. The middle operator in the factorization is re-
lated to the solution operator of the initial boundary value problem, which we study
in terms of retarded potentials. Here we recall important results on the properties of
these potentials due to Bamberger and Ha Duong in [4], which are obtained by inter-
mediately using the Laplace transform framework. Section 4 is dedicated to deriving
our main inversion result, which is stated in Theorem 4.5. In particular, we show that
in order to obtain a symmetric factorization, we need to consider the far fields due to
modified incident waves. The latter are the inverse Laplace transform of entire solu-
tions to the Helmholtz equation with complex wave number with negative imaginary
part. The corresponding far fields give rise to a perturbed far field operator, which
assumes a symmetric factorization with coercive middle operator leading to the proof
of the factorization method. The appendix contains some abstract known results from
the literature that we use in our proofs.

The first two authors would like to add the following statement: We dedicate this
paper to the memory of Professor Armin Lechleiter, with whom we started working on
this project in 2017. Professor Armin Lechleiter prematurely passed away in January
2018 at the age of 35. Collaborating with Armin was a most pleasant, memorable
experience and an intellectual challenge. His loss will be strongly felt by all colleagues
and friends who had the privilege to know him personally.

2. Problem setting for Dirichlet obstacles. We consider a Dirichlet scat-
tering object D \subset \BbbR 3 that we suppose to be a Lipschitz domain. The obstacle D is
allowed to possess several components; however, the exterior \BbbR 3 \setminus D of D is assumed
to be connected. Without loss of generality we suppose that D contains the origin.
Wave propagation in \BbbR 3 \setminus D is described by the wave equation

(2.1) \partial 2t u - \Delta u = 0 in \BbbR 3 \setminus D \times \BbbR ,

subject to a Dirichlet boundary condition on \partial D, and such that u vanishes for t \leq T .
Here, T \in \BbbR is a given ``initial"" time. Given an incident wave ui(x, t) solving the
wave equation in \BbbR 3 \times \BbbR , and such that the restriction ui

\bigm| \bigm| 
\partial D

vanishes for t \leq T , the

scattered field is defined as us := u - ui. This wave field solves the direct scattering
problem (2.1) together with the boundary condition us =  - ui on \partial D and the causality
condition us(x, t) = 0 for t \leq T .

For causal solutions to the wave equation there exists the notion of an associated
far field. Roughly speaking, the far field describes the behavior of the wave far away
from the scatterer. Due to the time-dependence of the wave, the far field of a scattered
wave depends on a direction \xi \in \BbbS 2 := \{ \theta \in \BbbR 3, | \theta | = 1\} and on a time variable t \in \BbbR .
Analysis of the far field of solutions to the wave equation goes back to Friedlander [18,
19]. For instance, in [18] it is shown that a twice continuously differentiable solution
us to (2.1) satisfies

(2.2) lim
r\rightarrow \infty 

rus(r\xi , r + t) = u\infty (\xi , t) for \xi \in \BbbS 2 and t \in \BbbR 

for a function u\infty : \BbbS 2 \times \BbbR \rightarrow \BbbR called the far field of us.
We shall here formally explain the setting of the inverse scattering problem. We

use incident waves in the form of wave fronts,

ui(x, t; \theta ) := \delta (t - \theta \cdot x),
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FACTORIZATION METHOD FOR WAVE EQUATION 857

where \theta \in \BbbS 2 is a given direction. These distributional solutions to the wave equation
then formally satisfy the causality condition with T <  - d, where d := supx\in D | x| . We
formally associate a far field u\infty (\xi , t; \theta ) to these incident fields. The inverse problem
is to reconstruct the geometry D from the knowledge of u\infty (\xi , t; \theta ) on \BbbS 2 \times \BbbR \times \BbbS 2.

Central to our method is the far field operator F defined (at least formally) as

(Fg)(\xi , t) :=

\int 
\BbbR 

\int 
\BbbS 2
u\infty (\xi , t - t0; \theta )g(\theta , t0) d\theta dt0 for \xi \in \BbbS 2 and t \in \BbbR 

and for regular functions g \in C\infty 
0 (\BbbS 2\times \BbbR ). Using the linearity of the forward problem,

this operator maps densities g to the far field pattern u\infty associated to the incident
field

(2.3) vg(x, t) =

\int 
\BbbR 

\int 
\BbbS 2
\delta (t - t0 - \theta \cdot x)g(\theta , t0) d\theta dt0 =

\int 
\BbbS 2
g(\theta , t - \theta \cdot x) d\theta .

As indicated in the introduction, we shall prove a characterization of the domain D
in terms of a modified far field operator that can be arbitrarily close to the physical
far field operator F .

3. Retarded potentials and solutions to the wave equation. Our analysis
of direct and inverse time domain scattering problems relies on retarded potentials,
and we would like to recall standard results concerning the retarded single-layer po-
tential. These results give a rigorous solution theory for exterior wave propagation
problems, which will allow us (in the beginning of section 3.3) to rigorously define the
far field operator on smooth functions with compact support.

Let us recall that k(x, t) = \delta (t - | x| )/4\pi | x| is the fundamental solution for the wave
equation in three dimensions [38]. Using this fundamental solution we can formally
introduce layer potentials. Define the single-layer potential on \partial D by

(SL\psi )(x, t) =

\int 
\BbbR 

\int 
\partial D

k(x - y, t - t0)\psi (y, t0) ds(y) dt0

=

\int 
\partial D

\psi (y, t - | x - y| )
4\pi | x - y| 

ds(y) for x \in \BbbR 3 \setminus \partial D and t \in \BbbR .
(3.1)

The corresponding single-layer operator is

(S\psi )(x, t) =

\int 
\partial D

\psi (y, t - | x - y| )
4\pi | x - y| 

ds(y) for x \in \partial D and t \in \BbbR .

The importance of these potentials is obvious from the fact that for a given incident
wave ui(x, t), the scattered wave us is given by

(3.2) us =  - SL
\bigl[ 
S - 1

\bigl( 
ui
\bigm| \bigm| 
\partial D

\bigr) \bigr] 
in \BbbR 3 \setminus D \times \BbbR .

We briefly recall the main theoretical results for the direct scattering problem, based
on Laplace transform techniques [4, 31].

For a Hilbert space X we denote by \scrD (\BbbR ;X) = C\infty 
0 (\BbbR ;X) smooth and compactly

supported X-valued functions. Further, \scrD \prime (\BbbR ;X) are X-valued distributions on the
real line and the corresponding tempered distributions are \scrS \prime (\BbbR ;X). We also set

\scrL \prime (\BbbR ;X) :=
\bigl\{ 
f \in \scrD \prime (\BbbR ;X), e - \sigma f tf(t) \in \scrS \prime (\BbbR ;X) for some \sigma f \in \BbbR 

\bigr\} 
.
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858 F. CAKONI, H. HADDAR, AND A. LECHLEITER

The Laplace transform of f \in \scrL \prime (\BbbR ;X) is

(3.3) \scrL [f ](s) :=
\int \infty 

 - \infty 
eistf(t) dt, s = \omega + i\sigma for \sigma > \sigma f .

If \sigma = 0, then the Laplace transform coincides with the usual Fourier transform. We
introduce for each m \in \BbbR the Hilbert spaces

Hm
\sigma (\BbbR ;X) :=

\Biggl\{ 
f \in \scrL \prime (\BbbR ;X),

\int \infty +i\sigma 

 - \infty +i\sigma 

| s| 2m\| \scrL [f ](s)\| 2X ds <\infty 

\Biggr\} 
for m \in \BbbR and \sigma \in \BbbR , endowed with the norm

\| f\| Hm
\sigma (\BbbR ,X) =

\Biggl( \int \infty +i\sigma 

 - \infty +i\sigma 

| s| 2m \| \scrL [f ](s)\| 2X ds

\Biggr) 1/2

and obvious inner product (see, e.g., [4, 38]).
Denote by X\ast the dual space of X with a duality pairing denoted by \langle , \rangle X\ast ,X . We

then clearly see that H - m
\sigma (\BbbR , X\ast ) can be identified with the dual space of Hm

\sigma (\BbbR , X)
with respect to the duality pairing

(3.4) \langle f, g\rangle =
\int \infty +i\sigma 

 - \infty +i\sigma 

\langle \scrL [g](s),\scrL [f ](s)\rangle X\ast ,X ds =

\int \infty 

 - \infty 
e - 2\sigma t \langle g(t), f(t)\rangle X\ast ,X dt.

For T \in \BbbR we define

Hm
\sigma (\BbbR >T ;X) = \{ f \in Hm

\sigma (\BbbR ;X), such that f(t) = 0 for t < T\} ,

which is a closed subspace of Hm
\sigma (\BbbR ;X) and

\~Hm
\sigma (\BbbR >T ;X) = \{ f | t\geq T , f \in Hm

\sigma (\BbbR ;X)\} 

endowed with the quotient norm (see, e.g., [37]). For T \in \BbbR , m \geq 0 and \sigma > 0, we
have the following inclusions:

Hm
\sigma (\BbbR >T ;X) \subset L2

\sigma (\BbbR >T ;X) \subset H - m
\sigma (\BbbR >T ;X) \subset \~H - m

\sigma (\BbbR >T ;X).

Moreover, \~H - m
\sigma (\BbbR >T ;X

\ast ) can be identified with the dual space of Hm
\sigma (\BbbR >T ;X) with

respect to the duality pairing defined in (3.4). Now we assume that H is a Hilbert
pivot space in the duality X\ast , X, i.e., X \subset H \subset X\ast with dense inclusions, and that
the duality pairing coincides with the inner product associated with H. Then we also
have that

Hm
\sigma (\BbbR >T ;X) \subset L2

\sigma (\BbbR >T ;H) \subset \~H - m
\sigma (\BbbR >T ;X

\ast )

and the three spaces form a Gelfand triple with a pivot space L2
\sigma (\BbbR >T ;H).

The following theorem is proved in [4] (see also [38]).

Theorem 3.1 (Bamberger and Ha Duong [4]). Let m \in \BbbR , \sigma > 0, and T \in \BbbR .
(i) The single-layer operator S is invertible and the inverse

S - 1 : Hm
\sigma (\BbbR >T ;H

1/2(\partial D)) \rightarrow Hm - 2
\sigma (\BbbR >T ;H

 - 1/2(\partial D))

is bounded. The single-layer potential

SL : Hm
\sigma (\BbbR >T ;H

 - 1/2(\partial D)) \rightarrow Hm - 1
\sigma (\BbbR >T ;H

1(\BbbR 3))

is bounded.
(ii) For boundary data h \in Hm

\sigma (\BbbR >T ;H
1/2(\partial D)) there is a unique solution u =

SL(S - 1g) in H
m - 3/2
\sigma (\BbbR >T ;H

1(\BbbR 3 \setminus D)) of the boundary value problem \partial 2t u - \Delta u = 0
in (\BbbR 3 \setminus D)\times \BbbR , u = h on \partial D \times \BbbR , and u = 0 for t \leq T .
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FACTORIZATION METHOD FOR WAVE EQUATION 859

3.1. Retarded Herglotz waves. The first step toward a rigorous definition of
the far field operator and its mapping properties is to study the properties of the
incident retarded Herglotz wave functions vg defined in (2.3). We remark that vg is a
regular solution to the wave equation in \BbbR 3 \times \BbbR , at least for smooth and compactly
supported g. Recall that d = supx\in D | x| .

Lemma 3.2. Let m \in \BbbR , l \in \BbbN 0, and \sigma > 0. Then the mapping g \mapsto \rightarrow vg| D is
bounded from Hm+l

\sigma (\BbbR ;L2(\BbbS 2)) into Hm
\sigma (\BbbR ;H l(D)). If T \in \BbbR and g(\cdot , t) vanishes for

t < T , then vg(\cdot , t) vanishes in D for t < T  - d.

Proof. For smooth and compactly supported g \in C\infty 
0 (\BbbR ;C\infty (\BbbS 2)), the application

of the Laplace transform and Fubini's theorem yields that

\scrL [vg](x, k) =
\int 
\BbbR 
exp(ikt)

\int 
\BbbS 2
g(\theta , t - \theta \cdot x) d\theta dt

=

\int 
\BbbS 2
exp(ik \theta \cdot x)

\int 
\BbbR 
exp(ikr)g(\theta , r) dr d\theta =

\int 
\BbbS 2
exp(ik \theta \cdot x)\scrL [g](\theta , k) d\theta 

(3.5)

for k := \omega + i\sigma , \omega \in \BbbR and fixed \sigma > 0. The product rule shows that

\partial k(k
\beta \scrL [vg](k)) = \beta k\beta  - 1

\int 
\BbbS 2
exp(ik \theta \cdot x)\scrL [g](\theta , k) d\theta 

+ k\beta 
\int 
\BbbS 2
(i\theta \cdot x) exp(ik \theta \cdot x)\scrL [g](\theta , k) d\theta + k\beta 

\int 
\BbbS 2
exp(ik \theta \cdot x)\partial k\scrL [g](\theta , k) d\theta 

for \beta \in \BbbN . Since | exp(ik \theta \cdot x)| \leq C(\sigma ) for all x \in D, \theta \in \BbbS , and \omega \in \BbbR , we conclude
(after differentiating with respect to x) that

\| \partial kk\beta \scrL [vg](k)\| 2Hl(D)

\leq C(\sigma ,D)

l\sum 
j=0

2j(1 + | k| 2)\beta +j
\Bigl( 
\| \scrL [g](\cdot , k)\| 2L2(\BbbS 2) + \| \partial k\scrL [g](\cdot , k)\| 2L2(\BbbS 2)

\Bigr) 
.

Due to the definition of Hm
\sigma (\BbbR ;H l(D)) and the transformation rules, we estimate that

\| vg\| 2Hm
\sigma (\BbbR ;Hl(D)) \leq C\| g\| 2

Hm+l
\sigma (\BbbR ;L2(\BbbS 2))

for smooth g with compact support. This bound extends by density from
C\infty 

0 (\BbbR ;C\infty (\BbbS 2)) to Hm+l
\sigma (\BbbR ;L2(\BbbS 2)).

Now, assume that the density g(\cdot , t) vanishes for t < T . For x \in D and t < T  - d
we have t - \theta \cdot x < T for all \theta \in \BbbS 2 and hence g(\cdot , t - \theta \cdot x) vanishes on \BbbS 2. Thus, the
right-hand side of (2.3) implies that vg(x, t) vanishes for x \in D and t < T  - d.

Combining the above lemma with the trace theorem from H1(D) into H1/2(\partial D)
shows that g \mapsto \rightarrow vg| \partial D is also bounded from Hm+1

\sigma (\BbbR ;L2(\BbbS 2)) into Hm
\sigma (\BbbR ;H1/2(\partial D)).

In what follows, this mapping is called the Herglotz operator and is denoted by

\scrH g := vg| \partial D\times \BbbR .

Remark 3.3. If one formally takes a Laplace transform of the retarded Herglotz
wave vg given by (3.5), then one finds at each k = \omega + i\sigma a Herglotz wave function
in the Laplace domain with density \scrL [g](\cdot , k) and complex wave number k := \omega + i\sigma 
(see, e.g., [16] in the case of real wave number).
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3.2. Far fields associated with single-layer potentials. To properly define
the far field operator we need to extend definition (2.2) of far fields associated to
smooth solutions to the wave equation to single-layer potentials with densities that
are not regular in time. To this end, let us consider (causal) solutions to the wave
equation in form of a single-layer potential,
(3.6)

v(x, t) = (SL\psi )(x, t) =

\int 
\partial D

\psi (y, t - | x - y| )
4\pi | x - y| 

ds(y) for x \in \BbbR 3 \setminus D and t \in \BbbR .

Lemma 3.4. Let \psi \in C\infty 
0 (\BbbR ;C\infty (\partial D)) and define v by (3.6). Then

(3.7) lim
r\rightarrow \infty 

rv(r\xi , r + t) =
1

4\pi 

\int 
\partial D

\psi (y, t+\xi \cdot y) ds(y) for \xi \in \BbbS 2 and t \in \BbbR .

Proof. For smooth and compactly supported \psi it holds that

lim
r\rightarrow \infty 

rv(r\xi , r + t) = lim
r\rightarrow \infty 

\int 
\partial D

1

4\pi 

r

| r\xi  - y| 
\psi (y, r + t - | r\xi  - y| ) ds(y).

However, for r > 2d, where d := supx\in D | x| ,\bigm| \bigm| \bigm| \bigm| 1 - r

| r\xi  - y| 

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| | \xi  - y/r|  - 1

| \xi  - y/r| 

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| | \xi  - y/r| 2  - 1

| \xi  - y/r| (| \xi  - y/r| + 1)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| | \xi  - y/r| 2  - 1

| \xi  - y/r| 

\bigm| \bigm| \bigm| \bigm| \leq 2| | \xi  - y/r| 2  - 1| \leq 4| \xi \cdot y| /r + 2| y/r| 2 \leq C(| y| )/r.

Moreover,

r  - | r\xi  - y| =
2r \xi \cdot y - | y| 2

r + | r\xi  - y| 
= \xi \cdot y + \xi \cdot y

\biggl( 
1 - | \xi  - y/r| 
1 + | \xi  - y/r| 

\biggr) 
 - | y| 2

r + | r\xi  - y| 
.

Hence, | r  - | r\xi  - y|  - \xi \cdot y| \leq C(| y| )/r, which implies (3.7).

Thus we can consider the far field mapping

(3.8) R : \psi \mapsto \rightarrow 1

4\pi 

\int 
\partial D

\psi (y, t+\xi \cdot y) ds(y).

Motivated by (2.2), we call u\infty = R\psi the far field pattern of a retarded single-layer
potential u = SL\psi . Note that the formal application of the Laplace transform to
R\psi yields simply the time-harmonic far field pattern of a time-harmonic single-layer
potential (see the calculations below (3.9)).

Lemma 3.5. For m \in \BbbR , \sigma > 0 the mapping R defined by (3.8) extends to a
bounded operator from Hm

\sigma (\BbbR ;H - 1/2(\partial D)) into Hm - 1
\sigma (\BbbR ;L2(\BbbS 2)). Furthermore, if

\psi \in Hm
\sigma (\BbbR ;H - 1/2(\partial D)) vanishes for t < T , then R\psi vanishes for t < T  - d.

Proof. For smooth and compactly supported \psi \in C\infty 
0 (\BbbR ;C\infty (\BbbS 2)), the application

of the Laplace transform and Fubini's theorem yields that

\scrL [R\psi ](k) =
\int 
\BbbR 
exp(ikt)

\int 
\partial D

\psi (x, t+\theta \cdot x) ds(x) dt(3.9)

=

\int 
\partial D

exp( - ik \theta \cdot x)
\int 
\BbbR 
exp(ikr)\psi (x, r) dr ds(x)

=

\int 
\partial D

exp( - ik \theta \cdot x)\scrL [\psi ](x, k) ds(x)
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FACTORIZATION METHOD FOR WAVE EQUATION 861

for k := \omega + i\sigma , \omega \in \BbbR , and \sigma > 0. Then the estimate\bigm| \bigm| \bigm| \bigm| \int 
\partial D

exp( - ik \theta \cdot x)\scrL [\psi ](x, k) dsx
\bigm| \bigm| \bigm| \bigm| \leq C(\sigma )| k| \| \scrL [\psi ](\cdot , k)\| H - 1/2(\partial D)

implies the results.

The operator R (multiplied by 4\pi ) is the formal adjoint of H for the inner product
of L2(\BbbR ;L2(\BbbS 2)), since

(3.10)

\int 
\partial D

\int 
\BbbR 
\scrH g \psi dtds(y) =

\int 
\BbbS 2

\int 
\BbbR 

\int 
\partial D

g(\theta , t - \theta \cdot y)\psi (y, t) ds(y) dtd\theta 

=

\int 
\BbbS 2

\int 
\BbbR 
g(\theta , r)

\int 
\partial D

\psi (y, r+\theta \cdot y) ds(y) dr d\theta = 4\pi 

\int 
\BbbS 2

\int 
\BbbR 
g R\psi dtd\theta 

for smooth functions \psi and g with compact support in time.

3.3. Factorization and mapping properties of the far field operator.
Consider a smooth density g \in C\infty 

0 (\BbbR ;C\infty (\BbbS 2)) and let vg be the associated Herglotz
wave. The scattered field corresponding to the incident field vg, known to exist by
Theorem 3.1, is us =  - SL(\psi ), where \psi := S - 1(vg| \partial D). Following Lemma 3.4, we
define the far field u\infty associated with us as u\infty =  - R\psi . The far field operator F is
then defined to map g to u\infty , that is, F : g \mapsto \rightarrow u\infty . It is immediately clear that the
far field operator can be factorized as

(3.11) Fg :=  - RS - 1\scrH g (3.10)
=  - 1

4\pi 
\scrH \ast S - 1\scrH g

at least for smooth densities g \in C\infty 
0 (\BbbR ;C\infty (\BbbS 2)). We set

(3.12) G := RS - 1,

which in fact is the operator that maps h \mapsto \rightarrow u\infty , where u\infty is the far field of the
unique causal solution to the boundary value problem \partial 2t u - \Delta u = 0 in (\BbbR 3 \setminus D)\times \BbbR ,
u = h on \partial D \times \BbbR , and u = 0 for t \leq T . Thus we can write

(3.13) Fg =  - G\scrH g.

Proposition 3.6. The far field operator F is well-defined and bounded from
Hm+2

\sigma (\BbbR ;L2(\BbbS 2)) into Hm - 2
\sigma (\BbbR ;L2(\BbbS 2)) for m \in \BbbR , \sigma > 0. In addition, let \tau \in \BbbR .

Then the truncated far field operator F \tau : g \mapsto \rightarrow Fg| t\geq \tau defines a bounded map from

Hm+2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) into \~Hm - 2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)).
Proof. Thanks to Lemma 3.2, Theorem 3.1, and Lemma 3.5, we know that

\scrH is bounded from Hm
\sigma (\BbbR ;L2(\BbbS 2)) into Hm - 1

\sigma (\BbbR ;H1/2(\partial D)), that S - 1 is bounded
from Hm

\sigma (\BbbR ;H1/2(\partial D)) into Hm - 2
\sigma (\BbbR ;H - 1/2(\partial D)), and that R is bounded from

Hm
\sigma (\BbbR ;H - 1/2(\partial D)) into Hm - 1

\sigma (\BbbR ;L2(\BbbS 2)), respectively. Now, the mapping prop-
erties of F \tau are an immediate consequence of the definitions of Hm+2

\sigma (\BbbR >\tau ;L
2(\BbbS 2))

and \~Hm - 2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)).
As part of the above proof, we also have the following mapping properties con-

cerning the solution-to-far field operator G.

Proposition 3.7. The solution-to-far field operator G is well-defined and bounded
from Hm

\sigma (\BbbR ;H1/2(\partial D)) into Hm - 3
\sigma (\BbbR ;L2(\BbbS 2)) for m \in \BbbR , \sigma > 0.
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862 F. CAKONI, H. HADDAR, AND A. LECHLEITER

4. The perturbed far field operator. For reasons that will become clear later
in our analysis, we need to consider a perturbed form of the far field operator. To
this end, we consider the modified Herglotz operator given by

\scrH \sigma : g \mapsto \rightarrow v\sigma g | \partial D\times \BbbR ,

where

v\sigma g (x, t) :=

\int 
\BbbS 2
g(\theta , t - \theta \cdot x)e2\sigma (\theta \cdot x)d\theta .

Note that v\sigma g is the time convolution of \delta (t  - \theta \cdot x)e2\sigma (\theta \cdot x) with density g(\theta , t). Fol-
lowing the proof of Lemma 3.2 for fixed \sigma > 0, we have that \scrH \sigma : Hm

\sigma (\BbbR ;L2(\BbbS 2)) \rightarrow 
Hm - 1

\sigma (\BbbR ;H1/2(\partial D)). In terms of the operator \scrH \sigma and the solution operator G given
by (3.12), we now define the perturbed far field operator F\sigma : Hm+2

\sigma (\BbbR ;L2(\BbbS 2)) \rightarrow 
Hm - 2

\sigma (\BbbR ;L2(\BbbS 2)) by

(4.1) F\sigma g =  - G\scrH \sigma g.

If we let u\infty \sigma (\xi , t; \theta ) be the far field of the unique causal solution to the boundary
value problem \partial 2t u - \Delta u = 0 in (\BbbR 3 \setminus D)\times \BbbR , u =  - ui\sigma | \partial D\times \BbbR on \partial D \times \BbbR , and u = 0
for t \leq T , where ui\sigma (x, t; \theta ) := \delta (t - \theta \cdot x)e2\sigma (\theta \cdot x), \theta \in \BbbS 2, then for smooth densities g
with compact support, the far field operator can formally be written as

(4.2) (F\sigma g)(\xi , t) :=

\int 
\BbbR 

\int 
\BbbS 2
u\infty \sigma (\xi , t - t0; \theta )g(\theta , t0) d\theta dt0.

We remark that the Laplace transform of this ``incident field"" is

\scrL [ui\sigma (x, t; \theta )](\theta , k) = e(ik+\sigma )(\theta \cdot x) = ei(\omega  - i\sigma )(\theta \cdot x),

where k = \omega + i\sigma , \omega \in \BbbR , \sigma > 0, and \theta \in \BbbS 2. Hence \scrL [ui\sigma (x, t; \theta )](\theta , k) is an
entire solution of the Helmholtz equation \Delta v + (\omega  - i\sigma )2v = 0. On the other hand
the Laplace transform of the corresponding scattered field \scrL [us\sigma ](\cdot , k; \theta ) is a radiating
solution to the Helmholtz equation \Delta v + (\omega + i\sigma )2v = 0 with the far field pattern
given by \scrL [u\infty \sigma ](\xi , k; \theta ) for \xi \in \BbbS 2. In the same way as for real wave numbers, it is
also possible for k = \omega + i\sigma , \sigma > 0, to define the far field pattern of radiating fields
and to show that vanishing far fields imply vanishing scattered fields. In this case the
radial part in the corresponding asymptotic expansion is an exponentially decaying
function. We refer the reader to [40] for the concept of the far field pattern and a
proof of the Rellich's lemma for the Helmholtz equation with complex wave number
k = \omega + i\sigma for \sigma > 0. The Laplace transform of the perturbed far field operator then
reads

\scrL [F\sigma g](\xi , k) =

\int 
\BbbS 2
\scrL [g](\theta , k)\scrL [u\infty \sigma ](\xi , k; \theta ) d\theta .

The operator F\sigma will play the role of the data operator in our analysis. As \sigma \rightarrow 0, we
have that F\sigma g approaches Fg for smooth compactly supported g due to the fact that
u\infty \sigma approaches u\infty . Indeed this convergence can be shown to hold in the operator
norm, but to carry out a rigorous analysis, one must introduce time-dependent Sobolev
spaces independent of \sigma in terms of the Fourier transform.

Theorem 4.1. Let \sigma > 0 and let \widetilde F\sigma :=  - 4\pi (\partial tF\sigma  - 2\sigma F\sigma ). Then

\widetilde F\sigma : H5/2
\sigma (\BbbR ;L2(\BbbS 2)) \rightarrow H - 5/2

\sigma (\BbbR ;L2(\BbbS 2))
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FACTORIZATION METHOD FOR WAVE EQUATION 863

and the following factorization holds

\widetilde F\sigma = \scrH \ast 
\sigma 

\bigl( 
\partial t(S

 - 1) - 2\sigma S - 1
\bigr) 
\scrH \sigma ,

where \scrH \ast 
\sigma : H

 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)) \rightarrow H

 - 5/2
\sigma (\BbbR ;L2(\BbbS 2)) is the dual operator of \scrH \sigma :

H
5/2
\sigma (\BbbR ;L2(\BbbS 2)) \rightarrow H

3/2
\sigma (\BbbR ;H1/2(\partial D)) in the L2

\sigma -duality product defined in (3.4) and
is given by

(4.3) \scrH \ast 
\sigma \psi (\xi , t) = 4\pi R\psi (\xi , t) =

\int 
\partial D

\psi (y, t+\xi \cdot y) ds(y).

Proof. First we note that the mapping properties of the indicated operators are
obtained from the above with the choice of m = 5/2. From the definition of the oper-
ator R and the factorization (3.12) it is clear that \partial tG = R\partial t(S

 - 1). The factorization

of \widetilde F\sigma is then a direct consequence of the definition (4.1) and (3.12). To complete
the proof we only need to verify (4.3). To this end, consider g \in C\infty 

0 (\BbbR , L2(\BbbS 2)) and
\psi \in C\infty 

0 (\BbbR , H - 1/2(\partial D)).

(4.4) (\scrH \sigma g, \psi )L2
\sigma (\BbbR ,L2(\partial D)) =

\int 
\partial D

\int 
\BbbR 
e - 2\sigma t(\scrH \sigma g)\psi dtds(y)

=

\int 
\BbbS 2

\int 
\BbbR 

\int 
\partial D

g(\theta , t - \theta \cdot y)e - 2\sigma (t - \theta \cdot y)\psi (y, t) ds(y) dtd\theta 

=

\int 
\BbbS 2

\int 
\BbbR 
g(\theta , r)e - 2\sigma r

\int 
\partial D

\psi (y, r+\theta \cdot y) ds(y) dr d\theta 

= 4\pi 

\int 
\BbbR 

\int 
\BbbS 2
e - 2\sigma tg R\psi d\theta dt = (g,\scrH \ast 

\sigma \psi )L2
\sigma (\BbbR ,L2(\BbbS 2)) .

Our range test in the following involves the dual the operator \~F \ast 
\sigma : H

5/2
\sigma (\BbbR ;L2(\BbbS 2))

\rightarrow H
 - 5/2
\sigma (\BbbR ;L2(\BbbS 2)) of \~F\sigma in the L2

\sigma -duality product defined in (3.4). To obtain the
explicit expression of \~F \ast 

\sigma we first formally compute F \ast 
\sigma . To this end, for smooth

compactly supported g, h we have

\langle F\sigma g, h\rangle =
\int 
\BbbS 2

\int 
\BbbR 
e - 2\sigma t(F\sigma g)(\xi , t) \cdot h(\xi , t) dt d\xi 

=

\int 
\BbbS 2

\int 
\BbbR 
e - 2\sigma t

\biggl( \int 
\BbbS 2

\int 
\BbbR 
u\infty \sigma (\xi , t - t0; \theta )g(\theta , t0)d\theta dt0

\biggr) 
h(\xi , t) d\xi dt

=

\int 
\BbbR 

\int 
\BbbS 2
g(\theta , t0)e

 - 2\sigma t0

\biggl( \int 
\BbbS 2

\int 
\BbbR 
e - 2\sigma (t - t0)u\infty \sigma (\xi , t - t0; \theta )h(\xi , t) d\xi dt

\biggr) 
d\theta dt0.

If we let

(4.5) u\ast \infty \sigma (\xi , t; \theta ) := e - 2\sigma tu\infty \sigma (\theta , t; \xi ),

then F \ast 
\sigma takes the form of the following time-convolution integral operator:

(F \ast 
\sigma h)(\xi , t) :=

\int 
\BbbR 

\int 
\BbbS 2
u\ast \infty \sigma (\xi , t0  - t; \theta )h(\theta , t0) dt0 d\theta .

Note that u\ast \infty \sigma (\xi , t; \theta ) is not a far field pattern of any physical solutions to the wave
equation, and hence the dual F \ast 

\sigma is not a far field operator. Now using a denseness

argument and definition \~F \ast 
\sigma = [(\partial t  - 2\sigma )F\sigma ]

\ast 
, we obtain that \~F \ast 

\sigma : H
5/2
\sigma (\BbbR ;L2(\BbbS 2)) \rightarrow 
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864 F. CAKONI, H. HADDAR, AND A. LECHLEITER

H
 - 5/2
\sigma (\BbbR ;L2(\BbbS 2)) is given by

(4.6) ( \~F \ast 
\sigma h)(\xi , t) :=

\int 
\BbbR 

\int 
\BbbS 2
\partial tu

\ast \infty 
\sigma (\xi , t0  - t; \theta )h(\theta , t0) dt0 d\theta .

Central to the justification of the factorization method is the following coercivity
property that forced us to introduce the modified far field operator in the first place.

Lemma 4.2. Let \sigma > 0 and T \in \BbbR or T =  - \infty . Define \scrT :=
\bigl( 
\partial t(S

 - 1) - 2\sigma S - 1
\bigr) 
:

H
3/2
\sigma (\BbbR >T ;H

1/2(\partial D)) \rightarrow H
 - 3/2
\sigma (\BbbR >T ;H

 - 1/2(\partial D)). Then \scrT satisfies the following
coercivity property:

\langle \scrT \psi ,\psi \rangle \geq C(\sigma )\| \psi \| 2L2
\sigma (\BbbR ;H1/2(\partial D)) \forall \psi \in H3/2

\sigma (\BbbR >T ;H
1/2(\partial D)),

where \langle \cdot , \cdot \rangle denotes the L2
\sigma -duality product defined in (3.4) with X = H1/2(\partial D) and

C(\sigma ) > 0 such that C(\sigma ) \rightarrow 0 as \sigma \rightarrow 0.

Proof. The result is a direct consequence of [4, Propositions 2 and 4], which state
that

(4.7)  - 
\int 
\BbbR 
exp( - 2\sigma t)

\int 
\partial D

S - 1(\psi ) \partial t\psi dxdt \geq C(\sigma )\| \psi \| 2L2
\sigma (\BbbR ;H1/2(\partial D))

for all \psi \in C\infty 
0 (\BbbR ;H1/2(\partial D)). Integrating by part in time then using a density

argument yields

(4.8)

\int 
\BbbR 
exp( - 2\sigma t)

\int 
\partial D

\partial t(S
 - 1\psi ) - 2\sigma (S - 1\psi )\psi dxdt \geq C(\sigma )\| \psi \| 2L2

\sigma (\BbbR ;H1/2(\partial D))

for all \psi \in H
3/2
\sigma (\BbbR ;H1/2(\partial D)).

A corollary of this lemma and Theorem 4.1 is that

(4.9) \widetilde F\sigma = \scrH \ast 
\sigma \scrT \scrH \sigma 

and satisfies the following coercivity property:

(4.10)
\Bigl\langle \widetilde F\sigma g, g

\Bigr\rangle 
\geq C(\sigma )\| \scrH \sigma g\| 2L2

\sigma (\BbbR ;H1/2(\partial D)) \forall g \in H5/2
\sigma (\BbbR ;L2(\BbbS 2)),

where \langle \cdot , \cdot \rangle denotes here the L2
\sigma -duality product defined in (3.4) with X = L2(\BbbS 2).

We now need to deal with the causality property of the fields. To this end, let
\tau > 0 be a fixed parameter and introduce the truncated far field operator

\~F \tau 
\sigma : g \mapsto \rightarrow \~F\sigma g| t\geq \tau .

Then \~F \tau 
\sigma : H

5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) \rightarrow \~H
 - 5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) and

(4.11)
\Bigl\langle 
\~F \tau 
\sigma g, g

\Bigr\rangle 
\geq C(\sigma )\| \scrH \sigma g\| 2L2

\sigma (\BbbR ;H1/2(\partial D)) \forall g \in H5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)).

Now let ( \~F \tau 
\sigma )

\ast : H
5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) \rightarrow \~H
 - 5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) be the adjoint of \~F \tau 
\sigma with

respect to the L2
\sigma -duality product, which is a composition of \~F \ast 

\sigma given by (4.6) with the

zero-extension operator in H
5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)). The coercivity property (4.11) shows
that the symmetric operator

\~F \tau 
\sigma + ( \~F \tau 

\sigma )
\ast : H5/2

\sigma (\BbbR >\tau ;L
2(\BbbS 2)) \rightarrow \~H - 5/2

\sigma (\BbbR >\tau ;L
2(\BbbS 2))
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is positive. Furthermore, applying Lemma A.3 with X = H
5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) and
H = L2

\sigma (\BbbR >\tau ;L
2(\BbbS 2)) we deduce that

(4.12) Re \~F \tau 
\sigma = \~F \tau 

\sigma + ( \~F \tau 
\sigma )

\ast = (Q\tau 
F )

\ast Q\tau 
F

for some operator Q\tau 
F : H

5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) \rightarrow L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)).
Next let us denote by \scrH \tau 

\sigma the restriction of \scrH \sigma to H
5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)). Following
the proof of Lemma 3.2 we can view the restricted Herglotz operator as a bounded
operator between the following spaces:

\scrH \tau 
\sigma : H5/2

\sigma (\BbbR >\tau ;L
2(\BbbS 2)) \rightarrow H3/2

\sigma (\BbbR >\tau  - d;H
1/2(\partial D)).

We then view the operator \scrT as

\scrT : H3/2
\sigma (\BbbR >\tau  - d;H

1/2(\partial D)) \rightarrow \~H - 3/2
\sigma (\BbbR >\tau  - d;H

 - 1/2(\partial D)).

We also have

(4.13) \~F \tau 
\sigma = (\scrH \tau 

\sigma )
\ast \scrT \scrH \tau 

\sigma ,

where
(\scrH \tau 

\sigma )
\ast \psi := 4\pi R\psi | t\geq \tau .

Indeed from Lemma 4.2

\langle \scrT \psi ,\psi \rangle \geq C(\sigma )\| \psi \| 2L2
\sigma (\BbbR ;H1/2(\partial D)) \forall \psi \in H3/2

\sigma (\BbbR >\tau  - d;H
1/2(\partial D)).

Applying Lemma A.3 with X = H
3/2
\sigma (\BbbR >\tau  - d;L

2(\BbbS 2)) and H = L2
\sigma (\BbbR >\tau  - d;L

2(\partial D))
we deduce that

(4.14) \scrT + \scrT \ast = Q\ast 
\scrT Q\scrT 

for some operator Q\scrT : H
3/2
\sigma (\BbbR >\tau  - d;H

1/2(\partial D)) \rightarrow L2
\sigma (\BbbR >\tau  - d;L

2(\partial D)). Here again,
the operator \scrT \ast is the dual of \scrT with respect to the L2

\sigma (\BbbR ;L2(\partial D)) duality product.
We then obtain from (4.12), (4.13), (4.14), and Lemma A.2 that

(4.15) the ranges of (Q\tau 
F )

\ast and (Q\scrT \scrH \tau 
\sigma )

\ast coincide.

4.1. A range test for \bfitD . We now prove the following important result that
relates the domain D to the range of the operator \scrH \ast 

\sigma . This characterization relies on
special test functions. Let \chi : \BbbR \rightarrow \BbbR be a smooth nontrivial function with compact
support in time and choose parameters z \in \BbbR 3 in space. We define a family of test
functions \varphi \infty 

z by

(4.16) \varphi \infty 
z (\xi , t) :=

1

4\pi 
\chi (t+\xi \cdot z) for \xi \in \BbbS 2 and t \in \BbbR .

These test functions are nothing but far fields associated with point sources

(4.17) \varphi z(x, t) :=
\chi (t - | x - z| )
4\pi | x - z| 

for x \in \BbbR 3 \setminus \{ z\} and t \in \BbbR .

For \eta \in \BbbR we define

(4.18) \varphi \infty 
\eta ,z(\xi , t) = \varphi \infty 

z (\xi , t - \eta ) for \xi \in \BbbS 2 and t \in \BbbR ,
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866 F. CAKONI, H. HADDAR, AND A. LECHLEITER

which is the far field associated with

(4.19) \varphi \eta ,z(x, t) :=
\chi (t - \eta  - | x - z| )

4\pi | x - z| 
for x \in \BbbR 3 \setminus \{ z\} and t \in \BbbR .

We can prove the following result.

Lemma 4.3. Let \sigma > 0 be a given. The following holds:
1. If z \in D and \eta is such that the support in time of \varphi \infty 

\eta ,z is included in \BbbR >0,

then there exists a \psi \in L2
\sigma (\BbbR >0;H

 - 1/2(\partial D)) such that \scrH \ast 
\sigma \psi = \varphi \infty 

\eta ,z.

2. If z /\in D and \eta \in \BbbR , then \scrH \ast 
\sigma \psi \not = \varphi \infty 

\eta ,z for all \psi \in H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)).

Proof. First we consider the case when z \in D. Fix \eta such that the support in time
of \varphi \infty 

\eta ,z is included in \BbbR >0 and set \psi := S - 1(\varphi \eta ,z| \partial D\times \BbbR ). By construction, it holds

that \varphi \eta ,z = SL(\psi ). Hence, \varphi \infty 
\eta ,z = R(\psi ) = (4\pi ) - 1\scrH \ast 

\sigma \psi . From the assumption the
support in time of \varphi \eta ,z| \partial D\times \BbbR is necessarily included in \BbbR >0. Therefore \varphi \eta ,z| \partial D\times \BbbR \in 
Hm

\sigma (\BbbR >0;H
1/2(\partial D)) for any positive m. We obtain in particular from Theorem 3.1

that \psi \in L2
\sigma (\BbbR >0;H

 - 1/2(\partial D)), which proves the first part of the lemma.
Now we consider the case when z /\in D. Let \eta \in \BbbR and assume that 4\pi \varphi \infty 

\eta ,z = \scrH \ast 
\sigma \psi 

for some \psi \in H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)). Applying the Laplace transform to this equality

implies

(4.20)

\int 
\partial D

exp( - ik \xi \cdot x)\scrL [\psi ](x, k) dsx = eik\eta \scrL [\chi ](k) exp( - ik \xi \cdot z), \xi \in \BbbS 2,

for k := \omega + i\sigma , \omega \in \BbbR . Set \^\psi (x, k) := \scrL [\psi ](x, k) and denote the single-layer potential
at frequency k = \omega + i\sigma by

\^SL(k) \^\psi =

\int 
\partial D

exp(ik| \cdot  - y| )
4\pi | \cdot  - y| 

\^\psi (y) dy

for \^\psi \in H - 1/2(\partial D). If equality (4.20) holds, then, using the Rellich lemma for
complex wave numbers [40] and a unique continuation principle, we obtain that

\^SL(k) \^\psi (\cdot , k) = eik\eta \scrL [\chi ](k)exp(ik| \cdot  - z| )
4\pi | \cdot  - z| 

in \BbbR 3 \setminus D.

Indeed the latter cannot hold if \scrL [\chi ](k) \not = 0 since the right-hand side does not belong
to H1

loc(\BbbR 3 \setminus D) while the left-hand side does. Consequently (4.20) cannot hold for
any k such that \scrL [\chi ](k) \not = 0. Therefore for every \eta \in \BbbR , \varphi \infty 

\eta ,z \not = \scrH \ast 
\sigma \psi for all \psi \in 

H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)). This proves the second part of the lemma.

Remark 4.4. Ideally in the second part of Lemma 4.3 we would have liked to
prove the converse of the statement in the first part, that is, for z /\in D and for \eta such
that the support in time of \varphi \infty 

\eta ,z is included in \BbbR >0 we have that \scrH \ast 
\sigma \psi \not = \varphi \infty 

\eta ,z for all

\psi \in H
 - 3/2
\sigma (\BbbR >0;H

 - 1/2(\partial D)). Unfortunately, we are not able to prove this result;
in other words we cannot guarantee an ``if and only if"" statement for the restriction
of \scrH \ast 

\sigma to \BbbR >0. If available, such a result would have simplified the range test in
Theorem 4.5. The weaker statement is proved in part 2 of Lemma 4.3 forces us to
add the supremum condition in the range test.

We are now in position to state and prove the main result of this section. To

this end we recall that (Q\tau 
F )

\ast : L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) \rightarrow \~H
 - 5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) is the dual

operator of Q\tau 
F : H

5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) \rightarrow L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) given by (4.12) with respect
to the L2

\sigma (\BbbR ;L2(\partial D)) duality product. Then we can prove the following result.
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Theorem 4.5. Let \sigma > 0 be a given parameter, let z \in \BbbR 3, and assume that
\eta z \in \BbbR (fixed but z-dependent) is such that the support in time of \varphi \infty 

\eta z,z is included
in \BbbR >0. Then for all \tau \leq 0, \varphi \infty 

\eta z,z = (Q\tau 
F )

\ast \varrho \tau with \varrho \tau \in L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) such that
sup\tau \leq 0 \| \varrho \tau \| L2

\sigma (\BbbR >\tau ;L2(\BbbS 2)) < +\infty if and only if z \in D.

Proof. First we remark that we have already seen that the range of (Q\tau 
F )

\ast 

coincides with the range of (\scrH \tau 
\sigma )

\ast Q\ast 
\scrT , where we recall that

(Q\scrT )
\ast : L2

\sigma (\BbbR >\tau  - d;L
2(\partial D)) \rightarrow \~H - 3/2

\sigma (\BbbR >\tau  - d;H
 - 1/2(\partial D))

is given by (4.14), and (\scrH \tau 
\sigma )

\ast : \~H
 - 3/2
\sigma (\BbbR >\tau  - d;H

 - 1/2(\partial D)) \rightarrow \~H
 - 5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)).
We now consider the case when z \in D. From the first part of Lemma 4.3, there

exists \psi \in L2
\sigma (\BbbR >0;H

 - 1/2(\partial D)) such that \scrH \ast 
\sigma \psi = \varphi \infty 

\eta z,z. We observe that the exten-

sion by 0 of \psi in the time half line \BbbR <0 provides a function \psi \in L2
\sigma (\BbbR >\tau ;H

 - 1/2(\partial D))

such that (\scrH \tau 
\sigma )

\ast \psi = \varphi \infty 
\eta z,z. Let g \in H

5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)) such that
\bigl\langle 
\varphi \infty 
\eta z,z, g

\bigr\rangle 
= 1 in the

L2
\sigma duality. Then

\| \scrH \sigma g\| 2L2
\sigma (\BbbR ;H1/2(\partial D)) \geq 

\langle \psi ,\scrH \sigma g\rangle 
\| \psi \| L2

\sigma (\BbbR >0;H - 1/2(\partial D))

=

\bigl\langle 
\varphi \infty 
\eta z,z, g

\bigr\rangle 
\| \psi \| L2

\sigma (\BbbR >0;H - 1/2(\partial D))

=
1

\| \psi \| L2
\sigma (\BbbR >0;H - 1/2(\partial D))

.

Now the inequality (4.11) implies that\Bigl\langle 
Re \~F \tau 

\sigma g, g
\Bigr\rangle 
\geq C(\sigma )\| \scrH \sigma g\| 2L2

\sigma (\BbbR ;H1/2(\partial D)) \forall g \in H5/2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)),

and hence since C(\sigma ) is independent of \tau \in \BbbR , we obtain

(4.21) inf
\tau \leq 0

inf
g\in X\tau 

\Bigl\langle 
Re \~F \tau 

\sigma g, g
\Bigr\rangle 
\geq C(\sigma )

1

\| \psi \| L2
\sigma (\BbbR >0;H - 1/2(\partial D))

> 0,

where

(4.22) X\tau :=
\Bigl\{ 
g \in H5/2

\sigma (\BbbR >\tau ;L
2(\BbbS 2));

\bigl\langle 
g, \varphi \infty 

\eta z,z

\bigr\rangle 
= 1
\Bigr\} 
.

Then using Theorem A.1 with F := Re \~F \tau 
\sigma , H := Q\tau 

F , and T := I, we conclude
that \varphi \infty 

\eta z,z is in the range of (Q\tau 
F )

\ast for all \tau \in \BbbR , i.e., \varphi \infty 
\eta z,z = (Q\tau 

F )
\ast \varrho \tau with \varrho \tau \in 

L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)). Furthermore, reasoning in the same way as above (see also the proof
of the first part of Theorem A.1) we obtain for each \tau \in \BbbR and g \in X\tau \Bigl\langle 

Re \~F \tau 
\sigma g, g

\Bigr\rangle 
= \| Q\tau 

F g\| 2.

On the other hand

\| Q\tau 
F g\| \geq 1

\| \varrho \tau \| L2
\sigma (\BbbR >\tau ;L2(\BbbS 2))

\langle \varrho \tau , Q\tau 
F g\rangle =

1

\| \varrho \tau \| L2
\sigma (\BbbR >\tau ;L2(\BbbS 2))

with the equality holding for g and \varphi \infty 
\eta z,z linearly dependent. Thus

inf
g\in X\tau 

\Bigl\langle 
Re \~F \tau 

\sigma g, g
\Bigr\rangle 
=

1

\| \varrho \tau \| 2L2
\sigma (\BbbR >\tau ;L2(\BbbS 2))

.
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868 F. CAKONI, H. HADDAR, AND A. LECHLEITER

But since from (4.21) the infimum over \tau \leq 0 of the left-hand side is positive, then

sup
\tau \leq 0

\| \varrho \tau \| L2
\sigma (\BbbR >\tau ;L2(\BbbS 2)) < +\infty .

Next consider the case when z /\in D. Assume that for each \tau \leq 0, \varphi \infty 
\eta z,z = (\scrH \tau 

\sigma )
\ast \psi \tau 

for some \psi \tau \in \~H
 - 3/2
\sigma (\BbbR >\tau  - d;H

 - 1/2(\partial D)) and sup\tau \leq 0 \| \psi \tau \| \~H
 - 3/2
\sigma (\BbbR >\tau  - d;H - 1/2(\partial D))

<

+\infty . The latter implies the existence of \psi \in H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)) such that

(\scrH \sigma )
\ast \psi = \varphi \infty 

\eta z,z; this is not possible because it contradicts the second part of Lemma
4.3. Let us show that under the above assumption such a \psi exists: We denote by
\~\psi \tau \in H

 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)) an extension of \psi \tau satisfying

\| \~\psi \tau \| H - 3/2
\sigma (\BbbR ;H - 1/2(\partial D))

\leq \| \psi \tau \| H - 3/2
\sigma (\BbbR >\tau  - d;H - 1/2(\partial D))

+ 1/| \tau | .

Then sup\tau \| \~\psi \tau \| H - 3/2
\sigma (\BbbR ;H - 1/2(\partial D))

< +\infty and therefore (since the space is Hilbert)

there exists \psi \in H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)) such that (up to a subsequence) \~\psi \tau weakly

converges to \psi in H
 - 3/2
\sigma (\BbbR ;H - 1/2(\partial D)). Now, for a compactly supported function

smooth \varphi , we have that\bigl\langle 
\varphi \infty 
\eta z,z, \varphi 

\bigr\rangle 
= \langle (\scrH \tau 

\sigma )
\ast \psi \tau , \varphi \rangle = \langle \psi \tau , (\scrH \tau 

\sigma )\varphi \rangle =
\Bigl\langle 
\~\psi \tau ,\scrH \sigma \varphi 

\Bigr\rangle 
,

where we assume \varphi (t, x) = 0 for t < \tau 0  - d for small enough \tau 0 < 0 and \langle \cdot , \cdot \rangle is the
L2
\sigma -duality. Now letting \tau \rightarrow  - \infty in the above we have that\bigl\langle 

\varphi \infty 
\eta z,z, \varphi 

\bigr\rangle 
= \langle \psi \tau ,\scrH \sigma \varphi \rangle = \langle \scrH \ast 

\sigma \psi ,\varphi \rangle 

and by a denseness argument this holds for all \varphi \in H
3/2
\sigma (\BbbR ;H1/2(\partial D)) implying that

(\scrH \sigma )
\ast \psi = \varphi \infty 

\eta z,z.
Therefore the following two possibilities can happen: (1) either there is a \tau 0 \in \BbbR 

for which \varphi \infty 
\eta z,z is not in the range of (\scrH \tau 0

\sigma )\ast or (2) for all \tau \in \BbbR , \varphi \infty 
\eta z,z is in the range of

(\scrH \tau 
\sigma )

\ast but sup\tau \leq 0 \| \psi \tau \| \~H
 - 3/2
\sigma (\BbbR >\tau  - d;H - 1/2(\partial D))

= +\infty . In the case (1) there is nothing

to prove since it means that there exists \tau 0 \in \BbbR such that \varphi \infty 
\eta z,z is not in the range

of (Q\tau 0
F )\ast . In the case (2), for each fixed \tau \in \BbbR we have that \varphi \infty 

\eta z,z is in the range of
(Q\tau 

F )
\ast , i.e., \varphi \infty 

\eta z,z = (Q\tau 
F )

\ast \varrho \tau with \varrho \tau \in L2
\sigma (\BbbR >\tau ;L

2(\BbbS 2)). Exactly in the same way as
in the proof of the first part we have that for every \tau \in \BbbR 

(4.23) inf
g\in X\tau 

\Bigl\langle 
Re \~F \tau 

\sigma g, g
\Bigr\rangle 
=

1

\| \varrho \tau \| 2L2
\sigma (\BbbR >\tau ;L2(\BbbS 2))

,

where X\tau is defined by (4.22).
On the other hand, again applying the inf-criterion, i.e., Theorem A.1, to the

factorization \~F \tau 
\sigma = (\scrH \tau 

\sigma )
\ast \scrT \scrH \tau 

\sigma and using the coercivity property of the operator \scrT 
with coercivity constant independent of \tau and the fact that

sup
\tau \leq 0

\| \psi \tau \| \~H
 - 3/2
\sigma (\BbbR >\tau  - d;H - 1/2(\partial D))

= +\infty 

we have that
inf
\tau \leq 0

inf
g\in X\tau 

\Bigl\langle 
Re \~F \tau 

\sigma g, g
\Bigr\rangle 
= 0,

which together with (4.23) implies that sup\tau \leq 0 \| \varrho \tau \| L2
\sigma (\BbbR >\tau ;L2(\BbbS 2)) = +\infty . This ends

the proof of the theorem.

We conclude with the following remarks addressing the challenging task of letting
\sigma \rightarrow 0 as well as a possible numerical implementation of our range test.
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4.2. Conclusions. The rigorous range test for determining D is proved for the
operator F\sigma , which is not available from the measured data. As already explained, this
is because F\sigma involves the far field of the scattered fields due to nonphysical incident
waves ui\sigma (x, t; \theta ) := \delta (t - \theta \cdot x)e2\sigma (\theta \cdot x) which aren't solutions to the wave equations
(their Laplace transform solves the Helmholtz equation \Delta v + (\omega  - i\sigma )2v = 0), but
approach the physical wave fronts ui\sigma (x, t; \theta ) := \delta (t - \theta \cdot x) as \sigma \rightarrow 0. Therefore in
the limiting case of \sigma \rightarrow 0, as mentioned earlier one can easily see that, at least
formally, F\sigma approaches the physical far field operator F . However, it is impossible
in our analysis to let \sigma \rightarrow 0 because the fundamental coercivity property in Lemma
4.2 does not hold for \sigma = 0 due to the fact that the coercivity constant C(\sigma ) \rightarrow 0.
Nevertheless, when implementing the range test of Theorem 4.5, it is reasonable to
check if \varphi \infty 

\eta z,z is in the range of the square root of the operator \partial tF
\tau +(\partial tF

\tau )\ast , where
F \tau is the restriction of F to causal functions which are zero in ( - \infty , \tau ) for fixed \tau < 0
small enough.

Concluding, despite the significant step forward that our analysis makes toward
a mathematically rigorous characterization of the support D in terms of time domain
data, this question is still not completely resolved. It is highly desirable to investigate
convergence of the range test as \sigma \rightarrow 0. The generalized linear sampling method
developed in the frequency domain in [1, 2] (see also [12]) could provide a mathematical
framework for such convergence, but unfortunately at this time we are not able to
resolve it. An acceptable approach, especially from a computational point of view,
could be to find a computable way to approximate the perturbed far field operator
F\sigma from the physical far field operator F , in a similar way as is being done for the
justification of the factorization method in the frequency domain with near field data
[20] or limited aperture data [3].

Appendix A. Auxiliary abstract results. We state and prove here some
abstract results we have used in the paper. We start with a range characterization
result known as inf-criterion proved in [12, 29]. To this end, let X and Y be two
(complex) reflexive Banach spaces with duals X\ast and Y \ast , respectively, and denote
by \langle , \rangle a duality product that refers to \langle X\ast , X\rangle or \langle Y \ast , Y \rangle duality. We consider three
bounded operators F : X \rightarrow X\ast , H : X \rightarrow Y , and T : Y \rightarrow Y \ast such that

F = H\ast TH.

We then have the following range characterization theorem.

Theorem A.1. Assume that there exists a constant \alpha > 0 such that

(A.1) | \langle T\varphi , \varphi \rangle | \geq \alpha \| \varphi \| 2Y \forall \varphi \in \scrR (H).

Then one has the following characterization of the range of H\ast :

\{ \psi \ast \in \scrR (H\ast ) and \psi \ast \not = 0\} if and only if inf\{ | \langle F\psi ,\psi \rangle | , \psi \in X, \langle \psi \ast , \psi \rangle = 1\} > 0.

Proof. We first observe that

| \langle F\psi ,\psi \rangle | = | \langle H\ast TH\psi ,\psi \rangle | = | \langle TH\psi ,H\psi \rangle | .

Hence,

(A.2) \alpha \| H\psi \| 2Y \leq | \langle F\psi ,\psi \rangle | \leq \| T\| \| H\psi \| 2Y \forall \psi \in X.
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Let \psi \ast \in \scrR (H\ast ) and \psi \ast \not = 0. Then \psi \ast = H\ast (\varphi \ast ) for some \varphi \ast \in Y \ast and \varphi \ast \not = 0. Let
\psi \in X be such that \langle \psi \ast , \psi \rangle = 1. Then

\| H\psi \| Y =
1

\| \varphi \ast \| Y \ast 
\| H\psi \| Y \| \varphi \ast \| Y \ast 

\geq 1

\| \varphi \ast \| Y \ast 
\langle \varphi \ast , H\psi \rangle = 1

\| \varphi \ast \| Y \ast > 0.

We then deduce, using the first inequality in (A.2), that

inf\{ | \langle F\psi ,\psi \rangle | , \psi \in X, \langle \psi \ast , \psi \rangle = 1\} \geq \alpha 

\| \varphi \ast \| 2Y \ast 
> 0.

Now assume that \psi \ast /\in \scrR (H\ast ) and let us show that

inf\{ | \langle F\psi ,\psi \rangle | , \psi \in X, \langle \psi \ast , \psi \rangle = 1\} = 0.

From the second inequality in (A.2) it is sufficient to prove the existence of a sequence
\psi n \in X such that \langle \psi \ast , \psi n\rangle = 1 and \| H\psi n\| Y \rightarrow 0 as n \rightarrow \infty . Since \psi \ast \not = 0 and X

is reflexive, there exists \^\psi \in X such that
\Bigl\langle 
\psi \ast , \^\psi 

\Bigr\rangle 
= 1. Setting \^\psi n = \^\psi  - \psi n, we see

that it is sufficient to show the existence of a sequence \^\psi n \in X such that

(A.3)
\Bigl\langle 
\psi \ast , \^\psi n

\Bigr\rangle 
= 0 and H \^\psi n \rightarrow H \^\psi in Y.

Set V = \{ \psi \in X; \langle \psi \ast , \psi \rangle = 0\} = \{ \psi \ast \} \bot (where the orthogonality is to be understood

in the sense of the X\ast , X duality product). Since H \^\psi \in \scrR (H), in order to prove (A.3)
it is sufficient to prove that H(V ) is dense in \scrR (H) and for the latter it is sufficient
to prove (since Y is reflexive) that H(V )\bot = \scrR (H)\bot (where the orthogonality is to
be understood in the sense of the Y \ast , Y duality product). But this equality follows
from

\varphi \ast \in H(V )\bot if and only if H\ast \varphi \ast \in V \bot = Vect\{ \psi \ast \} ,

and hence H\ast \varphi \ast = 0 (since \psi \ast /\in \scrR (H\ast )) meaning \varphi \ast \in Kern(H\ast ) = \scrR (H)\bot .

As a corollary we also have the following well-known result on range identities
(see also [28]).

Lemma A.2. Let X, H1, and H2 be separable Hilbert spaces. Assume that Q1 :
X \rightarrow H1 and Q2 : X \rightarrow H2 are bounded operators with adjoints Q\ast 

1,2 : H1,2 \rightarrow X\ast ,
defined by

\langle Q1,2u, v1,2\rangle H1,2 = \langle u, Q\ast 
1,2v1,2\rangle X\times X\ast \forall u \in X and v1,2 \in H1,2.

If Q\ast 
1Q1 = Q\ast 

2Q2, then the ranges of the adjoints Q\ast 
1 and Q\ast 

2 coincide in X\ast .

We also use the following abstract result on the square root of symmetric positive
operators.

Lemma A.3. Let X \subset H \subset X\ast be a Gelfand triple with separable Hilbert spaces
H and X and assume that T is a bounded, self-adjoint, and positive operator from X
into X\ast . Then there exists a bounded operator Q : X \rightarrow H such that T = Q\ast Q.

Proof. Let us introduce an isometric Hilbert space isomorphism J from H onto
X. (Note that both spaces are separable and hence such an isomorphism exists.) The
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adjoint J\ast is then an isometry from X\ast onto H. Consequently, J\ast \circ T \circ J is a bounded
symmetric and nonnegative operator on H,

\langle J\ast (T (J\varphi )), \varphi \rangle H = \langle T (J\varphi )), J\varphi \rangle H \geq 0,

for all \varphi \in H. From Theorem 12.32 in [37] we know that a bounded, self-adjoint,
and positive operator on a Hilbert space possesses a unique bounded and self-adjoint
square root Q0. Let us define Q = Q0J

 - 1, which is a bounded operator from X into
H. Then T = Q\ast Q.

Acknowledgments. Part of this work was done while F.C. was visiting CMAP
at Ecole Polytechnique, and the support of INRIA Saclay and Ecole Polytechnique is
kindly acknowledged.

REFERENCES

[1] L. Audibert, Qualitative Methods for Heterogeneous Media, Ph.D. thesis, \'Ecole Polytechnique,
Palaiseau, France, 2015.

[2] L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with
exact characterization of targets in terms of far field measurements, Inverse Problems, 30
(2014), 035011.

[3] L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture
measurements, SIAM J. Imaging Sci., 10 (2017), pp. 845--870.

[4] A. Bamberger and T. Ha Duong, Formulation variationelle espace-temps pour le calcul par
potentiel retard\'e de la diffraction d'une onde acoustique, Math. Methods Appl. Sci., 8
(1986), pp. 405--435.

[5] C. Bardos and M. Fink, Mathematical foundations of the time reversal mirror, Asymptot.
Anal., 29 (2002), pp. 157--182.

[6] G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustics and elas-
ticity, Wave Motion, 12 (1990), pp. 15--52.

[7] K. Bingham, Y. Kurylev, M. Lassas, and S. Siltanen, Iterative time-reversal control for
inverse problems, Inverse Probl. Imaging, 2 (2008), pp. 63--81.

[8] N. Bleistein, J. K. Cohen, and J. W. Stockwell, Jr., Mathematics of Multidimensional
Seismic Imaging, Migration, and Inversion, Springer, Berlin, 2001.

[9] L. Borcea, G. Papanicolaou, and C. Tsogka, Adaptive interferometric imaging in clutter
and optimal illumination, Inverse Problems, 22 (2006), pp. 405--1436.

[10] C. Burkard and R. Potthast, A time-domain probe method for three-dimensional rough
surface reconstructions, Inverse Probl. Imaging, 3 (2009), pp. 259--274.

[11] F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduc-
tion, Springer, Berlin, 2006.

[12] F. Cakoni, D. Colton, and H. Haddar, Inverse Scattering Theory and Transmission Eigen-
values, CBMS-NSF Regional Conf. Ser. in Appl. Math. 18, SIAM, Philadelphia, 2016.

[13] F. Cakoni, P. Monk, and V. Selgas, Analysis of the linear sampling method for imaging
penetrable obstacles in the time domain, submitted.

[14] F. Cakoni and J. Rezac, Direct imaging of small scatterers using reduced time dependent
data, J. Comput. Phys., 338 (2017), pp. 371--387.

[15] Q. Chen, H. Haddar, A. Lechleiter, and P. Monk, A sampling method for inverse scattering
in the time domain, Inverse Problems, 26 (2010), 085001.

[16] D. L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd
ed., Springer, Berlin, 2012.

[17] M. Fink, Time reversal of ultrasonic fields: Basic principles, IEEE Trans. Ultrason. Ferroelec-
tric Frequency Control, 39 (1992), pp. 555--566.

[18] F. G. Friedlander, On the radiation field of pulse solutions of the wave equation, Proc. R.
Soc. Lond. A, 269 (1962), pp. 53--65.

[19] F. G. Friedlander, On the radiation field of pulse solutions of the wave equation II, Proc. R.
Soc. Lond. A, 279 (1963), pp. 386--394.

[20] G. Hu, J. Yang, B. Zhang, and H. Zhang, Near-field imaging of scattering obstacles with
the factorization method, Inverse Problems, 30 (2014), 095005.

[21] Y. Guo, P. Monk, and D. Colton, Toward a time domain approach to the linear sampling
method, Inverse Problems, 29 (2013), 095016.

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

65
.2

30
.2

24
.1

62
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

872 F. CAKONI, H. HADDAR, AND A. LECHLEITER

[22] Y. Guo, P. Monk, and D. Colton, The linear sampling method for sparse small aperture
data, Appl. Anal., 95 (2015), pp. 1599--1615.

[23] B. Guzina, F. Cakoni, and C. Bellis, On the multi-frequency obstacle reconstruction via the
linear sampling method, Inverse Problems, 26 (2010), 125005.

[24] H. Haddar, A. Lechleiter, and S. Marmorat, An improved time domain linear sampling
method for Robin and Neumann obstacles, Appl. Anal., 93 (2014), pp. 369--390.

[25] M. Ikehata, The enclosure method for inverse obstacle scattering over a finite time interval:
IV. Extraction from a single point on the graph of the response operator, J. Inverse Ill-Posed
Probl., 25 (2017), pp. 747--761.

[26] M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclo-
sure method in the time domain, Inverse Problems, 31 (2015), 085011.

[27] A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the
far field operator, Inverse Problems, 14 (1998), pp. 1489--1512.

[28] A. Kirsch, New characterizations of solutions in inverse scattering theory, Appl. Anal., 76
(2000), pp. 319--350.

[29] A. Kirsch and N. I. Grinberg, The Factorization Method for Inverse Problems, Oxford
Lecture Ser. Math. Appl. 36, Oxford University Press, Oxford, 2008.

[30] M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and obser-
vations on disjoint sets, Inverse Problems, 26 (2010), 085012.

[31] C. Lubich, On the multistep time discretization of linear initial-boundary value problems and
their boundary integral equations, Numer. Math., 267 (1994), pp. 365--389.

[32] D. R. Luke and R. Potthast, The point source method for inverse scattering in the time
domain, Math. Methods Appl. Sci., 29 (2006), pp. 1501--1521.

[33] L. Oksanen, Inverse obstacle problem for the non-stationary wave equation with an unknown
background, Comm. Partial Differential Equations, 38 (2013), pp. 1492--1518.

[34] L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary
control method, Inverse Problems, 29 (2013), 035004.

[35] F. D. Philippe, C. Prada, D. Clorennec, M. Fink, and T. Fol\'egot, Construction of
the temporal invariants of the time-reversal operator, JASA Express Lett., 126 (2009),
pp. EL8--EL13.

[36] R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Problems,
22 (2006), pp. R1--R47.

[37] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[38] F. J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations. A Road

Map, Springer Ser. Comput. Math. 50, Springer, Berlin, 2016.
[39] P. Tiet\"av\"ainen, A Factorization Method for the Inverse Scattering of the Wave Equation,

Ph.D. thesis, Aalto University, Espoo, Finland, 2011.
[40] C. H. Wilcox, A generalization of theorems of Rellich and Atkinson, Proc. Amer. Math. Soc.,

7 (1956), pp. 271--276.

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

65
.2

30
.2

24
.1

62
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Problem setting for Dirichlet obstacles
	Retarded potentials and solutions to the wave equation
	Retarded Herglotz waves
	Far fields associated with single-layer potentials
	Factorization and mapping properties of the far field operator

	The perturbed far field operator
	A range test for D
	Conclusions

	Appendix A. Auxiliary abstract results
	Acknowledgments
	References

