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Abstract. In the recent years the transmission eigenvalue problem has been

extensively studied for non-absorbing media. In this paper we initiate the study

of this problem for absorbing media. In particular we show that, in the case of

absorbing media, transmission eigenvalues form a discrete set, exist for sufficiently

small absorption and for spherically stratified media exist without this assumption.

For constant index of refraction we also obtain regions in the complex plane where the

transmission eigenvalues cannot exist and obtain a priori estimate for real transmission

eigenvalues.

1. Introduction

In the recent years transmission eigenvalues have become an important area of research

in inverse scattering theory. This interest is motivated by the fact that transmission

eigenvalues carry information about the material properties of the scattering object and

that these eigenvalues can in principle be determined from the scattering data [4]. To see

how transmission eigenvalues arise in scattering theory, consider the simplest scattering

problem

∆3u+ k2n(x)u = 0 in R3 (1)

u = ui + us (2)

lim
r→∞

r

(
∂us

∂r
− ik
√
nbu

s

)
= 0 (3)

where k > 0 is the wave number, r = |x|, ui is the incident field, us is the scattered

field, the Sommerfeld radiation condition (3) is assumed to hold uniformly in x̂ = x/|x|,
and n(x) is the index of refraction which is assumed to be bounded such that <(n) > 0,
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=(n) ≥ 0. For the purpose of this motivation, we assume that there exists a bounded

region D such that n(x) = nb for x ∈ R3 \ D, where nb is a constant i.e. the

inhomogeneous medium with support D and index of refraction n(x) is embedded in

a homogeneous background with constant index of refraction nb. The support D of

n(x)− nb is bounded, connected and has a connected piecewise smooth boundary ∂D.

In the case of plane incident waves ui(x) = eik
√
nbx·d, |d| = 1, the solution u ∈ H1

loc(R3)

of (1)-(3) satisfies the asymptotic behavior [11]

us(x) =
ei
√
nbkr

r

(
u∞(x̂, d, k) +O

(
1

r

))
(4)

where u∞(x̂, d, k) is the far field pattern of the scattered field. We now define the far

field operator F : L2(Ω)→ L2(Ω), Ω = {x : |x| = 1} by

(Fg)(x̂) :=

∫
Ω

u∞(x̂, d, k)g(d) dsd. (5)

Then it can be shown that F is injective with dense range if and only if there does not

exist a nontrivial solution v, w of the interior transmission problem

∆w + k2n(x)w = 0 in D (6)

∆v + k2nbv = 0 in D (7)

v = w on ∂D (8)

∂v

∂ν
=
∂w

∂ν
on ∂D (9)

where ν is the outward normal to D and v is a Herglotz wave function, i.e. a solution

of the Helmholtz equation (7) of the form

vg(x) :=

∫
Ω

g(d)eik
√
nbx·ddsd (10)

for g ∈ L2(Ω) (see [11] Theorem 8.9, and [17] Theorem 4.4). Values of k ∈ C such that

there exists a nontrivial solution of (6)-(9) are called transmission eigenvalues.

Until now all of the research on transmission eigenvalues (c.f. [5], [6], [14], [16], [19]

and the references contained therein) has only considered the case when =(n) = 0

and =(nb) = 0, i.e. the case when absorption is not present in either the background

or inhomogeneity. This restriction was made in order to avoid certain mathematical

difficulties in dealing with non-selfadjoint operators. Here we remove this restriction

and initiate the study of the transmission eigenvalue problem for absorbing media. In

particular, we will consider the case with absorption in both the inhomogeneity and

background medium of the form n(x) = ε1(x) + i
γ1(x)

k
, x ∈ D and nb = ε0 + i

γ0

k
.

The plan of the paper is as follows. In the next section, based on the analytic

Fredholm theory we will show that transmission eigenvalues form at most a discrete

set. In addition, making use of the stability of eigenvalues for closed operators

under small perturbations as described in Kato’s book [18], we prove that (complex)

transmission eigenvalues exist provided that the absorption in the media and background

is small enough. We will then show in Section 3 that for the case of a spherically
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stratified medium that there exists infinitely many (complex) transmission eigenvalues

for arbitrary absorption. In the final section of this paper we will establish eigenvalue-

free zones in the complex plane for general absorbing media. In particular, we provide

estimates for real transmission eigenvalues (if they exist) in terms of material properties

of the media and show that they can be used to obtain information on the index of

refraction n(x). We remark that the results of Section 2 and Section 4 hold also in R2.

2. The Transmission Eigenvalue Problem

We start with the investigation of the interior transmission eigenvalue problem for the

general case of absorbing media. In particular, let D denote a bounded connected

region of R3 with piecewise smooth boundary ∂D and ν the outward normal vector to

∂D. Then the interior transmission eigenvalue problem reads:

∆w + k2

(
ε1(x) + i

γ1(x)

k

)
w = 0 in D (11)

∆v + k2

(
ε0(x) + i

γ0(x)

k

)
v = 0 in D (12)

v = w on ∂D (13)

∂v

∂ν
=
∂w

∂ν
on ∂D (14)

where w ∈ L2(D) and v ∈ L2(D) such that w − v ∈ H2(D). In fact u := w − v is in

H2
0 (D) which is the subspace of functions in H2(D) with zero traces of u and ∂u/∂ν

on the boundary ∂D. Here we assume that ε1 ∈ L∞(D) and γ1 ∈ L∞(D) such that

ε1(x) ≥ η1 > 0, γ1(x) ≥ 0 almost everywhere in D, and similarly ε0 ∈ L∞(D) and

γ0 ∈ L∞(D) such that ε0(x) ≥ η0 > 0, γ0(x) ≥ 0. It is possible to write (11)-(14) as an

eigenvalue problem for the fourth order differential equation(
∆ + k2ε1(x) + ikγ1(x)

) 1

kεc(x) + iγc(x)

(
∆ + k2ε0(x) + ikγ0(x)

)
u = 0 (15)

for u ∈ H2
0 (D), where we denote by εc := (ε1 − ε0) and γc := (γ1 − γ0) the respective

contrasts. The following equivalence result can be proven [6], [20]:

Lemma 2.1. If w ∈ L2(D) and v ∈ L2(D) are such that w−v ∈ H2(D) and w, v satisfy

(11)-(14) then u := w−v ∈ H2
0 (D) satisfies (15). Conversely, if u := w−v ∈ H2

0 (D) is a

solution of (15) then w :=
−1

k2εc + ikγc
(∆+k2ε0+ikγ0)u ∈ L2(D) and v = w−u ∈ L2(D)

satisfy (11)-(14).

In variational form (15) is formulated as the problem of finding u ∈ H2
0 (D) such

that∫
D

1

kεc + iγc

[
∆u+ (k2ε0 + ikγ0)u

] [
∆v + (k2ε1 + ikγ1)v

]
dx = 0 (16)

for all v ∈ H2
0 (D). It is easy to see that the interior transmission problem (11)-(14) does

not have purely imaginary eigenvalues k = iτ as long as τ > 0 is such that τεc + γc > 0.
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Indeed, after integrating by parts and using the zero boundary boundary conditions, we

have that

0 =

∫
D

1

τεc + γc

[
∆u− (τ 2ε0 + τγ0)u

] [
∆u− (τ 2ε1 + τγ1)u

]
dx

=

∫
D

1

τεc + γc

∣∣∆u− (τ 2ε0 + τγ0)u
∣∣2 dx− τ ∫

D

[
∆u− (τ 2ε0 + τγ0)u

]
u dx

=

∫
D

1

τεc + γc

∣∣∆u− (τ 2ε0 + τγ0)u
∣∣2 dx+ τ

∫
D

|∇u|2 dx+ τ 2

∫
D

(τε0 + γ0)|u|2 dx

which implies that u = 0 in D. In a similar way, by exchanging subindices 1 and 0 one

can show the same result for τεc + γc < 0. The situation is not clear for k = iτ for

which τεc + γc changes sign. For example if ε0 > 0, ε1 > 0, γ0 > 0 and γ1 > 0 are all

positive constants then k = iτ0 where τ0 = γ1−γ0
ε1−ε0 is an eigenvalue and the corresponding

eigenspace is infinite dimensional since for any solution v to the Helmholtz equation

∆v − τ0(τ0ε0 + iγ0)v = 0, v and w = v are eigenfunctions.

Remark 2.1. If both bounded contrasts εc and γc are positive, more specifically

εc(x) ≥ θ > 0 and γc(x) ≥ 0 almost everywhere in D, then k = iτ where τ is such

that τ ≥ −supD γc
infD εc

or τ ≤ − infD γc
supD εc

is not a transmission eigenvalue.

Remark 2.2. If εc(x) ≥ θ > 0 and |γc(x)| < M almost everywhere in D, then k = iτ

where τ > 0 is large enough such that τ ≥ M

infD εc
is not a transmission eigenvalue.

In the following we assume that the real part of k ∈ C is positive. Furthermore, we

assume that the contrast εc is bounded and does not change sign, more specifically due

to the symmetric role of ε1 and ε0 we require that 0 < θ ≤ εc(x) < N almost everywhere

in D, whereas the contrast γc is only bounded, i.e. |γc(x)| < M almost everywhere in

D.

Lemma 2.2. Assume that 0 < θ ≤ εc(x) < N and |γc(x)| < M almost

everywhere in D. Then the set of transmission eigenvalues in the region

Gσ := {k = κ+ iτ : κ ≥ σ > 0 and τ ≤ 2M/θ}∪ {k = κ+ iτ : κ ∈ R and τ ≥ 2M/θ} is

discrete.

Proof. Let us define the following sesquilinear forms on H2
0 (D):

Ak(u, v) =

∫
D

1

kεc + iγc
∆u∆v dx

Bk(u, v) =

∫
D

[
k
kε1 + iγ1

kεc + iγc
∆u v + k

kε0 + iγ0

kεc + iγc
u∆v + k2 (kε0 + iγ0)(kε1 + iγ1)

kεc + iγc
u v

]
dx.

From our assumption we have that |kεc + iγc| ≥ β > 0 almost everywhere in D and

therefore by using the Riesz representation theorem the above bilinear forms define

bounded linear operators Ak : H2
0 (D)→ H2

0 (D) and Bk : H2
0 (D)→ H2

0 (D) such that

(Aku, v)H2(D) := Ak(u, v) and (Bku, v)H2(D) := Bk(u, v) for all u, v ∈ H2
0 (D). (17)

4
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In terms of these operators the transmission eigenvalue problem takes the form

(Ak + Bk)u = 0, u ∈ H2
0 (D). (18)

In particular, k is a transmission eigenvalue if and only if the kernel of the operator

Ak + Bk is non-trivial. Since the L2-norm of the Laplacian ‖∆u‖L2(D) is equivalent to

‖u‖H2
0 (D) for u ∈ H2

0 (D), Ak is invertible for fixed k ∈ Gσ ⊂ C. A standard argument

making use of the compact embedding of H2
0 (D) and H1

0 (D) in L2(D), implies that the

operator Bk is compact. Since (18) becomes
(
I + A−1

k Bk

)
u = 0, if k is a transmission

eigenvalue −1 is an eigenvalue of the compact (non-selfadjoint) operator A−1
k Bk and

hence transmission eigenvalues have finite multiplicity. Note that the eigenfunctions

of A−1
k Bk are elements of the kernel of Ak + Bk and vice versa. Next we show that

the set of transmission eigenvalues is discrete and to this end we apply the analytic

Fredholm theory. Obviously, the bilinear forms Ak(·, ·) and Bk(·, ·) depend analytically

on k ∈ Gσ ⊂ C, and thus the mapping k 7→ Ak and k 7→ Bk are weakly analytic in

this region and hence strongly analytic. Therefore, k 7→ A−1
k is also strongly analytic

and so is k 7→ A−1
k Bk. Furthermore, from Remark 2.2, k0 = iτ for some τ > 2M/θ is

not a transmission eigenvalue, i.e. the kernel of Ak0 + Bk0 and hence of I + A−1
k0

Bk0 ,

is nontrivial. Hence from the analytic Fredhom theory [11] we can conclude that the

set of transmission eigenvalues in the region Gσ ⊂ C of the complex plane is discrete

(possibly empty) with ∞ as the only possible accumulation point.

Now since the region k ∈ C such that <(k) > 0 is included in
⋃∞
n=1 G1/n we have

proven the following theorem:

Theorem 2.3. Assume that 0 < θ ≤ εc(x) < N and |γc(x)| < M almost everywhere

in D. Then the set of transmission eigenvalues k ∈ C, <(k) > 0 is discrete (possibly

empty).

The existence of transmission eigenvalues for absorbing media is in general an open

problem. In the next section we will show the existence of transmission eigenvalues

in special cases for absorbing spherically stratified media. However, for small enough

conductivities γ0 and γ1, using perturbation theory [18] it is possible to show the

existence of transmission eigenvalues near the real axis. To this end we recall the

following result from [6] on the existence of real transmission eigenvalues for the non-

absorbing case.

Theorem 2.4. Assume that both γ0 = 0 and γ1 = 0 almost everywhere in D and

ε0 ∈ L∞(D) and ε1 ∈ L∞(D) are such that ε0(x) ≥ θ0 > 0, ε1(x) ≥ θ1 > 0 and

εc := ε1− ε ≥ θ > 0 almost everywhere in D. Then there exists an infinite set of positive

real transmission eigenvalues that accumulate only at +∞. Furthermore, the smallest

real transmission eigenvalue k0 > 0 satisfies k0 >
λ(D)

supD εc
, where λ(D) > 0 is the first

Dirichlet eigenvalue for −∆ in D.

Our aim is to use the upper semicontinuity of the spectrum of linear operators.

To this end we rewrite the eigenvalue problem (11)-(14) in a different equivalent form.

5
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Note that we already know by Theorem 2.3 that in the right half plane (11)-(14) has a

discrete point spectrum. Obviously, in terms of u := w − v (11)-(14) can be written as

∆u+
(
k2ε1 + ikγ1

)
u+

(
k2εc + ikγc

)
v = 0 in D (19)

∆v +
(
k2ε0 + ikγ0

)
v = 0 in D, (20)

together with the boundary conditions

u = 0
∂u

∂ν
= 0 on ∂D. (21)

These equations make sense for u = H2
0 (D) and v ∈ L2(D) such that ∆v ∈ L2(D).

SettingX(D) := H2
0 (D)×{v ∈ L2(D) : ∆v ∈ L2(D)}, we can define the linear operators

A,B,D : L2(D)× L2(D)→ L2(D)× L2(D) by

A =

(
∆00 0

0 ∆

)
, Bγ =

(
iγ1 iγc
0 iγ0

)
, Dε =

(
ε1 εc
0 ε0

)
where ∆00 indicate that the Laplacian acts on a function in H2

0 (D), i.e. with zero Cauchy

data on ∂D. Let p :=

(
u

v

)
and note that the domain of definition of A is X(D) and

A is an unbounded densely defined operator in L2(D) × L2(D). Furthermore, A is a

closed operator, i.e. for any sequence {pn} ∈ X(D) such that pn → p in L2(D)×L2(D)

and Apn → q, we have that p ∈ X(D) and Ap = q. Indeed, since ‖∆00u‖L2(D) defines

an equivalent norm in H2
0 (D), if un → u in L2(D) and ∆00un → q1 in L2(D) then

u ∈ H2
0 (D) and q1 = ∆00u. Similarly if vn → v in L2(D) and ∆vn → q2 in L2(D) then

∆v = q2. The operators Bγ and Dε are bounded in L2(D) × L2(D) and D−1
ε exists in

L2(D)× L2(D) and is given by

D−1
ε =

1

ε0ε1

(
ε0 −εc
0 ε1

)
.

Thus the transmission eigenvalue problem is equivalent to the following quadratic

eigenvalue problem

Ap + kBγp + k2Dεp = 0, p ∈ L2(D)× L2(D). (22)

Introducing U =

(
p

kDε p

)
the eigenvalue problem (22) becomes

(KU− kIε,γ)U = 0 U ∈ (L2(D)× L2(D))2, (23)

where the 4× 4 matrix operators K and Iγ,ε are given by

K :=

(
A 0

0 I

)
, Iε,γ :=

(
−Bγ −I
Dε 0

)
where I is the identity operator in L2(D) × L2(D). By straightforward calculation we

obtain I−1
ε,γ := D−1

ε

(
0 I

−Dε −Bγ

)
which is a bounded operator in L2(D)×L2(D). Thus,

6
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we have that the original transmission eigenvalue problem (11)-(14) is equivalent to the

eigenvalue problem for the closed (unbounded) operator Tε,γ := I−1
ε,γK (note Tε,γ is closed

since it is the product of a closed operator with bounded operator in (L2(D)×L2(D))2).

Let us denote by Tε,γ=0 the operator defined as above corresponding to the non-absorbing

case, i.e. γ0 = 0 and γ1 = 0 almost everywhere in D (Bγ=0 becomes the zero operator).

Let Σ(Tε,γ) be the spectrum of Tε,γ and R(k;Tε,γ) the resolvent of Tε,γ. We have

proven in Theorem 2.3 that R(k;Tε,γ) = (Tε,γ − kI)−1 is well defined for all k ∈ C such

that <(k) > 0 except for a discrete set of k without any interior accumulation point

(possibly empty). Furthermore, from Theorem 2.4 we already know that Σ(Tε,γ=0)

contains infinitely many isolated points lying on the positive real axis, which indeed are

real transmission eigenvalues. Our aim is to use the stability of eigenvalues for closed

operators under small perturbations as described in [18] (Chapter 4, Section 3). To this

end we need to define what small perturbation means and prove that Tε,γ is a small

perturbation of Tε,γ=0 assuming that the absorptions γ0 and γ1 are small enough.

To do this we set P := Tε,γ −Tε,γ=0 and by straightforward calculation we see that

the perturbation P is a bounded operator in (L2(D)× L2(D))2 given by

P =

(
0 0

0 −D−1
ε Bγ

)
.

According to [18], the perturbation P is considered small if the so-called gap between

the two closed operators Tε,γ,Tε,γ=0, denoted by δ̂(Tε,γ,Tε,γ=0) is small. For the sake of

the reader’s convenience we include here the definition of the gap δ̂(T, S) between two

closed operators T and S on a Banach space X. In particular

δ̂(T, S) = max(δ(T, S), δ(S, T )), where δ(T, S) = sup
u∈G(T ),‖u‖=1

dist(u,G(S))

where G(T ) and G(S) are the graphs of T and S respectively, which are closed subsets

of X ×X. In particular, if S = T + A with A a bounded operator in X then (see [18],

Chapter 4, Theorem 2.14)

δ̂(T + A, T ) ≤ ‖A‖.

In our case it is now easy to show that

δ̂(Tε,γ,Tε,γ=0) ≤ ‖P‖ ≤ ‖D−1
ε Bγ‖ ≤ 4

supD(ε0) + supD(ε1)

infD(ε0) infD(ε1)

(
sup
D

(γ0) + sup
D

(γ1)

)
(24)

Now let k∗ be a real transmission eigenvalue corresponding to the operator Tε,γ=0, and

consider a neighborhood Nσ(k∗) ⊂ C of k∗ of radius σ > 0. Then there is a ηk∗ > 0

(of course depending on σ) such that this neighborhood contains at least one point in

Σ(Tε,γ) as long as δ̂(Tε,γ,Tε,γ=0) < ηk∗ since otherwise from [18] (Theorem 3.1, Chapter

4) Nσ(k∗) must be included in both resolvents, R(k;Tε,γ) and R(k;Tε,γ=0). Thus we

have shown that for small absorption there is at least one transmission eigenvalue near

k∗.

7
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Theorem 2.5. Let ε0 ∈ L∞(D) and ε1 ∈ L∞(D) satisfy ε0(x) ≥ θ0 > 0, ε1(x) ≥ θ1 > 0

and εc := ε1−ε ≥ θ > 0 almost everywhere in D, and let ki > 0, i = 0, 1, . . . , ` be the first

` real transmission eigenvalues (multiple eigenvalues are counted once) corresponding to

(11)-(14) for non-absorbing media, i.e. for γ0 = γ1 = 0 almost everywhere in D. Then

for every σ > 0 there is a η̃ > 0 (depending on σ) such that if the absorption in the media

is such that supD γ0 + supD γ1 < η̃, there exist at least ` + 1 transmission eigenvalues

corresponding to (11)-(14) each in a σ-neighborhood of ki, i = 0, 1, . . . , `.

Proof. To prove this theorem, from (24) it suffices to choose η̃ = max(η̃k1 , η̃k2 , · · · η̃k`)
where

η̃ki < ηki
infD(ε0) infD(ε1)

4 supD(ε0) + 4 supD(ε1)

and ηki is the size of the perturbation corresponding to ki, i = 0, 1, · · · `, as discussed

above.

Remark 2.3. Following [1], [9], and [21], it is possible to prove the discreteness of

transmission eigenvalues if the condition εc := ε1 − ε ≥ θ > 0 is assumed to hold only

on a neighborhood of ∂D but this is beyond the scope of this paper.

3. Spherically Stratified Media

In the above section the existence of transmission eigenvalues was shown under the

assumption that the absorption in the medium and the background are sufficiently

small (unfortunately it is not possible to quantify the magnitude of the absorption in

order to guarantee the existence of transmission eigenvalues). For arbitrary absorption,

the existence of transmission eigenvalues is still open. However, in this section we

show that in the case of spherically stratified media there exist infinitely many complex

transmission eigenvalues. To this end, let B := {x : |x| < a} and consider the interior

transmission eigenvalue problem

∆3w + k2

(
ε1(r) + i

γ1(r)

k

)
w = 0 in B (25)

∆3v + k2
(
ε0 + i

γ0

k

)
v = 0 in B (26)

v = w on ∂B (27)

∂v

∂r
=
∂w

∂r
on ∂B (28)

where ε(r) and γ1(r) are continuous functions of r in B such that ε1(a) = ε0 and and ε0
and γ0 are positive constants. We look for a solution of (25)-(28) in the form

v(r) = c1j0(kñ0r)

w(r) = c2
y(r)

r

(29)

8
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where ñ0 :=
(
ε0 + i

γ0

k

)1/2

(where the branch cut is chosen such that ñ0 has positive

real part), j0 is a spherical Bessel function of order zero, y(r) is a solution of

y′′ + k2

(
ε1(r) + i

γ1(r)

k

)
y = 0 (30)

y(0) = 0, y′(0) = 1 (31)

for 0 < r < a and c1 and c2 are constants. Then there exist constants c1 and c2, not

both zero, such that (29) will be a nontrivial solution of (25)-(28) provided

d := Det


y(a)

a
−j0(kñ0a)

d

dr

[
y(r)

r

]
r=a

− d

dr
[j0(kñ0r)]r=a

 = 0. (32)

We will derive an asymptotic expansion for y(r) for large k to show that there exist an

infinite set of complex values of k such that (32) is true.

Following [13] (p. 84 - see also page 89), we see that (30) has a fundamental set of

solutions y1(r) and y2(r) defined for r ∈ [a, b] such that

yj(r) = Yj(r)

[
1 +O

(
1

k

)]
(33)

as k →∞, uniformly for 0 ≤ r ≤ a where

Yj(r) = exp [β0jk + β1j]

(β′0j)
2 + ε1(r) = 0 (34)

2β′0jβ1j + iγ1(r) + β′′0j = 0. (35)

From (34) we see that, modulo arbitrary constants,

β0j = ±
∫ r

0

√
ε1(ρ) dρ

βij = ∓1

2

∫ r

0

γ1(ρ)√
ε1(r)

dρ+ log [ε1(r)]−1/4

(36)

where j = 1 corresponds to the upper sign and j = 2 corresponds to the lower sign.

Substituting back into (33) and using the initial condition (31) we see that

y(r) =
1

ik [ε1(0)ε1(r)]1/4
sinh

[
ik

∫ r

0

√
ε1(ρ) dρ− 1

2

∫ r

0

γ1(ρ)√
ε1(ρ)

dρ

]
+O

(
1

k2

)
(37)

as k →∞. Similarly,

j0(kñ0r) =
1

ik
√
ε0r

sinh

[
ik
√
ε0r −

1

2

γ0√
ε0
r

]
+O

(
1

k2

)
(38)
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as k → ∞. Using (37), (38), and the fact that these expressions can be differentiated

with respect to r, implies that

d =
1

ika2 [ε1(0)ε0]1/4
sinh

[
ik
√
ε0a− ik

∫ a

0

√
ε1(ρ) dρ

− 1

2

γ0a√
ε0

+
1

2

∫ a

0

γ1(ρ)√
ε1(ρ)

dρ

]
+O

(
1

k2

)
(39)

as k →∞.

We now want to use (39) to deduce the existence of transmission eigenvalues. In the

case when there is no absorption (γ0 = γ1 = 0) this is a simple consequence of Bolzano’s

theorem (c.f. Section 8.4 of [11]). However this argument is no longer applicable in the

present case and we must use more sophisticated arguments. We first note that since j0

is an even function of its argument, j0(kñ0r) is an entire function of k of order one and

finite type. By representing y(r) in terms of j0 via a transformation operator (c.f. [10],

p. 47-49) it is seen that y(r) also has this property and hence so does d. Furthermore, d

is bounded as k →∞. For k < 0, d has the asymptotic behavior (39) with γ0 replaced

by −γ0 and γ1 replaced by −γ1 and hence d is also bounded as k → −∞. By analyticity

k is bounded on any compact subset of the real axis and therefore d(k) is bounded on

the real axis. Now assume that there are not an infinite number of (complex) zeros of

d(k). Then by Hadamard’s factorization theorem d(k) is of the form

d(k) = kmeak+b

n∏
`=1

(
1− k

k`

)
ek/k`

for integers m and n and constants a and b. But this contradicts the asymptotic behavior

of d(k). Hence d(k) has an infinite number of (complex) zeros, i.e. there exist an infinite

number of transmission eigenvalues.

4. Transmission Eigenvalues Free Zones

A natural question to ask next is where do complex transmission eigenvalues lie (if they

exist)? The goal of this section is to establish eigenvalue-free zones in the complex plane

which will in turn provide bounds for transmission eigenvalues in terms of the material

properties of the medium. Of particular interest from a practical point of view are the

estimates for real transmission eigenvalues (if they exist) since they can be measured

from the scattering data [4]. For this purpose we limit ourselves to the simple case

where the refraction indexes are constant. Let k = κ + iτ be a complex wave number.

We recall that k2nj = k2εj + ikγj, j = 0, 1. Therefore

k2nj = αj + iβj j = 0, 1

with

αj = (κ2 − τ 2)εj − τγj and βj = κ(2τεj + γj).

10
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Complex transmission eigenvalues are those for which there exists a non-trivial solution

u ∈ H2
0 (D) to

Pu := (∆ + α0 + iβ0)(∆ + α1 + iβ1)u = 0 in D.

In the following we will denote by (·, ·) the L2(D) scalar product and ‖·‖ the associated

norm. The symmetry of the operator P implies that

(a) (<(P)u, u) = 0 and (b) (=(P)u, u) = 0 (40)

where

<(P) := (∆ + α0)(∆ + α1)− β0β1

=(P) := β1(∆ + α0) + β0(∆ + α1)

4.1. The case when β0 + β1 6= 0.

We first observe that

(<(P)u, u) = ‖(∆ + α0)u‖2 + (α1 − α0) ((∆ + α0)u, u)− β0β1 ‖u‖2 .

Equation (40b) implies that

(∆u, u) = −(β0α1 + β1α0)

β0 + β1

‖u‖2 . (41)

Consequently

(<(P)u, u) = ‖(∆ + α0)u‖2 +

(
(α1 − α0)

(
α0 −

(β0α1 + β1α0)

β0 + β1

)
− β0β1

)
‖u‖2

= ‖(∆ + α0)u‖2 − β0

(
(α1 − α0)2

β0 + β1

+ β1

)
‖u‖2

Therefore if

β0

(
(α1 − α0)2

β0 + β1

+ β1

)
≤ 0. (42)

then k is not a transmission eigenvalue. This extends the known result of non-existence

of real transmission eigenvalues when one medium is absorbing and the other one is

not. The latter case corresponds for instance to γ0 = 0 and γ1 6= 0, i.e. since k is real,

τ = 0 and therefore β0 = 0 which is a case included in (42). By symmetry, transmission

eigenvalues also do not exist if

β1

(
(α1 − α0)2

β0 + β1

+ β0

)
≤ 0.

Let us introduce

µ0(D) := min
u∈H2

0 (D),u6=0
‖∆u‖2 / ‖u‖2

which is the first clamped plate eigenvalue for the biharmonic operator −∆2 in D.

Regrouping differently the terms in (<(P)u, u) we also observe that

(<(P)u, u) = ‖∆u‖2 + (α0 + α1) (∆u, u) + (α0α1 − β0β1) ‖u‖2

= ‖∆u‖2 − α0 + α1

β0 + β1

(β0α1 + β1α0) ‖u‖2 + (α0α1 − β0β1) ‖u‖2 .
(43)

11
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One therefore deduces that no transmission eigenvalues exist if

µ0(D) >
α0 + α1

β0 + β1

(β0α1 + β1α0) + β0β1 − α0α1.

which is equivalent to

α2
0β1 + α2

1β0

β0 + β1

+ β0β1 < µ0(D). (44)

A similar type of condition can be obtained from (41) since if we set

λ0(D) = min
u∈H1

0 (D),u6=0
‖∇u‖2 / ‖u‖2

which is the first Dirichlet eigenvalue for −∆ in D, then we easily see that no

transmission eigenvalues exist if

β0α1 + β1α0

β0 + β1

< λ0(D). (45)

One consequence of (44) and (45) is that for real transmission eigenvalues we have the

lower bounds

k2 ≥ λ0(D)
γ0 + γ1

γ0ε1 + γ1ε0

and

µ0(D) ≤ k4γ0ε
2
1 + γ1ε

2
0

γ0 + γ1

+ k2γ0γ1

For an illustration of the region excluded by inequalities (44) and (45) we refer to Figures
1 and 2.

Figure 1: Parameters: ε0 = 1, ε1 = 2, γ0 =

1, γ1 = 0, µ0(D) = 100. The free zone defined

by (44) corresponds to the complement of

the connected region containing the point

(0,−1).

Figure 2: Parameters: ε0 = 1, ε1 = 2, γ0 =

1, γ1 = 0, λ0(D) = 10. The free zone defined

by (45) corresponds to the complement of

the connected region containing the point

(0,−2).
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4.2. The general case.

In the general case, i.e. including the case when β0 + β1 = 0, one can obtain a priori

estimates on the transmission eigenvalues by testing for the positivity of

(<(P)u, u) = ‖∆u‖2 − (α0 + α1) ‖∇u‖2 + (α0α1 − β0β1) ‖u‖2 . (46)

To this end, we consider the subregion of the complex plane defined by (α0 + α1) ≤ 0.

From the definition of α0 and α1 we notice that this subregion does not cover real

transmission eigenvalues. Now, from (46) one obviously sees that in the case when

(α0 + α1) ≤ 0, no transmission eigenvalues exist if

µ0(D)− (α0 + α1)λ0(D) + (α0α1 − β0β1) > 0. (47)

In particular no transmission eigenvalues are present in the region defined by

(α0 + α1) ≤ 0 and β0β1 < α0α1

Figure 3 represents an illustrative example of the transmission eigenvalues free zone
defined by (47).

Figure 3: Parameters: ε0 = 2, ε1 = 1, γ0 = 0, γ1 = 1, µ0(D) = 100. The eigenvalue

free zone defined by (44) corresponds to the connected regions containing the points

(5, 7), (5,−7), (−5, 7), (−5,−7).

4.3. An estimate for small values of |k|.

In the general case we can reproduce the approach in [2] [3], [6], [12] on obtaining bounds

for real transmission eigenvalues. To this end let as assume that α0 > α1. Then

(<(P)u, u) = ‖∆u+ α0u‖2 + (α0 − α1)
(
‖∇u‖2 − α0 ‖u‖2)− β0β1 ‖u‖2 . (48)

Using the fact that λ0(D) ‖u‖2 ≤ ‖∇u‖2 one deduces that no transmission eigenvalues

exist in the region{
α0 > α1

α0 + β0β1
α0−α1

≤ λ0(D).
(49)
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By symmetry, no transmission eigenvalues are present in the region defined by
interchanging the role of the indices 0 and 1 in (49). The following figures (Figure
4) illustrate the domains defined by (49) in both cases.

Parameters: ε0 = 1, ε1 = 2,

γ0 = 0, γ1 = 0, λ0(D) = 10

Parameters: ε0 = 1, ε1 = 2,

γ0 = 0, γ1 = 1, λ0(D) = 10

Figure 4: The free zone defined by (49) corresponds to the interior of the indicated

closed curves.

4.4. An a priori estimate for the first real transmission eigenvalue.

Using the known estimates for real transmission eigenvalues for the non-absorbing case

we can obtain a finer estimate for real transmission eigenvalues for the absorbing case

(if they exist). To this end, let us denote by k0 the first real transmission eigenvalue

corresponding to the non-absorbing case (i.e. γ0 = 0 and γ1 = 0) and ε0 > 0 and ε1 > 0

which are assumed to be different, for instance 0 < ε0 < ε1. The existence of k0 is

proven in [6]. This transmission eigenvalue is defined as the smallest positive real k0

such that there exists a non trivial solution u0 ∈ H2
0 (D) of

(∆ + k2
0ε0)(∆ + k2

0ε1)u0 = 0 in D.

It is then known [6], [7] that

k2
0ε0 ‖∇u‖2 ≤ ε0

ε1 − ε0

∥∥∆u+ k2
0ε0u

∥∥2
+ (k2

0ε0)2 ‖u‖2 ∀u ∈ H2
0 (D).

This is equivalent to

‖∇u‖2 ≤ 1

k2
0(ε1 + ε0)

‖∆u‖2 +
k2

0ε1ε0

(ε1 + ε0)
‖u‖2 ∀u ∈ H2

0 (D). (50)

Using this estimate one obtains from (46) that

(<(P)u, u) ≥ ‖∆u‖2 − (α0+α1)

k20(ε1+ε0)

(
‖∆u‖2 + k4

0ε1ε0 ‖u‖2)+ (α0α1 − β0β1) ‖u‖2 .

Next we obtain an a priori estimate for the real part κ of a complex transmission

eigenvalue k. We first observe that

αj ≤ κ2εj j = 0, 1.
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Consequently

(<(P)u, u) ≥ ‖∆u‖2
(

1− κ2

k20

)
+ (α0α1 − β0β1 − κ2k2

0ε1ε0) ‖u‖2 . (51)

We also observe that

α0α1 − β0β1 = κ4ε1ε0 − κ2θ(κ, τ)

where

θ(κ, τ) := (1− (y/x)2)(ε0y + γ0)(ε1y + γ1) + y (2ε0(ε1y + γ1) + 2ε1(ε0y + γ0) + yε0ε1) .

In particular θ(κ, τ) > 0 for positive κ and −δ < τ < κ with small enough δ > 0.

Assume that κ2 ≤ k2
0 then, from ‖∆u‖2 ≥ µ0 ‖u‖2 and (51), we infer that

(<(P)u, u) ≥
((

1− x2

k20

)
(µ0 − x2k2

0ε1ε0)− x2θ(x, y)
)
‖u‖2 .

Consequently, no transmission eigenvalues exist if(
1− κ2

k2
0

)
(µ0 − κ2k2

0ε1ε0) > κ2θ(κ, τ),

from which we can write a weaker condition, i.e. no transmission eigenvalues exist if(
1− κ2

k2
0

)
(µ0 − k4

0ε1ε0) > κ2θ(κ, τ).

In case that k2
0 ≤
√
µ0/
√
ε1ε0 (which is possible for example for large ε1 [19]) we can

get a simpler estimate, e.g. the previous inequality implies that there are no complex

transmission eigenvalue with real part κ that satisfies

κ2 < k2
0

(
1 +

θ(κ, τ)

µ0 − k4
0ε1ε0

)−1

. (52)

In particular, the latter condition implies that there are no real transmission eigenvalues

k, i.e. for τ = 0, that satisfy

k2 = κ2 < k2
0

(
1 +

γ0γ1

µ0 − k4
0ε1ε0

)−1

(53)

since now θ(κ, 0) = γ0γ1.
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