
Inverse Problems

PAPER

New interior transmission problem applied to a single Floquet–Bloch
mode imaging of local perturbations in periodic media
To cite this article: Fioralba Cakoni et al 2019 Inverse Problems 35 015009

 

View the article online for updates and enhancements.

This content was downloaded from IP address 165.230.224.162 on 29/05/2019 at 17:00

https://doi.org/10.1088/1361-6420/aaecfd
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/727343757/Middle/IOPP/IOPs-Mid-IP-pdf/IOPs-Mid-IP-pdf.jpg/1?


1

Inverse Problems

New interior transmission problem applied 
to a single Floquet–Bloch mode imaging  
of local perturbations in periodic media

Fioralba Cakoni1 , Houssem Haddar2  
and Thi-Phong Nguyen1

1  Department of Mathematics, Rutgers University, 110 Frelinghuysen Road,  
Piscataway, NJ 08854-8019, United States of America
2  INRIA, Ecole Polytechnique (CMAP) and Université Paris Saclay, Route de Saclay, 
91128 Palaiseau Cedex, France

E-mail: fc292@math.rutgers.edu, Houssem.haddar@inria.fr  
and tn242@math.rutgers.edu

Received 19 July 2018, revised 21 September 2018
Accepted for publication 31 October 2018
Published 4 December 2018

Abstract
This paper considers the imaging of local perturbations of an infinite 
penetrable periodic layer. A cell of this periodic layer consists of several 
bounded inhomogeneities situated in a known homogeneous media. We use a 
differential linear sampling method to reconstruct the support of perturbations 
without using the Green’s function of the periodic layer nor reconstruct the 
periodic background inhomogeneities. The justification of this imaging 
method relies on the well-posedeness of a nonstandard interior transmission 
problem, which until now was an open problem except for the special case 
when the local perturbation did not intersect the background inhomogeneities. 
The analysis of this new interior transmission problem is the main focus of 
this paper. We then complete the justification of our inversion method and 
present some numerical examples that confirm the theoretical behavior of the 
differential indicator function determining the reconstructable regions in the 
periodic layer.

Keywords: inverse scattering, periodic layer, transmission eigenvalues 
problem, generalized linear sampling
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1.  Introduction

Nondestructive testing of period media is an important problem with grown interest since 
periodic material are part of many fascinating engineering structures with many technologi-
cal use such as nanograss. In many situation the periodicity of the healthy periodic material 
is complicated or difficult to model mathematically, hence computing its Green’s function is 
computationally expensive or even impossible. On the other hand, when looking for flows in 
such complex media, the option of reconstructing everything, i.e. both periodic structure and 
defects, may not be viable. The approach used in this paper provides a criteria to reconstruct 
the support of anomalies without explicitly know or reconstruct the background. The imag-
ing method is based on the generalized linear sampling method which was first introduced in 
[3, 5]. This method falls in the class of qualitative approaches to inverse scattering. We refer 
the reader to [13] and [7] for a description of various aspects of such approaches. Qualitative 
methods have been applied to the imaging of many periodic structure, see [1, 2, 6, 9, 11, 15–
17] for a sample of work. In the case of our problem, we use an adapted version of so-called 
differential linear sampling method which process the measured data against the data coming 
from the healthy background. The idea of using differential measurements for sampling meth-
ods was first introduced in [4] where the response of the background was measured, and was 
adapted to the case of locally perturbed periodic layers in [11, 18]. For the latter, the response 
of the periodic background does not need to be measured. It is replaced by the extraction 
of measurements associated with a single Floquet–Bloch mode to encode some differential 
behavior for the indicator functions. This extraction requires information only on the period 
size of the background. The justification of this method makes essential use of a non-standard 
interior transmission problem whose well-posedness was open, and this limited its use to the 
case when the defect does not intersect the inhomogeneous components of the background. In 
this paper we provide sufficient conditions for solvability of this non-standard interior trans-
mission problem which allow us to design a differential imaging function for more general 
location of defects. Let us introduce the problem we consider here.

More specifically, we are concerned with nondestructive testing of a penetrable infinite 
layer in Rd, d = 2, 3 which is periodic with respect to d  −  1 first variables. Let L1, · · · , Ld−1, 
Lj > 0, j = 1, · · · , d − 1 denote the periods of each of these d  −  1 variables, respectively. 
The d  −  1 periodic refractive index of this periodic layer, denoted here by np, from physical 
consideration is a bounded function, has positive real part Re (np) and nonnegative imaginary 
part Im (np) � 0. Furthermore for simplicity we assume that this periodic layer is embedded 
in a homogeneous background with refractive index normalized to one, i.e. np  =  1 for |xd|  >  h 
for some fixed h  >  0. This is what we refer to as the healthy material. We assume that one or 
finitely many cells of the layer are locally damaged. This means that in a compactly supported 
region ω (which can have multiple connected components) the refractive index differs from 
np. Let us call n the refractive index of the damaged layer (which is not any longer periodic), 
i.e. n �= np only in ω. The goal is to determine the support of the damaged region ω by using 
the measured scattered field outside the layer due to appropriate incident fields (to become 
precise later). The challenging task however is to resolve ω without an explicit knowledge of 
np (which in practice can have a complicated form) nor reconstructing it, but just using the fact 
that np is d  −  1 periodic with known periods L1, · · · , Ld−1 under some technical restriction 
which will be explained in the paper. More specifically, our analysis can be carried through for 
a M-period truncation of the infinite layer (containing the local defect), for M large enough, 
which is then extended as ML-periodic layer. As it is shown in [10], this truncation is equiva-
lent to approximating the problem in the Floquet–Bloch domain using uniform discretization 
of the Floquet–Bloch variable and a trapezoidal rule to approximate the discretized solution. 
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However, let us remark that from the numerical point of view, our inversion algorithm does 
not require this ML-periodicity assumption. This is why it is indeed desirable to remove this 
technical assumption in our analysis. We also note that this assumption is not needed in [6] 
and [16] for the analysis of the inverse problem. The reason is that in these papers the local 
defect is reconstructed assuming that the periodic background is known, which is not the case 
in our paper, as mentioned above.

The paper is configured as follows. In the next section we formulate the direct and inverse 
problem, define the measurements operator and recall some of its properties which are 
essential to our imaging method. Section 3 is devoted to introducing the near field operator 
corresponding to a single Floquet–Bloch mode that enables us to use a differential imaging 
approach. Most importantly here we study the properties of this operator which bring up the 
new interior transmission problem. Section 4 deals with the analysis of this new interior trans-
mission problem. In the last section we build the differential imaging function and study its 
behavior for various positions of defective regions. In addition, here we provide some numer
ical example showing the viability of our inversion method.

2.  Formulation of the problem

In this section we give a rigorous formulation of the direct and inverse scattering problem we 
consider here. In order to motivate the new interior transmission problem which is our main 
concern, we recall the differential linear sampling method that was first introduced in [18] 
(see also [11]). This method recovers the support of local perturbations of a periodic layer 
without needing to compute the Green’s function of the periodic layer. However to do so we 
must make some technical mathematical restrictions aimed to preserve some kind of period-
icity for the damaged layer. In particular, we truncate the damaged infinite periodic layer by 
considering M periods (with M large enough to contain the defect) and extend it periodically, 
yielding to a ML := (ML1, · · · , MLd−1)-periodic layer. We call again n the refractive index of 
the ML-periodic extension of the truncated part. In this section we formulate rigorously this 
construction where we base our inversion algorithm. We remark that it is highly desirable to 
remove this mathematical artifact.

2.1. The direct scattering problem

Here we adopt the notations from [11]. Recall that the parameter L := (L1, · · · , Ld−1)
∈ Rd−1, Lj > 0, j = 1, · · · , d − 1 refers to the periodicity of the media with respect to 
the first d  −  1 variables and M := (M1, · · · , Md−1) ∈ Nd−1 refers to the number of peri-
ods in the truncated domain. A function defined in Rd is called L periodic if it is periodic 
with period L with respect to the d  −  1 first variables. We consider in the following ML-
periodic Helmholtz equation (vector multiplications is to be understood component wise, i.e. 
ML = (M1L1, · · · , Md−1Ld−1)). In this problem, the total field u satisfies

{
∆u + k2nu = 0 in Rd, d = 2, 3
u is ML-periodic

� (1)

where k  >  0 is the wave number. We assume that the index of refraction n ∈ L∞(Rd) satis-
fies Re (n) � n0 > 0, Im (n) � 0 and is ML-periodic. Furthermore n  =  np outside a compact 
domain ω  where np ∈ L∞(Rd) is L-periodic, and in addition there exists h  >  0 such that n  =  1 
for |xd|  >  h (see figure 1). Thanks to the ML-periodicity, solving equation (1) in Rd is equiva-
lent to solving it in the period
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Θ :=
⋃

m∈Zd−1
M

Ωm = [[M−
L , M+

L ]]× R

with Ωm := [[− L
2 + mL, L

2 + mL]]× R, M−
L :=

(⌊
−M

2

⌋
+ 1

2

)
L, M+

L :=
(⌊M

2

⌋
+ 1

2

)
L, and 

Zd−1
M := {m ∈ Zd−1,

⌊
−M�

2

⌋
+ 1 � m� �

⌊M�

2

⌋
, � = 1, . . . , d − 1}, where we use the nota-

tion [[a, b]] := [a1, b1]× · · · × [ad−1, bd−1] and �·� denotes the floor function. We also shall use 
the notation [[a]] := |a1 · a2 · · · ad−1|. Without loss of generality we assume that there is a local 
perturbation ω  located in only one period, say Ω0 (note the case when more periods are defec-
tive, the assumption holds true by grouping these cells as one cell with different period). 
This problem is treated in [18] under a strict assumption that the local perturbation does not 
intersect with the periodic background. In this work, we remove this assumption, and allow 
for the local perturbation to be located everywhere in Ω0. We call Dp the support of np  −  1 
and D = Dp ∪ ω, note that n  =  1 outside D. For the justification of our inversion method (that 
relies on a unique continuation argument) we make the assumption that Rd \ D is connected.

We consider down-to-up or up-to-down incident plane waves of the form

ui,±(x, j) =
−i

2β#(j)
eiα#(j)·x±iβ#(j)xd� (2)

where

α#(j) :=
2π
ML

j and β#(j) :=
√

k2 − |α#( j)|2, Im (β#(j)) � 0, j ∈ Zd−1

and x = (x, xd) ∈ Rd−1 × R. (Note that α#(j) is a vector defined component-wise). Then the 
scattered field us = u − ui satisfies

{
∆us + k2nus = −k2(n − 1)ui in Rd,
us is ML-periodic

� (3)

and we impose as a radiation condition the Rayleigh expansions:
{

us(x, xd) =
∑

�∈Zd−1 ûs+(�)ei(α#(�)·x+β#(�)(xd−h)), ∀ xd > h,

us(x, xd) =
∑

�∈Zd−1 ûs−(�)ei(α#(�)·x−β#(�)(xd+h)), ∀ xd < −h,
� (4)

Figure 1.  Sketch of the geometry for the ML-periodic problem.
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where the Rayleigh coefficients ûs±(�) are given by

ûs+(�) := 1
|[[M−

L ,M+
L ]]|

∫
[[M−

L ,M+
L ]]

us(x, h)e−iα#(�)·xdx,

ûs−(�) := 1
|[[M−

L ,M+
L ]]|

∫
[[M−

L ,M+
L ]]

us(x,−h)e−iα#(�)·xdx.
� (5)

We shall use the notation

Θh := [[M−
L , M+

L ]]×]− h, h[

Γh
M := [[M−

L , M+
L ]]× {h}, Γ−h

M := [[M−
L , M+

L ]]× {−h}.

For integer m, we denote by Hm
#(Θ

h) the restrictions to Θh of functions that are in Hm
loc(|xd| � h) 

and are ML-periodic. The space H1/2
# (Γh

M) is then defined as the space of traces on Γh
M  of func-

tions in H1
#(Θ

h) and the space H−1/2
# (Γh

M) is defined as the dual of H1/2
# (Γh

M). Similar defini-

tions are used for H±1/2
# (Γ−h

M ).
More generally for a given f ∈ L2(Θh), we consider the following problem: find 

w ∈ H1
#(Θ

h) satisfying

∆w + k2nw = k2(1 − n) f� (6)

together with the Rayleigh radiation condition (4). Then we make the following assumption:

Assumption 1.  The refractive index n and k  >  0 are such that (6) with n and with n re-
placed by np are both well-posed for all f ∈ L2(Θh).

We remark that the solution w ∈ H1
#(Θ

h) of (6) can be extended to a function in Θ satisfy-
ing ∆w + k2nw = k2(1 − n) f , using the Rayleigh expansion (4). We denote by Φ(np; ·) the 
fundamental solution to



∆Φ(np; ·) + k2npΦ(np; ·) = −δ0,
Φ(np; ·) is ML-periodic,
and the Rayleigh radiation condition (4).

� (7)

Then w has the representation as

w(x) = −
∫

D

(
k2(np − n)w + k2(1 − n) f

)
(y)Φ(np; x − y)dy.� (8)

For sufficient conditions that guarantee assumption 1 we refer the reader to [10, 14, 18] and 
the references therein.

2.2. The inverse problem

The inversion method is based on the so-called the generalized linear sampling method, which 
was first introduced in [3, 5] (see also [7, chapter 2]), augmented with the idea of differential 
imaging introduced in [4] which was adapted to this problem in [18].

As described above we have two choices of interrogating waves. If we use down-to-up 
(scaled) incident plane waves ui,+(x; j) defined by (2), then our measurements (data for the 
inverse problem) are given by the Rayleigh sequences

ûs+(�; j), ( j, �) ∈ Zd−1 × Zd−1,

whereas if we use up-to-down (scaled) incident plane waves ui,−(x; j) defined by (2) then our 
measurements are given the Rayleigh sequences

F Cakoni et alInverse Problems 35 (2019) 015009
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ûs−(�; j), ( j, �) ∈ Zd−1 × Zd−1.

These measurements define the so-called near field (or data) operator which is used to derive 
the indicator function of the defect. More specifically, let us consider the (Herglotz) operators 
H+ : �2(Zd−1) → L2(D) and H− : �2(Zd−1) → L2(D) defined by

H±a :=
∑

j∈Zd−1

a( j)ui,±(·; j)
∣∣
D, ∀ a = {a( j)}j∈Zd−1 ∈ �2(Zd−1).

� (9)

Then H± is compact and its adjoint (H±)∗ : L2(D) → �2(Zd−1) is given by [11]

(H±)∗ϕ := {ϕ̂±( j)}j∈Zd−1 , where ϕ̂±
j :=

∫

D
ϕ(x)ui,±(·; j)(x)dx.� (10)

Let us denote by H±
inc(D) the closure of the range of H± in L2(D). We then consider the (com-

pact) operator G± : H±
inc(D) → �2(Zd−1) defined by

G±( f ) := {ŵ±(�)}�∈Zd−1 ,� (11)

where {ŵ±(�)}�∈Zd−1 is the Rayleigh sequence of w ∈ H1
#(Θ

h) the solution of (6). We now 
define the sampling operators N± : �2(Zd−1) → �2(Zd−1) by

N±(a) = G± H±(a).� (12)

By linearity of the operators G± and H± we also get an equivalent definition of N± directly 
in terms of measurements as

[N±(a)]� =
∑

j∈Zd−1

a( j) ûs±(�; j), � ∈ Zd−1.� (13)

The following properties of G± and H± are crucial to our inversion method. To state them, 
we must recall the standard interior transmission problem: (u, v) ∈ L2(D)× L2(D) such that 
u − v ∈ H2(D) and




∆u + k2nu = 0 in D,
∆v + k2v = 0 in D,
u − v = ϕ on ∂D,
∂(u − v)/∂ν = ψ on ∂D,

� (14)

for given (ϕ,ψ) ∈ H3/2(∂D)× H1/2(∂D) where ν denotes the outward normal on ∂D. k is 
called a transmission eigenvalue if the homogeneous problem (14), i.e. with ϕ = 0 and ψ = 0, 
has non-trivial solutions. Up-to-date results on this problem can be found in [7, chapter 3] 
where in particular one finds sufficient solvability conditions. In the sequel we make the fol-
lowing assumption. If the boundary of D intersects the boundary of Ω0, then the previous 
interior transmission problem should be augmented with periodicity conditions on ∂D ∩ ∂Θ. 
Since this condition does not affect the assumptions on the solvability of the interior transmis-
sion problem (in H2(D) with periodic conditions on ∂D ∩ ∂Θ) nor requires any substantial 
modification of the arguments below (other than changing the solution space), we make the 
choice of simplifying this technicality and assume that ∂D ∩ ∂Ω0 = ∅.

Assumption 2.  ∂D ∩ ∂Ω0 = ∅ and the refractive index n and the wave number k  >  0 are 
such that (14) has a unique solution.

In particular, if Re (n − 1) > 0 or −1 < Re (n − 1) < 0 uniformly in a neighborhood of 
∂D inside D the interior transmission problem (14) satisfies the Fredholm alternative, and the 

F Cakoni et alInverse Problems 35 (2019) 015009
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set of real standard transmission eigenvalues is discrete (possibly empty). Thus assumption 2 
holds as long as k  >  0 is not a transmission eigenvalue.

From now on, for z ∈ Θh, we denote by Φ̂±(·; z) := {Φ̂±(�; z)}�∈Zd−1 the Rayleigh 
sequences of Φ(np, z) with np  =  1 define in (7) given by

Φ̂±(�; z) :=
i

2[[ML]]β#(�)
e−i(α#(�)z−β#(�)|zd∓h|).� (15)

Lemma 2.1 (Lemma 3.3 in [11]).  The operator H± is compact and injective. Let H±
inc(D) 

be the closure of the range of H± in L2(D). Then

H±
inc(D) = Hinc(D) := {v ∈ L2(D) : ∆v + k2v = 0 in D}.� (16)

Theorem 2.2 (Theorem 3.5 in [11]).  Assume that assumptions 1 and 2 hold. Then the 
operator G± : Hinc(D) → �2(Zd−1) defined by (11) is injective with dense range. Moreover 
Φ̂±(·; z) belongs to R(G±) if and only if z ∈ D.

Another main ingredient is a symmetric factorization of an appropriate operator given in 
terms of N±. To this end, for a generic operator F : H → H , where H is a Hilbert space, with 
adjoint F* we define

F� := |Re (F)|+ |Im (F)|� (17)

where Re (F) := 1
2 (F + F∗), Im (F) := 1

2i (F − F∗).
Now if T : L2(D) → L2(D) is defined by

Tf := k2(n − 1)( f + w|D)� (18)

with w being the solution of (6), we have the following result under assumptions 1 and 2.

Theorem 2.3 (Theorem 4.2 in [11]).  The following factorization holds

N±
� = (H±)∗ T� H±,� (19)

where T� : L2(D) → L2(D) is self-adjoint and coercive on Hinc(D). Moreover, z ∈ D if and 

only if Φ̂±(·; z) ∈ R
(
(N±

� )
1/2

)
.

The above theorem provides a rigorous method to recover the support of D. However this 
is not satisfactory since the aim is find only the support of ω and trying to reconstruct eve-
rything may not be feasible due to possible complicated structure of the periodic media and 
even useless if ω ⊂ Dp. Our goal is to derive an imaging method that resolves only ω without 
knowing or recovering Dp. This leads us to introducing next the sampling operator for a single 
Floquet–Bloch mode whose analysis will bring up a new interior transmission problem.

We end this section by introducing some more notations to be used in the sequel.

Definition 2.4.  A function u is called quasi-periodic with parameter ξ = (ξ1, · · · , ξd−1) 
and period L = (L1, · · · , Ld−1), with respect to the first d  −  1 variables (briefly denoted as 
ξ-quasi-periodic with period L) if:

u(x + jL, xd) = eiξ·( jL)u(x, xd), ∀j ∈ Zd−1.

F Cakoni et alInverse Problems 35 (2019) 015009
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Let q be a fixed parameter in Zd−1
M , we denote by Φq(x) the solution to

∆Φq(x) + k2Φq(x) = −δ0 in Ω0� (20)

and is αq quasi-periodic with period L with αq := 2πq/(ML). Then Φq(· − z) remains the 
solution to

∆Φq(· − z) + k2Φq(· − z) = −δz in Ω0

for all z ∈ Rd. The Rayleigh coefficients Φ̂±
q (·; z) of Φq(· − z) are given by

Φ̂±
q (j; z) =

{
i

2[[L]]β#(q+M �)e−i(α#(q+M �)z−β#(q+M �)|zd∓h|) if j = q + M�, � ∈ Zd−1,

0 if j �= q + M�, � ∈ Zd−1.
� (21)

Furthermore we assume that each period of Dp is composed by J ∈ N disconnected comp
onents and the defect ω  as well as the components that contains or have non-empty intersec-
tion with ω  are in one cell, which we denote by Ω0 (otherwise we could rearrange the period). 
For convenience, we now introduce some additional notations. We denote by O the union of 
the components of Dp ∩ Ω0 that have nonempty intersection with ω , and by Oc its comple-
ment in Dp ∩ Ω0, i.e. the union of all the components of Dp ∩ Ω0 that do not intersect ω. 
Furthermore, we denote by Λ := O ∪ ω and by D̂ := Λ ∪ Oc. Obviously, D̂ = D ∩ Ω0. (See 
also figure 1 and note that if ω  does not intersect with Dp then O ≡ ∅, Oc ≡ Dp ∩ Ω0 and 
Λ = ω). Let us denote by νm := (mL, 0) ∈ Rd , the translate vector from Ω0 to Ωm, m ∈ Zd−1. 
We consider the following L-periodic copies of the aforementioned regions

Oc
p =

⋃

m∈Zd−1
M

Oc + νm, Λp :=
⋃

m∈Zd−1
M

Λ + νm and D̂p :=
⋃

m∈Zd−1
M

D̂ + νm.

� (22)

Remark that D̂p ≡ Dp ∪
(
∪m∈Zd−1

M
ω + νm

)
 contains D and the L-periodic copies of ω \ Dp. 

We remark that n  =  np  =  1 in D̂p \ D.

3. The near field operator for a single Floquet–Bloch mode

Let us define the operator Iq : �2(Zd−1) → �2(Zd−1) given by

(Iqa)(�) =
{

a( j), if � = q + jM
0, else.� (23)

The adjoint I∗q : �2(Zd−1) → �2(Zd−1) is then (I∗q b)( j) = b(q + jM). The single Floquet–
Bloch mode Herglotz operator H±

q : �2(Zd−1) → L2(D) is defined by

H±
q a := H±Iqa =

∑
j

a( j)ui,±(·; q + jM)|D� (24)

and the single Floquet–Bloch mode near field (or data) operator N±
q : �2(Zd−1) → �2(Zd−1) 

is defined by

N±
q a = I∗q N± Iq a.� (25)

We remark that H±
q a is an αq-quasi-periodic function with period L. The sequence N±

q a corre-
sponds to the Fourier coefficients of the αq-quasi-periodic component of the scattered field in 
the decomposition (30). This operator is then somehow associated with αq-quasi-periodicity. 

F Cakoni et alInverse Problems 35 (2019) 015009
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One immediately sees from the factorization N± = (H±)∗ TH± that the following factoriza-
tion holds.

N±
q = (H±

q )∗ TH±
q� (26)

For later use we also define the operator G±
q : R(H±

q ) → �2(Zd−1) by

G±
q = (H±

q )∗T|
R(H±

q )� (27)

where the operator T is defined by (18).
Observing that

ϕ( j; x) := eiα#(j)·x = ei 2π
ML j·x, j ∈ Zd−1

is a Fourier basis of ML periodic function in L2(Θ), we have that any w ∈ L2(Θ) which is ML 
periodic, has the expansion

w(x) =
∑

j∈Zd−1

ŵ( j, xd)ϕ( j; x), where ŵ( j, xd) :=
1

[[ML]]

∫

Θ

w(x)ϕ( j; x)dx.� (28)

Spliting j by module M we can arrange the expansion of w as

w(x) =
∑

q∈Zd−1
M

( ∑
�∈Zd−1

ŵ(q + M�, xd)ϕ(q + M�; x)
)

,
� (29)

where ϕ(q + M�; x) is αq-quasi-periodic with period L, here αq := 2π
ML q. Letting

wq :=
∑
�∈Z

ŵ(q + M�, xd)ϕ(q + M�; x)

we have that wq is αq-quasi-periodic with period L. Thus any ML-periodic function w ∈ L2(Θ) 
can be decomposed

w =
∑

q∈ZM

wq� (30)

where wq is αq-quasi-periodic with period L. Moreover, by the orthogonality of the Fourier 
basis {ϕ( j; ·)}j∈Z, we have that

ŵq
±
(j) = 0 if j �= q + M�, � ∈ Z and ŵ±(q + M�) = ŵq

±
(q + M�)

� (31)

where ŵq
±
(j) the Rayleigh sequence of wq defined in (5). By definition of G±

q , we see that 
G±

q ( f ) is a Rayleigh sequence of ŵ±(j) at all indices j = q + M�, � ∈ Z, where w is solution 
of (6). Seeing also the line above that theses coefficients come from the Rayleigh sequence of 
wq where wq is one of the component of w using the decomposition (30), which is αq-quasi 
periodic. We now assume that f |Dp is αq-quasi-periodic. Then, using the decomposition (30) 
for w, and that fact that np is periodic, f is αq-quasi-periodic and n  −  np is compactly supported 
in one period Ω0, (6) becomes

∆wq + k2npwq = k2(np − n)w + k2(1 − n) f in Ω0.� (32)

Denoting by w̃ := w − wq, the previous equation is equivalent to

∆wq + k2nwq = k2(np − n)w̃ + k2(1 − n) f in Ω0.� (33)

Therefore, operator G±
q : R(H±

q ) → �2(Zd−1) can be equivalently defined as
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G±
q ( f ) := I∗q{ŵq

±
(�)}�∈Zd−1 ,� (34)

where wq solution of (33) and wq + w̃ is solution of (6). This definition is helpful for proving 
the following properties for H±

q  and G±
q  that are the counterpart results to lemmas 2.1 and 2.2, 

now needed for the operator N±
q .

Lemma 3.1.  The operator H±
q  is injective and

R(H±
q ) = Hq

inc(D) := {v ∈ L2(D), ∆v + k2v = 0 in D and v|Dp is αq-quasi-periodic}.

Proof.  The proof of this lemma follows the lines of the proof of lemma 5.1 in [11] slightly 
modified to account for more general location of the defect. H±

q  is injective since H± is injec-
tive and Iq is injective. We now prove that (H±

q )∗ is injective on Hq
inc(D). Let ϕ ∈ Hq

inc(D) and 
assume (H±

q )∗(ϕ) = 0. We define

u(x) :=
1

[[M]]

∫

D
Φq(x − y)ϕ(y)dy

where Φq(x) has expansion

Φq(x) =
i

2[[L]]

∑
�∈Zd−1

1
β#(q + M�)

eiα#(q+M�)·x+iβ#(q+M�)|xd|
� (35)

with α#(q + M�) = 2π
ML (q + M�) and β#(q + M�) =

√
k2 − |α#(q + M�)|2 . By definition 

of u and the expansion of Φq we have that

û+(j) =
1

|[[M−
L , M+

L ]]|

∫

[[M−
L ,M+

L ]]

[ 1
[[M]]

∫

D
Φq((x, h)− y)ϕ(y)dy

]
e−iα#(j)·xdx

=

{∫
D ϕ(y) i

2β#(j)eiα#(j)−iβ#(j)(xd−h) = ((H+)∗(ϕ)) ( j), if j = q + M�

0 if j �= q + M�
� (36)

which implies that û±(j) = 0 for all j �= q + M� and û±(q + M�) = ((H±)∗(ϕ)) 
(q + M�) = ((H±

q )∗(ϕ))(�) = 0. Therefore u has all Rayleigh coefficients equal 0, which 
implies that

u = 0, for ± xd > h.

We now observe that for all y ∈ D, ∆Φq(· − y) + k2Φq(· − y) = 0 in the complement of D̂p. 
This implies that

∆u + k2u = 0 in Θ \ D̂p.

Using a unique continuation argument we infer that u  =  0 in Θ \ D̂p. Therefore, u ∈ H2
0(D̂p) 

by the regularity of volume potentials. We now consider two cases:

If ω ⊂ Dp, then D̂p ≡ Dp, i.e. u ∈ H2
0(Dp). Moreover, by definition, u verifies 

∆u + k2u = −ϕ in Dp and using the fact that ∆ϕ+ k2ϕ = 0 in Dp we finally have
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−‖ϕ‖2
L2(Dp)

=

∫

Dp

(∆u + k2u)ϕdx =

∫

Dp

u(∆ϕ+ k2ϕ)dx = 0.� (37)

This proves that ϕ = 0 and yields the injectivity of (H±
q )∗ on Hq

inc(D).

If ω �⊂ Dp, let denote by ωc := ω \ Dp then ωc �= ∅. We then rewrite u(x) as

u(x) :=
1

[[M]]

∫

ωc
Φq(x − y)ϕ(y)dy +

1
[[M]]

∫

Dp

Φq(x − y)ϕ(y)dy.

Since ϕ|Dp and Φq(·) are αq-quasi-periodic functions with period L, then for x ∈ Dp we have
∫

Dp∩Ωm

Φq(x − y)ϕ(y)dy =

∫

Dp∩Ω0

Φq(x − y)ϕ(y)dy, ∀ m ∈ Zd−1
M .

Therefore, for x ∈ Dp ∩ Ωm .

u(x) :=
1

[[M]]

∫

ωc
Φq(x − y)ϕ(y)dy +

∫

Dp∩Ωm

Φq(x − y)ϕ(y)dy� (38)

We recall that ∆Φq(· − x) + k2Φq(· − x) = −δx in Ωm and ∆Φq(· − x) + k2Φq(· − x) = 0 in 
ωc (by quasi-periodicity of Φq(· − x)). Hence, from (38) we obtain that for m ∈ Zd−1

M ,

∆u(x) + k2u(x) = −ϕ(x) in Dp ∩ Ωm.� (39)

Let us set for m ∈ Zd−1
M

ϕm(x) := eiαq·mLϕ(x − mL) for x ∈ ωc + mL.

Then we have, using the αq-quasi-periodicity of Φq(·) that for x ∈ ωc + mL

u(x) :=
1

[[M]]

∫

ωc+mL
Φq(x − y)ϕm(y)dy +

1
[[M]]

∫

Dp

Φq(x − y)ϕ(y)dy

where Φq(· − x) + k2Φq(· − x) = −0 in Dp and ∆Φq(· − x) + k2Φq(· − x) = −δx in 
ωc + mL . We then get

∆u(x) + k2u(x) = −ϕm in ωc + mL.� (40)

Now define the function ϕ̃ by

ϕ̃ = ϕ in Dp and ϕ̃ = ϕm in ωc + mL with m ∈ Zd−1
M .

Clearly, we have

∆ϕ̃+ k2ϕ̃ = 0 in D̂p.

Since u ∈ H2
0(D̂p) we then have

∫

Dp

(∆u + k2u)ϕ̃ = 0.
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This implies according to (39) and (40) that
∫

Dp

|ϕ|2dx + [[M]]

∫

ωc
|ϕ|2 = 0,

which implies ϕ = 0 in D. This proves the injectivity of (H±)∗ on Hq
inc(D) and hence proves 

the lemma.� □ 

The following theorem concerning the properties G±
q  requires the solvability of a new 

interior transmission problem (to be formulated later), which up to this study was an open 
problem except for the case when ω ∩ Dp = ∅ investigated in [18].

Assumption 3.  The refractive index n and k  >  0 are such that the new interior transmis-
sion problem defined in definition 3.3 has a unique solution.

Section 4 is dedicated to derive sufficient conditions for which assumption 3 holds true.

Theorem 3.2.  Suppose that assumptions 1–3 hold. Then the operator 

G±
q : Hq

inc(D) → �2(Zd−1) is injective with dense range.

Proof.  To prove the injectivity of Gq we assume that f ∈ Hq
inc(D) such that Gq( f ) = 0. Let 

w be solution of (6) with data f. Since f |Dp is αq-quasi-periodic and np  −  n is compactly sup-
ported of period Ω0 we then have from (34) that

G±
q ( f ) := I∗q{ŵq

±
(�)}�∈Zd−1 ,

where {ŵq
±
(�)}�∈Zd−1 is the Rayleigh sequence of wq and wq is solution to

∆wq + k2nwq = k2(np − n)(w − wq) + k2(1 − n) f in Ω0.� (41)

In particular we have that ∆wq + k2wq = 0 in Θ \ D̂p (we recall notations in (22)). Using a 
similar unique continuation argument as at the beginning of the proof of lemma 3.1 we deduce 
that

wq = 0 in Θ \ D̂p.

Actually, if ω ⊂ Dp then D̂p ≡ Dp thus f |D̂p
 is αq-quasi-periodic. However, if ω �⊂ Dp, f |D̂p

 
is not αq-quasi-periodic. To restore αq-quasi-periodicity, we introduce another function f̃  by

f̃ :=
{

f in Θ \ Λp

eiαqmLf |Λ in O + mL, ∀ m ∈ ZM .� (42)

i.e. we keep f the same outside Λp and extend the values of f in Λ by αq-quasi-periodicity 
to Λp. Since f |Dp is αq-quasi-periodic then the definition of f̃  implies that f̃ = f  also in 
Λp ∩ Dp. Therefore f̃ = f  in D and f̃ = f  in Θ \ D̂p (in other words f̃ �= f  in D̂p \ D) and f̃ |D̂p

 
is αq-quasi-periodic with period L. We remark that in the special case when ω ⊂ Dp, f̃ ≡ f  
and D̂p ≡ Dp. We now write (41) in terms of f̃  (since f̃ ≡ f  in D)

∆wq + k2nwq = k2(np − n)(w − wq) + k2(1 − n)̃f in Ω0,� (43)

hence it is enough to prove that f̃ = 0 in D̂p. To this end, using the fact that f̃ = f  in D̂ (recall 
that D̂ = Λ ∪ Oc =D̂p ∩ Ω0 = D ∩ Ω0) then f̃  verifies
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∆f̃ + k2 f̃ = 0 in D̂p

and by the αq-quasi-periodicity of wq and f̃ , it is sufficient to prove that f̃ = 0 in the cell Ω0, 
i.e. proving that the following problem

{
∆wq + k2nwq = k2(np − n)(w − wq) + k2(1 − n)̃f in D̂,
∆f̃ + k2 f̃ = 0 in D̂,

� (44)

has trivial solution (wq, f̃ ) ∈ H2
0(D̂)× L2(D̂). Since in Oc, n  =  np and Oc ∩ Λ = ∅, then 

(wq, f ) ∈ wq ∈ H2
0(Oc)× L2(Oc) verifies

{
∆wq + k2nwq = k2(1 − n) f in Oc,
∆f + k2f = 0 in Oc.

� (45)

Assumption 2 implies that equation (45) has a trivial solution, and therefore

wq = f = 0 in Oc.

It remains to prove that f  =  0 in Λ. We can now rewrite (44) as a problem only in Λ
∣∣∣∣∣∣∣

wq ∈ H2
0(Λ) and f̃ ∈ L2(Λ){

∆wq + k2nwq = k2(np − n)(w − wq) + k2(1 − n)̃f in Λ,
∆f̃ + k2 f̃ = 0 in Λ.

� (46)

To deal with this problem, we first express the quantity w  −  wq in terms of f̃  using the prop-
erty that f̃ = 0 outside Λ. To this end, recalling that f̃ = f  in D, we can write (6) in terms of 
f̃  as

∆w + k2npw = k2(np − n)w + k2(1 − n)̃f� (47)

and then have

w(x) = −
∫

D

(
k2(np − n)w + k2(1 − n)̃f

)
(y)Φ(np; x − y)dy.� (48)

Using the facts that f̃ = 0 and n  =  np in Oc
p, i.e. np  =  n  =  1 in Λp \ D we have

w(x) = −
∫

D\Oc
p

(
k2(np − n)w + k2(1 − n)̃f

)
(y)Φ(np; x − y)dy.

= −
∫

Λp

(
k2(np − n)w + k2(1 − n)̃f

)
(y)Φ(np; x − y)dy.

= −k2
∫

Λ

(
(np − n)w + (1 − n)̃f

)
(y)Φ(np; x − y)dy

− k2
∫

Λp\Λ
(1 − np)̃f (y)Φ(np; x − y)dy.

�

(49)

Moreover, since wq ∈ H2
0(Λ), then for all θ ∈ H2(Λ) satisfying ∆θ + k2npθ = 0 we have

∫

Λ

(
∆wq + k2npwq

)
θdx = 0,� (50)
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implying from equation (46), that
∫

Λ

(
(np − n)w + (1 − n)̃f

)
θdx = 0.� (51)

Remark that for x /∈ Λ, ∆Φ(np; x − y) + k2npΦ(np; x − y) = 0 for all y ∈ Λ. Combined with 
f̃ = 0 outside Λp, we then conclude from (49) that

w(x) = −
∫

Λp\Λ
k2(1 − np)̃f (y)Φ(np; x − y)dy for x /∈ Λ.� (52)

Next we define

w̃(x) = −
∫

Λp\Λ
k2(1 − np)̃f (y)Φ(np; x − y)dy, x ∈ Θ� (53)

then w − w̃ ∈ H2
0(Λ) and ∆w̃ + k2npw̃ = 0 in Λ. We now keep w and wq as above and let 

ŵ := wq + w̃ in Λ which obviously verifies

∆ŵ + k2nŵ = k2(1 − n)̃f in Λ.

By assumption 1 we have w = ŵ in Λ. This proves that w̃ = w − wq in Λ. Moreover, using the 
αq quasi-periodicity of f̃  in Λp and the periodicity of np we have that
∫

Λ+mL
k2(1 − np)̃f (y)Φ(np; x − y)dy =

∫

Λ

k2(1 − np)̃f (y + mL)Φ(np; x − (y + mL))dy

= eiαqmL
∫

Λ

k2(1 − np)̃f (y)Φ(np; x − mL − y)dy.

Letting for y ∈ Λ

Φ̃(x, y) :=
∑

0�=m∈ZM

eiαqmLΦ(np; x − mL − y),
� (54)

we see that w̃ defined by (53) is equivalent to

w̃(x) = −
∫

Λ

k2(1 − np)̃f (y)Φ̃(x, y)dy.� (55)

This leads us to define the operator S̃k : L2(Λ) → L2(Λ)

S̃k : f �→ −
∫

Λ

k2(1 − np) f (y)Φ̃(x, y)dy.� (56)

From the smoothing property of the volume potential we have that the operator S̃k  is compact 
and S̃k( f ) satisfies

∆S̃k( f ) + k2npS̃k( f ) = 0 in Rd \ Λ.

From the above, we write w  −  wq in terms S̃k( f ) then reformulate (46) for w0 := wq and f, we 
finally obtain
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∣∣∣∣∣∣∣

w0 ∈ H2
0(Λ), f ∈ L2(Λ),{

∆w0 + k2nw0 = k2(1 − n) f + k2(np − n)S̃k( f ) in Λ,
∆f + k2f = 0 in Λ.

� (57)

This problem is the homogeneous version of the new interior transmission problem defined 
in definition 3.3 below, where u:  =  w0  +  f. Assumption 3 now implies that w0 = f = 0 in Λ, 
which proves the injectivity of Gq.� □ 

Definition 3.3 (The new interior transmission problem).  Find (u, f ) ∈ L2(Λ)× L2(Λ) 
such that u − f ∈ H2(Λ) and





∆u + k2nu = k2(np − n)S̃k( f ) in Λ,
∆f + k2f = 0 in Λ,
u − f = ϕ on ∂Λ,
∂(u − f )/∂ν = ψ on ∂Λ,

� (58)

for given (ϕ,ψ) ∈ H3/2(∂Λ)× H1/2(∂Λ) where

S̃k : L2(Λ) → L2(Λ) :

f �→ −
∫

Λ

k2(1 − np) f (y)
( ∑

0�=m∈ZM

eiαqmLΦ(np; x − mL − y)
)

dy,

�

(59)

Φ(np; ·) is the ML-periodic fundamental solution given by (7), and ν denotes the unit normal 
on ∂Λ outward to Λ.

Definition 3.4.  Values of k ∈ C for which the homogeneous problem with ϕ = ψ = 0, are 
called new transmission eigenvalues.

For sake of completeness, we end this section with proving a range statement for the opera-

tor G±
q  which is used in the imaging algorithm. To this end, we recall Φq(· − z) defined by 

(20), Iq given by (23) with adjoint I∗q.

Theorem 3.5.  Suppose that assumptions 1–3 hold. Then, I∗q Φ̂
±
q (·; z) ∈ R(G±

q ) if and only 
if z ∈ D̂p.

Proof.  We consider two cases:

	Case 1:	� z ∈ D̂p = Λp ∪ Oc
p.

	 (i)	If z ∈ Oc
p:	� Let (u, v) ∈ L2(D)× L2(D) be the unique solution of (14) with 

ϕ := Φq(· − z)|∂D and ψ := ∂Φq(· − z)/∂ν|∂D and define

w =

{
u − v in Oc

p

Φq in Θ \ Oc
p.

Then w ∈ H2
loc(Θ) and verifies equation (6) with f = v in Oc

p and f = −Φq in Θ \ Oc
p. 

Therefore G±( f ) = Φ̂±
q (·; z). Furthermore u|Oc

p
 and v|Oc

p
 are αq-quasi-periodic (due to 
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the periodicity of domain Oc
p and αq-quasi-periodicity of the data), hence f is also αq 

quasi-periodic. This implies f ∈ Hq
inc(D) and G±

q ( f ) = I∗q G±
q ( f ) = I∗q Φ̂

±
q (·; z).

	(ii)	�If z ∈ Λp:	 We first consider that z ∈ Λ = Λp ∩ Ω0. Let (u, v) ∈ L2(Λp)× L2(Λp) be 
the αq-quasi-periodic extension of (uΛ, vΛ), where (uΛ := u, vΛ := f ) is the solution 
of the new interior transmission problem in definition 3.3 with ϕ := Φq(· − z)|∂Λ and 
ψ =: ∂Φq(· − z)/∂ν|∂Λ. We then define

wq =

{
u − v in Λp

Φq in Θ \ Λp.

		 Let f := v in Λp and f := −Φq in Θ \ Λp then f ∈ Hq
inc(D) and wq ∈ H2

loc(Θ) satisfies 
the scattering problem (33) with data f. Furthermore, w defined such as w := wq + S̃k( f ) 
in Λ and w:  =  wq in D \ Λ is solution to (6) with data f. Therefore G±

q ( f ) = I∗q Φ̂
±
q (·; z).

		 We next consider z ∈ Λ + mL with 0 �= m ∈ Zd−1
M , and recall  

that Φ̂±
q (·; z) = eimL·αqΦ̂±

q (·; z − mL). If we take f ∈ Hq
inc(D) such that 

G±
q ( f ) = I∗q Φ̂

±
q (·; z − mL), which is possible by the previous step since z − mL ∈ Λ, 

then

G±
q (eimL·αq f ) = I∗q(Φ̂

±
q (·; z)).

	Case 2:	 z /∈ D̂p. If G±
q (v) = I∗q Φ̂

±
q (·; z), then using the same unique continuation argument as 

in the proof of lemma 3.2 we obtain wq = Φq in Θ \ D̂p where wq is defined by (30) with 
w being the solution of (6) with f = v. This gives a contradiction since wq is locally H2 
in Θ \ D̂p while Φq(· − z) is not.

4. The analysis of the new interior transmission problem

This section is devoted to the study of the solvability of the new interior transmission problem 
in definition 3.3. It provides sufficient conditions on n and k for which this problem is well-
posed, i.e. such that assumption 3 holds. As described in the previous section the solvability of 
the new interior transmission problem is fundamental to ensuring the properties needed for the 
imaging of the defect ω with a single Floquet–Bloch mode. Up to now the only case that could 
be handled was when ω ∩ D = ∅ [18] (see also [11]). Here we provide a general analysis that 
cover all possible cases. Our approach generalizes [12] and [19].

We start with proving the following technical lemma:

Lemma 4.1.  Assume that np > α > 0 on Rd. Then there exists θ > 0 and C  >  0 such that

‖S̃iκ( f )‖L2(Λ) � Ce−θκ‖f‖L2(Λ), κ > 0

for all f ∈ L2(Λ).

Proof.  Denoting w̃ := S̃iκ( f ) and f̃  the extension of f as αq-quasi-periodic in Λp, we have 
that

w̃(x) = κ2
∫

Λp\Λ
(1 − np)̃f (y)Φ(np; x − y)dy

where Φ(np; ·) denotes here the ML-periodic fundamental solution associated with k = iκ. An 
application of the Cauchy–Schwarz inequality an the Fubini theorem implies
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‖w̃‖2
L2(Λ) � κ4|Λp \ Λ|

∫

Λ

∫

Λp\Λ

∣∣(np − 1)̃f (y)Φ(np; x − y)
∣∣2dydx

= κ4|Λp \ Λ|
∫

Λp\Λ

∣∣(np − 1)̃f (y)
∣∣2
∫

Λ

∣∣Φ(np; x − y)
∣∣2dxdy.

Next we let

Σ = {z := x − y, x ∈ Λ, y ∈ Λp \ Λ},

dmax ∈ R : dmax > sup{|z|, z ∈ Σ} and d := d(Λ,Λp \ Λ),

and remark that ∀x ∈ Λ, ∀y ∈ Λp \ Λ, |x − y| > d , hence

Σ ⊂ B := B(0, dmax) \ B(0, d)� (60)

where B(0, d) is a ball of radii d and centered at the origin. Remark that d  >  0 by assumption 
2. We then have

‖w̃‖2
L2(Λ) � κ4|Λp \ Λ|

∫

Λp\Λ

∣∣(np − 1)̃f (y)
∣∣2dy

∫

B

∣∣Φ(np; z)
∣∣2dz.

Since f̃ = f  in Λ, f̃  is quasi-periodic and np is periodic in Λp, then
∫

Λp\Λ

∣∣(np − 1)̃f (y)
∣∣2dy = (|M| − 1)

∫

Λ

∣∣(np − 1)̃f (y)
∣∣2dy � (|M| − 1) sup

Λ
|1 − np|‖f‖2

L2(Λ).

We now prove that, there exists θ > 0 and C0  >  0 such that
∫

B

∣∣Φ(np; z)
∣∣2dz � C0e−θκ.� (61)

We recall that Φ(np; z) is ML-periodic and satisfies

(∆− κ2np)Φ(np; ·) = −δ0 in Θ� (62)

and Φ(np; ·) ∈ L2(Θ) (or equivalently the Rayleigh radiation condition (4) with k = iκ). Con-
sider the fundamental solution Ψ ∈ L2(Rd) satisfying

(∆− κ2np)Ψ = −δ0 in Rd.

Since np is positive definite, then one can prove that eγκ|x|Ψ(x) ∈ L2(Rd) for γ > 0 sufficiently 
small (following the lines of the proof of theorem 4.4 in [10]). The function us := Φ(np; ·)−Ψ 
satisfies

∆us − κ2npus = 0 in Θ

and application of the Green formula and using the periodicity conditions of Φ(np; ·) imply
∫

Θ

(
|∇us|2 + κ2np|us|2

)
dx � C

(
‖Ψ‖

H
1
2 (∂Θ)

‖∂us

∂ν
‖

H− 1
2 (∂Θ)

+ ‖us‖
H

1
2 (∂Θ)

‖∂Ψ
∂ν

‖
H− 1

2 (∂Θ)

)
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for some constant C independent from κ. The decay property of Ψ implies that
(
‖Ψ‖

H
1
2 (∂Θ)

+ ‖∂Ψ
∂ν

‖
H− 1

2 (∂Θ)

)
� e−γ1κ

for κ sufficiently large and γ1 > 0 a constant independent from κ. Therefore, by classical con-
tinuity properties for traces and normal traces and the fact that ∆us = κ2npus , one conclude 
that for κ sufficiently large

∫

Θ

(|∇us|2 + |us|2)dx � Ce−γ1κ

for some constant C independent from κ. Since B is contained in the union of Θ and two ML 
periods, one to the left of Θ and the other to the right, using the ML-periodicity of us we have 
that 

∫
B(|∇us|2 + |us|2)dx � 3Ce−γ1κ. One then obtain the desired estimate (61) by writing 

Φ(np; ·) = Ψ + us and combining the previous estimate with the exponential decay of Ψ.� □ 

We now turn our attention to the analysis of the new interior transmission problem in defi-
nition 3.3. For the given (ϕ, ψ) ∈ H3/2(Λ)× H1/2(Λ) in (58) we construct a lifting function 
u0 ∈ H2(Λ) such that u0|∂Λ = ϕ and ∂u0/∂ν|∂Λ = ψ. Hence w := u − u0 − f ∈ H2

0(Λ) and 
we let F := (∆u0 + k2nu0)/k2 ∈ L2(Λ). To further simplify notation, we set λ := −k2 ∈ C, 
q := n − 1, p:  =  n  −  np and v := −w/k2 ∈ H2

0(Λ). In these notations, the problem we need 
to solve reads:

∣∣∣∣∣∣∣

v ∈ H2
0(Λ) and f ∈ L2(Λ),{

∆v − λ(q + 1)v = qf + pS̃√
−λ( f ) + F in Λ,

∆f − λf = 0 in Λ,
� (63)

for a given F ∈ L2(Λ), where S̃√
−λ( f ) is given by (59). We remark that (63) is a modifica-

tion of the problem considered in [12] (see also [7, section 3.1.3]). We write this problem in 
an equivalent variational form. To this end, let us denote X := H2

0(Λ)× L2(Λ) with the norm 
‖(v, f )‖2

X := ‖v‖2
H2(Λ) + ‖f‖2

L2(Λ) and the corresponding inner product 〈·, ·〉X. Then we define 
the sesquilinear form ak : X × X → C by

aλ(v, f ;φ,ψ) =
∫

Λ

(∆φ− λφ) f dx +
∫

Λ

(
∆v − λ(q + 1)v

)
ψ −

(
qf + pS̃√

−λf
)
ψdx,� (64)

for (v, f ) ∈ X and (φ,ψ) ∈ X and the bounded linear operator Aλ : X → X defined by means 
of the Riesz’s representation theorem

aλ(v, f ;φ,ψ) = 〈Aλ(v, f ), (φ,ψ)〉X.� (65)

Letting � ∈ X be the Riesz’s representative of the conjugate linear functional

(
�, (φ,ψ)

)
X =

∫

Λ

Fψdx,

solving (63) is equivalent to solving

Aλ(v, f ) = � or aλ(v, f ;φ,ψ) =
∫

Λ

Fψdx, ∀ (φ,ψ) ∈ X.� (66)

In a similar fashion, we define the sesquilinear form bk : X × X → C by
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bλ(v, f ;φ,ψ) =
∫

Λ

(∆φ− λφ) f dx +
∫

Λ

(
∆v − λv − qf

)
ψdx

with the associated bounded linear operator Bλ : X → X such that

bλ(v, f ;φ,ψ) = 〈Bλ(v, f ), (φ,ψ)〉X.

Lemma 4.2.  For any λ,µ ∈ C, the differences Aλ − Bµ and Aλ − Aµ are compact.

Proof.  Let (vj, fj) ∈ X be an arbitrary sequence converging weakly to (0, 0) in X. We must 
show that (Aλ − Bµ)(vj, fj) converges (0, 0) strongly in X. Recall that

〈(Aλ − Bµ)(v, f ), (φ,ψ)〉X =
(
aλ − bµ

)
(v, f ;φ,ψ)

where

(
aλ − bµ

)
(vj, fj;φ,ψ) = (µ− λ)

∫

Λ

fjφ+

∫

Λ

(
µ− λ(q + 1)

)
vjψ −

∫

Λ

p(S̃√
−λfj − S̃√

−µfj)ψ.

Let us take (φ,ψ) ∈ X such that ‖(φ,ψ)‖X = 1 and define gj ∈ H1(Λ) such that ∆gj = fj and 
gj  =  0 on ∂Λ. Hence gj ⇀ 0 in H1(Λ) implying that gj → 0 in L2(Λ) by compact embedding 
of H1(Λ) in L2(Λ). Obviously,

∣∣∣
∫

Λ

fjφ
∣∣∣ =

∣∣∣
∫

Λ

∆gjφ
∣∣∣ =

∣∣∣
∫

Λ

gj∆φ
∣∣∣ � ‖∆φ‖L2(Λ)‖gj‖L2(Λ) � ‖gj‖L2(Λ).

Similarly, since vj ⇀ 0 in H2(Λ), then vj → 0 in L2(Λ), and
∣∣∣
∫

Λ

(
µ− λ(q + 1)

)
vjψ

∣∣∣ � sup
Λ

|µ− λ(q + 1)|‖vj‖L2(Λ)‖ψj‖L2(Λ) � sup
Λ

|µ− λ(q + 1)|‖vj‖L2(Λ)

and
∣∣∣
∫

Λ

p(S̃√
−λfj − S̃√

−µfj)ψ
∣∣∣ � sup

Λ
|p|

∥∥S̃√
−λfj − S̃√

−µfj
∥∥

L2(Λ)
‖ψj‖L2(Λ)

� sup
Λ

|p|
∥∥(S̃√

−λ − S̃√
−µ) fj

∥∥
L2(Λ)

.

Since (S̃√
−λ − S̃√

−µ) : L2(Λ) → L2(Λ) is a compact linear operator, then 
‖(S̃√

−λ − S̃√
−µ) fj‖L2(Λ) converge to 0 strongly in L2(Λ). Therefore

‖(Aλ − Bµ)(vj, fj)‖X→X = sup
‖(φ,ψ)‖X=1

|(aλ − bµ)(vj, fj;φ,ψ)|

� c
(
‖vj‖L2(Λ) + ‖gj‖L2(Λ) +

∥∥S̃λfj − S̃µfj
∥∥

L2(Λ)

)
−→ 0.

The proof for Aλ − Aµ follows exactly the same lines.� □ 

At this point we need to assume a sign condition on q := n − 1. To this end, let R be a 
neighborhood of ∂Λ in Λ and denote by
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qmin := inf
Λ

Re (q) > −1, q� := inf
R

Re (q), q� := sup
R

Re (q).� (67)

The following lemmas, which are proven first in [12] for real refractive index and adapted 
to the case of complex refractive index in [7, section 3.1.3]), play an important role in our 
analysis.

Lemma 4.3.  Assume that q ∈ L∞(Λ) is such that qmin + 1 > 0 and either q� > 0 or 
q� < 0. Then there exists c  >  0 and d  >  0 such that for all λ > 0 the following estimates holds

∫

Λ\R
|f |2dx � ce−2d

√
λ

∫

R
|Re (q)||f |2dx � ce−2d

√
λ

∫

R
|q||f |2dx� (68)

for all f ∈ L2(Λ) solution of ∆f − λf = 0.

Proof.  See lemma 2.3 in [12] if q is real and lemma 3.14 in [7] for q complex.� □ 

Lemma 4.4.  Assume that q ∈ L∞(Λ) is such that qmin + 1 > 0 and either q� > 0 or q� < 0. 
Then for sufficiently large λ > 0, the operator Bλ is an isomorphism form X onto itself.

Proof.  See theorem 2.7 in [12] if q is real and lemma 3.15 in [7] for q complex.� □ 

We now proceed with proving that the operator Aλ : X → X  is an isomorphism for suf-
ficiently large λ. We adopt two different approaches for the cases q� < 0 (theorem 4.5) and 
q� > 0 (theorem 4.6).

Theorem 4.5.  Assume that q ∈ L∞(Λ) is such that qmin + 1 > 0 and q� < 0. Then, for suf-
ficiently large λ > 0, the operator Aλ : X → X  is an isomorphism.

Proof.  It is sufficient to prove the injectivity of Aλ since Bλ is an isomorphism from lemma 
4.4 and and Aλ − Bλ is compact from lemma 4.2. To this end, assume that (v, f ) ∈ X is such 
that Aλ(v, f ) = 0, i.e. aλj(v, f ;φ,ψ) = 0 for all (φ,ψ) ∈ X. As such, (v, f ) satisfies

{
∆v − λ(q + 1)v = qf + pS̃i

√
λ( f )

∆f − λf = 0
in Λ.� (69)

Multiplying the first equation of (69) with f̄  we obtain
∫

Λ

q|f |2 +
∫

Λ

pS̃i
√
λ( f )f =

∫

Λ

(
∆v − λ(q + 1)v

)
f =

∫

Λ

(
∆v − λv

)
f −

∫

Λ

qvf .

First observe that 
∫
Λ
(∆v − λv)f = 0 since v ∈ H2

0(Λ) and ∆f − λf = 0 in Λ. Therefore
∫

Λ

q|f |2 = −
∫

Λ

pS̃i
√
λ( f )f − λ

∫

Λ

qvf .� (70)

Multiplying now the first equation of (69) with v̄ and integrating by parts we obtain
∫

Λ

|∇v|2 + λ(q + 1)|v|2dx = −
∫

Λ

qf vdx −
∫

Λ

pS̃i
√
λ( f )vdx.� (71)
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Now assume that q� < 0 and taking the real part of the above we write
∫

Λ

|∇v|2 + λ(Re (q) + 1)|v|2 = Re
(
−
∫

Λ

qf v −
∫

Λ

pS̃i
√
λ( f )v

)
.� (72)

From (70) and (72) noting that λ is real, we deduce that
∫

Λ

|∇v|2 + λ(Re (q) + 1)|v|2 + 1
λ

∫

Λ

−Re (q)|f |2dx

= Re
(∫

Λ

pS̃i
√
λ( f )(

1
λ

f − v)dx
)

.
� (73)

For large enough λ > 0, we set ρ := max
(
‖q‖∞ce−2d

√
λ, ce−2d

√
λ
)
< 1. Then lemma 4.3 

implies

(1 − ρ)

∫

R
|Re (q)||f |2dx �

∫

Λ

−Re (q)|f |2dx � (1 + ρ)

∫

R
|Re (q)||f |2dx.

� (74)

The latter inequalities implies
∫

Λ

λ(Re (q) + 1)|v|2 + 1
λ

∫

Λ

−Re (q)|f |2dx

� λ

∫

Λ

(Re (q) + 1)|v|2 + 1 − ρ

λ

∫

R
|Re (q)||f |2dx.

�
(75)

From lemma 4.1 we infer the existence of c  >  0 such that ‖pS̃i
√
λ( f )‖L2(Λ) � ce−θ

√
λ‖f‖L2(Λ). 

We then have
∣∣∣
∫

Λ

Re
[

pS̃i
√
λ( f )(

1
λ

f − v)
]
dx
∣∣∣ � ce−θ

√
λ‖f‖L2(Λ)

(
‖v‖L2(Λ) +

1
λ
‖f‖L2(Λ)

)
.

Using Young’s inequality then splitting the integral of |f|2 into the domains R and Λ \ R we 
finally have
∣∣∣∣
∫

Λ

Re
(

pS̃i
√
λ( f )(

1
λ

f − v)
)

dx
∣∣∣∣ �

2c
λ

e−θ
√
λ‖f‖2

L2(Λ) +
cλ
4

e−θ
√
λ‖v‖2

L2(Λ)

�
2c
λ

e−θ
√
λ(1 + ρ)‖f‖2

L2(R) +
cλ
4

e−θ
√
λ‖v‖2

L2(Λ)

�
2c(1 + ρ)

λq�
e−θ

√
λ‖

√
|Re (q)|f‖2

L2(R) +
cλ

4(qmin + 1)
e−θ

√
λ‖

√
Re (q) + 1v‖2

L2(Λ).

�

(76)

For λ sufficiently large such that

2c(1 + ρ)

λq�
e−θ

√
λ �

1 − ρ

λ
− ε and

cλ
4(qmin + 1)

e−θ
√
λ � λ− ε,

with ε > 0 small enough we finally obtain from (73), (75) and (76)

ε‖
√

Re (q) + 1v‖2
L2(Λ) + ε‖

√
|Re (q)|f‖2

L2(R) � 0.
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This prove that v = 0 in Λ and f  =  0 in R. Inequality (74) then implies f  =  0 in Λ which ends 
the proof.� □ 

Theorem 4.6  Assume that q ∈ L∞(Λ) is such that qmin + 1 > 0 and q� > supR(Im (q))2 � 0. 
Then, for sufficiently large λ > 0, the operator Aλ : X → X  is an isomorphism.

Proof.  Again similarly to the proof of theorem 4.5 it is sufficient to prove that Aλ is in-
jection, which will do by contradiction. Assume to the contrary that there exists a sequence 
λj → ∞ and (vj, fj) ∈ X with ‖(vj, fj)‖L2(Λ) = 1 and Aλj(vj, fj) = 0. Then vj ∈ H2

0(Λ) and 
fj ∈ L2(Λ) satisfy

∆vj − λj(q + 1)vj = qfj + pS̃i
√

λj
( fj) and ∆fj − λjfj = 0.� (77)

For given ε > 0 small enough, from lemmas 4.1 and 4.3 and the fact that ‖(vj, fj)‖L2(Λ) = 1, 
we have that for λj > 0 large enough

‖pS̃i
√

λj
( fj)‖L2(Λ)‖fj‖L2(Λ) + ‖

√
|q|fj‖2

L2(Λ\R)

+ λj‖
√
|q|fj‖2

L2(Λ\R)‖
√
|q|vj‖2

L2(Λ\R) � ε2.
�

(78)

From (70), we observe that
∫

R
Re (q)|fj|2dx = Re

(
−λj

∫

R
qvjfjdx

)
−

∫

Λ\R
Re (q)|fj|2dx

− Re

(∫

Λ

pS̃i
√
λ( fj)vjdx + λj

∫

Λ\R
qvjfjdx

)
.

Estimating the last three terms from (78) and using Cauchy–Schwarz inequality we now ob-
tain

∫

R
Re (q)|fj|2dx � ε2 + λj

(∫

R
Re (q)|fj|2dx

)1/2 (∫

R

|q|2

Re (q)
|vj|2dx

)1/2

.

This implies that

(∫

R
Re (q)|fj|2dx

)1/2

� ε+ λj

(∫

R

|q|2

Re (q)
|vj|2dx

)1/2

,� (79)

(where we used for A  >  0 and B  >  0, A2 � ε2 + AB implies (A − B/2)2 � ε2+
B2/4 � (ε+ B/2)2 and taking the square root yields A � ε+ B). From (71), we see that 
(using again ‖(vj, fj)‖X = 1)

λj

∫

R

(
1 + Re (q)

)
|vj|2dx � λj

∫

Λ

(
1 + Re (q)

)
|vj|2dx

�

(∫

R
Re (q)|fj|2dx

)1/2 (∫

R

|q|2

Re (q)
|vj|2dx

)1/2

+ ε2

�

(80)
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since (1 + Re (q)) > 0 in Λ. Combining the last two inequalities yield

λj

∫

R

(
1 + Re (q)

)
|vj|2dx � λj

∫

R

|q|2

Re (q)
|vj|2dx + ε

(∫

R

|q|2

Re (q)
|vj|2dx

)1/2

+ ε2.

� (81)

The assumption q� > sup
R
(Im (q))2 � 0 in particular implies infR

Re (q)−(Im (q))2

Re (q) = δ0 > 0, 

hence we have

λjδ0

∫

R
|vj|2dx � ε

(∫

R

|q|2

Re (q)
|vj|2dx

)1/2

+ ε2.

Choosing λj such that 4λjδ0 � ‖ |q|2
Re (q)‖L∞(R) we obtain that

λjδ0

∫

R
|vj|2dx � 2ε

(
λjδ0

∫

R
|vj|2dx

)1/2

+ ε2

which implies
(
λjδ0

∫

R
|vj|2dx

)1/2

� 3ε

and proves that λjδ0
∫

R |vj|2dx → 0 as j → ∞. Coming back to (80) we deduce that
∫

Λ

(1 + Re (q))|vj|2dx → 0 as j → ∞

and from (79), since Re (q) is positive definite in R, we deduce that 
∫

R |fj|
2dx → 0 as j → ∞. 

Lemma 4.3 then implies
∫

Λ

|fj|2dx → 0 as j → ∞.

The last two zero limits contradict the fact that ‖(vj, fj)‖L2(Λ) = 1, which proves injectivity.�□ 

Recall that solving the new interior transmission problem formulated in definition 3.3 is 
equivalent to solving

Ak(v, f ) = � in X� (82)

(where we go back to the original eigen-parameter k ∈ C which is such that λ = −k2). Let us 
fix λ0 > 0 such that theorems 4.5 or 4.6 holds, i.e. Aλ0 is an isomorphism and let k0 =

√
λ0i. 

Then we can rewrite (82) as

(v, f ) + A−1
k0

(Ak − Ak0)(v, f ) = A−1
k0

� or (I − Ck)(v, f ) = A−1
k �� (83)

where Ck := A−1
k0

(Ak − Ak0) is compact from lemma 4.2. Thus the Fredholm alternative 
applies to (82). In particular a solution of the new interior transmission problem exists pro-
vided k is not a new transmission eigenvalue defined in definition 3.4. To show that the set 
of new transmission eigenvalues is discrete we appeal to Fredholm Analytic Theory (see e.g. 
[8]) since the mapping k �→ Ck is analytic in C. Thus we have proven the following theorem:

F Cakoni et alInverse Problems 35 (2019) 015009



24

Theorem 4.7.  Assume that the bounded function n satisfies infΛ Re (n) > 0, Im (n) � 0, 
and there exists a neighborhood R of ∂Λ inside Λ such that either supR Re (n − 1) < 0 or 
infR Re (n − 1) > supR(Im (n))2 � 0. Then the new interior transmission formulated in defi-
nition 3.3 has a unique solution depending continuously on the data ϕ and ψ provided k ∈ C 
is not a new transmission eigenvalue defined in definition 3.4. In particular the set of new 
transmission eigenvalues in C is discrete (possibly empty) with +∞ as the only possible ac-
cumulation point.

Note that theorem 4.7 provides sufficient conditions under which assumption 3 hold. It is 
highly desirable to show if and when real new transmission eigenvalues exist, because for such 
real wave numbers our imaging algorithm introduced in the next section fails.

5.  A differential imaging algorithm

We now apply all the results of sections 2 and 4 above to design an algorithm that provides us 
with the support of the defect ω  without reconstructing Dp or computing the Green’s function 
of the periodic media. We follow the idea proposed in [11] and build a differential imaging 
functional by comparing the application of the Generalized Linear Sampling algorithm to 
respectively the operators N± and N±

q . The new results obtained in theorem 4.7 allow us to 
justify this algorithm for general location of ω (possibly multi-component).

5.1.  Description and analysis of the algorithm

Throughout this section we assume that assumptions 1–3 hold. For sake of simplicity of pre-
sentation we only state the results when the measurements operator N+ is available. Exactly 
the same holds for the operator N− by changing everywhere the exponent  +  to  −. For given φ 
and a in �2(Zd−1) we define the functionals

J+α (φ, a) := α(N+
� a, a) + ‖N+a − φ‖2,

J+α,q(φ, a) := α(N+
q,�a, a) + ‖N+

q a − φ‖2� (84)

with N+
q,� := I∗q N+

� Iq. Let aα,z, aα,z
q  and ãα,z

q  in �(Zd−1) verify (i.e. are minimizing sequences)

J+α (Φ̂
+(·; z), aα,z) � inf

a∈�2(Zd−1)
J+α (Φ̂

+(·; z), a) + c(α)

J+α (Φ̂
+
q (·; z), aα,z

q ) � inf
a∈�2(Zd−1)

J+α (Φ̂
+
q (·; z), a) + c(α)

J+α,q(I
∗
q Φ̂

+
q (·; z), ãα,z

q ) � inf
a∈�2(Zd−1)

J+α,q(I
∗
q Φ̂

+
q (·; z), a) + c(α)

� (85)

with c(α)
α → 0 as α → 0. Here Φ̂±(·; z) are the Rayleigh coefficients of Φ(1, z) (i.e. Φ(np; z) 

defined by (7) with with np  =  1) given by (15) and Φ̂±
q (·; z) are the Rayleigh coefficients of 

Φq(· − z) given by (21).
The standard analysis of the generalized linear sampling method (see e.g. [7, section 2.2]) 

making use of the factorization of N� in theorem 2.3 along with all the properties of the 
involved operators developed in sections 2.2 and 3 imply the following results (see also [11] 
and [18] for detailed proofs).

Lemma 5.1. 

	 (i)	�z ∈ D if and only if lim
α→0

(N+
� aα,z, aα,z) < ∞. Moreover, if z ∈ D then H+aα,z → vz in 
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L2(D) where (uz, vz) is the solution of problem (14) with ϕ = Φ(1; z) and ψ = ∂Φ(1; z)/∂ν  
on ∂D.

	(ii)	�z ∈ Dp if and only if lim
α→0

(N+
� aα,z

q , aα,z
q ) < ∞. Moreover, if z ∈ Dp then H+aα,z

q → vz 

in L2(D) where (uz, vz) is the solution of problem (14) with ϕ = Φq(· − z) and 
ψ = ∂Φq(· − z)/∂ν on ∂D.

	(iii)	�z ∈ D̂p if and only if lim
α→0

(N+
q,�ã

α,z
q , ãα,z

q ) < ∞. Moreover, if z ∈ D̂p then H+
q ãα,z

q → hz in 

L2(D) where hz is defined by

hz =

{
−Φq(· − z) in Λp

vz in Oc
p

if z ∈ Oc
p

hz =

{
v̂z in Λp

−Φq(· − z) in Oc
p

if z ∈ Λp

� (86)

		 where (uz, vz) is the solution of problem (14) with ϕ = Φq(· − z) and ψ = ∂Φq(· − z)/∂ν 
on ∂D and (ûz, v̂z) is αq-quasi-periodic extension of the solution (u, f ) of the new interior 
transmission problem in definition (3.3) with ϕ = Φq(· − z) and ψ = ∂Φq(· − z)/∂ν on 
∂Λ.

Proof.  The proof of the items (i) and (ii), we refer to [11]. The proof of items (iii) is a direct 
application of theorem A.4 in [11] in combination with theorem 3.5.� □ 

We then consider the following imaging functional that characterizes Λ,

I+
α (z) =

(
(N+

� aα,z, aα,z)

(
1 +

(N+
� aα,z, aα,z)

D+(aα,z
q , ãα,z

q )

))−1

� (87)

where for a and b in �2(Zd−1),

D+(a, b) :=
(

N+
� (a − Iqb), (a − Iqb)

)
.

Before giving the main theorem for the characterization of the defect we need the following 
assumption.

Assumption 4.  The refractive indexes n, np and wave-number k are such that



∆u + k2nu = 0 in ω,
∆v + k2npv = 0 in ω,
u − v = 0 on ∂ω,
∂(u − v)/∂ν = 0 on ∂ω

� (88)

has only the trivial solution.

This assumption is satisfied if n  −  np does not change sign in a neighborhood of the bound-
ary of domain ω , or if either n or np have non-zero imaginary part (see e.g. [7]).

Theorem 5.2.  Under assumptions 1–4, we have that

z ∈ D \ Oc
p if and only if lim

α→0
I+
α (z) > 0.

(Note that D \ Oc
p = ω ∪ Op contains the physical defect ω and Op := Dp \ Oc

p the comp
onents of Dp which have nonempty intersection with the defect).
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Proof. 

	Case 1: z /∈ D \ Oc
p. If z /∈ D then from lemma 5.1(i) we have that (N+

� aα,z, aα,z) → +∞ as 
α → 0 and therefore lim

α→0
I+
α (z) = 0.

		 If z ∈ Oc
p, let (uz, vz) ∈ L2(D)× L2(D) be the unique solution of (14) with 

ϕ := Φq(· − z)|∂D and ψ = ∂Φq(· − z)/∂ν|∂D then from lemma 5.1(ii), H+aα,z → vz. 
Note that in this case uz  =  0 and vz := −Φq(· − z) outside Oc

p.
		 Now let hz ∈ L2(D̂p) defined by (86). Then from lemma 5.1(iii), H+

q ãα,z
q → hz in L2(D). 

Furthermore, by definition of hz and the fact that vz = −Φq(· − z) in Λp, we have that vz 

coincide with hz in D. From the factorization of N+
�  and the definition of H+

q  we have

D+(aα,z
q , ãα,z

q ) =
(

N+
� (a

α,z
q − Iqãα,z

q ), aα,z
q − Iqãα,z

q

)

=
(
T�(H+aα,z

q −H+
q ãα,z

q ),H+aα,z
q −H+

q ãα,z
q

)

� ‖T�‖‖H+aα,z
q −H+

q ãα,z
q ‖2

L2(D) → 0, as α → 0.

		 Since from lemma 5.1(i), (N+
� aα,z, aα,z) remains bounded as α → 0, we can finally con-

clude from the above that

lim
α→0

I+
α (z) = 0 if z ∈ Oc

p.

	Case 2: z ∈ D \ Oc
p ⊂ Λp.	Then again by lemma 5.1(i), (N+

� aα,z, aα,z) remains bounded and 

by lemma 5.1(iii), (Nq,�ãα,z
q , ãα,z

q ) remain bounded. Using the factorization of N+
q,� and the 

fact that N+
q,� = I∗q N+

� Iq we can write

(N+
� Iqãα,z

q , Iqãα,z
q ) → (T�hz, hz) < +∞,

		 where hz ∈ L2(D̂p) defined in (86). In this case, we need to consider the location of z in 
two sub-domain.

		 First, if z ∈ ω \ Dp (the part of defect outside periodic domain), then by lemma 5.1(ii) 
(N+

� aα,z
q , aα,z

q ) → +∞ as α → 0. This implies,

D+(aα,z
q , ãα,z

q ) �
∣∣∣(N+

� aα,z
q , aα,z

q )− (N+
� Iqãα,z

q , Iqãα,z
q )

∣∣∣ → +∞.

		 We then conclude that

lim
α→0

I+
α (z) �= 0 if z ∈ ω \ Dp.

		 Next, if z ∈ Dp ∩ Λp = Op, again by lemma 5.1(ii) (N+
� aα,z

q , aα,z
q ) → (T�vz, vz) where 

vz ∈ L2(D) is defined in lemma 5.1(ii). In this case vz = −Φq(· − z) outside D \ Oc
p, 

which implies that hz = vz  in Oc
p. On the other hand, hz|Op is αq-quasi-periodic with period 

L while vz|Op is not αq-quasi-periodic with period L (recall that (uz, vz) is a solution of 
(14) defined in Oc

p with ϕ = Φq(· − z) and ψ = ∂Φq(· − z)/∂ν on ∂(D \ Oc
p). Indeed, 

assume to the contrary that vz|Op is αq-quasi periodic with period L. For a fixed arbitrary 
0 �= m ∈ ZM , let us define

ũz(x) := e−iαqmLuz(x + mL), for x ∈ O,

		 hence (ũz, vz) satisfy
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


∆ũz + k2npũz = 0 in O,
∆vz + k2vz = 0 in O,
ũz − vz = Φq(· − z) on ∂O,
∂(ũz − vz)/∂ν = ∂/∂νΦq(· − z) on ∂O.

� (89)

		 Next, we let

n̂ =

{
np in O
1 in ω \ O and ûz =

{
ũz in O

Φq(· − z) + vz in ω \ O

		 and observe that (ûz, vz) verify



∆ûz + k2n̂ûz = 0 in Λ,
∆vz + k2vz = 0 in Λ,
ûz − vz = Φq(· − z) on ∂Λ,
∂(ûz − vz)/∂ν = ∂Φq(· − z)/∂ν on ∂Λ,

� (90)

where we use the fact that from (89) the Cauchy data of ũz and Φq(· − z) + vz coincide on 
∂O ∩ ω. From the definition of uz and (90) we have that (uz, ûz) is a solution to




∆uz + k2nuz = 0 in Λ,
∆ûz + k2n̂ûz = 0 in Λ,
uz − ûz = 0 on ∂Λ,
∂(uz − ûz)/∂ν = 0 on ∂Λ.

� (91)

		 Since n = np = n̂ in Λ \ ω, then uz and ûz satisfy the same equation in Λ \ ω and share 
the same Cauchy data on ∂Λ \ ω, hence by the unique continuation uz = ûz  in Λ \ ω. 
Therefore, (uz, ûz) is a solution of (88) and assumption 4 implies that uz = ûz = 0 in ω , 
and consequently by definition vz +Φq(· − z) = 0 in ω \ O (recall Λ = O ∪ ω). On the 
other hand, we have that v := vz +Φq(· − z) satisfies ∆v + k2v = 0 in Λ \ {z}, hence 
unique continuation implies that vz = −Φq(· − z) in Λ \ {z}. But this is a contradiction, 
since by the interior regularity of solutions of Helmholtz equation vz is infinitely many 
times differentiable whereas Φ has a singularity at z. This proves that vz|Op is αq-quasi 
periodic with period L, and hence vz �= hz  in D \ Oc

p. We now have from the estimate

C‖H+aα,z
q −H+

q ãα,z
q ‖2

L2(D) � D+(aα,z
q , ãα,z

q ) � ‖T�‖‖H+aα,z
q −H+

q ãα,z
q ‖2

L2(D)

		 where C is the coercivity constant associated with T�, that D+(aα,z
q , ãα,z

q ) is bounded and 
does not go to 0 as α → 0. Thus

lim
α→0

I+
α (z) �= 0 if z ∈ Op.

		 This ends the proof of the theorem.� □

Theorem 5.2 shows that the functional I+
α (z) provides an indicator function for D \ Oc, 

i.e. the defect and the periodic components of the background that intersects ω. However, the 
proof of theorem 5.2 indicates that although the values of I+

α (z) are positive only in D \ Oc, 
they are smaller for z ∈ Op compared to the values of I+

α (z) for z ∈ ω \ Dp. Therefore, if the 
defect ω  has nonempty intersection with the periodic background then the reconstruction of 
Op (i.e. the components that have no nonempty intersection with the defect) are not displayed 
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as clearly as the reconstruction of the part of defect outside Dp. This is illustrated in the fol-
lowing numerical experiments.

We recall that exactly the same can be shown for down-to-up incident field, by simply 
replacing the upper index  +  with  −. It is also possible to handle the case with noisy data, and 
we refer the reader to [11] and [18] for more detailed discussion.

5.2.  Numerical experiments

We conclude by showing several numerical examples to test our differential imaging algo-
rithm. We limit ourselves to examples in R2. The data is computed with both down-to-up 
and up-to-down plane-waves by solving the forward scattering problem based on the spectral 
discretization scheme of the volume integral formulation of the problem presented in [10].

Let us denote by

Zd−1
inc := { j = q + M�, q ∈ Zd−1

M , � ∈ Zd−1 and � ∈ [[−Nmin, Nmax]]}

the set of indices for the incident waves (which is also the set of indices for measured Rayleigh 
coefficients). The values of all parameters used in our experiments will be indicated below. 
The discrete version of the operators N± are given by the Ninc × Ninc matrixes

N± :=
(

ûs±(�; j)
)
�,j∈Zd−1

inc

.� (92)

Random noise is added to the data. More specifically, in our computations we use

N±,δ( j, �) := N±( j, �)
(
1 + δA( j, �)

)
, ∀( j, �) ∈ Zd−1

inc × Zd−1
inc� (93)

where A = (A( j, �))Ninc×Ninc is a matrix of uniform complex random variables with real and 
imaginary parts in [−1,1]2 and δ > 0 is the noise level. In our examples we take δ = 1%.

For noisy data, one needs to redefine the functionals J+α  and J+α,q as

J+,δ
α (φ, a) := α

(
(N+,δ

� a, a) + δ‖N+,δ
� ‖‖a‖2

)
+ ‖N+,δa − φ‖2,

J+,δ
α,q (φ, a) := α

(
(N+,δ

� Iqa, Iqa) + δ‖N+,δ
� ‖‖a‖2

)
+ ‖N+,δ

q a − φ‖2.
�

(94)

We then consider aα,z
δ , aα,z

q,δ  and ãα,z
q,δ  in �(Zd−1) as the minimizing sequence of, respectively,

J+,δ
α (Φ̂+(·; z), a), J+,δ

α (Φ̂+
q (·; z), a) and J+,δ

α,q (Φ̂
+
q (·; z), a).

The noisy indicator function takes the form

I+,δ
α (z) =

(
G+,δ(aα,z

δ )

(
1 +

G+,δ(aα,z
δ )

D+,δ(aα,z
q,δ , ãα,z

q,δ )

))−1

� (95)

where for a and b in �2(Zd−1),

D+,δ(a, b) :=
(

N+,δ
� (a − Iqb), (a − Iqb)

)

and

G+,δ(a) := (N+,δ
� a, a) + δ‖N+,δ

� ‖‖a‖2.

Defining in a similar way the indicator function I−,δ(z) corresponding to up-to-down incident 
waves, we use the following indicator function in our numerical examples
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Iδ(z) := I+,δ(z) + I−,δ(z).

In the following example, we consider the same periodic background Dp, in which each cell 
consists of two circular components, namely the discs with radii r1, r2 specified below. The 
physical parameters are set as

k = 3.5π/3.14, np = 2 inside the discs and np = 1 otherwise.� (96)

Letting λ := 2π/k be the wavelength, the geometrical parameters are set as

the period L = 3.5λ, the width of the layer h = 1.5λ, r1 = 0.3λ, and r2 = 0.4λ.
� (97)

Finally we choose the truncated model

M = 3, Nmin = 5 and Nmax = 5 and q = 1.� (98)

Figure 2.  Left: the exact geometry for example 1. Right: the reconstruction using 
z �→ Iδ(z).

Figure 3.  Left: the exact geometry for example 2(a). Right: the reconstruction of the 
local perturbation using z �→ Iδ(z).

Figure 4.  Left: the exact geometry for example 2(b). Right: the reconstruction of the 
local perturbation using z �→ Iδ(z).

Figure 5.  Left: the exact geometry for example 3. Right: the reconstruction using 
z �→ Iδ(z).

Figure 6.  Left: the exact geometry for example 4. Right: the reconstruction using 
z �→ Iδ(z).

Figure 7.  Left: the exact geometry for example 5. Right: the reconstruction using 
z �→ Iδ(z).
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The reconstructions are displayed by plotting the indicator function Iδ(z).

Example 1.  In the first example, we consider the perturbation ω  be a disc of radius 
rω = 0.2λ with the refractive index n  =  4 and located in the component of radii r2 (see fig-
ure 2-left). In this case we reconstruct the whole component which contains the defect and 
its L-periodic copies (see figure 2-right). We remark that this is the unfortunate case when it 
is not possible to determine in which period is the defect located. This is in accordance with 
what theorem 5.2 predicts.

Example 2. 

	 (a)	�In the second example, we consider the perturbation ω  as in example 1 but now located 
such that ω  has nonempty intersection with Dp but not included in Dp (see figure 3-left). 
The reconstruction is represented in figure 2-right. This example also illustrate that the 
value of Iδ(z) much bigger when z in ω \ Dp than z in Op. Now we are able to find in 
which period the defect is located and recover clearly the part of the defect outside the 
component.

	(b)	�In figure 4 we consider same configuration as in figure 3 and change only the refractive 
index of the defect which now is inhomogeneous. In particular, the refractive index of 
the defect is n  =  4 in ω ∩ Dp and n  =  3 in ω \ Dp. The reconstruction is represented in 
figure 4-right

Example 3.  Example 3, indicated in figure 5, just show that when the defect has no inter-
section with the periodic background, the indicator function Iδ(z) allows to reconstruct the 
true defect including its true location. Here the defect is a disc of rω = 0.2λ with n  =  3. More 
examples of this case can be found in [11].

The last two examples, present the case where the defect consists of two disconnected 
components.

Example 4.  In this example the multicomponent defect has one component intersecting Dp 
and one component outside Dp. The true geometry is given in figure 6-left and the reconstruc-
tion in figure 6-right. Here ω1 is the disc intersecting Dp and ω2 the other. The parameters are 
rω1 = rω2 = 0.2λ. ω1 is inhomogeneous with refractive index n  =  4 in the part inside Dp and 
n  =  3 in the part inside Dp, wheres the refractive index of ω2 is n  =  2.5.

Example 5.  In this last example, the defect has two disconnected components such that 
one is included in one component of Dp and the other lies outside Dp. An illustration of exact 
geometry is given in figure 7-left and the reconstruction in figure 7-right. Here keeping the 
same notations for ω1 and ω2 as in example 5, we choose n  =  4 the refractive index of ω1 and 
n  =  2.5 the refractive index of ω2.

All our numerical examples validate the theoretical prediction provided by theorem 5.2. As 
already mention the case when the defect is entirely included in a component of the periodic 
background is ambiguous in the sense that the actual defective period can not be determined.

We conclude by remarking that everything here can be adapted to the case when the back-
ground periodic layer is composed of inhomogeneities embedded in homogeneous media with 
constant refractive index n0 �= 1. The only difference is in the choice in the fundamental solu-
tion which in this case should correspond to a piecewise homogeneous media instead of n  =  1.
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