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Introduction
The study of eigenvalue problems for partial differen-
tial equations has a long history during which a variety
of themes has emerged. Although historically such ef-
forts have focused on eigenvalue problems defined on
bounded domains, the importance of scattering theory
in modern mathematical physics has led to an inten-
sive study of eigenvalue problems in unbounded do-
mains connected with the SchrÚdinger equation and the
wave equation for propagation in an inhomogeneous
medium. A particularly noteworthy development in this
latter direction has been the theory of scattering reso-
nances which now play a central role in mathematical
scattering theory. For a magisterial presentation of this
theory we refer the reader to the monograph by Dyatlov
and Zworski [DZ19]. More recently, a new eigenvalue
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problem in scattering theory has attracted increased at-
tention both inside and outside the scattering commu-
nity. This new problem is called the transmission eigen-
value problem and in a certain sense exhibits a duality re-
lation to the theory of scattering resonances. The pur-
pose of this short survey is to introduce this class of
nonselfadjoint eigenvalue problems to the wider math-
ematical community. For further information on trans-
mission eigenvalues, including applications to inverse
scattering theory, we refer the reader to the monograph
[CCH16] and Chapter 10 of [CK19].

The transmission eigenvalue problem arises in the
study of wave propagation in an inhomogeneous medium.
Hence, for the benefit of the reader who is not an ex-
pert in scattering theory, we begin by describing the ba-
sic elements of acoustic scattering theory (see [CK19]).
Broadly speaking, acoustic scattering theory is concerned
with the effect an inhomogeneous medium has on an inci-
dent wave. In particular, if the total field 𝑢 is viewed as the
sum of an incident field 𝑢𝑖 and a scattered field 𝑢𝑠, then the
scattering problem is to determine 𝑢𝑠 from a knowledge
of 𝑢𝑖 and the differential equation governing the wave mo-
tion. More specifically, assume that the incident field is
given by the time-harmonic acoustic plane wave𝑢𝑖(𝑥, 𝑡) = ം𝑖(𝑘𝑥⋅ ̂𝑦−ᆘ𝑡),
where 𝑥 ∈ ℝႴ, 𝑡 denotes time, ഊ = ࿇/𝑐0 is the wave number,࿇ is the frequency, 𝑐0 is the speed of sound, and the unit
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vector ̂𝑦 is the direction of propagation. Then factoring out
the term ം−𝑖ᆘ𝑡, the simplest acoustic scattering problem for
the case of an inhomogeneous medium is to find the total
field 𝑢 such that͐𝑢 + ഊ2𝑛(𝑥)𝑢 = 0 in ℝႴ, (1)𝑢(𝑥) = 𝑢𝑖(𝑥) + 𝑢𝑠(𝑥), (2)lim𝑟→∞ 𝑟 ԗᆙᅜ𝑠ᆙ𝑟 − 𝑖ഊ𝑢𝑠ԣ = 0, (3)

where 𝑢𝑖(𝑥) = ം𝑖𝑘𝑥⋅ ̂𝑦, 𝑟 = |𝑥|, 𝑛 = 𝑐20/𝑐2 is the refractive
index where 𝑐 = 𝑐(𝑥) is the speed of sound in the inho-
mogeneous medium, and (3) is the Sommerfeld radiation
condition which holds uniformly with respect to ̂𝑥 ܁ 𝑥/|𝑥|
and guarantees that the scattered field is outgoing. It is as-
sumed that 1−𝑛 has compact support in a bounded region೧ having piecewise smooth boundary 𝜕೧ such that ℝႴ ૫೧
is connected and that 𝑛 ∈ 𝐿∞(೧) is such that 𝑛(𝑥) > 0 for𝑥 ∈ ೧. It can be shown that there is a unique solution𝑢𝑠 ∈ ೫2ᅓᅖᅇ(ℝႴ) to the scattering problem (1)–(3) and that𝑢𝑠(𝑥) ܁ 𝑢𝑠(𝑥, ̂𝑦, ഊ) (for fixed ̂𝑦 and ഊ) has the asymptotic
behavior

𝑢𝑠(𝑥) = ം𝑖𝑘𝑟𝑟 𝑢∞( ̂𝑥) + ೲ ( 1𝑟2 ) , 𝑟 → ∞, (4)

where the function 𝑢∞( ̂𝑥) ܁ 𝑢∞( ̂𝑥, ̂𝑦, ഊ) is called the far
field pattern and is an infinitely differentiable function of ̂𝑥
on the unit sphere 𝑆2. Rellich’s lemma says that 𝑢∞( ̂𝑥) for̂𝑥 ∈ 𝑆2 determines 𝑢𝑠(𝑥) for 𝑥 ∈ ℝႴ૫೧. Note that if we vary
the incident direction ̂𝑦 ∈ 𝑆2, 𝑢∞( ̂𝑥, ̂𝑦, ഊ) is also infinitely
differentiable with respect to ̂𝑦, and in fact it can be shown
that 𝑢∞( ̂𝑥, ̂𝑦, ഊ) = 𝑢∞(− ̂𝑦, − ̂𝑥, ഊ).
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Figure 1. Sketch of the scattering problem.

Associated with the scattering problem (1)–(3) are two
basic nonselfadjoint eigenvalue problems. The first of
these, and by far the most studied, is the theory of scat-
tering resonances which seeks values of the wave numberഊ such that for 𝑢𝑖 = 0 there exists a nontrivial solution 𝑢 of
(1)–(2) with an appropriate modification of the radiation
condition (3) accounting for Ӌ(ഊ) < 0. Such values of ഊ
are called scattering resonances and can be shown to form a
discrete set lying in the lower half of the complex ഊ-plane.

The second class of eigenvalue problems associated with
the scattering problem (1)–(3), and one of more recent
origin, is the theory of transmission eigenvalues and this
is the topic of our survey article. Now, instead of asking
for a nontrivial solution 𝑢 of (1)–(3) for which 𝑢𝑖 = 0, we
ask if there is a nontrivial solution 𝑢 of (1)–(3) for which𝑢𝑠 = 0. In other words, we ask the question of whether
we are able to construct an incident field which does not
scatter. Values of ഊ for which this is possible will lead to
the theory of transmission eigenvalues. Of particular interest
to us in the sequel will be incident fields 𝑢𝑖 = 𝑣ᅋ, where 𝑣ᅋ
is defined by

𝑣ᅋ(𝑥) = ∫ᄽ2 𝑔( ̂𝑦)ം𝑖𝑘𝑥⋅ ̂𝑦 𝑑𝑠 (5)

and 𝑔 ∈ 𝐿2(𝑆2) is referred to as the kernel of 𝑣ᅋ. So-
lutions of the Helmholtz equation of the form (5) are
called Herglotz wave functions and are extensively discussed
in [CK19].

We now proceed to outline the basic theory of transmis-
sion eigenvalues and in particular their dual relationship
to scattering resonances. We begin by noting that a solu-
tion 𝑣 of the Helmholtz equation͐𝑣 + ഊ2𝑣 = 0 in ℝႴ (6)

is of the form 𝑣ᅋ in (5) if and only if

ĒĔďᄼ>0
೵Ч𝑣Чᄶ2(ᄬስ)ٹ1 < ∞,

where ೥ᄼ is the ball of radius ೵ centered at the origin.
Every 𝑣ᅋ in the space of Herglotz wave functions can be
uniquely decomposed as 𝑣ᅋ ܁ 𝑢ᅋ − 𝑢𝑠ᅋ, where the to-
tal field 𝑢ᅋ and the scattered field 𝑢𝑠ᅋ satisfy (1)–(3) with𝑢𝑖 ܁ 𝑣ᅋ. The scattering operator 	matriY
 as defined by Lax
and Phillips in [LP89] maps 𝑣ᅋ ↦ 𝑢ᅋ and for ഊ such thatӋ(ഊ) ≥ 0 is an isomorphism in appropriate Banach spaces.
A heuristic argument for the latter can be given using the
Lipmann-Schwinger equation for the solution of (1)–(3)
with 𝑢𝑖 ܁ 𝑣ᅋ in terms of the compact ഊ-analytic integral
operator 𝑇(ഊ) ∶ 𝐿2(೥ᄼ) → 𝐿2(೥ᄼ),(𝐼 − 𝑇(ഊ))𝑢 = 𝑣ᅋ, (7)

where ೧ ݀ ೥ᄼ and

𝑇(ഊ)𝑢 ܁ ഊ2∫ℝ3 ം𝑖𝑘|𝑥−𝑦|4𝜋|𝑥 − 𝑦| (1 − 𝑛(𝑦))𝑢(𝑦) 𝑑𝑦.
A fixed point argument implies that for |ഊ| small enough𝐼 − 𝑇(ഊ) is invertible, and hence by the Analytic Fredholm
Theoremwe have that 𝑢ᅋ ܁ (𝐼−𝑇(ഊ))−1𝑣ᅋ is meromorphic
for ഊ ∈ Ӂ. Furthermore, for ഊ such that Ӌ(ഊ) ≥ 0, unique-
ness of the scattering problem implies that 𝑢ᅋ is analytic
and thus its poles are in the lower-half complex plane.

Of particular interest to us in the sequel will be the
“incoming-to-outgoing” mapping 𝑣ᅋ ↦ 𝑢𝑠ᅋ ܁ 𝑢ᅋ − 𝑣ᅋ. We
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shall characterize this in terms of the far field pattern de-
fined in (4). To this end let 𝑢∞ᅋ denote the far field pattern
of the scattered field 𝑢𝑠ᅋ corresponding to the incident field𝑣ᅋ. The compact linear operator 𝐹(ഊ) ∶ 𝐿2(𝑆2) → 𝐿2(𝑆2) de-
fined by 𝐹(ഊ) ∶ 𝑔 ↦ 𝑢∞ᅋ (8)

is called the far field operator (otherwise referred to as the
relative scattering operator). Clearly from (5) and by linear-
ity 𝑢∞ᅋ ( ̂𝑥) = (𝐹(ഊ)𝑔)( ̂𝑥) = ∫ᄽ2 𝑢∞( ̂𝑥, ̂𝑦, ഊ)𝑔( ̂𝑦) 𝑑𝑠,
where 𝑢∞( ̂𝑥, ̂𝑦, ഊ) is the far field pattern of the scattered
field due to an incident plane wave ം𝑖𝑘𝑥⋅ ̂𝑦 (4). The scatter-
ing operator 𝒮(ഊ) ∶ 𝐿2(𝑆2) → 𝐿2(𝑆2) can then be expressed
as [LP89] 𝒮(ഊ) ܁ 𝐼 + 𝑖ഊ2𝜋𝐹(ഊ).
If Ӌ(𝑛) = 0, then 𝐹(ഊ) is normal and 𝒮(ഊ) is unitary for realഊ > 0, which is not the case if Ӌ(𝑛) > 0 on a subset of ೧ of
nonzero measure. Both are analytic operator-valued func-
tions of ഊ in the upper-half complex plane. The scattering
poles are the poles of the meromorphic extension of 𝒮(ഊ)
in the lower-half complex plane.

Now we are ready to formally introduce the trans-
mission eigenvalue problem. An application of Rel-
lich’s lemma implies that the incident field 𝑣ᅋ with 𝑔 ∈
ăđn 𝐹(ഊ) does not scatter. Straightforward calculation re-
veals that the kernel of 𝐹(ഊ) consists of all 𝑔 ∈ 𝐿2(𝑆2) such
that, if 𝑣ᅋ is the corresponding Herglotz wave function,𝑣 ܁ 𝑣ᅋ|ᄮ and 𝑢 satisfy the transmission eigenvalue problem

⎧⎪⎨⎪⎩
͐𝑢 + ഊ2𝑛(𝑥)𝑢 = 0 in ೧,͐𝑣 + ഊ2𝑣 = 0 in ೧,𝑢 = 𝑣 on 𝜕೧,ᆙᅜᆙᆌ = ᆙ𝑣ᆙᆌ on 𝜕೧. (9)

A value of ഊ ∈ Ӂ is said to be a transmission eigenvalue if (9)
has nontrivial solutions 𝑢 ∈ 𝐿2(೧), 𝑣 ∈ 𝐿2(೧), such that𝑢 − 𝑣 ∈ ೫20(೧). We call the pair (𝑢, 𝑣) the corresponding
eigenfunction. In general, at a transmission eigenvalue the
part 𝑣 of the corresponding eigenfunction does not take
the form of a Herglotz wave function and hence the kernel
of the far field operator is in general empty. Thus the set
of nonscattering wave numbers ഊ for which 
ăđn 𝐹(ഊ) ≠ {0}
is a subset (possibly empty) of the transmission eigenval-
ues. There is a special configuration for which transmis-
sion eigenvalues and nonscattering frequencies coincide,
namely the case of spherically stratifiedmedia which is dis-
cussed in the next section. Allowing 𝑢𝑖 to be any function𝑣 ∈ ೫𝑖ᅕᅇ(೧) with𝑣 ∈ ೫𝑖ᅕᅇ(೧) ∶= {𝑣 ∈ 𝐿2(೧) ∶ ͐𝑣 + ഊ2𝑣 = 0},

Figure 2. *llustration of a transmission eigenvalue for a
dielectric medium formed by two concentric circles with outer
radius � 1 and inner radius � �.3. The refractive index 𝑛 = 2 in
the annulus and 𝑛 = 3 in the inner circle. The wave number isഊ = Ѹ.223. -eft� *ncident field; a Herglotz wave function with
kernel 𝑔(ྶ) = ം𝑥ഏ(−2𝑖ྶ). .iddle� Total field. Right� Scattered
field (�0 outside the circle of radius 1).

the scattered field 𝑢𝑠 corresponding to 𝑣 can be defined as𝑢𝑠 ∈ ೫2ᅓᅖᅇ(ℝႴ) satisfying͐𝑢𝑠 + ഊ2𝑛𝑢𝑠 = ഊ2(1 − 𝑛)𝑣 in ℝႴ (10)

together with the Sommerfeld radiation condition (3).
Note that ೫𝑖ᅕᅇ(೧) is a Hilbert space which densely con-
tains the Herglotz wave functions 𝑣ᅋ. Defining the opera-
tor 𝒢(ഊ) ∶ ೫𝑖ᅕᅇ(೧) → 𝐿2(𝑆2) mapping 𝑣 ↦ 𝑢∞, where 𝑢∞
is the far field associated with the solution of (10), which
is a compact linear operator, then we can equivalently de-
fine transmission eigenvalues as the values of ഊ for which
ăđn 𝒢(ഊ) is nontrivial (in fact the part 𝑣 of the correspond-
ing eigenfunction belongs to 
ăđn 𝒢). In addition, the re-
lation 𝐹(ഊ)𝑔 = 𝒢(ഊ)Ӆ(ഊ)𝑔
holds, where Ӆ(ഊ) ∶ 𝑔 ↦ 𝑣ᅋ|ᄮ (11)

and we already observed thatӅ(𝐿2(𝑆2)) = ೫𝑖ᅕᅇ(೧). Hence,
in general, at a transmission eigenvalue one can construct
a Herglotz wave function 𝑣ᅋ of unit 𝐿2(೧)-norm, that pro-
duces an arbitrarily small scattered field 𝑢𝑠ᅋ (see Figures 2
and 3).

4pherically 4tratimed Media
Asmentioned above, the scattering problem for spherically
symmetric media is of great importance since it provides
an example where the set of nonscattering frequencies and
transmission eigenvalues are the same. More precisely,
when ೧ is a ball of radius 𝑎 centered at the origin and 𝑛 ,𝑛(𝑟)܁ 𝑟 = |𝑥|, is a radial real-valued function, the part 𝑣 of a
transmission eigenfunction is indeed aHerglotz wave func-
tion and hence transmission eigenvalues coincide with the
values of ഊ ∈ Ӂ for which 
ăđn 𝐹(ഊ) ≠ {0}. Figure 2 gives
an example in two dimensions. To see explicitly what the
transmission eigenvalues are in this case, we use as inci-
dent field the Herglotz wave function 𝑣 = 𝑗Ӎ(ഊ|𝑥|)೼ᅔӍ ( ̂𝑥),
where 𝑗Ӎ is a spherical Bessel function and ೼ᅔӍ is a spher-
ical harmonic of order Ӎ ∈ ӎ0, 𝑚 = −Ӎ⋯Ӎ. Straight-
forward calculations by separation of variables lead to the
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Figure 3. We represent the scattered fields for the same
scattering experiment as in Figure 2 with an incident field
being a Herglotz wave function with kernel 𝑔(ྶ) = ം𝑥ഏ(−2𝑖ྶ)
but for different wave numbers. From top to bottom and left
to right ഊ = ѷ, ഊ = ѷ.5, ഊ = Ѹ, ഊ = Ѹ.223 (a transmission
eigenvalue).

following expression for the scattered field for 𝑟 > 𝑎 and
the corresponding far field, respectively,

𝑢𝑠(𝑥) ܁ ೦Ӎ(ഊ; 𝑛)𝑊Ӎ(ഊ; 𝑛)ӈ(1)Ӎ (ഊ|𝑥|)೼ᅔӍ ( ̂𝑥),
𝑢∞( ̂𝑥) ܁ ೦Ӎ(ഊ; 𝑛)𝑊Ӎ(ഊ; 𝑛) 1ഊ೼ᅔӍ ( ̂𝑥),

where ӈ(1)Ӎ (𝑟) is the Hankel function of the first kind of or-
der Ӎ and ೦Ӎ(ഊ; 𝑛) = Ăăē ( 𝑦Ӎ(𝑎) −𝑗Ӎ(ഊ𝑎)𝑦′Ӎ(𝑎) −ഊ𝑗′Ӎ(ഊ𝑎) ) ,

𝑊Ӎ(ഊ; 𝑛) = Ăăē Ԝ 𝑦Ӎ(𝑎) −ӈ(1)Ӎ (ഊ𝑎)𝑦′Ӎ(𝑎) −ഊӈ(1)ኜӍ (ഊ𝑎) Ԩ
with 𝑦Ӎ the solution to

𝑦ᆤ + 2𝑟 + ԙഊ2𝑛(𝑟) − Ӎ(Ӎ + 1)𝑟2 ԥ 𝑦 = 0
which as 𝑟 → 0 behaves like 𝑗Ӎ(ഊ𝑟), i.e., lim𝑟→0 𝑟−Ӎ𝑦Ӎ(𝑟) 𝜋𝑘Ӎ2Ӎᆴ1ჼ(Ӎ+Ⴔ/2)ٹ= . Thus transmission eigenvalues are those val-

ues of ഊ ∈ Ӂ such that ೦Ӎ(ഊ; 𝑛) = 0, whereas the scattering
poles are ഊ ∈ Ӂ for which𝑊Ӎ(ഊ; 𝑛) = 0. The latter set lies in
the lower half of the complex plane. If ഊ is a zero of೦Ӎ(ഊ; 𝑛)
(i.e., a transmission eigenvalue), then the part 𝑣 of the cor-
responding eigenfunction is 𝑣 = 𝑗Ӎ(ഊ|𝑥|)೼ᅔӍ ( ̂𝑥)which is an
entire solution of the Helmholtz equation in ℝႴ. All trans-
mission eigenvalues for a spherically stratifiedmedium are
obtained in this way by choosing Ӎ ∈ ӎ. Hence in this case,
at any real transmission eigenvalue, there is at least one in-
cident wave 𝑣 = 𝑗Ӎ(ഊ|𝑥|)೼Ӎ( ̂𝑥) for some Ӎ ∈ ӎ that does not
scatter (in fact there are at least 2Ӎ+1 linearly independent
nonscattering incident waves).

It is possible to give more details on the structure of
transmission eigenvalues for spherically stratified media

if we focus on the case of spherically symmetric incident
fields (Ӎ = 0 in the above discussion), in other words
when the transmission eigenfunction is radially symmet-
ric. Hence in the rest of this section we consider only trans-
mission eigenvalues with spherically symmetric eigenfunc-
tions. These are the zeros of ೦0(ഊ; 𝑛), and at such a zero𝑣 ܁ 𝑗0(ഊ𝑟) and 𝑢 ܁ 𝑦0(𝑟) satisfy the transmission eigen-
value problem:

Վ ͐𝑢 + ഊ2𝑛(𝑟)𝑢 = 0 for |𝑟| < 𝑎,͐𝑣 + ഊ2𝑣 = 0 for |𝑟| < 𝑎,𝑣(𝑎) − 𝑢(𝑎) = 0 and 𝑣′(𝑎) − 𝑢′(𝑎) = 0.
Letting 𝑦0(𝑟) ܁ 𝑦(𝑟)/𝑟, where now 𝑦(𝑟) satisfies 𝑦′′ +ഊ2𝑛(𝑟)𝑦 = 0, and noting that 𝑗0(ഊ𝑟) = Ēin(ഊ𝑟)/ഊ𝑟, we ob-
tain that ഊ is a transmission eigenvalue, i.e., ೦0(ഊ; 𝑛) = 0,
if and only if

𝑑(ഊ) ܁ Ăăē ( 𝑦(𝑎) − Ēin(ഊ𝑎)/ഊ𝑦′(𝑎) − āĎĒ ഊ𝑎 ) = 0.
We now note that 𝑑(ഊ) is an entire function of ഊ that is
real for real ഊ and is bounded on the real axis. Hence,
by Hadamard’s factorization theorem, if 𝑑(ഊ) is not identi-
cally zero, then there exists a countable set of transmission
eigenvalues (cf. [CCH20] for this conclusion in a similar
case). It can be shown that if 𝑑(ഊ) is identically equal to
zero, then 𝑛(𝑟) is identically equal to one [CCH16], Sec-
tion 5.1. From now on we assume that

𝛿 ܁ ∫ᅅ
0 √𝑛(𝜌) 𝑑𝜌 ≠ 𝑎. (12)

An asymptotic analysis shows that

𝑑(ഊ) = 1ഊ𝑎2 Ա 1[𝑛(0)𝑛(𝑎)]1/Ⴕ Ēin(ഊ𝛿) āĎĒ(ഊ𝑎)
− Ա𝑛(𝑎)𝑛(0) Խ1/Ⴕ āĎĒ(ഊ𝛿) Ēin(ഊ𝑎)Կ + ೲ ( 1ഊ2 )

as ഊ → ∞ and hence there exist an infinite number of pos-
itive transmission eigenvalues.

EYample. Let 𝑛(𝑟) = 𝑛20 with 𝑛0 a positive constant. When𝑛0 = 1/2 we have that

𝑑(ഊ) = 2ഊ ĒinႴ ԙഊ𝑎2 ԥ
and hence 𝑑(ഊ) has a set of real zeros and no complex zeros.
When 𝑛0 = 2/3 we have that

𝑑(ഊ) = 1ഊ ĒinႴ ԙഊ𝑎3 ԥ Ա3 + 2 āĎĒ ԙ2ഊ𝑎3 ԥԽ
and hence 𝑑(ഊ) has an infinite set of real and complex ze-
ros.

This example demonstrates the perplexing structure of
transmission eigenvalues and in particular their depen-
dence on the properties of the contrast of the medium.
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Now let 𝑛 ∈ ೦2[0, 𝑎] and assume (12) holds. Then one
can prove the following results [CK19].

Theorem 1. Assume that either 1 < 𝑛(𝑟)ٹ < 𝛿/𝑎 or 𝛿/𝑎 𝑛(𝑟)ٹ> < 1 for 0 ≤ 𝑟 ≤ 𝑎. Then there eYist infinitely many real
and infinitely many compleY transmission eigenvalues.

Theorem 2. Assume that 𝑛(𝑎) ≠ 1. Then, if compleY eigen-
values eYist, they all lie in a strip parallel to the real aYis.

The above theorems are quite different if we relax the
assumption that 𝑛(𝑎) ≠ 1. In particular if 𝑛(𝑎) = 1 and𝑛′(𝑎) = 0, then there exist infinitely many real and in-
finitely many complex transmission eigenvalues only un-
der extra assumptions, e.g., 𝑛ᆤ(𝑎) ≠ 0. Furthermore, if𝑛(𝑎) = 1 and either 𝑛′(𝑎) or 𝑛ᆤ(𝑎) is nonzero, then the set
of transmission eigenvalues does not lie inside any fixed
strip parallel to the real axis. The extension of these results
to the general media case will be discussed later in this pa-
per.

Given the existence of both real and complex transmis-
sion eigenvalues for a spherically stratified medium with
spherically symmetric eigenfunctions, it is a natural ques-
tion to ask if whether or not a knowledge of all eigenvalues,
both real and complex including multiplicity, uniquely de-
termine 𝑛(𝑟). Recent progress in this direction has been
obtained by Aktosun, Gintides, and Papanicolaou and by
Colton and Leung (see [CCH16], Section 5.1 and refer-
ences therein). Both of these papers assumed that 0 <𝑛(𝑟) ≤ 1 for 𝑟 < 𝑎 as well as the fact that 𝑛(𝑎) = 1 and𝑛′(𝑎) = 0. The case when 𝑛(𝑟) > 1 is still open. However it
can be shown that all transmission eigenvalues (not only
those with spherically symmetric eigenfunctions), real and
complex including multiplicity, uniquely determine 𝑛(𝑟)
in both the cases when 0 < 𝑛(𝑟) ≤ 1 and 𝑛(𝑟) ≥ 1 for 𝑟 ≤ 𝑎
provided that such information is known along with the
value of 𝑛(0) [CCH16], Section 5.2.

Note that a similar asymptotic analysis used above for೦0(ഊ; 𝑛) can be employed to prove that 𝑊0(ഊ; 𝑛) has infin-
itely many complex zeros, thus proving the existence of
an infinite set of scattering poles for spherically symmetric
media (see [CCH20] for more details).

/onscattering FreRuencies
and Transmission &igenWalues
The basic question that led to the transmission eigenvalue
problem is the injectivity of the far field operator 𝐹(ഊ). In
particular, if the far field operator 𝐹(ഊ) is not injective, then
there is a Herglotz wave function 𝑣ᅋ which is not scattered
by the homogeneity. We can more generally define non-
scattering wave numbers as the values of ഊ ∈ ℝ for which
there exists an incident wave 𝑣, a solution of theHelmholtz
equation ͐𝑣 + ഊ2𝑣 = 0 in ℝႴ, which doesn’t scatter by
the inhomogeneity. A necessary condition for ഊ to be
a nonscattering wave number is that ഊ is a transmission

eigenvalue with 𝑢 ܁ (𝑢𝑠 +𝑣)|ᄮ and 𝑣 ܁ 𝑣|ᄮ as correspond-
ing eigenfunction. On the other hand, a real transmission
eigenvalue ഊ is a nonscattering wave number if the part𝑣 of the corresponding transmission eigenfunction is also
defined as a solution of the Helmholtz equation outside೧.
Whether at a transmission eigenvalue such an extension is
possible remains largely open. In the case of a spherically
stratified media, we already saw that there exist infinitely
many nonscattering wave numbers and furthermore the
set of nonscatteringwave numbers coincideswith the set of
real transmission eigenvalues. The spherically symmetric
configuration is unstable with respect to nonscattering. Re-
cently in [VX] it is shown in ℝ2 and for constant refractive
index 𝑛 ≠ 1 that if the disk is perturbed even slightly to an
ellipse with arbitrarily small eccentricity, then there exist at
most finitely many positive wave numbers for which a Her-
glotz wave functionwith a fixed, smooth nontrivial density
can be nonscattering. When the boundary of the inhomo-
geneity ೧ contains a corner, at a transmission eigenvalue
it is impossible to extend the part 𝑣 of the transmission
eigenfunction as a solution to the Helmholtz equation in
the vicinity of the corner outside ೧. Thus, for such in-
homogeneities, nonscattering wave numbers do not exist.
This result was first proved in [BPS14] for ೧ having a right
angle and nonvanishing 𝑛 − 1 at the corner, followed by
[EH18] for inhomogeneities containing arbitrary corners
and edges. The recent paper [CV21] contributes to filling
the gap between spherically symmetric media and inho-
mogeneities containing a corner in relation to nonscatter-
ing waves (with the exception of a few earlier partial results
for analytic boundaries; cf. references in [CV21]). Roughly
speaking, employing techniques on free boundary regular-
ity, the authors show that if there is a point 𝑥0 ∈ 𝜕೧, such
that 𝑛 is analytic in a neighborhood of 𝑥0, but the bound-
ary is not analytic in any neighborhood of 𝑥0, then every
incident field 𝑣 is scattered, provided (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0.
A similar result is proven for 𝑛 that are less regular locally
near 𝑥0, in which case it is proven that if the boundary
is not sufficiently smooth locally (related to the order of
smoothness of 𝑛), then every incident wave is scattered,
again provided (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0. The study of the
behavior of transmission eigenfunctions, in particular of
the part 𝑣 satisfying the Helmholtz equation, is important
since one can obtain information about 𝑣 from scattering
data and this information can be used in inverse scattering
theory. The results in [CV21] also shed light into boundary
regularity of transmission eigenfunctions.

Inside�outside Duality
The fact that the injectivity of the far field operator
can be related to eigenvalues of an interior problem
is referred to in the literature as inside-outside duality
[KL13]. It leads in particular to a numerical algorithm for
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determining real transmission eigenvalues from the far
field operator. The algorithm described in [CCH16], Sec-
tion 4.4, is based on a study of the phase of the eigenvalues
of the far field operator. For media with real-valued index
of refraction 𝑛, the compact far field operator 𝐹(ഊ) is nor-
mal and therefore admits a sequence of eigenvalues �ྐྵ�(ഊ)
that accumulates at the origin. One then can prove the fol-
lowing theorem, where we have set ̂�ྐྵ� (ഊ) ܁ �ྐྵ�(ഊ)/| �ྐྵ�(ഊ)|
and 𝑣𝑗(ഊ) ܁ Ӆ(ഊ)𝑔𝑗/ЧӅ(ഊ)𝑔𝑗Чᄶ2(ᄮ), where 𝑔𝑗 is an eigen-
function associated with �ྐྵ�(ഊ) andӅ(ഊ) is defined by (11).
This theorem states how to determine real transmission
eigenvalues along with an approximation of the 𝑣 part of
the corresponding eigenfunction from the far field opera-
tor. We refer the reader to [ACH18] for details.

Theorem 3. Assume that 𝑛 − 1 ≥ 𝛼 > 0 	respectively, 1 −𝑛 ≥ 𝛼 > 0
 in ೧ for some constant 𝛼. -et ഊ0 > 0, and
let {ഊӍ} be a sequence of positive numbers converging to ഊ0 asӍ → ∞. If there eYists a sequence Յ ̂ӍྐྵՑ such that ̂Ӎྐྵ = ̂�ྐྵ�Ӎ (ഊӍ)
for some 𝑗Ӎ and ̂Ӎྐྵ → −1 	respectively, ̂Ӎྐྵ → +1
 as Ӎ → ∞,
then ഊ0 is a transmission eigenvalue. Moreover, the sequenceՅ𝑣𝑗Ӎ (ഊӍ)Ց admits a subsequence that converges strongly in 𝐿2(೧)
to a nontrivial 𝑣 solving (9) with ഊ = ഊ0.

The converse of the statement in this theorem has been
proved only for cases where 𝑛 is a sufficiently small pertur-
bation of a constant [KL13].

The inside-outside duality also leads to a duality be-
tween the set of transmission eigenvalues and the set of
scattering poles. In particular, these two sets are inter-
changeable if instead of the relative scattering operator for
the scattering problem (1)–(3) we consider the relative
scattering operator for an appropriate interior scattering
problem. Such a duality was first established in [CCH20]
and we sketch the approach given there for the special case
when the interior relative scattering operator is defined on
a sphere inside ೧ centered at the origin. This allows us
to give an equivalent definition of the involved operators
in terms of Fourier series representation which better re-
veals the duality between the exterior and interior opera-
tors (since there is no natural dual definition of the far field
for the interior problem). To explain this, we first represent
the far field operator defined by (8) as a Fourier series in
terms of spherical harmonics {೼ᅔӍ ( ̂𝑥)}. For 𝑔 ∈ 𝐿2(𝑆2) we
set 𝑔( ̂𝑥) = ∞∑ӍႽ0

Ӎ∑ᅔႽ−Ӎ 𝑔Ӎ,ᅔ೼ᅔӍ ( ̂𝑥)
and define an isometry ℐ between 𝐿2(𝑆2) and ഋ2(Ӗ) by the
mapping 𝑔 ↦ ˦𝑔 ܁ Յ𝑔Ӎ,ᅔՑ. Thus we now have a new rep-
resentation of the far field operator, denoted by ˦𝐹(ഊ) ∶ഋ2(Ӗ) ↦ ഋ2(Ӗ): ˦𝐹(ഊ) = ℐ−1∗𝐹(ഊ) ℐ−1,
where ℐ−1∗ denotes the 𝐿2-adjoint of ℐ−1. The discussion

on transmission eigenvalues in connection to the kernel
of the operator 𝐹(ഊ) can now be carried over in exactly the
sameway as before if we replace 𝐹(ഊ) by ˦𝐹(ഊ). To introduce
the duality, we first observe that the operator ˦𝐹(ഊ) can be
equivalently defined using scattered waves associated with
incident spherical waves. More precisely, let 𝑢𝑠Ӎ,ᅔ(𝑥) be the
scattered field corresponding to the incident wave (which
is a Herglotz wave function)𝑣(𝑥) ܁ 𝑗Ӎ(ഊ|𝑥|)೼ᅔӍ ( ̂𝑥).
Outside a ball ೥ᄼ of radius ೵ containing ೧, the scattered
field can be expanded as

𝑢𝑠Ӎ,ᅔ(𝑥) = ∞∑ᅗႽ0
ᅗ∑ᅘႽ−ᅗ 𝑎ᅗ,ᅘӍ,ᅔӈ(1)ᅗ (ഊ|𝑥|)೼ᅘᅗ ( ̂𝑥)

(note ೼ᅘᅗ = ೼−ᅘᅗ ). Then, up to a multiplicative constant
the Fourier coefficients of ˦𝐹(ഊ) ˦𝑔 are

( ˦𝐹(ഊ) ˦𝑔)ᅗ,ᅘ = ∞∑ӍႽ0
Ӎ∑ᅔႽ−Ӎ 𝑔Ӎ,ᅔ𝑎ᅗ,ᅘӍ,ᅔ. (13)

Now reversing the role of the incident and scattered waves,
we can define similarly to (13) an interior far field operator
to characterize the scattering poles where in the following
we assume that ഊ is complex with Ӌ(ഊ) < 0. To this end, let೥ᆃ ݀ ೧ be a ball centered at the origin, and for an outgoing
solution to the Helmholtz equation𝑤Ӎ,ᅔ(𝑥) = 𝑗Ӎ(ഊ𝛿)ӈ(1)Ӎ (ഊ|𝑥|)೼ᅔӍ ( ̂𝑥)
we denote by (𝑢Ӎ,ᅔ, 𝑣Ӎ,ᅔ) ∈ 𝐿2(೧) × 𝐿2(೧) the solution of
the interior transmission problem

⎧⎪⎨⎪⎩
͐𝑢Ӎ,ᅔ + ഊ2𝑛(𝑥)𝑢Ӎ,ᅔ = 0 in ೧,͐𝑣Ӎ,ᅔ + ഊ2𝑣Ӎ,ᅔ = 0 in ೧,𝑢Ӎ,ᅔ − 𝑣Ӎ,ᅔ = 𝑤Ӎ,ᅔ on 𝜕೧,ᆙᅜӍኙቍᆙᆌ − ᆙ𝑣Ӎኙቍᆙᆌ = ᆙᅠӍኙቍᆙᆌ on 𝜕೧.

Inside ೥ᆃ, the field 𝑣Ӎ,ᅔ can be expanded as

𝑣Ӎ,ᅔ(𝑥) = ∞∑ᅗႽ0
ᅗ∑ᅘႽ−ᅗ 𝑏ᅗ,ᅘӍ,ᅔ 𝑗ᅗ(ഊ|𝑥|)𝑗ᅗ(ഊ𝛿) ೼ᅘᅗ ( ̂𝑥).

Thus, we can define the interior far field operator ˦𝐹𝑖ᅕ𝑡 ∶ഋ2(Ӗ) ↦ ഋ2(Ӗ) by its Fourier coefficients

( ˦𝐹𝑖ᅕ𝑡(ഊ) ˦𝑔)ᅗ,ᅘ = ∞∑ӍႽ0
Ӎ∑ᅔႽ−Ӎ 𝑔Ӎ,ᅔ𝑏ᅗ,ᅘӍ,ᅔ. (14)

Observe that this operator can be defined for any ഊ ∈ Ӂ
with Ӌ(ഊ) < 0 that does not coincide with a transmission
eigenvalue. Now, let ഊ be such that there exists a ˦𝑔 ≠ 0
with ˦𝐹𝑖ᅕ𝑡(ഊ) ˦𝑔 = 0. Then by unique continuation we have
that 𝑣ᅋ˦ ∶= ∞∑ᅕႽ0

ᅕ∑ᅔႽ−ᅕ 𝑔ᅕ,ᅔ𝑣ᅕ,ᅔ = 0 in ೧,
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and consequently one can show that𝑤 ∈ ೫2ᅓᅖᅇ(ℝႴ) defined
by

𝑤 = ∞∑ӍႽ0
Ӎ∑ᅔႽ−Ӎ 𝑔Ӎ,ᅔ𝑢Ӎ,ᅔ in ೧

and 𝑤 = ∞∑ӍႽ0
Ӎ∑ᅔႽ−Ӎ 𝑔Ӎ,ᅔ𝑤Ӎ,ᅔ in ℝႴ ૫ ೧

is a nontrivial solution of͐𝑤 + ഊ2𝑛𝑤 = 0 in ℝႴ
and𝑤 = ∫ᆙᄮ Φ(⋅, 𝑦)𝜕𝑤(𝑦)𝜕𝜈 − 𝑤(𝑦)𝜕Φ(⋅, 𝑦)𝜕𝜈 𝑑𝑦 in ℝႴ ૫ ೧.
This means that such a value of ഊ is a scattering pole. For
the given inhomogeneity (೧, 𝑛), there is a duality between˦𝐹(ഊ) whose kernel is related to the transmission eigen-
values and ˦𝐹𝑖ᅕ𝑡(ഊ) whose kernel is related to the scatter-
ing poles. Both are defined by similar expressions, but˦𝐹(ഊ) corresponds to the exterior scattering problem due to
an incident Herglotz wave function, whereas ˦𝐹𝑖ᅕ𝑡(ഊ) cor-
responds to the interior scattering problem due to an in-
cident outgoing spherical wave. In [CCH20] this duality
is expressed in terms of a near field operator for the ex-
terior scattering problem and an interior operator associ-
ated with 𝑤 being a single layer potential associated with
a boundary strictly included in ೧. The interior operator˦𝐹𝑖ᅕ𝑡(ഊ) coincides (up to an isometry) with the interior op-
erator considered in [CCH20] when the single layer poten-
tial is supported by 𝜕೥ᆃ.
Transmission &igenWalues for General Media
We now turn our attention to the study of the spectral
properties of the transmission eigenvalue problem for gen-
eral media. Despite its inherent connection with scatter-
ing theory, the transmission eigenvalue problem is a new
spectral problem leading tomany interesting and challeng-
ing mathematical questions. The transmission eigenvalue
problem has a deceptively simple formulation, namely
two elliptic PDEs in a bounded domain that share the
same Cauchy data on the boundary, but presents a per-
plexing mathematical structure. In particular, it is a non-
selfadjoint eigenvalue problem for a nonstrongly elliptic
operator, and hence the investigation of its spectral prop-
erties becomes challenging. Roughly speaking, the spec-
tral properties depend on the assumptions on the contrast𝑛 − 1 of the media. 2uestions central to the inverse scat-
tering theory include: the discreteness of the spectrum, the
location of transmission eigenvalues in the complex plane,
the existence of transmission eigenvalues, and the deter-
mination of real transmission eigenvalues from scattering
data, which is important since real transmission eigenval-
ues can be used to obtain information about the material

properties of the scattering media. For a more compre-
hensive and detailed discussion on the transmission eigen-
value problem and its application in inverse scattering we
refer the reader to the monograph [CCH16].

Setting ഊ2 ܁ 𝜏, the transmission eigenvalue problem
(9) written in terms of 𝑤 = 𝑢 − 𝑣 and replacing ഊ2𝑣 by 𝑣
becomes: find 𝑤 ∈ ೫20(೧) and 𝑣 ∈ 𝐿2(೧) such that

{ ͐𝑤 + 𝜏𝑛𝑤 = (1 − 𝑛)𝑣 in ೧,͐𝑣 + 𝜏𝑣 = 0 in ೧. (15)

We have already noticed in the spherically stratified case
that this eigenvalue problem is not selfadjoint (since com-
plex eigenvalues can exist). Obviously this is a nonstan-
dard system of two elliptic partial differential equations
since one unknown has two boundary conditions while
the other has none. A first natural idea is to eliminate 𝑣
from the system which obviously can be done if 1/(𝑛 − 1)
is in 𝐿∞(೧). Under this assumption, 𝑤 ∈ ೫20(೧) satisfies(͐ + 𝜏) 1𝑛 − 1(͐ + 𝜏𝑛)𝑤 = 0 in ೧. (16)

We therefore obtain a quadratic eigenvalue problem. Note
that although the transmission eigenvalue problem (16)
has the structure of a quadratic pencil of operators, it ap-
pears that available results on these types of operators are
not applicable to our problem due to the incorrect signs
of the involved operators. This formulation can be used
however to prove discreteness of transmission eigenvalues
provided that the contrast function 𝑛 − 1 keeps a definite
sign in the whole domain ೧. Since ͐ 1(ᅕ−1)͐𝑤 is an equiva-

lent norm in ೫20(೧), from an application of the Analytic
Fredholm Theorem one easily sees that the set of trans-
mission eigenvalues is at most discrete with infinity as the
only accumulation point and that all transmission eigen-
values have finite multiplicity. Furthermore, by rewriting
(16) one can also prove the existence of an infinite set of
real transmission eigenvalues. For instance, if the contrast𝑛 − 1 is positive definite in ೧, then the main idea is to
consider for fixed 𝜏 the generalized selfadjoint eigenvalue
problem

(͐ + 𝜏) 1𝑛 − 1(͐ + 𝜏)𝑤 + 𝜏2𝑤 = −ྐྵ(𝜏)͐𝑤 in ೧ (17)

and notice that transmission eigenvalues of (16) are solu-
tions to ྐྵ(𝜏) = 𝜏. Proving existence of zeros to this equa-
tion exploits amin-max principle for ྐྵ(𝜏) and the construc-
tion of special subspaces using known results on trans-
mission eigenvalues for spherically symmetric problems.
This reasoning leads to the following theorem, where 𝑛 ∈𝐿∞(೧) and we set0 < 𝑛∗ = inĄᄮ (𝑛) and 𝑛∗ ܁ ĒĔďᄮ (𝑛) < +∞.
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Theorem �. If either 1 < 𝑛∗ or 𝑛∗ < 1, then there eYists an
infinite sequence of real transmission eigenvalues 𝜏𝑗 > 0 for𝑗 ∈ ӎ accumulating only at +∞.

The proof of the above theorem also provides mono-
tonicity results for real transmission eigenvalues with re-
spect to 𝑛. More specifically, let 𝜏𝑗 ܁ 𝜏𝑗(𝑛, ೧) > 0 for 𝑗 ∈ ӎ
be the increasing sequence of the transmission eigenval-
ues for the media with support ೧ and refractive index 𝑛(𝑥)
such that 𝜏𝑗 is the smallest zero of �ྐྵ�(𝜏) = 𝜏 for some eigen-
value �ྐྵ� of (17). More specifically, let ೧1 and ೧2 be two
domains such that ೧1 ݀ ೧ ݀ ೧2. Then for 1 < 𝑛∗ the
monotonicity property𝜏𝑗(𝑛∗, ೧2) ≤ 𝜏𝑗(𝑛∗, ೧) ≤ 𝜏𝑗(𝑛, ೧)≤ 𝜏𝑗(𝑛∗, ೧) ≤ 𝜏𝑗(𝑛∗, ೧1)
holds, whereas for 𝑛∗ < 1𝜏𝑗(𝑛∗, ೧2) ≤ 𝜏𝑗(𝑛∗, ೧) ≤ 𝜏𝑗(𝑛, ೧)≤ 𝜏𝑗(𝑛∗, ೧) ≤ 𝜏𝑗(𝑛∗, ೧1).
In particular, the above inequalities are valid for the small-
est real transmission eigenvalue 𝜏1(𝑛, ೧) > 0. This fact can
be used to show that a constant refractive index 𝑛 ≠ 1
is uniquely determined from 𝜏1(𝑛, ೧). Furthermore, the
smallest real transmission eigenvalue satisfies 𝜏1(𝑛, ೧) >ᆊ(ᄮ)ᅕ∗ if 1 < 𝑛∗ and 𝜏1(𝑛, ೧) > ྐྵ(೧) if 𝑛∗ < 1, where ྐྵ(೧)
is the first Dirichlet eigenvalue of −͐ in ೧.

In the cases when 𝑛 does not keep the same sign in ೧,
the approach described above does not work anymore. In
particular, the existence of real transmission eigenvalues is
still an open problem for this case and all the known spec-
tral results are obtained under the standard assumption
that the contrast 𝑛 − 1 has a definite sign in a boundary
neighborhood ೧ᆃ ܁ {𝑥 ∈ ೧; ĂiĒē(𝑥, 𝜕೧) < 𝛿}. Then, if we
assume that either 1 < inĄᄮቼ(𝑛) or ĒĔďᄮቼ(𝑛) < 1, under the
same 𝐿∞-regularity assumption on 𝑛 as above it is proven
that the set of transmission eigenvalues is at most discrete
with infinity as the only possible accumulation point (see
[CCH16], Section 3.1, and references therein). The proof
of discreteness is based on first showing that the resolvent
of (15) is Fredholm of index zero. The uniqueness of
the solution is then proved for 𝜏 = 𝑖ྐྵ with ྐྵ sufficiently
large, exploiting the exponential decay inside ೧ of solu-
tions to the Helmholtz equation for such wave numbers.
The proof is now completed by appealing to the Analytic
Fredholm Theorem. However, the real interest related to
the discreteness of transmission eigenvalues is in the case
when the contrast 𝑛 − 1 is allowed to change sign in ೧,
and this case is still not understood. The discreteness of
transmission eigenvalues in this case, if it holds, would im-
ply the uniqueness of the sound speed for the wave equa-
tion with arbitrary source which is a question that arises in
thermo-acoustic imaging.

In the case when both the domain೧ and the real-valued
refractive index 𝑛 are ೦∞-smooth, with the additional as-
sumption that 𝑛 ≠ 1 on 𝜕೧, a complete characterization
of the spectrum of the transmission eigenvalue problem is
presented in [Rob13]. This study is done in the framework
of semiclassical analysis, relating the transmission eigen-
value problem to the spectrum of a Hilbert-Schmidt oper-
ator whose resolvent exhibits the desired growth proper-
ties following the approach of Agmon in [Agm10]. This
reasoning leads to the following spectral theorem.

Theorem 5. Assume that 𝑛 ∈ ೦∞(೧), 𝜕೧ is of class ೦∞,𝑛(𝑥) ≥ 𝑛0 > 0 for 𝑥 ∈ ೧, and 𝑛 ≠ 1 on 𝜕೧. Then there
eYist an infinite number of transmission eigenvalues ഊ ∈ Ӂ and
the space spanned by the generalized eigenfunctions (𝑤, 𝑣) is
dense in ೫20(೧) × Յ𝐿2(೧), ͐𝑢 ∈ 𝐿2(೧)Ց.

Another important question is the location of the
transmission eigenvalues in the complex plane Ӂ. In
particular, it is desirable to know if there exists a half
plane in Ӂ free of transmission eigenvalues. This is an
important question for analyzing the time-domain in-
terior transmission problem which is the main build-
ing block for the time-domain linear sampling method
for inhomogeneous media [CMS21]. It was the pa-
per by Vodev [Vod18] which shed light onto this
issue. To explain the result in this paper, we first remark
that the transmission eigenvalue problem (9) can be recast
in terms of the difference of twoDirichlet-to-Neumann op-
erators. More precisely, let us define ൚ᅘ(ഊ) ∶ 𝜑 ↦ ᆙᅜᆙᆌ ,
where 𝑢 solves

{ ͐𝑢 + ഊ2ഐ𝑢 = 0 in ೧,𝑢 = 𝜑 on 𝜕೧
(provided ഊ2 is not a Dirichlet eigenvalue). Then, the
transmission eigenvalue problem can be viewed as findingഊ ∈ Ӂ for which there exists a nontrivial 𝑢 such that

ൟ(ഊ)𝑢 ܁ ൚ᅕ(ഊ)𝑢 −൚1(ഊ)𝑢 = 0.
The operator ൟ(ഊ) ∶ ೫−1/2+𝑠(𝜕೧) → ೫1/2+𝑠(𝜕೧), 0 ≤ 𝑠 ≤ 1,
is one order smoothing and is Fredholm with index zero.
The eigenvalue free zone in Ӂ corresponds to ഊ ∈ Ӂ for
which ൟ(ഊ)−1 exists. In [Vod18] it is proven that all trans-
mission eigenvalues ഊ lie in a horizontal strip about the
real axis. In addition this paper provides ഊ-explicit bounds
for the norm of the inverse ofൟ(ഊ) as well as Weyl’s asymp-
totic estimates for the transmission eigenvalues. The main
tool in obtaining these results is the derivation of refined
high frequency estimates for the Dirichlet-to-Neumann
operator in the framework of semiclassical analysis. There-
fore these results require ೦∞ regularity for both ೧ and 𝑛
and are summarized in the following theorem.
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Theorem 6. Assume that 𝑛 ∈ ೦∞(೧), 𝜕೧ is of class ೦∞,𝑛(𝑥) ≥ 𝑛0 > 0 for 𝑥 ∈ ೧, and 𝑛 ≠ 1 on 𝜕೧. The follow-
ing hold:

i) There are no transmission eigenvalues in the region{ഊ ∈ Ӂ ∶ |Ӌ(ഊ)| > 𝛾} for some constant 𝛾 > 0. In
this region, ൟ(ഊ)−1 ∶ ೫1(𝜕೧) → 𝐿2(𝜕೧) is bounded,
and if in addition ӓ(ഊ) > 1,Чൟ(ഊ)−1Ч ≤ 𝑐|ഊ|−1 for some 𝑐 > 0.

ii) -et 𝑁(𝑟) ܁ Ѱ {ഊ trans. eigen. |ഊ| ≤ 𝑟}. Then
𝑁(𝑟) = 𝑟Ⴔѷ𝜋2 ∫ᄮ ԕ1 + 𝑛(𝑥)Ⴔ/2ԡ 𝑑𝑥 + ೲ𝜖 ԕ𝑟2+𝜖ԡ
for all 0 < 𝜖 << 1, where the order term depends on𝜖.

We conclude this section by listing a few important
open questions. Although for the spherically symmetric
media it is proven that complex transmission eigenvalues
exist, for general media (೧, 𝑛) it is not known if this is the
case. Also in the case when the contrast 𝑛 − 1 is of one
sign in a neighborhood of 𝜕೧ but otherwise it changes sign
inside ೧, it is not known if real transmission eigenvalues
exist, a question which is important in the use of transmis-
sion eigenvalues to obtain information on the refractive
index 𝑛. Nothing is known about the spectral properties
of the transmission eigenvalue problem in the case when
there is a point ೳ on the boundary 𝜕೧ for which 𝑛 − 1
changes sign in every neighborhood of ೳ inside ೧. Finally
the case of absorbing media, i.e., media with refractive in-
dex 𝑛(𝑥) ܁ 𝑛1(𝑥)+ 𝑖𝑘𝑛2(𝑥) with 𝑛1 and 𝑛2 positive definite
real-valued functions, is not fully understood. Although
the discreteness of transmission eigenvalues is proven un-
der some assumptions on 𝑛1 − 1, nothing is known about
the existence of the eigenvalues and their location in the
complex plane.

Generali[ations
Transmission eigenvalues in scattering by anisotropic
media. Of great interest in many applications is the scat-
tering problem for anisotropic media having support ೧
where the wave propagation of the total field 𝑢 inside ೧
is governed by ٜ ⋅ ೤(𝑥)ٜ𝑢 + ഊ2𝑛(𝑥)𝑢 = 0,
where೤ is a positive definite 3×3 symmetric matrix-valued
function. The same analysis of the injectivity of the far
field operator as previously discussed leads to the follow-
ing transmission eigenvalue problem: find 𝑢 ∈ ೫1(೧) and𝑣 ∈ ೫1(೧) such that

⎧⎪⎨⎪⎩
ٜ ⋅ ೤ٜ𝑢 + ഊ2𝑛𝑢 = 0 in ೧,͐𝑣 + ഊ2𝑣 = 0 in ೧,𝑢 = 𝑣 on 𝜕೧,𝜈 ⋅ ೤ٜ𝑢 = 𝜈 ⋅ ٜ𝑣 on 𝜕೧. (18)

Results on discreteness, existence of real transmission
eigenvalues, and their monotonicity properties in terms
of ೤ and 𝑛 can be found in [CCH16], Sections 3.2 and
4.3, under the assumptions that ೤ − 𝐼 and 𝑛 − 1 have one
sign in ೧. In the same way as for the case of ೤ = 𝐼 one can
show that real transmission eigenvalues can be determined
from the scattering data. In inverse scattering theory, it
is known that in general matrix-valued coefficients cannot
be uniquely determined from the scattering data. Hence,
using real transmission eigenvalues to detect changes in
anisotropicmedia becomes quite important (see [CCH16]
and the references therein). More generally, complete-
ness results on transmission eigenfunctions and Weyl’s es-
timates on the counting function are obtained in [NN21]
for೤ and 𝑛 continuous in a neighborhood of 𝜕೧ satisfying
the following two conditions:়೤(𝑥)𝜈, 𝜈ু ়೤(𝑥)𝜉, 𝜉ু − ়೤(𝑥)𝜈, 𝜉ু ≠ 1 ٔ 𝑥 ∈ 𝜕೧
and for every 𝜉 ∈ ℝႴ ૫ {0} orthogonal to the outward nor-
mal vector 𝜈 at any 𝑥 ∈ 𝜕೧, and়೤(𝑥)𝜈, 𝜈ু 𝑛(𝑥) ≠ 1 for all 𝑥 ∈ 𝜕೧
(the first condition is known as the complementing con-
dition due to Agmon, Douglis, and Nirenberg). Under೦∞ regularity for both the boundary and the coefficients
and assuming that ೤(𝑥) = 𝑎(𝑥)𝐼, where 𝑎 is a scalar func-
tion, the location in the complex plane of the transmission
eigenvalues is studied in [Vod18]. Unfortunately, in this
case (as opposed to themedia with೤ = 𝐼) it is not possible
to prove that there is a half plane of Ӂ free of transmission
eigenvalues. For example, if(𝑎(𝑥) − 1)(𝑎(𝑥)𝑛(𝑥) − 1) < 1 for all 𝑥 ∈ 𝜕೧
it is proven that there are infinitely many transmission
eigenvalues arbitrarily close to the imaginary axis.
Transmission eigenvalues in hyperbolic geometry and
the 3iemann zeta function. The concept of nonscatter-
ing modes and transmission eigenvalues appears in other
scattering configurations. As an example, [BBDCP18] dis-
cusses such a concept for the scattering by objects inside
an infinite waveguide, i.e., an infinite tube with one direc-
tion of propagation. In this section we describe it in con-
nection with scattering theory for automorphic solutions
to the wave equation in the hyperbolic plane with isome-
tries corresponding to a specific group. We refer the reader
to the monograph by Lax and Phillips [LP76] for a discus-
sion on themathematical foundation of wave propagation
in this framework and scattering theory for hyperbolic sur-
faces. Limited to automorphic forms with respect to Fuch-
sian groups of the first kind that has only cusps at infin-
ity, scattering theory has a profound connection to funda-
mental results from analytic number theory. In scattering
theory of automorphic forms the concern has always been
with the poles of the scattering matrix. In [CC19] the first
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effort is made to understand the counterpart of transmis-
sion eigenvalues in this framework, and in the following
we sketch some of its results.

To explain the main ideas we start by recalling some ba-
sic concepts of the hyperbolic surface generated by specific
groups. The hyperbolic planeӇ = {𝑧 = 𝑥 + 𝑖𝑦 ∶ 𝑥 ∈ ℝ, 𝑦 ∈ ℝ+}
is a Riemannian manifold with the complete metric𝑑𝑠2 = 𝑦−2(𝑑𝑥2 + 𝑑𝑦2)
with geodesics the Euclidean semicircles and lines perpen-
dicular to the 𝑥-axis. This differential form on Ӈ is in-
variant with respect to the group of MÚbius transforma-
tions acting on the whole compactified complex planeӁ̂, which are fractional linear transformations ᅅᅤ+ᅆᅇᅤ+ᅈ with𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that 𝑎𝑑 − 𝑏𝑐 = 1. This group is isomor-
phic with 𝑆𝐿2(ℝ) ૫ ү𝐼. Derived for the hyperbolic theory
of wave propagation in the hyperbolic plane [LP76], the
Helmholtz equation in the case of ℝႴ is now replaced by𝑦2͐𝑢 + 𝑠(1 − 𝑠)𝑢 = 0. (19)

Given a large isometry group of Ӈ, a natural way to ob-
tain a hyperbolic surface is by a quotient Γ ૫ Ӈ (the sets
of orbits) for some subgroup Γ of 𝑆𝐿2(ℝ). The fundamen-
tal domain 𝐹 ܁ Γ ૫ Ӈ corresponding to such a subgroup
is a region in Ӈ whose distinct points are not equivalent
(different modulo Γ) and such that any orbit of Γ contains
points in the closure of 𝐹 in the Ӂ̂ topology. There are var-
ious ways to visualize a fundamental domain (see Figure
5), and we refer the reader to the monograph by Iwaniec
[Iwa02] for details and references on this matter. A func-
tion ഃ ∶ Ӈ → Ӂ is called automorphic with respect to Γ
if ഃ(𝛾𝑧) = ഃ(𝑧) for all 𝛾 ∈ Γ, (20)
i.e., ഃ lives on 𝐹 ܁ Γ૫Ӈ. Because of (20), an automorphic
function is completely determined by its values on 𝐹. Now
we are ready to formulate the scattering by a hyperbolic sur-
face Γ૫Ӈ. Let 𝑢𝑖 be a solution of (19). The nonidentically
zero total field 𝑢 ܁ 𝑢𝑖 + 𝑢𝑠 satisfies the equation𝑦2͐𝑢 + 𝑠(1 − 𝑠)𝑢 = 0, 𝑧 = (𝑥, 𝑦) ∈ 𝐹.
On the boundary of 𝐹 periodic boundary conditions are
imposed: 𝑢(𝛾𝑧) = 𝑢(𝑧), 𝑧 ∈ 𝜕𝐹, 𝛾 ∈ Γ,𝜕𝑢𝜕𝜈 (𝛾𝑧) = 𝜕𝑢𝜕𝜈 (𝑧), 𝑧 ∈ 𝜕𝐹, 𝛾 ∈ Γ.
Scattering happens because the incoming free wave 𝑢𝑖
needs to be periodified on 𝐹. In connection with this
scattering problem, we consider the concept of transmis-
sion eigenvalues for fundamental domains generated by
some particular discrete groups, more specifically Fuch-
sian groups of the first kind. A Fuchsian group Γ of the first

kind is a discrete subgroup of 𝑆𝐿2(ℝ) that has a finite num-
ber of generators and a fundamental domain of finite vol-
ume. We further consider Fuchsian groups of the first kind
that are noncocompact, which means that the closure in Ӂ̂
of the fundamental domain is not compact. Such groups
have only cusps (see Figure 4). The cusps are formed by
the two sides of 𝐹 meeting orthogonally at a vertex in 𝜕Ӈ.

Figure 4. Sketch of a hyperbolic surface with two cusps (left)
and part of a hyperbolic cusp (right) isometrically embedded
into ℝ3.

Now, let 𝑦𝑠 and 𝑦1−𝑠 be solutions to (19) which are in-
variant under 𝑧 ↦ 𝑧 + 1. Similarly to the Sommerfeld ra-
diation condition in the Euclidean case (3) we have that𝑢 ܁ 𝑦𝑠 satisfies 𝜕𝑢𝜕𝜈 |||Ӈ − 𝑠𝑢 = 𝑦𝜕𝑢𝜕𝑦 − 𝑠𝑢 = 0.
So if Ӌ(𝑠) > 0, Ӌ(1 − 𝑠) < 0, then 𝑦𝑠 is incoming away
from the cusp (traveling toward the scatteringmedium likeം𝑖𝑘𝑥⋅ᅈ in ℝႴ) and 𝑦1−𝑠 is outgoing toward the cusp (travel-
ing away from the scattering medium like ം−𝑖𝑘𝑥⋅ᅈ in ℝႴ).
For ӓ(𝑠) > 1 and incident field 𝑢𝑖 ܁ 𝑦𝑠 the solution 𝑢(𝑧)
of the above scattering problem is given by an Eisenstein
series (which roughly plays the same role as Fourier series
in the Euclidean case) which as 𝑦 → ∞ within cusps be-
haves as𝛿ೈ೉𝑦𝑠 + 𝜑ೈ೉(𝑠)𝑦1−𝑠 + ೲ((1 + 𝑦−ӓ(𝑠))ം−2𝜋𝑦)
uniformly in 𝑧 ∈ Ӈ, where 𝛿ೈ೉ is the Kronecker delta van-
ishing when ೈ, ೉ are inequivalent cusps. The correspond-
ing scattering matrix isΦ(𝑠) ܁ (𝜑ೈ೉(𝑠)) , where ೈ and ೉ run over all cusps,
and it describes “incoming-to-outgoing” far field behavior
in a similar manner as the far field operator in ℝႴ intro-
duced earlier. The scattering matrix has a meromorphic
continuation to 𝑠 ∈ Ӂ, and the corresponding scatter-
ing poles are the poles of this meromorphic extension of𝜑ೈ೉(𝑠). In [CC19] a transmission eigenvalue associated with
a cusp ೈ is defined as the value ྐྵ ܁ 𝑠(1 − 𝑠) that corre-
sponds to 𝑠 being a zero of the entry 𝜑ೈೈ(𝑠) of the scatter-
ing matrix Φ(𝑠). In particular, if 𝑠 is a zero of 𝜑ೈೈ(𝑠), then
the incident wave 𝑦𝑠 propagates through without seeing
any boundaries of the fundamental domain. In this sense,
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transmission eigenvalues correspond to nonscattering en-
ergies. One could also consider the zeros of off-diagonal
entries 𝜑ೈ೉(𝑠) for two inequivalent cusps ೈ and ೉. This case
wouldmean that an observer sitting at the cusp ೉ sees no ef-
fects of an incident field 𝑦𝑠 coming into themedia from the
cusp ೈ, which corresponds to nontransmitted energies in
the language of waveguides [BBDCP18]. It is known that
the poles of main diagonal terms of the scattering matrix
are also poles for the off-diagonal terms [Iwa02]; however,
such a connection between the zeros of the main diagonal
and off-diagonal terms remains open. Note that in the scat-
tering by hyperbolic surfaces generated by Fuchsian groups
of the first kind a Rellich’s type lemma does not hold and
thus nonscattering is meant in an asymptotic sense.

We conclude this section by giving an explicit expres-
sion for the scattering matrix for two particular examples
of Fuchsian groups of the first kind. In these examples the
transmission eigenvalues (nonscattering energies) are re-
lated to the zeros of the Riemann zeta function, whereas
nontransmitted energies are absent.

Themodular group 𝑆𝐿2(Ӗ) is the subgroup of 𝑆𝐿2(ℝ) con-
taining 2 × 2 matrices with integer entries. The fundamen-
tal domain of 𝑆𝐿2(Ӗ) contains only one inequivalent cusp
(see Figure 5). For themodular group the scatteringmatrix
contains only one element and is given by

𝜑∞∞ = 𝜋1/2 Γ(𝑠 − 12 )Γ(𝑠) 𝜁(2𝑠 − 1)𝜁(2𝑠) , (21)

where 𝜁(𝑠) is the Riemann zeta function.

𝐹cusp ∞only one

12− 12 1−1
𝐹1 = 𝛾1𝐹

12− 12 1−1
cusp at (0, 0)

Figure 5. -eft� Shaded region depicts the Ford fundamental
domain 𝐹 for Γ = 𝑆𝐿2(Ӗ). Right� Shaded region depicts an
equivalent fundamental domain 𝐹1 = 𝛾1𝐹, where 𝛾1 ∶ 𝑧 → −1/𝑧.
The image of 𝐹 under Γ tesselates Ӈ.

The Hecke congruence subgroup Γ0(𝑁) of level 𝑁 for 𝑁 an
integer is defined as

Γ0(𝑁) = {𝛾 ∈ 𝑆𝐿2(Ӗ), 𝛾 ≡ ( ∗ ∗0 ∗ ) (mĎĂ 𝑁)} .
When 𝑁 ܁ ഏ is prime the fundamental domain Γ0(ഏ) ૫ Ӈ
contains only two inequivalent cusps, namely at zero and

infinity, and the scattering matrix is given by

Φ(𝑠) = ( 𝜑∞∞ 𝜑∞0𝜑0∞ 𝜑00 ) = ࿆(𝑠)𝑁ᅗ(𝑠),
where

࿆(𝑠) = 𝜋1/2 Γ(𝑠 − 12 )Γ(𝑠) 𝜁(2𝑠 − 1)𝜁(2𝑠)
and 𝑁ᅗ(𝑠) is a 2 × 2 matrix with nonvanishing entries.

In these two examples we see that, except for ྐྵ = 1 andྐྵ = 1/4 corresponding to trivial zeros 𝑠 = 0 and 𝑠 = 1/2,
i.e., the poles of 𝜁(2𝑠), all the transmission eigenvalues ྐྵ =𝑠(1−𝑠) correspond to 𝑠 being the zeros of 𝜁(2𝑠−1) such thatӋ(2𝑠−1) ≠ 0. Thus, the Riemann hypothesis is equivalent to
the statement that all transmission eigenvalues lie on the
parabola 𝑥 = Ⴔ1Ⴗ + 4𝑦2 except for finitely many trivial ones
(see Figure 6).

𝑥

𝑦 𝑥 = −ႴႵ + 𝑦2Ⴕ

𝑥 = Ⴔ1Ⴗ + 4𝑦2
by the Riemann Hypothesis

Figure 6. #lack dots indicate possible location of transmission
eigenvalues. There are infinitely many transmission
eigenvalues on the inner parabola and all eigenvalues lie
inside the outer parabola. *f the Riemann hypothesis is true,
all transmission eigenvalues lie on the inner parabola. There
are no real transmission eigenvalues except for the trivial
ones, at 0 and 1/4.

In [CC19] the reader can find a few more explicit exam-
ples. However in general for discrete Fuchsian subgroups
it is not possible to derive an explicit expression for the
scattering matrix. We also mention that [CC19] provides
estimates for the counting function of transmission eigen-
values. As this paper remarks, the density of transmission
eigenvalues appears to be related to the work of Phillips
and Sarnack on the existence of cusp forms.
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