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ABSTRACT
We propose a new integral equation formulation to characterize and
compute transmission eigenvalues for constant refractive index that play
an important role in inverse scattering problems for penetrable media.
As opposed to the recently developed approach by Cossonnière and
Haddar [1,2] which relies on a two by two system of boundary integral
equations our analysis is based on only one integral equation in terms
of Dirichlet-to-Neumann or Robin-to-Dirichlet operators which results in
a noticeable reduction of computational costs. We establish Fredholm
properties of the integral operators and their analytic dependence on the
wave number. Further we employ the numerical algorithm for analytic non-
linear eigenvalue problems that was recently proposed by Beyn [3] for the
numerical computation of transmission eigenvalues via this new integral
equation.
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1. Introduction

The transmission eigenvalue problem arises in scattering theory for inhomogeneous media. If n
denotes the refractive index of an inhomogeneous medium with support D ∈ R

m, m = 2, 3, in
acoustic or specially polarized electromagnetic scattering, the transmission eigenvalue problem is
formulated as finding k ∈ C for which the following homogeneous problems

�w + k2nw = 0 in D, (1.1)
�v + k2v = 0 in D, (1.2)

w = v on ∂D, (1.3)
∂w
∂ν

= ∂v
∂ν

on ∂D, (1.4)

have non-trivial solutions. Here we assume that D is bounded and has a connected complement
R
m \ D with sufficiently smooth boundary ∂D, and ν denotes the outward unit normal vector.

Transmission eigenvalues can be seen as the extension of the concept of resonant frequencies for
impenetrable objects to the case of penetrable media. They are related to non-scattering frequencies.
As explained in [4,5], if k is a real transmission eigenvalue and v can be extended outside D as a
solution to the Helmholtz equation, then the extended field does not scatter at this wave number k.
The transmission eigenvalue problem is a non-linear and non-selfadjoint eigenvalue problem that
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2 F. CAKONI AND R. KRESS

is not covered by the standard theory of eigenvalue problems for elliptic equations, and as such in
recent years its analysis has been an attractive subject of investigation. Questions such as discreteness
of transmission eigenvalues, existence of real transmission eigenvalues, location of the transmission
eigenvalues in the complex plane, and in general spectral properties of the transmission eigenvalue
problem under various assumptions on the contrast n− 1, have been the central concerns in various
studies (see e.g. [6–12]). Variousmathematical methods have been developed to study this eigenvalue
problem, including variational methods,[6,10] boundary integral equation methods,[2,13] and semi-
classical analysis.[9,11] On the other hand, it is shown in [14,15] that transmission eigenvalues
can be determined from scattering data which together with the establishment of monotonicity
properties of transmission eigenvalues in terms of the refractive index [6,16] opens the possibility to
use transmission eigenvalues as target signature in the inversemediumproblem. These developments
drove the need to derive numerical approaches for computing transmission eigenvalues based on
finite elements or boundary elements methods.[1,17–20] Since the transmission eigenvalue problem
is non-selfadjoint there is the possibility of complex transmission eigenvalues and, indeed, in [21] it
was shown that this is the case for spherically stratified media. Whether or not there exist complex
transmission eigenvalues for general media, remains an open problem.

In this paper we develop a boundary integral equation approach for the transmission eigenvalue
problem in the case of a constant refractive index. Boundary integral equation methods were first
used in the context of the transmission eigenvalue problem by Cossonnière and Haddar [1,2], who
used Green’s representation formula for v and w to derive a system of two linear boundary integral
equations that are equivalent to the transmission eigenvalue problem. For the corresponding two by
two matrix valued operator which depends non-linearly on the eigenvalue parameter k, Cossonnière
and Haddar analyzed the kernel and also used it to numerically compute transmission eigenvalues.
Here, in this paper we propose a new formulation which leads to only one linear boundary integral
equation that also depends non-linearly on the eigenvalue parameter k. Ourmain idea is to derive the
integral equation from a characterization of the transmission eigenvalues in terms of the Dirichlet-
to-Neumann operator as defined by

Nk,n : ϕ �→ ∂u
∂ν

, (1.5)

where u is the unique solution to

�u + k2nu = 0 in D, (1.6)
u = ϕ on ∂D, (1.7)

assuming that k2 is not an eigenvalue for this problem. Ifwe further assume that k2 is not an eigenvalue
for the case when n = 1, then k is a transmission eigenvalue if and only if the kernel of the operator

M(k) := Nk,n − Nk,1 (1.8)

is non-trivial. Furthermore, if ϕ is such that (Nk,n −Nk,1)ϕ = 0 then the transmission eigenfunctions
w and v, i.e. the non-trivial solutions of (1.1)–(1.4), are the solutions of (1.6)–(1.7) with n and n = 1,
respectively.

The plan of the paper is as follows. In the following Section 2 we will analyze the operator M
given by (1.8) for the case of a constant refractive index n. We will establish that in an appropriate
Sobolev space setting M is Fredholm and analytic in k in all of C except the Dirichlet eigenvalues
that we needed to exclude in the definition ofM. To get rid of the latter restriction, in the subsequent
Section 3 we extend our analysis by replacing the Dirichlet-to-Neumann operator by the Robin-to-
Dirichlet operator. Then, in particular, as a main result we can use our simplified integral equation
approach to reestablish that the set of transmission eigenvalues is discrete. In the final Section 4
we conclude with numerical examples using our integral equation to compute real transmission
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APPLICABLE ANALYSIS 3

eigenvalues by an efficient algorithm that was recently developed by Beyn [3] for analytic non-
linear eigenvalue problems. Besides the reduction in the complexity of the integral equations with
a reduction of the computational costs by about 50 %, an additional advantage of our approach
lies in the fact that the integral equation based on the Dirichlet-to-Neumann operator (or on the
Robin-to-Dirichlet operator) characterizes the interior transmission eigenvalues, i.e. the transmission
eigenvalues for D, without any additional conditions whereas the integral equations from [1,2]
simultaneously characterize both the interior and also the exterior transmission eigenvalues, i.e. the
transmission eigenvalues for the complement of D. Hence, the latter integral equations require
additional conditions to distinguish the interior and exterior eigenvalues within the numerical
computation.

2. Integral equations based on the Dirichlet-to-Neumann operator

In this section we assume that 0 < n �= 1 is constant and let kn := k
√
n. From now on we will write

Nk andNkn forNk,1 andNk,n, respectively. We consider the problem of finding k ∈ C for which there
exists non-zero v ∈ L2(D) and w ∈ L2(D) with w − v ∈ H2(D) satisfying

�w + k2nw = 0 in D, (2.1)
�v + k2v = 0 in D, (2.2)

w = v on ∂D, (2.3)
∂w
∂ν

= ∂v
∂ν

on ∂D. (2.4)

As mentioned above we are concerned with analyzing the kernel of Nkn − Nk and for the time being
we need to assume that k2 and k2n are not Dirichlet eigenvalues for the negative Laplacian in D.
In Section 3 we will discuss how to remedy this restriction. In order to represent the Dirichlet-to-
Neumann operator we use boundary integral operators and to this end we need to introduce the
single-layer potential Sk defined by

(Skψ
)
(x) := 2

∫
∂D

ψ(y)�k(x, y) dsy , x ∈ R
m \ ∂D,

where

�(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i
4
H(1)
0 (k|x − y|) in R

2,

1
4π

eik|x−y|

|x − y| in R
3.

(2.5)

(The factor 2 in the definitionofSk later on avoids the occurrence of a factor 1/2 in our representations
of theDirichlet-to-Neumann and the Robin-to-Dirichlet operator.) It is known (see e.g. [22, Theorem
7.2]) that if ∂D is C1,1-smooth the linear mapping Sk : Hs− 1

2 (∂D) → Hs+1(D) is continuous for
−1 ≤ s ≤ 1. We define the restriction of Sk and of its normal derivative to the boundary ∂D by

(Skψ)(x) := 2
∫
∂D
ψ(y)�(x, y) dsy , x ∈ ∂D, (2.6)

(K ′
kψ)(x) := 2

∫
∂D
ψ(y)

∂

∂νx
�(x, y) dsy , x ∈ ∂D. (2.7)
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4 F. CAKONI AND R. KRESS

Hence (see e.g. [22,23])

Sk : H− 1
2+s(∂D) −→ H

1
2+s(∂D) (2.8)

K ′
k : H− 1

2+s(∂D) −→ H− 1
2+s(∂D) (2.9)

are continuous for −1 ≤ s ≤ 1.
As mentioned above the solution v and w of the transmission problem eigenvalue problem are in

L2�(D), where
L2�(D) := {

u ∈ L2(D) : �u ∈ L2(D)
}
.

Therefore their trace and their normal derivative on the boundary live in H− 1
2 (∂D) and H− 3

2 (∂D),
respectively. Indeed if u ∈ L2�(D) then its trace u ∈ H− 1

2 (∂D) is defined by duality using the identity

〈u, τ 〉
H− 1

2 (∂D),H
1
2 (∂D)

=
∫
D

(
u�w − w�u

)
dx

where w ∈ H2(D) is such that w = 0 and ∂w/∂ν = τ . Similarly, the trace of ∂u/∂ν ∈ H− 3
2 (∂D) is

defined by duality using the identity〈
∂u
∂ν

, τ
〉
H− 3

2 (∂D),H
3
2 (∂D)

= −
∫
D

(
u�w − w�u

)
dx

where w ∈ H2(D) is such that w = τ and ∂w/∂ν = 0. Hence to represent v and w by a single-layer
potential approachwemustworkwith densities inH− 3

2 (∂D) (i.e. for s = −1 in the above).Obviously,
Skψ satisfies the Helmholtz equation, hence we can conclude that Sk : H− 3

2 (∂D) → L2�(D) is
continuous. More importantly, by a duality argument it is possible to extend the jump relations for
single-layer potentials across ∂D to the case of potentials with weaker densities. More specifically, the
following lemma is proven in Theorem 3.1 in [2] (see also [22]).
Lemma 2.1: The single-layer potential Sk : H− 3

2 (∂D) → L2�(D) satisfies

(Skψ)
−
∂D = Skψ in H− 1

2 (∂D),

∂(Skψ)
−

∂ν
|∂D = K ′

kψ + ψ in H− 3
2 (∂D),

where the bounded linear operators

Sk : H− 3
2 (∂D) −→ H− 1

2 (∂D) K ′
k : H− 3

2 (∂D) −→ H− 3
2 (∂D)

are given by (2.6) and (2.7), respectively, and the superscript indicates that the boundary ∂D is
approached from inside D.

The following lemma is a particular case of Theorem 7.17 in [22].
Lemma 2.2: Assume that ∂D is of class C2,1. Then Sk : Hs− 1

2 (∂D) → Hs+ 1
2 (∂D) is Fredholm with

index zero for −1 ≤ s ≤ 1. In addition its kernel does not depend on s in this range.
As a simple consequence of Lemma 2.2 we have the following result.

Corollary 2.3: Assume that ∂D is of class C2,1 and k2 is not a Dirichlet eigenvalue for−� in D. Then
S−1
k : Hs+ 1

2 (∂D) → Hs− 1
2 (∂D) exist and is bounded for −1 ≤ s ≤ 1.
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APPLICABLE ANALYSIS 5

Proof: The standard theory of single-layer potentials implies that the kernel of Sk : H− 1
2 (∂D) →

H
1
2 (∂D) is non-trivial because of our assumption on k2 not to be a Dirichlet eigenvalue, whence

Lemma 2.2 implies the result. �
From our discussion we can now conclude that the Dirichlet-to-Neumann operator

Nk : H− 1
2 (∂D) → H− 3

2 (∂D) for the L2(D) solutions of (1.2) is represented by

Nk = (I + K ′
k)S

−1
k ,

provided that k2 is not a Dirichlet eigenvalue of −� in D.
Now we consider the difference of the Dirichlet-to-Neumann operators corresponding to k and

kn given by
M(k) := (I + K ′

k)S
−1
k − (I + K ′

kn)S
−1
kn (2.10)

and have the following regularity result.
Lemma 2.4: The linear operators

ϕ �→ SkS−1
k ϕ − SknS

−1
kn ϕ (2.11)

from H− 1
2 (∂D) into H2(D) and M(k) : H− 1

2 (∂D) → H
1
2 (∂D) are bounded.

Proof: By definitionM(k)ϕ is the normal derivative on the boundary ∂D of

u := SkS−1
k ϕ − SknS

−1
kn ϕ, ϕ ∈ H− 1

2 (∂D).

We can rewrite u as
u = Sk(S−1

k − S−1
kn )ϕ − (Skn − Sk)S−1

kn ϕ. (2.12)

From Theorem 3.2 in [2] we have that (Skn − Sk) is a pseudo-differential operator of order −7/2
which implies that the operator

(Skn − Sk) : H− 3
2 (∂D) → H2(D) (2.13)

is bounded. By the trace theorem this implies that

(Sk − Skn) : H− 3
2 (∂D) → H

3
2 (∂D)

is also bounded. Now writing
S−1
kn − S−1

k = S−1
k (Sk − Skn)S

−1
kn

and using fromCorollary 2.3 that both S−1
kn : H− 1

2 (∂D) → H− 3
2 (∂D) and S−1

k : H 3
2 (∂D) → H

1
2 (∂D)

are bounded, we find that
S−1
k − S−1

kn : H− 1
2 (∂D) → H

1
2 (∂D) (2.14)

is bounded. Now putting (2.13) and (2.14) into (2.12) together with the boundedness of Sk :
H

1
2 (∂D) → H2(D) and S−1

kn : H− 1
2 (∂D) → H− 3

2 (∂D) shows that the operator (2.11) indeed is
bounded fromH− 1

2 (∂D) intoH2(D). From this the statement onM(k) follows by taking the normal
trace. �

Combining all the above results, we can conclude that k is a transmission eigenvalue if and only
if the kernel ofM(k) : H− 1

2 (∂D) → H
1
2 (∂D) given by (2.10) is non-trivial. To analyze the kernel of

M(k) we want to show thatM(k) : H− 1
2 (∂D) → H

1
2 (∂D) is a Fredholm operator of index zero. To

this end we show thatM(iκ) is coercive for κ > 0.
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6 F. CAKONI AND R. KRESS

Theorem 2.5: Let κ > 0 and κn := κ
√
n. Then

(κ2 − κ2n)M(iκ) : H− 1
2 (∂D) → H

1
2 (∂D)

is coercive, i.e.

(κ2 − κ2n) 〈M(iκ)ϕ,ϕ〉
H

1
2 (∂D),H− 1

2 (∂D)
≥ C‖ϕ‖2

H− 1
2 (∂D)

for all ϕ ∈ H− 1
2 (∂D) and some C > 0. (Here, 〈·, ·〉 denotes the sesquilinear duality pairing.)

Proof: For u, v ∈ H2(D), we transform

∫
D
v(�− κ2) (�− κ2n)u dx

−
∫
D

[
�u�v + (

κ2 + κ2n
)
grad u · grad v + κ2κ2nuv

]
dx

=
∫
D
(v��u −�v�u) dx − (κ2 + κ2n)

∫
D
(v�u + grad u · grad v) dx.

From this, by Green’s theorem we obtain

∫
D
v(�− κ2) (�− κ2n)u dx

−
∫
D

[
�u�v + (

κ2 + κ2n
)
grad u · grad v + κ2κ2nuv

]
dx

=
∫
∂D

(
v
∂�u
∂ν

−�u
∂v
∂ν

)
ds − (

κ2 + κ2n
) ∫

∂D
v
∂u
∂ν

ds.

(2.15)

For v = ū the second domain integral is equivalent to the ‖ · ‖H2 norm as can be seen with the aid of
Green’s representation formula, that is,

∫
D

(|�u|2 + (κ2 + κ2n)| grad u|2 + κ2κ2n |u|2
)
dx ≥ c ‖u‖2H2(D) (2.16)

for all u ∈ H2(D) and some constant c > 0.
Now, for ϕ ∈ H− 1

2 (∂D) we define

u := SiκS−1
iκ ϕ − SiκnS

−1
iκnϕ

which belongs to H2(D) by Lemma 2.4. Then

(�− κ2)(�− κ2n)u = 0 (2.17)

and

�u = κ2 SiκS−1
iκ ϕ − κ2n SiκnS

−1
iκnϕ.

Therefore, we have the boundary conditions

u = 0 and �u = (κ2 − κ2n)ϕ on ∂D. (2.18)
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APPLICABLE ANALYSIS 7

We set v = ū in (2.15) and use (2.18) and
∂u
∂ν

= M(iκ) to obtain

∫
D

[|�u|2 + (κ2 + κ2n)| grad u|2 + κ2κ2n |u|2
]
dx

=
∫
∂D
�u

∂ ū
∂ν

ds = (κ2 − κ2n)

∫
∂D
ϕM(iκ)ϕ ds.

Hence, together with (2.16) we get the coercivity estimate

(κ2 − κ2n)

∫
∂D
ϕM(iκ)ϕ ds ≥ C̃ ‖u‖2H2(D) ≥ C‖ϕ‖2

H− 1
2 (∂D)

(2.19)

for all ϕ ∈ H− 1
2 (∂D) and some constants C̃,C > 0, where for the latter inequality we have used (2.18)

and the definition of the trace of ϕ by duality as in the beginning of this section. �
Theorem 2.6: The operator

M(k)+ k2 − k2n
|k|2 − |kn|2M(i|k|) : H− 1

2 (∂D) → H
1
2 (∂D)

is compact.
Proof: For ϕ ∈ H− 1

2 (∂D) we define

u := SkS−1
k ϕ − SknS

−1
kn ϕ and ui := Si|k|S−1

i|k|ϕ − Si|kn|S
−1
i|kn|ϕ

and let

U := u + k2 − k2n
|k|2 − |kn|2 ui.

Then U ∈ H2(D) by Lemma 2.4 and it satisfies the boundary conditions (see (2.18))

U = 0 and �U = 0 on ∂D. (2.20)

Furthermore, it is straightforward to check that

��U = F(u, ui) (2.21)

where
F(u, ui) := −k2k2nu − (k2 + k2n)�u

− k2 − k2n
|k|2 − |kn|2

[|k|2|kn|2ui − (|k|2 + |kn|2)�ui
] (2.22)

belongs to L2(D). Now, we can apply a regularity theorem on the Poisson equation which guarantees
that the unique solution v ∈ H1

0 (D) of�v = f for f ∈ Hm(D) belongs toHm+2(D) and that the linear
mapping taking f into v is bounded fromHm(D) intoHm+2(D) form = 0, 1, . . . (see Theorem 1.3 in
[24, p.305]). First we show that this property can be extended to solutions v ∈ L2(D) that vanish on
∂D in the sense of theH− 1

2 (∂D) trace. For this we observe from the definition of theH− 1
2 (∂D) trace

as discussed at the beginning of this section that for any harmonic function v ∈ L2(D) vanishing on
the boundary ∂D we have that

∫
D v�wdx = 0 for all w ∈ H2(D) with w = 0 on ∂D. Inserting the

solution w ∈ H1
0 (D) of�w = v which automatically belongs to H2(D) by the above theorem yields

v = 0 in D. For a solution v ∈ L2(D) of�v = f for f ∈ L2(D) with vanishingH− 1
2 (∂D) trace on ∂D
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8 F. CAKONI AND R. KRESS

we denote by ṽ the solution of �ṽ = f in H1
0 (D) and apply the uniqueness result for the difference

v − ṽ to obtain that v = ṽ ∈ H1
0 (D).

Applying this regularity lifting first for �U we obtain that �U ∈ H2(D) with the mapping
F �→ �U bounded from L2(D) into H2(D). Applying the regularity property again for U then in
turn shows U ∈ H4(D) with the mapping �U �→ U bounded from H2(D) into H4(D). Since by
Lemma 2.4 themappings ϕ �→ u and ϕ �→ ui are bounded fromH− 1

2 (∂D) intoH2(D), summarizing
we have that ϕ �→ U is bounded from H− 1

2 (∂D) into H4(D). Therefore, the mapping ϕ �→ ∂νU is
bounded from H− 1

2 (∂D) into H
3
2 (∂D). Now, noting that

∂U
∂ν

= M(k)+ k2 − k2n
|k|2 − |kn|2M(i|k|)

the statement of the theorem follows from the compact embedding of H
3
2 (∂D) into H

1
2 (∂D). �

At this point we would like to remark that the regularity result used in the proof of Theorem
2.6 also gives rise to a different and somewhat shorter proof of Lemma 2.4. However, since in the
subsequent section the corresponding regularity arguments from the proof of Theorem 3.3 are not
sufficient to prove the corresponding Lemma 3.2 we kept the proof of Lemma 2.4 in the same spirit
as that of Lemma 3.2.

Let us denote by E the set of all positive k such that k2 or k2n is a Dirichlet eigenvalue for −� in
D. Then M(k) is defined for k ∈ C \ E and analytic since the kernels of the integral operators are
analytic in k. Then Theorems 2.5 and 2.6 imply the following result.
Theorem 2.7: M(k) : H− 1

2 (∂D) → H
1
2 (∂D) is a Fredholm operator with index zero and analytic

in C \ E

The drawback of this approach is that we have to exclude the Dirichlet eigenvalues, and as a
remedy to this restriction, in the next section we develop similar ideas for a modified approach.

3. Integral equations based on the Robin-to-Dirichlet operator

Instead of using the Dirichlet-to-Neumann operator, we now propose to express the transmission
eigenvalues in terms of the Robin-to-Dirichlet operator. To this end, we define the Robin-to-Dirichlet
operator Rk,n : H− 3

2 (∂D) → H− 1
2 (∂D) by

Rk,n : ϕ �→ u|∂D (3.1)

where u ∈ L2�(D) solves

�u + k2nu = 0 in D, (3.2)
∂u
∂ν

− iηu = ϕ on ∂D (3.3)

where η > 0. Note that an application of Green’s integral theorem shows that Rk,n is well defined for
k ∈ C such that Re (k) > 0 and Im (k) ≥ 0 (one can use η < 0 in the impedance condition instead if
Im (k) < 0). Now k is a transmission eigenvalue corresponding to (2.1)–(2.4) if and only if the kernel
of the operator

P(k; η) := Rk,1 − Rk,n

is non-trivial. Formally, the Robin-to-Dirichlet operator can be written in terms of boundary integral
operators as
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APPLICABLE ANALYSIS 9

Rk,1 = Sk(I + K ′
k − iηSk)−1 and Rk,n = Skn(I + K ′

kn − iηSkn)
−1

where from now on we again use the notation kn := k
√
n.

Lemma 3.1: Assume that ∂D is of class C2,1. Then for −1 ≤ s ≤ 1 the operator (I + K ′
k − iηSk)−1 :

Hs− 1
2 (∂D) → Hs− 1

2 (∂D) exists and is bounded.
Proof: The operators Sk andK ′

k are compact onHs− 1
2 (∂D) since Sk is a pseudo-differential operator

of order−1 as noted above, andK ′
k is also a pseudo-differential operator of order (at least)−1 (in fact

in R
2 the order is −3, since the continuously differentiable kernel of K ′

k has a second derivative with
a logarithmic singularity). Hence obviously (I + K ′

k − iηSk) : Hs− 1
2 (∂D) → Hs− 1

2 (∂D) is Fredholm
with index zero. Thus, to prove the result we need to show that the kernel of (I + K ′

k − iηSk) in
Hs− 1

2 (∂D) is trivial. We first consider s = 0 and assume that ϕ ∈ H− 1
2 (∂D) is in the kernel of

(I + K ′
k − iηSk). Then u := Skϕ is an H1(D) solution of the Helmholtz equation satisfying (in the

sense of the trace approaching ∂D from inside D)

∂u
∂ν

− iηu = 0 on ∂D.

An application of Green’s first integral theorem implies u = 0 in D provided Re (k) > 0 and
Im (k) ≥ 0. On the other hand u := Skϕ is an H1

loc (R
m \ D) radiating solution to the Helmholtz

equation satisfying u = 0 on ∂D because of the jump relations for the single-layer potential across
∂D. The well-known uniqueness for the exterior Dirichlet problem (see e.g. [25]) implies that u = 0
in R

m \ D. The jump property of the normal derivative of Skϕ across ∂D gives ϕ = 0, i.e. the kernel
of (I + K ′

k − iηSk) is trivial in H− 1
2 (∂D). From this, using the Fredholm alternative in dual systems

(see [26, Theorem 4.20]) the kernel is also trivial in Hs− 1
2 (∂D) for −1 ≤ s ≤ 1 . �

We note that the statement of Lemma 3.1 is also true in the case where k = i and η = i because
of the uniqueness for the Robin problem�u − u = 0 in D with ∂νu + u = 0 on ∂D.

We need to analyze the kernel of the operator

P(k; η) := Sk(I + K ′
k − iηSk)−1 − Skn(I + K ′

kn − iηSkn)
−1 (3.4)

which, analogous to the case of the difference of the Dirichlet-to-Neumann operators in Section 2, is
more smoothing than the Robin-to-Dirichlet operator itself. More specifically we have the following
result.
Lemma 3.2: The linear operators

ϕ �→ Sk(I + K ′
k − iηSk)−1ϕ − Skn(I + K ′

kn − iηSkn)
−1ϕ (3.5)

from H− 3
2 (∂D) into H2(D) and P(k; η) : H− 3

2 (∂D) → H
3
2 (∂D) are bounded.

Proof: For ϕ ∈ H− 3
2 (∂D) we define

u := Sk(I + K ′
k − iηSk)−1ϕ − Skn(I + K ′

kn − iηSkn)
−1ϕ, (3.6)

which can be rewritten as

u = Sk

(
(I + K ′

k − iηSk)−1 − (I + K ′
kn − iηSkn)

−1
)
ϕ

(3.7)
−(Skn − Sk)(I + K ′

kn − iηSkn)
−1ϕ.
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10 F. CAKONI AND R. KRESS

Theorem 3.2 in [2] implies that (Skn − Sk) : H− 3
2 (∂D) → H2(D) is bounded and so is the operator

(Skn − Sk)(I + K ′
kn − iηSkn)

−1 : H− 3
2 (∂D) → H2(D) by Lemma 3.1. Next we can write

(
(I + K ′

k − iηSk)−1 − (I + K ′
kn − iηSkn)

−1
)

= (I + K ′
k − iηSk)−1

(
(K ′

k − K ′
kn)− iη(Sk − Skn)

)
(I + K ′

kn − iηSkn)
−1

Again from Theorem 3.2 in [2] we have that (Skn − Sk) : H− 3
2 (∂D) → H

3
2 (∂D) and consequently

(K ′
k − K ′

kn) : H− 3
2 (∂D) → H

1
2 (∂D) are bounded. Hence combining these mapping properties with

Lemma 3.1 and the fact that Sk : H 1
2 (∂D) → H2(D) is continuous shows that the first term of (3.8)

also maps H− 3
2 (∂D) continuously into H2(D).

Finally, by definition P(k; η)ϕ is the trace of u on ∂D and the result of the lemma follows from the
above. �

In view of the note after Lemma 3.1 obviously the statement of Lemma 3.2 is also true in the case
where k is purely imaginary and η = i.

Summarizing up to this point we have that k ∈ Cwith Re (k) > 0 and Im (k) ≥ 0 is a transmission
eigenvalue if and only if the kernel of P(k, η) : H− 3

2 (∂D) → H
3
2 (∂D) as given by (3.4) is non-trivial.

Theorem 3.3: For κ > 0, κn := κ
√
n and η = i, the operator

(κ2n − κ2)P(iκ; i) : H− 3
2 (∂D) → H

3
2 (∂D)

is coercive, i.e.

(κ2n − κ2) 〈P(iκ; i)ϕ,ϕ〉
H

3
2 (∂D),H− 3

2 (∂D)
≥ C‖ϕ‖2

H− 3
2 (∂D)

for all ϕ ∈ H− 3
2 (∂D) and some C > 0.

Proof: Analogous to the proof of Theorem 2.5, for ϕ ∈ H
3
2 (∂D) we consider

u := Siκ(I + K ′
iκ + Siκ)−1ϕ − Siκn(I + K ′

iκn + Siκn)
−1ϕ.

Then again (2.17) is valid and

�u = κ2 Siκ(I + K ′
iκ + Siκ)−1ϕ − κ2nSiκn(I + K ′

iκn + Siκn)
−1ϕ.

The boundary conditions now are

u = P(iκ; i)ϕ, ∂u
∂ν

+ u = 0,
∂�u
∂ν

+�u = (κ2 − κ2n)ϕ on ∂D. (3.8)

We set v = ū in (2.15) and use (2.17) and (3.8) to obtain

−
∫
D

[|�u|2 + (κ2 + κ2n)| grad u|2 + κ2κ2n |u|2)
]
dx

= (κ2 − κ2n)

∫
∂D
ϕP(iκ)ϕ ds + (κ2 + κ2n)

∫
∂D

|u|2 ds.
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APPLICABLE ANALYSIS 11

Hence, together with (2.16) and the trace theorem we get the coercivity estimate

(κ2n − κ2)

∫
∂D
ϕP(iκ; i)ϕ ds ≥ C̃ ‖u‖2H2(D) ≥ C‖ϕ‖2

H− 3
2 (∂D)

(3.9)

for all ϕ ∈ H
3
2 (∂D) and some constants C̃,C > 0. �

Theorem 3.4: The operator

P(k; η)+ k2 − k2n
|k|2 − |kn|2 P(i|k|; i) : H− 3

2 (∂D) → H
3
2 (∂D)

is compact.
Proof: Following the lines of the proof of Theorem 2.6, for ϕ ∈ H− 3

2 (∂D) we define

u := Sk(I + K ′
k − iηSk)−1ϕ − Skn(I + K ′

kn − iηSkn)
−1ϕ,

ui := Si|k|(I + K ′
i|k| + Si|k|)−1ϕ − Si|kn|(I + K ′

i|kn| + Si|kn|)−1ϕ,

and set

U := u + k2 − k2n
|k|2 − |kn|2 ui.

Then U ∈ H2(D) again satisfies
��U = F(u, ui) (3.10)

where F(u, ui) ∈ L2(D) is given by (2.22). On the boundary ∂D we have that

∂U
∂ν

+ U = (1 + iη)u (3.11)

and
∂�U
∂ν

+�U = (1 + iη)�u. (3.12)

and note that by Lemma 3.2 the trace of u on ∂D is in H
3
2 (∂D) and that of�u in H− 1

2 (∂D) with the
corresponding maps from ϕ ∈ H− 3

2 (∂D) into the traces being bounded. We know from standard
elliptic theory, i.e. from the Lax–Milgram theorem, that for F ∈ L2(D) and g := (1 + iη)�u|∂D ∈
H− 1

2 (∂D) there exists a unique solution V ∈ H1(D) to

�V = F in D,
∂V
∂ν

+ V = g on ∂D,

and that the mapping (F, g) �→ V is continuous from L2(D) × H−1/2(∂D) into H1(D) (see [24]).
Then the difference w := V −�U ∈ L2�(D) is harmonic and satisfies ∂νw + w = 0 on ∂D. Hence,
by Green’s integral formula, the trace w|∂D ∈ H− 3

2 (∂D) belongs to the kernel of (I + K ′
0 + S0)

in H− 3
2 (∂D) where K ′

0 and S0 are the boundary integral operators given by (2.6) and (2.7) with
k = 0. By the same reasoning as in Lemma 3.1 we conclude that the kernel of this operator is trivial,
whence�U = V follows. Therefore�U ∈ H1(D) and the linear operator taking ϕ ∈ H− 3

2 (∂D) into
�U ∈ H1(D) is bounded.

Nowwe are in the position to apply a regularity result which implies that the solution v ∈ H1(D) of
�v−v = G inDwithNeumann boundary condition ∂νv = g on ∂D forG ∈ H1(D) and g ∈ H

3
2 (∂D)

belongs to H3(D) and the mapping taking (G, g) from H1(D)× H
3
2 (∂D) into H3(D) is continuous

(see Proposition 7.5 in [24, p.350]). In view of the boundedness of the mapping ϕ �→ u|∂D from
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12 F. CAKONI AND R. KRESS

H− 3
2 (∂D) intoH

3
2 (∂D), applying this regulartity property to v = U shows that U ∈ H3(D) with the

map ϕ → U bounded from H− 3
2 (∂D) into H3(D). Hence the mapping ϕ �→ U |∂D is bounded from

H− 3
2 (∂D) into H

5
2 (∂D) and noting that

U |∂D = P(k; η)+ k2 − k2n
|k|2 − |kn|2 P(i|k|; i)

the statement of the theorem follows from the compact embedding of H
5
2 (∂D) into H

3
2 (∂D). �

In summary, Theorems 3.3 and 3.4 imply the following result, from which in particular we can
reestablish the well-known discreteness of the transmission eigenvalues for the special case of a
constant refractive index.
Theorem 3.5: P(k; η) : H− 3

2 (∂D) → H
3
2 (∂D) is a Fredholm operator with index zero and analytic

in {k ∈ C : Re (k) > 0 and Im (k) ≥ 0}.
Remark 3.6: Our integral equation approach can be used to study the transmission eigenvalue
problem for a more general refractive index n(x) in the same way as in Section 4 in [2] or Section 3.2
in [13]. Fur such a generalization the only assumption needed in addition to the standard assumptions
on the refractive index is that there exists a neighborhood of the boundary ∂D where n(x) is constant.
We leave out the details in this regard, since the emphasis of this paper is not to reproduce known
results on the discreteness of transmission eigenvalues but rather to provide an alternative approach
for computing transmission eigenvalues.

4. Numerical computation

In this final section we will illustrate the use of our boundary integral formulation for the actual
computation of interior transmission eigenvalues. So far, in the literature, the majority of numerical
methods are based on finite element methods applied after a transformation of the homogeneous
interior transmission problem to a generalized eigenvalue problem for a fourth-order partial dif-
ferential equation (see [17–19,27], among others). To our knowledge, boundary integral equations
have been employed for the computation of transmission eigenvalues only by Cossonnière [1] and
Kleefeld [20] using the two by two system of boundary integral equations proposed by Cossonnière
and Haddar [2].

Noting that computing transmission eigenvalues is equivalent to finding wave numbers k such
thatM(k)ϕ = 0 (or P(k)ϕ = 0) has a non-trivial solution following Cossonnière’s idea [1] one would
compute the eigenvalues of the linear operatorM(k), that is, the eigenvalues ofmatrix approximations
ofM(k) and look for those values of k where the smallest eigenvalue is close to zero. However, since
the operatorM(k) is compact, let say, from L2(∂D) to L2(∂D) its eigenvalues will accumulate at zero
and consequently, due to numerical errors, it is impossible to distinguish an eigenvalue zero from
the surrounding eigenvalues close to zero. Instead of trying to remedy this difficulty by considering
a generalized eigenvalue problem with a preconditioner as suggested by Cossonnière [1], we find it
more attractive to use a new algorithm for solving non-linear eigenvalue problems for large-sized
matrices A that are analytic with respect to the eigenvalue parameter proposed by Beyn [3]. This
algorithm has already been applied by Kleefeld [20] for the computation of interior transmission
eigenvalues in three dimensions. However, Kleefeld’s work is based on the two by two system of
Haddar and Cossonnière’s boundary integral equations. In our case, the matrix A will be given by an
approximation of the operatorM or P via numerical quadratures.

To describe Beyn’s algorithm, let �0 ⊂ C be a simply connected domain and A : �0 → C
m×m

an analytic function with values in the space of complex m × m matrices. Consider the non-linear
eigenvalue problem A(k)v = 0 and assume that A has only a finite number  � m of eigenvalues
k1, . . . k in�0 (counted according to their multiplicity). Beyn’s approach uses Keldysh’s formula for
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APPLICABLE ANALYSIS 13

Figure 1. Shape of boundary (4.3) for ε = 0.1 (left), ε = 0.2 (middle), and ε = 0.3 (right).

the principle part of the resolvent A−1(k) and Cauchy’s integral theorem to reduce the non-linear
eigenvalue problem for the matrix A of sizem to a linear eigenvalue problem of size .

For this let� be a simply connected domainwith� ⊂ �0 with analytic boundary curve containing
the eigenvalues k1, . . . k of A. Then Beyn’s algorithm is divided into three steps as follows:

Step 1. Choose a number p ∈ N and matrices B ∈ C
m×m and C ∈ C

m×p at random. Then
compute matrices A0,A1 ∈ C

m×p by evaluating the complex integrals

A0 := 1
2π i

∫
∂�

BA−1(k)C dk and A1 := 1
2π i

∫
∂�

k BA−1(k)C dk (4.1)

numerically by the composite trapezoidal rule (after parameterizing the curve ∂�). For the
integrals in (4.1) we assume counterclockwise orientation of ∂� (although the orientation does
not matter for the algorithm). Note that for the analytic periodic integrands the composite
trapezoidal rule has an exponential convergence rate (see [26, Section 12.1]).
Step 2. Now perform a singular value decomposition

A0 = U�V∗

with orthogonal matrices U ∈ C
m×m and V ∈ C

p×p and a diagonal matrix � ∈ C
m×p with

non-negative entries. With a sufficiently small number tol, in a rank test determine 1 ≤  ≤ p
such that

σ1 ≥ · · · ≥ σ > tol > σ+1 ≈ 0 ≈ · · · ≈ σp

for the diagonal entries of�. If  = p, then increase p and go back to Step 1. Otherwise continue
with Step 3.
Step 3. Compute the matrix Ã ∈ C

× by

Ã := U∗
0A1V0�

−1
0

where the matrices U0 ∈ C
m× and V0 ∈ C

p× are obtained from U and V by deleting the the
last p −  columns, respectively, and�0 = diag (σ1, . . . , σ). Finally, the eigenvalues k1, . . . , k
of A are obtained as the eigenvalues of the × matrix Ã.

Summarizing, the non-linear eigenvalue problem A(k)v = 0 for them × mmatrix A(k) has been
reduced to a linear eigenvalue problem for the  ×  matrix Ã with  considerably smaller than m.
The main computational cost is setting up the matrix A(k) and inverting it for N values k ∈ ∂�

where N is the number of quadrature points used in the trapezoidal rule for the integrals in (4.1).
For the method to work, it is essential that the matrix A0 has rank . If the  eigenvectors of A

and the corresponding  eigenvectors of the transposed matrix A′ are linearly independent, it can be
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14 F. CAKONI AND R. KRESS

Table 1. Interior transmission eigenvalues for ellipse with major axis a = 1.

n = 2 n = 4

b = 1 b = 0.8 b = 0.5 b = 0.3 b = 1 b = 0.8 b = 0.5 b = 0.3

7.37512 7.63521 8.99951 12.32237 2.90260 3.13534 4.33068 6.55275
7.39666 8.13114 9.08377 12.34655 2.90260 3.48518 4.36895 6.56055
7.39666 8.43084 10.97143 16.48683 3.38419 3.54733 5.40918 8.09495
7.98435 8.51387 11.03990 16.49174 3.41205 3.88430 5.60124 8.15743
7.98435 8.95319 12.30361 17.01368 3.41205 4.14574 6.09152 8.88607
8.02926 9.00645 12.31572 17.14467 3.97647 4.49414 6.16797 8.93590
8.02926 9.24582 13.40175 19.44708 3.97647 4.55719 6.29163 9.52869
8.21647 9.34204 13.41828 19.44871 4.54698 5.05324 6.59713 9.75653
8.21647 9.47369 14.21896 19.92760 4.54698 5.06377 6.67731 9.94522
8.67540 9.76915 14.47108 19.94432 5.11604 5.65205 6.98627 10.09228

shown (see [3]) that the possibility of a rank defect in A0 may be considered as non-generic because
of the random choice of the matrices B and C. In [3] it also shown how the degenerate case where
the eigenvectors of A and A′ are not linearly independent can be dealt with by using higher order
moments

∫
∂�

ks BA−1(k)C dk, s = 0, 1, . . . , s0, for some s0 ∈ N.
Before we conclude with two numerical examples, we note that as an immediate consequence of

their definition the transmission eigenvalues k(n) and k(1/n) for constant refractive index n and 1/n,
respectively, are related by

k(1/n) = √
n k(n). (4.2)

Therefore we only present examples with n > 1.
For our first example we choose as boundary of the domain D an ellipse with major axis a = 1

and various choices for the minor axis b. For the second example the boundary curve is given by the
parametric representation

z(t) = (0.75 cos t + ε cos 2t, sin t), 0 ≤ t ≤ 2π , (4.3)

with various choices for the parameter ε. The shape of these curves is presented in Figure 1. For the
contour integrals (4.1) we used ellipses

∂� = {γ + α cos t + iβ sin t : t ∈ [0, 2π ]}

with positive parameters α,β and γ . Throughout our two examples we used 64 quadrature points
for the composite trapezoidal rule for the two integrals in (4.1) and 128 quadrature points for the
approximation of the boundary integral operators. For the latter we employed the approximations
described in [25, Section 3.5] that are exponentially convergent for analytic boundaries.

The numerical results for the transmission eigenvalues for the refractive indexes n = 2 and n = 4
are shown in Tables 1 and 2. As an indication for the accuracy of the algorithm we observed that
the imaginary part of the computed approximations for the transmission eigenvalues was always less
than 10−14 and the condition number of the operator A at these values was always larger than 1013.
We also observed that the peaks of these condition numbers in the neighborhood of the transmission
eigenvalues are extremely narrow. The accuracy, in higher decimals than given in the tables, can
be improved by subdividing the range of transmission eigenvalues to be computed into smaller
subintervals.

Our results for the ellipse with minor axis b = 0.5 and refractive index n = 4 concur with
Cossonnière’s results in [1, Figure 6.9] as obtained via looking for wave numbers where the linear
sampling method fails, that is, where the norm of the regularized solution of the so-called far field
equation peaks. However, as indicated in Table 1 our approach delivers more accurate numerical
values for the transmission eigenvalues.
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APPLICABLE ANALYSIS 15

Table 2. Interior transmission eigenvalues for boundary curve (4.3).

n = 2 n = 4

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.1 ε = 0.2 ε = 0.3

7.77900 7.93886 8.18170 3.27634 3.38239 3.51642
8.19492 8.18432 8.21173 3.59456 3.61769 3.69403
8.70986 8.69102 8.67801 3.73942 3.80771 3.87530
8.78226 8.75290 8.74716 4.07208 4.12712 4.21836
9.23137 9.36038 9.39387 4.37891 4.37938 4.43201
9.34688 9.38534 9.53699 4.74031 4.84546 4.96368
9.59654 9.59959 9.92163 4.79468 4.90266 5.07212
9.72272 9.86253 10.08375 5.27044 5.43618 5.64175
10.06567 10.18017 10.30841 5.30539 5.49621 5.70722
10.22065 10.35121 10.51804 5.84346 5.99979 6.21484

Despite the deficiency of the operator M(k) at the Dirichlet eigenvalues, we found that the
numerical results usingM(k) and P(k; 0.5k) were identical. A heuristic explanation for this effect is
the comparatively low probability for k and k

√
n simultaneously being Dirichlet eigenvalues with the

same eigenfunctions.
Comparing the computational costs for Beyn’s algorithm as applied to Cossonnière and Haddar’s

two by two system on the one hand and our approach on the other hand we recall that the main
numerical effort is setting up the matrix A and computing its inverse. Using m quadrature points
on the boundary in our approach we have to deal withm × mmatrices whereas in Cossonnière and
Haddar’s approach the same numerical accuracy requires 2m × 2m matrices. Doubling the size of
the matrix increases the computational costs for the inverse by a factor 8 = 23. Taking into account
that in setting up the matrices in our approach we also have to invert two matrices altogether we
have a reduction of the computational costs for computing inverses by a factor 3/8. Concerning the
computation of the matrices our approach requires the single-layer operators and the operators for
the normal derivative of the single-layer potential for the two different wave numbers k and k

√
n

whereas for Cossonnière and Haddar’s integral equations also the corresponding operators for the
double-layer potential are required, that is, in our approach we have a reduction of the computation
costs for setting up the matrices by a factor 1/2. Summarizing, using our integral equation approach
reduces the computational costs in the application of Beyn’s algorithm by a little more than 50 % as
compared with the approach of Cossonnière and Haddar.
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