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We introduce a direct, linear sampling approach to imaging in an acoustic waveguide with 
sound hard walls. The waveguide terminates at one end and has unknown geometry due 
to compactly supported wall deformations. The goal of imaging is to determine these 
deformations and to identify localized scatterers in the waveguide, using a remote array 
of sensors that emits time harmonic probing waves and records the echoes. We present a 
theoretical analysis of the imaging approach and illustrate its performance with numerical 
simulations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and formulation of the problem

Sensor array imaging in waveguides has applications in underwater acoustics [3,35], nondestructive evaluation of slender 
structures [16,27], imaging of and in tunnels [4,21,29], etc. It is a particular inverse wave scattering problem that has been 
studied extensively for waveguides with known and simple geometry. The wave equation in such empty waveguides can be 
solved with separation of variables and the wave field is a superposition of propagating, evanescent and possibly radiating 
modes that do not interact with each other. A sample of the existing mathematical literature is [10,12,17,23,24,31–33,37]
and examples of imaging with experimental validation are in [25,26].

The problem is more difficult when the waveguide has variable and unknown geometry. Studies of wave propagation 
in waveguides with random boundary [2,5,6,8,20] show that even small amplitude fluctuations of the walls can have a 
significant scattering effect (i.e., mode coupling) over long distances of propagation, manifested by the randomization of 
the wave field. While experiments like time reversal [5,18] take advantage of such net scattering, the uncertainty of the 
boundary poses a serious impediment to imaging that has lead to proposals of new data processing and measurement 
setups [1,5,7,9,19].

Here we consider a different type of wall deformations, with larger amplitude but compact support, and pursue a linear-
sampling approach for estimating these deformations and localized scatterers in the waveguide. Motivated by the application 
of imaging in tunnels, we consider a waveguide that terminates, as illustrated in Fig. 1. For simplicity, we limit the study 
to acoustic waves and to sound hard walls, but the linear sampling approach can be extended to other boundary conditions 
and to electromagnetic and elastic waves. We refer to [11,13,36] for linear sampling imaging in waveguides with elastic 
waves and to [36] for imaging with electromagnetic waves.
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Fig. 1. Illustration of the imaging setup in a terminating waveguide. The system of coordinates is �x= (x, x⊥) with range x measured from the end wall and 
cross-range x⊥ in the cross-section X of the waveguide. The wall deformation of the waveguide is modeled by the boundary � of the domain D drawn 
in gray. A localized scatterer supported in � is drawn in black. The array of sensors lies in the set A. The source and receiver locations are denoted by �xs

and �xr .

Let us denote by Wo the ideal waveguide with unperturbed walls modeled by the boundary ∂Wo , and use the system of 
coordinates �x = (x, x⊥) ∈Rd shown in Fig. 1, with range x measured along the axis of Wo , starting from the end wall. The 
cross-range coordinates x⊥ lie in the cross-section of Wo , denoted by X ⊂Rd−1. This is a compact Lipschitz domain when 
d = 3, or an interval of finite length |X| when d = 2. In our system of coordinates we have

Wo = (−∞,0) ×X, ∂Wo =
(
(−∞,0) × ∂X

)
∪
(
{0} ×X

)
, (1.1)

and we model the unknown waveguide by

W = Wo ∩ (Rd \D), (1.2)

where D is a Lipschitz domain compactly supported in the sector (−x�, 0) ×X of Wo , with part of the boundary ∂D lying 
in ∂Wo . We denote this part by �o and model the unknown waveguide walls by

� = ∂D \ �o ⊂ Wo, (1.3)

where the bar denotes the closure of �o . The waveguide is filled with a homogeneous medium (e.g. air) but it may contain 
one or more impenetrable or penetrable scatterers supported in the compact set �, satisfying

� ⊂ W ∩
(
(−x�,0) ×X

)
. (1.4)

This is a Lipschitz domain or the union of a few disjoint such domains.
The imaging problem is to estimate � and � using data gathered by an array of JA sensors located in the set

A ⊆ {xA} ×X, xA < x� < 0, (1.5)

called the array aperture. The array probes the waveguide by emitting a time harmonic wave from one of the sensors, 
at location �xs , and measures the echoes u( �xr, �xs) at all the sensors { �xr}r=1,..., JA

. Although s and r are indexes in the 
set {1, . . . , JA }, we use them consistently to distinguish between the source and receiver. The data gathered successively, 
with one source at a time, form the JA × JA response matrix 

(
u( �xr; �xs)

)
1≤r,s≤ JA

. The goal is to show with analysis and 
numerical simulations how the linear sampling approach estimates � and � from this matrix.

The paper is organized as follows: We begin in Section 2 with the estimation of �. The estimation of both � and � is 
considered in Section 3. The assessment with numerical simulations is in Section 4. We end with a summary in section 5.

2. Imaging wall deformations

We define in Section 2.1 the Green’s function in the unperturbed waveguide, which models the incident wave emitted 
by a source in the array. The model of the scattered wave measured at the array is given in Section 2.2. The linear sampling 
approach is analyzed in Section 2.3, for the case of a full aperture array. Imaging with a partial aperture array is described 
in Section 2.4.

2.1. The incident wave field

Let us denote by G( �x, �y) the Green’s function in the ideal waveguide Wo , for an arbitrary source location �y = (y, y⊥) ∈
Wo . The model of the incident wave emitted by the source at location �xs ∈A is then

uinc( �x, �xs) = G( �x, �xs). (2.1)

The Green’s function satisfies the Helmholtz equation(
� �x + k2)G( �x, �y) = −δ(�x− �y), �x ∈ Wo, (2.2)
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where � �x is the Laplacian with respect to �x and k is the wavenumber. At the sound hard walls ∂Wo we have the boundary 
condition

∂G( �x, �y)

∂ �ν �x
= 0, �x ∈ ∂Wo, (2.3)

where �ν �x denotes the outer unit normal at �x, and for �x ∈ Wo with range coordinate x < y we impose the radiation 
condition formulated precisely in Definition 2.1, which states that G( �x, �y) is a bounded and outgoing wave.

Due to the simple geometry of Wo , the Green’s function can be written explicitly using the eigenfunctions {ψ j(x
⊥)} j≥0

of the Laplacian �x⊥ in X, satisfying

−�x⊥ψ j(x
⊥) = λ jψ j(x

⊥), x⊥ ∈ X,

∂ψ j(x
⊥)

∂νx⊥
= 0, x⊥ ∈ ∂X, (2.4)

where νx⊥ is the outer normal at x⊥ , in the plane of X ⊂ Rd−1. The spectral theorem for compact self-adjoint linear 
operators [22, Theorem 2.36] implies that these eigenfunctions form a complete orthonormal basis of L2(X) and that the 
eigenvalues λ j are real and non-negative. The first eigenvalue λo = 0 is simple and corresponds to the constant eigenfunction 
ψ0(x

⊥) = 1/
√|X|. The other eigenvalues satisfy

0 = λo < λ1 ≤ λ2 ≤ . . . , lim
j→∞

λ j = ∞. (2.5)

The expression of the Green’s function is

G( �x, �y) =
∞∑
j=0

i

2β j
ψ j(y

⊥)ψ j(x
⊥)
(

eiβ j |x−y| + eiβ j |x+y|), (2.6)

where

β j =

⎧⎪⎪⎨⎪⎪⎩
√

k2 − λ j, j = 0,1, . . . , J ,

i
√

λ j − k2, j > J ,

(2.7)

and J is the largest index j such that λ j ≤ k2.
Note that at points �x = (x, x⊥) ∈ Wo between the source at �y = (y, y⊥) and the end wall i.e., for range x ∈ (y, 0), 

the expression (2.6) consists of J + 1 propagating modes {ψ j(x
⊥)e±iβ j x}0≤ j≤ J and infinitely many growing and decaying 

(evanescent) modes {ψ j(x
⊥)e±iβ j x} j> J with complex amplitudes that depend on �y. The propagating modes can be under-

stood as superpositions of plane waves with wave vector (±β j, κ j), where κ j ∈ Rd−1 has the square Euclidean norm λ j . 
These waves propagate forward and backward in the range direction, at group speed

c
(dβ j

dk

)−1 = c
β j

k
, j = 0, . . . , J ,

where c is the wave speed in the homogeneous medium that fills the waveguide. The fastest mode indexed by j = 0
propagates at speed c. The slowest mode corresponds to j = J and we assume that λ J < k2, so that β J �= 0. The wavenumber 
is imaginary for indexes j > J and the modes grow or decay exponentially in range.

At points �x with range coordinate x < y, the expression (2.6) consists of J + 1 outgoing (backward) propagating modes 
{ψ j(x

⊥)e−iβ j x}0≤ j≤ J and infinitely many decaying (evanescent) modes {ψ j(x
⊥)e−iβ j x} j> J . This is the explicit statement of 

the radiation condition for the Green’s function.

2.2. The array response matrix

The scattered field u( �x, �xs) due to the incident wave (2.1) is the function in H1
loc(W) satisfying the Helmholtz equation(

� �x + k2)u( �x, �xs) = 0, �x ∈ W, (2.8)

with the Neumann boundary conditions

∂u( �x, �xs)

∂ �ν �x
= 0, ∂Wo \ �o, (2.9)

∂u( �x, �xs)

∂ �ν �x
= −∂G( �x, �xs)

∂ �ν �x
, �x ∈ �, (2.10)
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at the sound hard walls, and the radiation condition at points �x ∈ W with range coordinate x < x� . Due to the assumption 
that the wall deformation is supported in the range interval (x�, 0), with xA < x� , the radiation condition is as in the 
previous section:

Definition 2.1. The radiation condition at points �x = (x, x⊥) ∈W with x < x� means that u( �x, �xs) is a superposition of J +1
backward going modes and infinitely many decaying modes,

u( �x, �xs) =
∞∑
j=0

α j( �xs,�)ψ j(x
⊥)e−iβ j x, �x= (x,x⊥), x < x�. (2.11)

Each term (mode) in the sum is a special solution of the Helmoltz equation in the sector (−∞, x�) ×X of W . The complex 
amplitudes α j depend on �xs and �.

The array is located far from the wall deformation, so the response matrix can be modeled as

u( �xr, �xs) ≈
J∑

j=0

α j( �xs,�)e−iβ j xAψ j(x
⊥
r ), ∀ �xr, �xs ∈ A, (2.12)

where we neglect the evanescent waves.

2.3. The linear sampling approach

In this section we show how to use the linear sampling approach to estimate � from the array response matrix with 
entries (2.12). In the analysis we assume that the sensors are located very close together in the array and we replace sums 
over the sensor indexes by integrals over A. Although we keep the notation �xs and �xr for the source and receiver locations, 
these are now vectors that vary continuously in A. We begin with the case of full array aperture

A = {xA} ×X, (2.13)

and postpone until the next section the discussion for partial aperture. However we remark that the theoretical justification 
of the linear sampling method for partial aperture remains unchanged.

2.3.1. Analysis of the linear sampling approach
Let us introduce the so-called near field integral operator N : L2(A) → L2(A) defined by

Ng( �xr) =
∫
A

dS �xs u( �xr, �xs)g( �xs), ∀g ∈ L2(A), �xr ∈ A, (2.14)

where we note that the assumption (2.13) implies that the cross-range components of �xr , �xs lie in X. By linear superpo-
sition, the function Ng( �xr) represents the scattered wave received at �xr , due to an illumination g( �xs) from all the source 
points �xs ∈ A. The linear sampling method uses this g( �xs) as a control at the array, which focuses the wave at a point �z
in the imaging domain, so that the received wave Ng( �xr) equals G( �xr, �z). It turns out that the control function g is not 
physical (i.e., it is not bounded in L2(A)) if �z /∈D, and this leads to the linear sampling imaging approach.

Our analysis of the linear sampling method is based on the following factorization of the near field operator, proved in 
appendix A:

Lemma 2.2. The operator N defined in (2.14) has the factorization

N = T �→ATA→�, (2.15)

where TA→� : L2(A) → H− 1
2 (�) is the operator

TA→�g( �z) = ∂�ν �z

∫
A

dS �xs G( �z, �xs)g( �xs), ∀g ∈ L2(A), �z ∈ �, (2.16)

and T �→A : H− 1
2 (�) → L2(A) is the operator defined by the trace T �→A f = w|A of the solution of(

� �x + k2)w( �x) = 0, �x ∈ W, (2.17)

∂ w( �x)

∂ �ν �x
= 0, �x ∈ ∂Wo \ �o, (2.18)

∂ w( �x)

∂ �ν �x
= − f ( �x), �x ∈ �, (2.19)
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satisfying a radiation condition as in Definition 2.1.

We conclude from the factorization (2.15) that

range
(
N
)⊂ range

(
T �→A)⊂ L2(A). (2.20)

We also see from (2.17)–(2.19) that the range of T �→A consists of traces on A of functions that satisfy Helmholtz’s equation 
in W with homogeneous Neumann boundary conditions on ∂Wo \ �o and the radiation condition. An example of such a 
function is G( �x, �z) for any �z ∈ D. The next lemma, proved in appendix A, uses this observation to distinguish between 
points inside and outside D.

Lemma 2.3. Let �z be a search point in Wo, between the array and the end wall. Then, �z ∈D if and only if G(·, �z)|A ∈ range
(
T �→A).

Since T �→A is unknown, we cannot determine the support of D directly from Lemma 2.3. We only know the near field 
operator (2.14) with range satisfying (2.20). While G(·, �z)|A ∈ range

(
T �→A) implies the existence of f ∈ H− 1

2 (�) such that 
T �→A f = G(·, �z)|A , it is not clear that f is in range

(
TA→�

)
. The next lemma, proved in appendix A, shows that f can be 

approximated arbitrarily well by some f̃ ∈ range
(
TA→�

)
and, furthermore, that N f̃ ≈ G(·, �z)|A .

Lemma 2.4. The linear operator TA→� is bounded and has dense range in H− 1
2 (�). The linear operator T �→A is compact and has 

dense range in L2(A).

Gathering the results in Lemmas 2.2–2.4, we can now prove the following result for the linear sampling approach:

Theorem 2.5. Let �z be a search point in Wo, between the array and the end wall. For any ε > 0 let gε
�z ∈ L2(A) satisfy

‖Ngε
�z − G(·, �z)‖L2(A) < ε (2.21)

(which obviously exists since the range of N is dense in L2(A)).
There are two possibilities:

1. If �z ∈D, there exists a gε
�z satisfying (2.21) such that the norm ‖TA→�gε

�z‖
H− 1

2 (�)
remains bounded as ε → 0.

2. If �z /∈D, for any gε
�z satisfying (2.21), lim

ε→0
‖TA→� gε

�z‖
H− 1

2 (�)
= ∞.

This theorem says that it is possible to estimate the support of D and therefore the deformed walls �, from the magni-
tude of ‖TA→� gε

�z‖
H− 1

2 (�)
. However, this norm cannot be computed, because we do not know � and therefore TA→� . To 

obtain an imaging method, we use instead the norm ‖gε
�z‖L2(A) . Recalling from Lemma 2.4 that TA→� is a bounded linear 

operator, we have

‖gε
�z‖L2(A) ≥

‖TA→�gε
�z‖

H− 1
2 (�)

‖TA→�‖ , (2.22)

so if z /∈ D, we conclude from case 2 of Theorem 2.5 that lim
ε→0

‖gε
�z‖L2(A) = ∞. However, if z ∈ D we cannot guarantee 

that ‖gε
�z‖L2(A) remains bounded, because there may be large components of gε

�z in the null space of TA→� . Nevertheless, 
we can control such components by searching for the minimum norm solution gε

�z of (2.21) or, similarly, by minimizing 
‖Ng − G(·, �z)‖L2(A) using Tikhonov regularization, as explained in section 2.3.2.

Proof of Theorem 2.5. Let us begin with case 1., for search point �z ∈ D. By Lemma 2.3, we conclude that ∃ f �z ∈ H− 1
2 (�)

such that

T �→A f �z( �x) = G( �x, �z)|A. (2.23)

By Lemma 2.4, since range
(
TA→�

)
is dense in H− 1

2 (�), for any ε > 0 there exists gε
�z ∈ L2(A) such that

‖TA→�gε
�z − f �z‖

H− 1
2 (�)

<
ε

‖T �→A‖ , (2.24)

where we used that T �→A is bounded, per Lemma 2.4. Then, the factorization in Lemma 2.2 and (2.23) give that this gε
�z

satisfies
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‖Ngε
�z − G(·, �z)‖L2(A) = ∥∥T �→A(TA→�gε

�z − f �z
)‖L2(A) < ε. (2.25)

We also have using the triangle inequality in (2.24) that

‖TA→�gε
�z‖

H− 1
2 (�)

≤ ε

‖T �→A‖ + ‖ f �z‖
H− 1

2 (�)
→ ‖ f �z‖

H− 1
2 (�)

as ε → 0.

This proves case 1 of the theorem.
For case 2., let �z /∈D and conclude from Lemma 2.3 that ∀ f ∈ H− 1

2 (�),

‖T �→A f − G(·, �z)‖L2(A) > 0. (2.26)

Nevertheless, since G( �x, �z) ∈ L2(A) for �z /∈ A and range
(
T �→A) is dense in L2(A) by Lemma 2.4, we can construct a 

sequence { fn}n≥1 in H− 1
2 (�) such that

‖T �→A fn − G(·, �z)‖L2(A) <
1

n
, n ≥ 1. (2.27)

Lemma 2.4 also states that range
(
TA→�

)
is dense in H− 1

2 (�), so we can construct a sequence {gn}n≥1 in L2(A) satisfying

‖TA→�gn − fn‖
H− 1

2 (�)
<

1

n
, n ≥ 1. (2.28)

These results, the triangle inequality and Lemma 2.2 give

‖Ngn − G(·, �z)‖L2(A) = ‖T �→ATA→�gn − G(·, �z)‖L2(A)

≤ ∥∥T �→A(TA→�gn − fn)
∥∥

L2(A)
+ ‖T �→A fn − G(·, �z)‖L2(A)

<
‖T �→A‖ + 1

n
. (2.29)

By the Archimedian property of real numbers, ∀ ε > 0, there exists a natural number N such that 
(‖T �→A‖ + 1

)
/n < ε, for 

all n > N , so we have shown that (2.21) holds.

It remains to prove that the sequence 
{
‖TA→� gn‖

H− 1
2 (�)

}
n≥1

cannot be bounded. We argue by contradiction: Suppose 
that this sequence were bounded. Then, we obtain from (2.28) that {‖ fn‖

H− 1
2 (�)

}n≥1 is a bounded sequence, so there exists 

a subsequence { fnm }m≥1 that converges weakly to some f ∈ H− 1
2 (�). By (2.28) this means

TA→�gnm → f , weakly in H− 1
2 (�), (2.30)

and since T �→A is compact by Lemma 2.4, we have

Ngnm = T �→ATA→�gnm → T �→A f , strongly in L2(A). (2.31)

But (2.27) implies that T �→A f = G(·, �z)
∣∣
A , which contradicts (2.26). This proves that the sequence 

{
‖TA→� gn‖

H− 1
2 (�)

}
n≥1

cannot be bounded, as stated in the theorem. �
Remark 1. The statement of Theorem 2.5, which is based on the validity of Lemmas 2.2–2.4, holds for any wave number 
k ∈ R with the exception of a discrete set of isolated values. These exceptional points correspond to either −k2 being a 
Neumann eigenvalue of the Laplacian in D or to values of k2 at which the forward problem (2.8)–(2.11) is not uniquely 
solvable. More details are in appendix A.

2.3.2. The imaging algorithm
Suppose that the imaging region is the sector (xI , 0) ×X of Wo , with xI > xA satisfying

xI − xA >
1

|β J+1| , (2.32)

so that we can neglect all the evanescent modes. Using the mode decomposition of the scattered wave, we can rewrite 
(2.21) as a linear least squares problem for a ( J + 1) × ( J + 1) linear system of equations. Indeed, by linear superposition, 
we can decompose the scattered field as

u( �xr, �xs) =
∞∑

u j( �xr)ψ j(x
⊥
s ), (2.33)
j=0
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where u j( �x) solves (2.8)–(2.11), with G( �x, �xs) replaced in (2.10) by

G j( �x) =
∫
X

dx⊥
s G( �x, �xs)ψ j(x

⊥
s ).

Furthermore, we can represent the array response (2.12) by the ( J + 1) × ( J + 1) matrix U = (U j, j′
)

0≤ j≤ J with entries

U j, j′ =
∫
X

dx⊥
r

∫
X

dx⊥
s u( �xs, �xr)ψ j(x

⊥
r )ψ j′(x

⊥
s ), (2.34)

where we recall the assumption (2.13).
Neglecting the evanescent modes, we obtain from the definition (2.14) of the near field operator that

u( �xr, �xs) ≈
J∑

j, j′=0

U j, j′ψ j(x
⊥
r )ψ j′(x

⊥
s ), (2.35)

and

Ng( �xr) ≈
J∑

j=0

ψ j(x
⊥
r )

J∑
j′=0

U j, j′ g j′ =
J∑

j=0

ψ j(x
⊥
r )
(
Ug
)

j, ∀ �xr ∈ A, (2.36)

where g = (go, . . . , g J )
T is the J + 1 column vector with components

g j =
∫
X

dx⊥
s ψ j(x

⊥
s )g( �xs). (2.37)

Moreover, using the assumption (2.32),

G( �xr, �z) ≈
J∑

j=0

b j, �z ψ j(x
⊥
r ), (2.38)

with

b j, �z =
∫
X

dx⊥ ψ j(x
⊥)G( �x, �z), �x = (xA ,x⊥) ∈ A. (2.39)

Letting b �z be the J + 1 column vector with components (2.39), we obtain that

Ng( �xr) − G( �xr, �z) ≈
J∑

j=0

ψ j(x
⊥
r )
(

Ug − b �z
)

j, ∀ �xr ∈ A. (2.40)

The eigenfunctions are orthonormal, so we can write

‖Ng − G(·, �z)‖L2(A) ≈ ‖Ug − b �z‖2, (2.41)

where ‖ · ‖2 is the Euclidean norm. The summary of the linear sampling algorithm for estimating � is as follows:

Algorithm 2.6.
Input: The ( J + 1) × ( J + 1) matrix U and the imaging mesh.
Processing steps:

1. For a user defined small ε > 0, and for all �z on the imaging mesh, solve the normal equations(
U�U + αεI

)
g �z = U�b �z, (2.42)

where U� is the Hermitian adjoint of U, I is the ( J + 1) × ( J + 1) identity matrix and αε is a positive Tikhonov 
regularization parameter chosen according to the Morozov principle, so that

‖Ug �z − b �z‖2 = ε‖g �z‖2.
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2. Calculate the indicator function

J ( �z) = 1

‖g �z‖2
. (2.43)

Output: The estimate of the support of D is determined by the set of points �z where J ( �z) exceeds a user defined threshold. 
The estimated wall deformation � is the part of the boundary of D contained in Wo .

2.4. Imaging with a partial aperture array

If the array does not cover the entire cross-section of the waveguide,

A = {xA} ×XA, XA ⊂ X, (2.44)

we can calculate the analogue of (2.34), the ( J + 1) × ( J + 1) matrix UA = (UA
j, j′ )0≤ j, j′≤ J with entries

UA
j, j′ =

∫
XA

dx⊥
r

∫
XA

dx⊥
s u( �xs, �xr)ψ j(x

⊥
r )ψ j′(x

⊥
s ), j, j′ = 0, . . . , J . (2.45)

This is related to U by

UA ≈ MUM, (2.46)

where we used the approximation (2.35) and introduced the symmetric, positive semidefinite Gram matrix M =
(M j, j′ )0≤ j, j′≤ J with entries

M j, j′ =
∫

XA

dx⊥ ψ j(x
⊥)ψ j′(x

⊥), j, j′ = 0, . . . , J . (2.47)

While M equals the identity when the array has full aperture, at partial aperture it is poorly conditioned. Thus, we cannot 
calculate U from (2.46) by inverting the Gramian M. If we let

M = Vdiag(σ0, . . . , σ J )VT , (2.48)

be the eigenvalue decomposition of M, with V = (v j)0≤ j≤ J the orthogonal matrix of eigenvectors v j , and with the eigenval-
ues in decreasing order σo ≥ σ1 ≥ . . . ≥ σ J ≥ 0, then we expect that

0 ≤ σ j � 1, J M < j ≤ J , (2.49)

for some J M < J . Then, we approximate U by

Ũ = M†UAM† ≈ M†MUMM†, (2.50)

with

M† = Vdiag(σ−1
0 , . . . , σ−1

J M
,0, . . . ,0)VT . (2.51)

Note that M†M is the orthogonal projection on span(vo, . . . , v J M ).
The imaging algorithm is almost the same as Algorithm 2.6, except that the input matrix is replaced by Ũ, which we can 

compute, and b �z is replaced by

b̃ �z = M†Mb �z . (2.52)

To give a more concrete explanation of the effect of the aperture, let us use definition (2.34) and equation (2.50) to relate 
Ũ to the full aperture response

Ũ =
J M∑

j, j′=0

v jv
T
j′

∫
X

dx⊥
r p j(x

⊥
s )

∫
X

dx⊥
s p j′(x

⊥
s )u( �xr, �xs), (2.53)

where now �xr, �xs ∈ {xA } ×X and

p j(x
⊥) =

J∑
vl, jψl(x

⊥). (2.54)

l=0
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The vector (2.52) is

b̃ �z =
J M∑

j=0

v j

∫
X

dx⊥
r p j(x

⊥
r )G

( �xr, �z), (2.55)

and if we use g defined in (2.37), we obtain

‖Ũg − b̃ �z‖2
2 =

J M∑
j=0

∣∣∣∣∣∣
∫
X

dx⊥
r p j(x

⊥
r )

⎡⎣∫
X

dx⊥
s u( �xr, �xs )̃g

( �xs) − G
( �xr, �z)

⎤⎦∣∣∣∣∣∣
2

, (2.56)

with

g̃( �xs) =
J M∑

j=0

p j(y
⊥)vT

j g =
J M∑

j=0

p j(x
⊥
s )

∫
X

dx⊥ p j(x
⊥)g

(
(xA ,x⊥)

)
. (2.57)

We can also define the analogue of (2.35)

ũ( �x, �y) =
J∑

l,l′=0

Ũl,l′ψl(x
⊥)ψl′(y

⊥)

=
J M∑

j, j′=0

p j(x
⊥)p j′(y

⊥)

∫
X

dx⊥
r p j(x

⊥)

∫
X

dx⊥
s p j′(x

⊥
s )u( �xr, �xs), (2.58)

for all �x, �y ∈ {xA } ×X.
Note that {p j(x

⊥)}0≤ j≤ J is an orthogonal set in span{ψ j(x
⊥), 0 ≤ j ≤ J }, satisfying∫

X

dx⊥ p j(x
⊥)p j′(x

⊥) = δ j, j′ ,
∫

XA

dx⊥ p j(x
⊥)p j′(x

⊥) = σ jδ j, j′ . (2.59)

Therefore, ̃u, ̃b �z and ̃g are projections of their continuum aperture counterparts on the subspace span{p j(x
⊥), 0 ≤ j ≤ J M}. 

The second relation in (2.59) shows that σ j ∈ [0, 1] and we must have

p j(x
⊥) ≈ 0 in XA, for j = J M + 1, . . . , J , (2.60)

and

p j(x
⊥) ≈ 0 in X \XA, for σ j ≈ 1. (2.61)

We verify in the next section, for a two dimensional waveguide, that σ j ≈ 1 for 0 < j < J M , where J M = � J |XA|/|X|� and 
|XA|, |X| are the lengths of the aperture and cross-section of the waveguide. Thus, the projection limits the support of the 
functions to the array aperture A.

2.4.1. Illustration in a two dimensional waveguide
In two dimensions, the cross-section of the waveguide is the interval X = (0, |X|) of length |X|. For the purpose of 

explanation, we consider the array aperture

A = {xA} ×XA, XA = (0, |XA|), |XA| < |X|,
although the algorithm works1 for any interval XA contained in (0, |X|). With our chosen XA and using the eigenfunctions 
(2.4) of the Laplacian

ψ0(x
⊥) = 1√|X| , ψ j(x

⊥) =
√

2

|X| cos

(
π jx⊥

|X|
)

, j ≥ 1, (2.62)

we obtain that the Gram matrix M is

1 As an illustration, we present in Fig. 6 results for XA = (0.3|X|, 0.7|X|)..
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M j, j′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|XA|
|X| , j = j′ = 0,

|XA|
|X|

√
2 sinc

(
π j′ |XA|

|X|
)

, j = 0, 1 ≤ j′ ≤ J ,
|XA|
|X|

√
2 sinc

(
π j |XA|

|X|
)

, j′ = 0, 1 ≤ j ≤ J ,
|XA|
|X|

[
sinc

(
π( j − j′) |XA|

|X|
)

+ sinc
(
π( j + j′) |XA|

|X|
)]

, 1 ≤ j, j′,≤ J .

(2.63)

The eigenvalues of M are related to the eigenvalues of the (2 J + 1) × (2 J + 1) prolate matrix [30,34], which is symmetric 
and Toeplitz

T =

⎛⎜⎜⎜⎜⎜⎜⎝

t0 t1 t2 . . . t2 J

t1 t0 t1 . . . t2 J−1

t2 t1
. . .

. . .
...

...
. . .

. . . t1
t2 J . . . . . . t1 t0.

⎞⎟⎟⎟⎟⎟⎟⎠ , t j = |XA|
|X| sinc

(
π j

|XA|
|X|

)
. (2.64)

To make the connection to M, we rewrite T as the matrix

T j, j′ = |XA|
|X| sinc

(
π( j − j′) |XA|

|X|
)

, − J ≤ j, j′ ≤ J , (2.65)

using that t j− j′ = T j, j′ , for − J ≤ j′ ≤ j ≤ J . This matrix has J odd eigenvectors {τ o
j }1≤ j≤ J for eigenvalues {σ o

j }1≤ j≤ J and 
J + 1 even eigenvectors {τ e

j}0≤ j≤ J for eigenvalues {σ e
j }0≤ j≤ J . Odd and even means that the components τ o

l, j and τ e
l, j of the 

eigenvectors satisfy

τ o
−l, j = −τ o

l, j, τ e
−l, j = τ e

l, j, l = 1, . . . , J .

We are interested in the even spectrum of T, which determines the eigenvalues σ j = σ e
j of M, with the eigenvectors 

given by

v j = (v0, j, . . . , v J , j)
T , vl, j =

{√
2τ e

0, j, l = 0
τ e

l, j, 1 ≤ l ≤ J .
(2.66)

Then, we conclude from the known properties [30] of the spectrum of T that σ j ≈ 1 for 0 ≤ j < J M =
⌊

J |XA|
|X|
⌋

, and that 

σ j ≈ 0 for j > J M . Moreover, the orthogonal functions p j(x
⊥) defined in (2.54) are trigonometric polynomials supported 

in XA for 0 ≤ j < J M and in X \ XA for j > J M , as stated in the previous section. At the threshold index j = J M , the 
polynomial p J M (x⊥) is sharply peaked at the end of the interval XA [30].

3. Imaging inside the waveguide with wall deformations

The analysis of the linear sampling method for estimating both the support � of scatterers in the waveguide and the 
wall deformation � is very similar to that in the previous section, so we do not include it here and state directly the results.

The near field operator is defined as in (2.14), using the scattered wave u( �xr, �xs) at the array, and its factorization is 
similar to (2.15)

N = T �,�→ATA→�,�, (3.1)

where the operators T �,�→A and TA→�,� are the analogues of T �→A and TA→� defined in Lemma 2.2.
In the case of an impenetrable scatterer, the field u( �x, �xs) satisfies(

� �x + k2)u( �x, �xs) = 0, �x ∈ W \ �, (3.2)

∂u( �x, �xs)

∂ �ν �x
= 0, �x ∈ ∂Wo \ �o, (3.3)

∂u( �x, �xs)

∂ �ν �x
= −∂G( �x, �xs)

∂ �ν �x
, �x ∈ �, (3.4)

Bu( �x, �xs) = −BG( �x, �xs), �x ∈ ∂�, (3.5)

and the radiation condition in Definition 2.1, where Bu = u if the scatterer is sound soft and Bu = ∂�ν �x u if it is sound hard 
(or more generally Bu maybe be a combination of Robin type).
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For a penetrable scatterer, modeled by the square n2( �x) of the index of refraction, with positive real part �(n2) > 0 and 
non-negative imaginary part �(n2) ≥ 0, and with support of n2( �x) − 1 in �, the scattered field satisfies(

� �x + k2n2( �x)
)
u( �x, �xs) = −k2(n2( �x) − 1)G( �x, �xs), �x ∈ W, (3.6)

∂u( �x, �xs)

∂ �ν �x
= 0, �x ∈ ∂Wo \ �o, (3.7)

∂u( �x, �xs)

∂ �ν �x
= −∂G( �x, �xs)

∂ �ν �x
, �x ∈ �, (3.8)

and the radiation condition in Definition 2.1.
The operators T �,�→A and TA→�,� are defined as in Lemma 2.2, with � replaced by � ∪ ∂�, when the scatterer is 

sound hard.
For a sound soft scatterer we define TA→�,� : L2(A) → H− 1

2 (�) × H
1
2 (∂�) by

TA→�,�g( �z, �z′) =
⎛⎝∂�ν �z

∫
A

dS �xs G( �z, �xs)g( �xs),

∫
A

dS �xs G( �z′, �xs)g( �xs)

⎞⎠ , (3.9)

for arbitrary points �z ∈ � and �z′ ∈ ∂� and for arbitrary g ∈ L2(A). The operator T �,�→A : H− 1
2 (�) × H

1
2 (∂�) → L2(A)

takes arbitrary functions f� ∈ H− 1
2 (�) and f∂� ∈ H

1
2 (∂�) and returns the trace T �,�→A( f�, f∂�) = w

∣∣
A of the solution of(

� �x + k2)w( �x) = 0, �x ∈ W \ �, (3.10)

∂ w( �x)

∂ �ν �x
= 0, �x ∈ ∂Wo \ �o, (3.11)

∂ w( �x)

∂ �ν �x
= − f�( �x), �x ∈ �, (3.12)

w( �x) = − f∂�( �x), �x ∈ ∂�, (3.13)

satisfying the radiation condition as in Definition 2.1.
For a penetrable scatterer, the operator TA→�,� : L2(A) → H− 1

2 (�) × H1(�) is

TA→�,�g( �z, �z′) =
⎛⎝∂�ν �z

∫
A

dS �xs G( �z, �xs)g( �xs),

∫
A

dS �xs G( �z′, �xs)g( �xs)

⎞⎠ , (3.14)

for arbitrary points �z ∈ �, �z′ ∈ � and functions g ∈ L2(A). Moreover, the operator T �,�→A : H− 1
2 (�) × H1(�) → L2(A) is 

defined by the trace T �,�→A( f�, f�) = w
∣∣
A of the solution of the boundary value problem(

� �x + k2n2( �x)
)

w( �x) = −k2(n2( �x) − 1
)

f�( �x), �x ∈ W, (3.15)

∂ w( �x)

∂ �ν �x
= 0, �x ∈ ∂Wo \ �o, (3.16)

∂ w( �x)

∂ �ν �x
= − f�( �x), �x ∈ �, (3.17)

satisfying a radiation condition as in Definition 2.1, for arbitrary f� ∈ H− 1
2 (�) and f� ∈ H1(�).

The analogue of Theorem 2.5 is:

Theorem 3.1. Let �z be a search point in Wo, between the array and the end wall. For any ε > 0 let gε
�z ∈ L2(A) satisfy

‖Ngε
�z − G(·, �z)‖L2(A) < ε. (3.18)

Let H denote H− 1
2 (� ∪∂�) in the case of a sound hard scatterer, or H− 1

2 (�) ∪ H
1
2 (∂�) for a sound soft scatterer, or H− 1

2 (�) ∪ H1(�)

for a penetrable scatterer. There are two possibilities:

1. If �z ∈D ∪ �, there exists a gε
�z satisfying (3.18), such that ‖TA→�,�gε

�z‖H remains bounded as ε → 0.

2. If �z /∈D ∪ �, for any gε
�z satisfying (3.18), lim

ε→0
‖TA→�,� gε

�z‖H = ∞.
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Fig. 2. Reconstruction of wall deformations shown with a solid black line. The abscissa is range and the ordinate is cross-range scaled by |X|. Full aperture 
data and J + 1 = 10.

Remark 2. The statement of Theorem 3.1 also holds for any wave number k ∈ R with the exception of a discrete set of 
isolated values. In this case, in addition to the exceptional wave numbers in Remark 1, one has to exclude the values of k
for which −k2 is an eigenvalue of the Laplacian in � with the respective boundary condition in the case of impenetrable 
scatterer or a transmission eigenvalue in � in the case of penetrable scatterer (for the latter see [15]).

As in the previous section, the imaging is based on the indicator function 1/‖g �z‖2, which is expected to be very small 
for points �z /∈D∪�. Algorithm 2.6 remains unchanged, which is useful because in practice it is not known if the waveguide 
is empty or not. The case of a partial aperture array is handled the same way as in section 2.4.

4. Numerical results

We assess the performance of the linear sampling algorithm using numerical simulations in a two dimensional waveg-
uide. All the coordinates are scaled by the width |X| of the waveguide, and we vary the wavelength to get a smaller or 
larger number of propagating modes

J + 1 =
⌊

k
|X|
π

⌋
+ 1.

The array data u( �xr, �xs) are obtained by solving the wave equation in the sector (−8|X|, 0) × (0, |X|) of the waveguide, 
using the high performance multi-physics finite element software Netgen/NGSolve [28] and a perfectly matched layer at the 
left end of the domain. The separation between the sensors is of the order of the wavelength, more precisely: X

25 in the 
case of 10 and 20 propagating modes, and X

55 in the case of 50 propagating modes. The matrices U and UA are calculated 
as in (2.34) and (2.45), by approximating the integrals with Simpson’s quadrature rule. The data are contaminated with 2% 
multiplicative noise, meaning that the i j-th entry of the contaminated matrix is Uij(1 + 0.02δ ) where δ is a uniformly 
distributed random number between 0 and 1.

The imaging region is (−4|X|, 0) × (0, |X|) and the array is at range xA = −5|X|. The images are obtained with Algo-
rithm 2.6 in the case of a full aperture A = {xA } × (0, |X|) or its modification explained in section 2.4 in the case of partial 
aperture A = {xA } × (0, |XA|), with |XA| < |X|. For better visualization we display the logarithm of the indicator function 
(2.43).

The first results, in Fig. 2–4 are obtained with a full aperture. In Fig. 2 we show the reconstruction of wall deformations 
near the end of the waveguide, for a lower frequency probing wave corresponding to J + 1 = 10 propagating modes. The 
resolution improves at higher frequencies, as illustrated in Fig. 3, where we show reconstructions of wall deformations using 
J + 1 = 10, 20 and 50 propagating modes.

In Fig. 4 we display images in a waveguide with wall deformations and a scatterer inside. The waveguide supports 50
propagating modes. The scatterer is impenetrable, with sound soft boundary in the top plot, and it is penetrable in the 
bottom plot.

The effect of the aperture is illustrated in Fig. 5, in the waveguide considered in the top plot of Fig. 2, but this time the 
number of propagating modes is increased to 20. As expected, the image is better for the larger aperture, but even when 
|XA|/|X| = 0.4, the wall deformation is clearly seen.

5. Summary

We analyzed a direct approach to imaging in a waveguide with reflecting walls and perturbed geometry. The perturbation 
consists of localized wall deformations that are unknown and are to be determined as part of the imaging. The waveguide 
may be empty or it may contain some localized, unknown scatterers. The data are gathered by an array of sensors that 
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Fig. 3. Reconstruction of wall deformations shown with a solid black line. The abscissa is range and the ordinate is cross-range, scaled by |X|. Full aperture 
data and from top to bottom: J + 1 = 10, 20 and 50.

Fig. 4. Reconstruction of wall deformations and a scatterer shown with a solid black line. The abscissa is range and the ordinate is cross-range, scaled by 
|X|. Full aperture array data and J + 1 = 50. Top: sound-soft scatterer. Bottom: penetrable scatterer.

emits time harmonic probing waves and measures the scattered waves. Ideally, the array spans the entire cross-section of 
the waveguide, but we also consider partial aperture arrays. Starting from first principles, we established a mathematical 
foundation of the imaging algorithm. We also assessed its performance using numerical simulations in a two dimensional 
waveguide.
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Appendix A. Proofs of Lemmas 2.2–2.4

We analyze first in Section A.1 the forward problem (2.8)–(2.11) for the scattered wave field. Then we prove the Lem-
mas 2.2–2.4 in Sections A.2–A.4.

A.1. Forward problem

Let us introduce the truncated waveguide

WL = W ∩ (xL,0) ×X, xL < xA < 0, (A.1)

between the wall at x = 0 and the truncation boundary
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Fig. 5. Reconstruction of wall deformations shown with a solid black line. The abscissa is range and the ordinate is cross-range, scaled by |X|. Waveguide 
with J + 1 = 20. From top to bottom: (0, 0.9|X|), (0, 0.6|X|) and (0, 0.4|X|) aperture.

Fig. 6. Reconstruction of wall deformations shown with a solid black line. The abscissa is range and the ordinate is cross-range, scaled by |X|. Waveguide 
with J + 1 = 20. (0.3|X|, 0.7|X|) aperture.

L = {xL} ×X, (A.2)

and show that solving the problem (2.8)–(2.11) in the unbounded W is equivalent to solving the following boundary value 
problem in WL :(

� �x + k2)u( �x, �xs) = 0, �x ∈ WL, (A.3)

∂u( �x, �xs)

∂ �ν �x
= 0, �x ∈ ∂WL \ �o, (A.4)

∂u( �x, �xs)

∂ �ν �x
= −∂G( �x, �xs)

∂ �ν �x
, �x ∈ �, (A.5)

∂u( �x, �xs)

∂ �ν �x
= �ku( �x, �xs), �x ∈ L. (A.6)

Here we introduced the Dirichlet to Neumann map (see also [12,36])

�k : Ĥ
1
2 (L) → Ĥ− 1

2 (L), �k g( �x)
∣∣
L =

∞∑
j=0

iβ j g jψ j(x
⊥), (A.7)

defined for all g ∈ Ĥ
1
2 (L), with components

g j =
∫
X

dx⊥ ψ j(x
⊥)g((xL,x

⊥)). (A.8)

The subspaces Ĥ
m
2 (L) of H

m
2 (L) for m = ±1 correspond to functions that satisfy Neumann boundary conditions,

Ĥ
m
2 (L) = closure

{
v(x⊥) ∈ span{ψ j(x

⊥), j ≥ 0} s.t.
∞∑

(1 + λ j)
m
2 |v j|2 < ∞

}
, (A.9)
j=0
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where

v j =
∫
X

dx⊥ ψ j(x
⊥)v(x⊥). (A.10)

The norm in Ĥ
m
2 (L) is

‖v‖
Ĥ

m
2 (L)

=
[ ∞∑

j=0

(1 + λ j)
m
2 |v j|2

] 1
2

(A.11)

and the duality pairing between Ĥ− m
2 (L) and Ĥ

m
2 (L) is

〈v, w〉 =
∞∑
j=0

v�
j w j, ∀v ∈ Ĥ− m

2 (L), ∀w ∈ Ĥ
m
2 (L), (A.12)

where the star denotes complex conjugate.

Lemma A.1. The map �k is bounded for any k. The map �i is negative definite and the map �k − �i is compact.

Proof. We have by the definition (A.7) that

‖�k g‖2

Ĥ− 1
2 (L)

=
∞∑
j=0

(1 + λ j)
− 1

2 |β j g j|2 =
∞∑
j=0

(1 + λ j)
1
2 |g j|2 |β j|2

1 + λ j
≤ C‖g‖2

Ĥ
1
2 (L)

,

where we used definition (2.7) of β j to obtain the bound

|β j|2
1 + λ j

= |k2 − λ j|
1 + λ j

≤ C,

with constant C > 0 independent of j. This shows that �k is bounded, for any k.
Using the duality pairing (A.12), the definition (2.7) with k replaced by i so that β j becomes i(1 + λ j)

1
2 , and

�i g( �x)
∣∣
L = −

∞∑
j=0

(1 + λ j)
1
2 g jψ j(x

⊥), ∀ g ∈ Ĥ
1
2 (L), (A.13)

we have for all g ∈ Ĥ
1
2 (L) that

〈�i g, g〉 = −
∞∑
j=0

(1 + λ j)
1
2 |g j|2 = −‖g‖2

Ĥ
1
2 (L)

,

so �i is negative definite.
We also have from (A.7) and (A.13) that

(�k − �i)g( �x)
∣∣
L =

∞∑
j=0

[
iβ j + (1 + λ j)

1
2
]

g jψ j(x
⊥), ∀ g ∈ Ĥ

1
2 (L), (A.14)

and we now show that in fact (�k −�i)g ∈ Ĥ
1
2 (L). Then, the compact embedding of Ĥ

1
2 (L) in Ĥ− 1

2 (L) gives that �k − �i
is compact.

Indeed, we have∥∥(�k − �i)g
∥∥2

Ĥ
1
2 (L)

=
∞∑
j=0

(1 + λ j)
1
2
∣∣iβ j + (1 + λ j)

1
2
∣∣2|g j|2

=
∞∑
j=0

(1 + λ j)
− 1

2 |g j|2
∣∣∣(iβ j +√1 + λ j

)√
1 + λ j

∣∣∣2
≤ C‖g‖2

Ĥ− 1
2 (L)

, (A.15)

for some positive constant C , because
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∣∣∣(iβ j +√1 + λ j

)√
1 + λ j

∣∣∣≤ C1, 0 ≤ j ≤ J , (A.16)

and (
iβ j +√1 + λ j

)√
1 + λ j =

(√
1 + λ j −

√
λ j − k2

)√
1 + λ j

= k2 + 1

1 +
√

λ j − k2/
√

λ j + 1

≤ C2, j > J , (A.17)

where C1 and C2 are positive constants. Thus, (A.15) holds with C = max{C2
1, C2

2}. �
A.1.1. Connection between the scattering problems in W and WL

Since problem (2.8)–(2.11) is stated in the infinite domain W and problem (A.3)–(A.6) is stated in the truncated domain 
WL , we need the following lemma to make the connection:

Lemma A.2. Consider an arbitrary f ∈ Ĥ
1
2 (L) with the decomposition

f ( �x)
∣∣
L =

∞∑
j=0

f jψ j(x
⊥). (A.18)

There exists a unique solution w ∈ H1
loc

(
(−∞, xL) ×X

)
of the problem(

� �x + k2)w( �x) = 0, �x ∈ (−∞, xL) ×X, (A.19)

∂ w( �x)

∂ �ν �x
= 0, �x ∈ (−∞, xL) × ∂X (A.20)

w( �x) = f ( �x), �x ∈ L, (A.21)

that satisfies a radiation condition as in Definition 2.1.

Proof. From the radiation condition we know that w is an outgoing and bounded wave that has the decomposition

w( �x) =
∞∑
j=0

γ je
−iβ j xψ j(x

⊥), ∀ �x = (x,x⊥), x < xL, x
⊥ ∈X. (A.22)

This is a solution of (A.19)–(A.21) if

γ j = f je
iβ j xL , j ≥ 0, (A.23)

so the expression (A.22) becomes

w( �x) =
∞∑
j=0

f je
−iβ j(x−xL)ψ j(x

⊥). (A.24)

Let us check that this is a function in H1
loc

(
(−∞, xL) ×X

)
.

We have, for any ξ < xL , by the orthonormality of the eigenbasis {ψ j} j≥0 that

‖w‖2(
(−ξ,xL)×X

) =
xL∫

ξ

dx

∫
X

dx⊥|w( �x)|2

= (xL − ξ)

J∑
j=0

| f j|2 +
∞∑

j= J+1

| f j|2
xL∫

ξ

dx e2|β j |(x−xL)

≤ C
∞∑
j=0

| f j|2 = C‖ f ‖2
L2(L)

≤ C‖ f ‖2

Ĥ
1
2 (L)

, (A.25)

where C is a positive constant that depends on ξ . Furthermore, using
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∇�xw( �x) =
∞∑
j=0

f je
−iβ j(x−xL)

(
− iβ jψ j(x

⊥),∇ψ j(x
⊥)
)
, (A.26)

the orthogonality relation∫
X

dx⊥ ∇ψ j(x
⊥) · ∇ψ j′(x

⊥) = λ jδ j, j′ ,

and definition (2.7) of the mode wavenumbers, we obtain

‖∇�xw‖2(
(−ξ,xL)×X

) =
xL∫

ξ

dx
[ J∑

j=0

(β2
j + λ j)| f j|2 +

∞∑
j= J+1

(|β j|2 + λ j)| f j|2e2|β j |(x−xL)
]

= (xL − ξ)k2
J∑

j=0

| f j|2 + 2
∞∑

j= J+1

(1 + λ j)
1
2 | f j|2

[
1 − e−2|β j |(xL−ξ)

]
(λ j − k2

2 )√
(λ j − k2)(λ j + 1)

≤ C ′‖ f ‖2

Ĥ
1
2 (L)

, (A.27)

for another positive constant C ′ that depends on ξ . The bounds (A.25)–(A.27) and f ∈ Ĥ
1
2 (L) imply that w ∈

H1
loc

(
(−∞, xL) ×X

)
.

It remains to prove the uniqueness of the solution. If both w and w ′ were solutions, then w − w ′ would also be a 
solution, for f replaced by 0 in (A.6). Then, the estimates (A.25)–(A.27) give that w − w ′ = 0, so the solution is unique. �
Theorem A.3. The scattering problem (2.8)–(2.11) is equivalent to the problem (A.3)–(A.6).

Proof. Suppose that u ∈ H1
loc(W) satisfies (2.8)–(2.11). Then, it has the mode expansion

u( �x, �xs) =
∞∑
j=0

α jψ j(x
⊥)e−iβ j x, ∀ �x ∈ (−∞, xL) ×X, (A.28)

where we suppressed the dependence of α j on �xs in the notation. We conclude that

u( �x, �xs)
∣∣
L =

∞∑
j=0

α jψ j(x
⊥)e−iβ j xL (A.29)

is in Ĥ
1
2 (L) and using definition (A.7),

�ku( �x, �xs)
∣∣
L = −∂xL u( �x, �xs)

∣∣
L =

∞∑
j=0

iβ jα jψ j(x
⊥)e−iβ j xL , (A.30)

as in (A.6). Thus, u satisfies (A.3)–(A.6).
Conversely, if u ∈ H1

loc(WL) solves (A.3)–(A.6), we can extend it to (−∞, xL) × X using the Dirichlet to Neumann map 
(A.7) which is defined taking into consideration the radiation condition. �
A.1.2. Variational formulation and Fredholm alternative

Let v ∈ H1(WL) be arbitrary. Multiplying equation (A.3) by its complex conjugate v� , integrating by parts and using the 
boundary conditions (A.4)–(A.6), we obtain∫

WL

d �x
[
∇�xu( �x, �xs) · ∇ �xv�( �x) − k2u( �x, �xs)v�( �x)

]
−
∫
L

dS �xv�( �x)�i w( �x)

= −
∫
�

dS �x
∂G( �x, �xs)

∂ �ν �x
v�( �x).

Now let us introduce the sesquilinear forms a(·, ·) and h(·, ·) on H1(WL) × H1(WL) and the antilinear form �(·) on H1(WL), 
defined by
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a(w, v) =
∫
WL

d �x
[
∇�xw( �x) · ∇ �xv�( �x) + w( �x)v�( �x)

]
−
∫
L

dS �xv�( �x)�i w( �x),

h(w, v) = −(k2 + 1)

∫
WL

d �x w( �x)v�( �x) −
∫
L

dS �xv�( �x)(�k − �i)w( �x),

�(v) = −
∫
�

dS �x
∂G( �x, �xs)

∂ �ν �x
v�( �x), ∀ w, v ∈ H1(WL).

The variational formulation of (A.3)–(A.6) is: Find u(·, �xs) ∈ H1(WL) such that

a
(
u(·, �xs), v) + h

(
u(·, �xs), v) = �(v), ∀ v ∈ H1(WL). (A.31)

From Lemma A.1 we know that �i is negative definite, so it is easy to see that a(·, ·) is coercive. We also know from 
Lemma A.1 that �k − �i is compact, so h(·, ·) introduces a compact perturbation of a(·, ·). By Fredholm’s alternative, the 
solvability of (A.31) is equivalent to the uniqueness of the solution. Moreover, we have continuous dependence of u on the 
incident field at �.

Theorem A.4. Let k ∈R be a positive wavenumber such that(
� �x + k2)w( �x) = 0, �x ∈ WL, (A.32)

∂ w( �x)

∂ �ν �x
= 0, �x ∈ ∂WL \L, (A.33)

∂ w( �x)

∂ �ν �x
= �k w( �x), �x ∈ L = {xL} ×X, (A.34)

has only the trivial solution w = 0 in H1(WL). Then, there is a unique solution to (A.3)–(A.6), and by Theorem A.3 to (2.8)–(2.11), and 
it satisfies

‖u(·, �xs)‖H1(WL)
≤ CL

∥∥∥∥∂G(·, �xs)

∂ �ν �x

∥∥∥∥
H− 1

2 (�)

, (A.35)

where CL is a positive constant that depends on xL .

A.2. Proof of Lemma 2.2

Now that we proved the solvability of the forward problem (2.8)–(2.11), we can use the definition of T �→A in Lemma 2.2
to write

u( �xr, �xs) =
[

T �→A ∂G(·, �xs)

∂ �ν �x

∣∣∣
�

]
( �xr), �xr ∈ A. (A.36)

Substituting in the expression (2.14) of N we get

Ng( �xr) =
∫
A

dS �xs

[
T �→A ∂G(·, �xs)

∂ �ν �x

∣∣∣
�

]
( �xr)g( �xs), ∀ g ∈ L2(A). (A.37)

The integrand is smooth, so we can pull out of the integral T �→A and the normal derivative and obtain

Ng( �xr) = T �→A

⎡⎣∂ �ν �x

∫
A

dS �xs G(·, �xs)

∣∣∣
�

g( �xs)

⎤⎦ ( �xr) = T �→ATA→�g( �xr), (A.38)

where we used the definition of TA→� in Lemma 2.2. �
A.3. Proof of Lemma 2.3

Suppose first that �z ∈D and let w( �x) satisfy (2.17)–(2.19) with

f ( �x) = −∂G( �x, �z)

∂ �ν , �x ∈ �,

�x
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and the radiation condition as in Definition 2.1. Then,

v( �x) = w( �x) − G( �x, �z)

solves (2.17)–(2.19) with f = 0. By Theorem A.4, this means that v = 0 so taking its trace on A we get

v( �x) = 0 = w( �x) − G( �x, �z), �x ∈ A.

But w
∣∣
A = T �→A f , so we have shown that

T �→A f ( �x) = G( �x, �z), �x ∈ A,

or, equivalently, that G( �x, �z)
∣∣
A ∈ range(T �→A).

Now let �z /∈ D and suppose for a contradiction argument that G( �x, �z)
∣∣
A is in range(T �→A). Then, there must exist 

f ∈ H− 1
2 (�) such that

T �→A f ( �x) = w( �x) = G( �x, �z), �x ∈ A,

where w( �x) satisfies (2.17)–(2.19) and the radiation condition. Define

v( �x) = w( �x) − G( �x, �z)

and note that it satisfies(
� �x + k2)v( �x) = 0, �x ∈ (−∞, xA) ×X,

∂v( �x)

∂ �ν �x
= 0, �x ∈ (−∞, xA) × ∂X,

v( �x) = 0, �x ∈ A,

and the radiation condition. This problem is as in Lemma A.2, with f = 0 and xL replaced by xA . Thus, it has the unique 
solution v = 0 in H1

loc

(
(−∞, xA ) ×X

)
. By unique continuation, we can extend it to v = 0 in W \ { �z}. However, this means 

that w( �x) = G( �x, �z) which contradicts that w ∈ H1
loc(W), due to the singularity of the Green’s function at �x = �z ∈W . �

A.4. Proof of Lemma 2.4

Since � is only part of the boundary ∂W and ∂D, we introduce the following Sobolev spaces on �. Suppose that �, 
� ∩ (∂D\�) and ∂D\� are Lipschitz dissections of the boundary ∂D. Following the notations in [22], with D(∂D) denoting 
the space of C∞(∂D) functions with compact support, let

D(�) = {φ ∈D(∂D) : supp φ ⊂ �D}.
Then, we define

Hs(�) = {φ|� : φ ∈ Hs(∂D)},
H̃ s(�) = closure of D(�) in Hs(∂D),

for s = ± 1
2 , where the dual of Hs(�) is H̃−s(�).

Let us begin with the proof that TA→� is bounded. Because G( �x, �xs) is smooth for �x /∈A, we have that

v( �x) =
∫
A

dS �xs G( �x, �xs)g( �xs), ∀g ∈ L2(A),

is in H1
(
(xA , 0) ×X

)
. Moreover,

� �xv( �x) =
∫
A

dS �xs� �xG( �x, �xs)g( �xs) = −k2
∫
A

dS �xs G( �x, �xs)g( �xs),

so we can bound

|� �xv( �x)| ≤ k2
∫
A

dS �xs |G( �x, �xs)g( �xs)| ≤ C‖g‖L2(A),
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with some positive constant C . Here we used the Cauchy-Schwartz inequality and that G( �x, �xs) is bounded for �x /∈A. Then, 
we conclude from [14, Theorem 5.7] or [22, Lemma 4.3] that TA→� g ∈ H− 1

2 (�) and its norm is bounded by the ‖g‖L2(A) . 
This shows that the linear operator TA→� is bounded.

To prove that TA→� has dense range in H− 1
2 (�), we show that h ∈ H̃

1
2 (�) must be zero if

(TA→�g,h) = 0, ∀g ∈ L2(A),

where (·, ·) denotes the duality pairing. Indeed if

(TA→�g,h) =
∫
�

dS �z h�( �z)
∂

∂ �ν �z

∫
A

dS �xs G( �z, �xs)g( �xs) = 0,

for all g ∈ L2(A) and h� is the conjugate of h, then by the reciprocity relation G( �z, �xs) = G( �xs, �z) and Fubini’s theorem we 
conclude∫

�

dS �z h�( �z)
∂G( �xs, �z)

∂ �ν �z
= 0, ∀�xs ∈ A.

Let us define

w( �x) =
∫
�

dS �z h�( �z)
∂G( �x, �z)

∂ �ν �z
,

and consider first �x ∈ (−∞, xA ) ×X. By Lemma A.2, with L replaced by A and right hand side in (A.21) replaced by 0, we 
conclude that w = 0 in (−∞, xA ) ×X. Then, unique continuation yields that

w( �x) =
∫
�

dS �z h�( �z)
∂G( �x, �z)

∂ �ν �z
= 0, ∀�x ∈ W.

Since the Green function G( �x, �z) has the same singularity as the Green function for the free space [12], by the continuity 
of the double-layer potential [22] we conclude that w satisfies

� �xw( �x) + k2 w( �x) = 0, �x ∈ D,

∂ w( �x)

∂ �ν �x
= 0, �x ∈ ∂D.

Assuming that −k2 is not an eigenvalue of the Laplacian in D, we conclude that w = 0 in D . Then, from the jump relations 
for double-layer potentials (see for instance [22])

h�( �z) = w+( �z) − w−( �z) = 0, ∀ �z ∈ �.

This concludes the proof that TA→� has dense range in H− 1
2 (�).

Now let us study the operator T �→A defined in Lemma 2.2. For all g ∈ H̃
1
2 (�) let

w g( �x) =
∫
�

dS �z
∂G( �x, �z)

∂ �ν �z
g( �z), �x ∈ W,

and use the jump relations of double layer potentials to define

f g( �x) = − ∂

∂ �ν �x

∫
�

dS �z
∂G( �x, �z)

∂ �ν �z
g( �z), �x ∈ �.

Since w g satisfies (2.17)–(2.19) and the radiation condition, we can write

T �→A f g( �x) = w g( �x), �x ∈ A.

To prove that range(T �→A) is dense in L2(A), we show that h ∈ L2(A), satisfying

(T �→A f g,h) = 0, ∀g ∈ H̃
1
2 (�),

must be zero. Here (·, ·) denotes the L2(A) inner product. Indeed, if
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(T �→A f g,h) =
∫
A

dS �x h�( �x)

∫
�

dS �z
∂G( �x, �z)

∂ �ν �z
g( �z) = 0, ∀ g ∈ H̃

1
2 (�),

then, by the reciprocity relation G( �x, �z) = G( �z, �x) and by Fubini’s theorem we have that∫
A

dS �x h�( �x)
∂G( �z, �x)

∂ �ν �z
= 0, ∀�z ∈ �. (A.39)

Let

v( �z) =
∫
A

dS �x h�( �x)G( �z, �x), �z ∈ W \A.

Since A and � do not intersect, we have from (A.39) that

∂v( �z)

∂ �ν �z
= 0, �z ∈ �.

Furthermore, from the definition of the Green’s function,

� �zv( �z) + k2 v( �z) = 0, �z ∈ D,

∂v( �z)

∂ �ν �z
= 0, �z ∈ ∂D.

Assuming that −k2 is not an eigenvalue of the Lapacian in D, we conclude that v = 0 in D. Unique continuation yields 
further that v = 0 in W ∩ (xA , 0) ×X and from the jump relations of the single-layer potential we get that v = 0 in H

1
2 (A). 

Then, it follows from Lemma A.2 that v = 0 in (−∞, xA ) × X. The function h is obtained from the jump relations for the 
single layer potentials

h�( �x) = ∂v+( �x)

∂ �ν �x
− ∂v−( �x)

∂ �ν �x
= 0, ∀ �x ∈ A.

This proves that T �→A has dense range in L2(A).
Finally, from the properties of the solution of (2.17)–(2.19) and the radiation condition we have that

‖w|A‖
H

1
2 (A)

= ‖T �→A f g‖
H

1
2 (A)

≤ C‖ f g‖
H− 1

2 (�)
.

The compact embedding of H
1
2 (A) in L2(A) gives that T �→A is compact. �
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