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THE DETERMINATION OF THE SURFACE CONDUCTIVITY OF
A PARTIALLY COATED DIELECTRIC∗
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Abstract. A variational method is given for determining the essential supremum of the surface
conductivity of a partially coated anisotropic dielectric medium from a knowledge of the far field
pattern of the time-harmonic electric field at fixed frequency corresponding to an incident plane
wave. It is assumed that the shape of the scatterer has been determined (e.g., by solving the far field
equation and using the linear sampling method). Numerical examples are given for the scalar case
with constant surface conductivity.
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1. Introduction. In a previous paper in this journal [5], we considered the
problem of determining the surface impedance of a perfect conductor that is partially
coated with a dielectric from a knowledge of the far field pattern of the scattered
electromagnetic wave corresponding to an incident time-harmonic plane wave at fixed
frequency. Such problems are the simplest model for detecting hostile objects that
have been partially coated with a dielectric in order to avoid detection by using such
a coating to reduce the radar cross section of the scattered wave. In [5] it was shown
that the solution of the far field equation that determines the shape of the scatterer
by means of the linear sampling method [11] can also be used in conjunction with a
variational method to determine the essential supremum of the surface impedance of
the coated portion of the boundary, and numerical examples were given showing the
viability of our method.

In this paper we consider the problem complementary to the one described above;
i.e., we now wish to detect a benign object that has been partially coated by a thin
conducting material in order to make it appear hostile [6]. An example of this is a
wooden decoy in the shape of a tank that is partially coated by metallic paint. The
problem is again to determine a coefficient (the surface conductivity) in the boundary
condition from a knowledge of the far field pattern of the scattered electromagnetic
wave corresponding to an incident time-harmonic plane wave. (The shape of the scat-
terer can again be determined by the linear sampling method.) However, the problem
of determining the surface conductivity is considerably more complicated than the
problem of determining the surface impedance of a coated perfect conductor since we
now have a mixed boundary value problem for a penetrable obstacle. In particular, we
now must consider an interior transmission problem with mixed boundary conditions,
and the well-posedness of such problems is unknown.

The plan of our paper is as follows. After formulating the mathematical model
for the scattering of time harmonic electromagnetic waves by an anisotropic medium

∗Received by the editors February 17, 2004; accepted for publication (in revised form) July 7,
2004; published electronically February 25, 2005. This work was supported in part by Air Force
Office of Scientific Research grants F49620-02-1-0071 and F49620-02-1-0353.

http://www.siam.org/journals/siap/65-3/60422.html
†Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (cakoni@

math.udel.edu, colton@math.udel.edu, monk@math.udel.edu).

767



768 FIORALBA CAKONI, DAVID COLTON, AND PETER MONK

that is partially coated by a thin conducting layer, we consider the scalar case cor-
responding to the scattering of electromagnetic waves by an infinite cylinder. We
first show that in this case both the direct scattering problem and the interior trans-
mission problem are well posed. We then use these results to derive a variational
formula for the determination of the essential supremum of the surface conductivity
of the coated portion of the boundary from a knowledge of the far field pattern of the
scattered time-harmonic magnetic field. Finally, we derive an analogous formula for
determining the surface conductivity in the case of Maxwell’s equations in R

3 under
the assumption that the interior transmission problem in this case is well posed. We
conclude by presenting some numerical examples for the scalar case with constant
surface conductivity.

2. Formulation of the direct and inverse scattering problem. We consider
the scattering of time-harmonic electromagnetic waves with frequency ω from an
infinitely long cylindrical anisotropic dielectric partially coated with a very thin layer
of a highly conductive material. We assume that the electric permittivity ε0 and
magnetic permeability µ0 of the exterior dielectric background medium are positive
constants, whereas the scatterer has the same magnetic permeability µ0 as the exterior
medium but the electric permittivity ε and the conductivity σ are real 3 × 3 matrix
valued functions. After an appropriate scaling [12], the total electric and magnetic
fields E,H satisfy the time-harmonic homogeneous Maxwell equations in the exterior
of the scatterer,

{
∇× E − ikH = 0,
∇×H + ikE = 0,

(2.1)

and the interior electric and magnetic fields E0, H0 solve the following equations in
the interior of the scattering object:

{
∇× E0 − ikH0 = 0,
∇×H0 + ikN(x)E0 = 0,

(2.2)

where k2 = ε0µ0ω
2 and the index of refraction is given by N(x) = 1

ε0

(
ε(x) + iσ(x)

ω

)
.

Let the real valued function η > 0 defined on the coated portion of the boundary
of the scatterer describe the physical properties of the highly conductive coating (see
[1]). As shown in [8], the tangential component of the electric field is continuous
across the boundary

ν × E − ν × E0 = 0,(2.3)

while the tangential component of the magnetic field is continuous only on the un-
coated part of the boundary

ν ×H − ν ×H0 = 0(2.4)

and satisfies the following relation on the coated part of the boundary:

ν ×H − ν ×H0 = η(x)(ν × E) × ν.(2.5)
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The exterior field E, H is given by

E = Ei + Es, H = Hi + Hs,(2.6)

where Es, Hs is the scattered field satisfying the Silver–Müller radiation condition at
infinity [12] and Ei, Hi is the given incident field.

Now we assume that the scatterer is an infinitely long cylinder with axis in the
z-direction and that the incident electromagnetic field is a plane wave propagating
in the direction perpendicular to the cylinder. Let the bounded domain D ⊂ R

2

with Lipschitz boundary Γ be the cross section of the cylinder such that the exterior
domain De := R

2 \D is connected. We denote by ν the outward unit normal to Γ
defined almost everywhere on Γ. The boundary Γ = Γ1 ∪Π∪Γ2 is split into two open
disjoint parts Γ1 and Γ2 having Π as their possible common boundary in Γ. Here Γ1

corresponds to the uncoated part and Γ2 corresponds to the coated part. We assume
that the dielectric is orthotropic; i.e., the matrix N is of the form

N =

⎛
⎝n11 n12 0
n21 n22 0
0 0 n33

⎞
⎠ ,

and the functions N and η do not depend on z. If we consider incident waves such
that the electric field is polarized perpendicular to the z-axis, then the magnetic fields
have a component in only the z-direction, i.e.,

Hi = (0, 0, ui), H0 = (0, 0, v), Hs = (0, 0, us).

Assuming that N−1 exists and expressing the electric fields in terms of magnetic
fields, (2.1)–(2.6) now lead to the following transmission problem for v and u:

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆u + k2 u = 0 in De,

(iii) v − u = 0 on Γ1,

(iv) v − u = −iη
∂u

∂ν
on Γ2,

(v)
∂v

∂νA
− ∂u

∂ν
= 0 on Γ,

(vi) u = us + ui,(2.7)

(vii) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

r = |x|, where us is the scattered field and ui is the given incident field. In the case
of plane waves the incident field is given by ui := eikx·d, d ∈ Ω := {x : |x| = 1}.
Moreover,

∂v

∂νA
(x) := ν(x) ·A(x)∇v(x), x ∈ Γ,

A =
1

n11n22 − n12n21

(
n11 n21

n12 n22

)
,



770 FIORALBA CAKONI, DAVID COLTON, AND PETER MONK

and the radiation condition (2.7)(vii) holds uniformly with respect to x̂ = x/|x|. Note
that A is not the inverse of a 2 × 2 submatrix N but rather comes from substituting
H0 = (0, 0, v) into (2.2).

In the following we assume that A is a 2×2 matrix valued function whose entries
are continuously differentiable functions in D such that A is symmetric, Re( ξ̄ ·Aξ ) ≥
γ|ξ|2, and Im( ξ̄ · Aξ ) ≤ 0 for all ξ ∈ C

2 and x ∈ D, where γ is a positive constant.
Note that, due to the symmetry of A, we have Re( ξ̄ ·Aξ ) = ξ̄ · Re(A) ξ and Im( ξ̄ ·
Aξ ) = ξ̄ · Im(A) ξ. Moreover, we require that η ∈ L∞(Γ2) and η(x) ≥ η0 > 0 for all
x ∈ Γ2.

Let H1(D) and H1
loc(De) denote the usual Sobolev spaces and H

1
2 (Γ) the corre-

sponding trace space. For Γ2 ⊂ Γ we define

H
1
2 (Γ2) := {u|Γ2 : u ∈ H

1
2 (Γ)},

H̃
1
2 (Γ2) := {u ∈ H

1
2 (Γ2) : suppu ⊆ Γ2},

and denote by H− 1
2 (Γ2) and H̃− 1

2 (Γ2) the dual spaces (H̃
1
2 (Γ2))

′ and (H
1
2 (Γ2))

′,
respectively, with L2 as a pivot space (for details, see [16]). We recall that a function

in H̃
1
2 (Γ2) and H̃− 1

2 (Γ2) can be extended by zero to a function in H
1
2 (Γ) and H− 1

2 (Γ),

respectively. Note that for u ∈ H1(D) with ∆u ∈ L2(D) the trace ∂u
∂ν ∈ H− 1

2 (Γ) is
well defined.

For later use we also define the Hilbert space

H
1(D,Γ2) :=

{
u ∈ H1(D) such that

∂u

∂ν
∈ L2(Γ2)

}

equipped with the usual graph norm

‖u‖2
H1(D,Γ2)

:= ‖u‖2
H1(D) +

∥∥∥∥∂u∂ν
∥∥∥∥

2

L2(Γ2)

.

The forward scattering problem reads: Given D, A, η as above and the incident
field ui ∈ H1

loc(R
2), find v ∈ H1(D) and u ∈ H1

loc(De) that satisfy (2.7), where the
boundary conditions are assumed in the sense of the trace operator. In what follows,
we refer to this mixed transmission problem as (MTP).

It is known [12] that solutions of the Helmholtz equation that satisfy the Som-
merfeld radiation condition (2.7)(vi) have the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂) + O(r−3/2), r → ∞,(2.8)

where u∞(x̂) is the far field pattern of the radiating solution us. In the case of
incident plane waves, u∞(x̂) depends on the incident direction d, which we indicate
by u∞(x̂, d). The inverse scattering problem we are concerned with is to determine D
and η from a knowledge of the far field pattern u∞(x̂, d) of the scattered field us for
x̂, −d ∈ Ω0, where Ω0 is a subset of the unit circle Ω. Note that no a priori knowledge
of the amount of coating is required.

3. The direct scattering problem. First we want to show that the mixed
transmission problem (2.7) is well posed.

Lemma 3.1. The problem (MTP) has at most one solution.
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Proof. Let v ∈ H1(D) and u ∈ H1
loc(De) be the solution of (2.7) corresponding

to the incident wave ui ≡ 0. Applying Green’s formula in D and De ∩BR, where BR

is a disk of radius R containing D, and using the transmission conditions, we have∫
D

(
∇v ·A∇v − k2|v|2

)
dy +

∫
De∩BR

(
|∇u|2 − k2|u|2

)
dy

=

∫
Γ

v · ∂v

∂νA
ds−

∫
Γ

u · ∂u
∂ν

ds +

∫
SR

u · ∂u
∂ν

ds

= i

∫
Γ2

1

η
|v − u|2 ds +

∫
SR

u · ∂u
∂ν

ds.

Now taking the imaginary part of both sides and using the fact that Im(A) ≤ 0 is a
real valued matrix and η ≥ η0 > 0, we obtain

Im
∫
SR

u · ∂u
∂ν

ds ≥ 0.

Finally, an application of Rellich’s lemma and the unique continuation principle yield
u = v = 0.

In order to give a variational formulation of the problem (MTP) we introduce

the Dirichlet-to-Neumann map Λ : H
1
2 (SR) → H− 1

2 (SR), which maps h ∈ H
1
2 (SR)

to ∂ũ
∂ν , where ũ solves the exterior Dirichlet problem for the Helmholtz equation in

R
2\BR with Dirichlet boundary data h. The following result is known [12], [15].

Lemma 3.2. There exists an operator Λ0 : H
1
2 (SR) → H− 1

2 (SR) such that∫
SR

ϕΛ0ϕds ≤ 0(3.1)

and Λ − Λ0 is a compact operator from H
1
2 (SR) to H− 1

2 (SR).
Integrating by parts the equations of (MTP) with a test function ϕ, we can put

(MTP) into the following variational form: Find w ∈ H1(BR\Γ2) such that∫
D

(
∇ϕ ·A∇w − k2ϕw

)
dy +

∫
De∩BR

(
∇ϕ · ∇w − k2ϕw

)
dy(3.2)

−
∫

Γ2

i

η
[ϕ] · [w] ds−

∫
SR

ϕΛw ds = −
∫
SR

ϕΛui ds +

∫
SR

ϕ
∂ui

∂ν
ds

for any function ϕ ∈ H1(BR\Γ2), where [u] = u+|Γ2 − u−|Γ2 denotes the jump of u

across Γ2. Note that for u ∈ H1(BR\Γ2) the jump [u] ∈ H̃
1
2 (Γ2). Let us denote by

A1 and A2 the following sesquilinear forms:

A1(w,ϕ) :=

∫
D

(∇ϕ ·A∇w + ϕw) dy +

∫
De∩BR

(∇ϕ · ∇w + ϕw) dy

−
∫

Γ2

i

η
[ϕ] · [w] ds−

∫
SR

ϕΛ0w ds(3.3)

and

A2(w,ϕ) := −
∫
BR

(k2 + 1)ϕw dy −
∫
SR

ϕ (Λ0 − Λ)w ds,
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respectively. Then (3.2) becomes the following: Find w ∈ H1(BR\Γ2) such that

A1(w,ϕ) + A2(w,ϕ) = L(ϕ) ∀ϕ ∈ H1(BR\Γ2),(3.4)

where L(ϕ) denotes the continuous antilinear form defined by the right-hand side of
(3.2). Obviously if w is a solution of (3.4), then v := w|D and u := w|BR∩De

satisfy the
differential equations and the transmission conditions of (MTP). Then using Green’s
formula and the radiation condition, one can extend w = u−ui to a radiating solution
of the Helmholtz equation in the exterior domain De (see, e.g., [15]).

Next we want to show that there exists a function w ∈ H1(BR\Γ2) that satisfies
(3.4). The uniqueness of (3.4) is equivalent to the uniqueness of a solution to (MTP)
(see Lemma 3.1). Note that, due to (2.7(iv)) and (2.7(v)), if u ∈ H1(D) and v ∈
H1

loc(D
e) solve (2.7), then w ∈ H1(BR\Γ2). Using the classical trace theorems and

Cauchy–Schwarz inequality, the chain of continuous imbeddings

H̃
1
2 (Γ2) ⊂ H

1
2 (Γ2) ⊂ L2(Γ2) ⊂ H̃− 1

2 (Γ2) ⊂ H− 1
2 (Γ2),

and the boundedness of A and η, we obtain

|A1(w,ϕ)| ≤ C1‖w‖H1(BR\Γ2)
‖ϕ‖H1(BR\Γ2)

with C1 > 0 independent of w and ϕ. Hence A1 is bounded. Furthermore, from the
fact that Re(A) is positive definite together with Lemma 3.2, we obtain the following
coercivity result:

Re (A1(w,w)) ≥ C2‖w‖2
H1(BR\Γ2)

,

where the constant C2 > 0 does not depend on w.
Next, based on the Riesz representation theorem, we define an operator K :

H1(BR\Γ2) → H1(BR\Γ2) by

(Kw, ϕ) = A2(w, ϕ) ∀w,ϕ ∈ H1(BR\Γ2).

The compact embedding of H1(BR \Γ) into L2(BR) and the compactness of the
operator Λ − Λ0 from Lemma 3.2 imply that the operator K is compact.

The above analysis shows that the Fredholm alternative can be applied to (3.2),
which, together with the uniqueness of a solution to (3.2), implies the solvability of
(3.2) and therefore the solvability of (2.7). Summarizing the above analysis, we have
proved the following theorem.

Theorem 3.3. For any incident field ui ∈ H1
loc(R

2) there exists a unique solution
(v, u) ∈ H1(D) ×H1

loc(De) of (MTP) which depends continuously on ui.

3.1. The interior transmission problem. As will be seen in what follows, an
important role in solving the inverse problem of determining D and η is played by the
interior transmission problem: Given f ∈ H

1
2 (Γ), h ∈ H− 1

2 (Γ), and r ∈ L2(Γ2), find
v ∈ H1(D) and w ∈ H

1(D,Γ2) such that

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆w + k2 w = 0 in D,

(iii) v − w = f |Γ1
on Γ1,(3.5)

(iv) v − w = −iη
∂w

∂ν
+ f |Γ2 + r on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= h on Γ.
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In the remainder of the paper we will refer to (3.5) as (IMTP). The well-posedness of
the interior transmission problem in the case when η ≡ 0 and r = 0 is established in
[7]. Here we will adapt the variational approach used in [7] to our mixed transmission
case. In order to avoid repetition we will only sketch the proof, emphasizing the
changes due to the boundary terms involving η. We first modify (IMTP) to

(i) ∇·A∇v −mv = 
1 in D,

(ii) ∆w − w = 
2 in D,

(iii) v − w = f |Γ1 on Γ1,(3.6)

(iv) v − w = −iη
∂w

∂ν
+ f |Γ2

+ r on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= h on Γ,

where m > 0, 
1 ∈ L2(D), and 
2 ∈ L2(D). We will now reformulate (3.6) as an
equivalent variational problem. To this end let

W(D) = {w ∈ L2(D)2 : ∇·w ∈ L2(D), and curlw = 0 and ν · w|Γ2 ∈ L2(Γ2)}

equipped with the natural norm

‖w‖2
W = ‖w‖2

L2 + ‖∇·w‖2
L2 + ‖ν · w‖2

L2 ,

and denote by 〈· , ·〉 the duality pairing between H
1
2 (Γ) and H− 1

2 (Γ). We also intro-
duce the duality identity

〈ϕ, ψ · ν〉 =

∫
D

ϕ ∇·ψ dx +

∫
D

∇ϕ · ψ dx(3.7)

for (ϕ, ψ) ∈ H1(D) × W(D).
By doing exactly the same as in the proof of Theorem 3.3 in [7], one can show

that the modified interior transmission problem (3.6) is equivalent to the following
variational problem: Find V = (v,w) ∈ H1(D) × W(D) such that

A(V,Ψ) = L(Ψ), Ψ ∈ H1(D) × W(D),(3.8)

where the sesquilinear form A defined in (H1(D) × W(D))2 is given by

A(V,Ψ) =

∫
D

A∇v · ∇ϕ̄ dx +

∫
D

mv ϕ̄ dx +

∫
D

∇·w∇· ψ̄ dx +

∫
D

w · ψ̄ dx

− i

∫
Γ2

η (w · ν) (ψ̄ · ν), ds−
〈
v, ψ̄ · ν

〉
− 〈ϕ̄, w · ν〉(3.9)

and the antilinear form L is given by

L(Ψ) =

∫
D

(
1 ϕ̄ + 
2 ∇· ψ̄) dx− i

∫
Γ2

η r (ψ̄ · ν) + 〈ϕ̄, h〉 −
〈
f, ψ̄ · ν

〉
.

The modified interior transmission problem (3.6) has a unique solution (v, w) ∈
H1(D)× H

1(D,Γ2) if and only if the variational problem (3.8) has a unique solution
V ∈ H1(D) × W (D). If (v, w) is the unique solution (3.6), then V = (v,∇w) is a
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unique solution to (3.8). Conversely if V is the unique solution to (3.8), then the
unique solution (v, w) to (3.6) is such that V = (v,∇w).

Now assume that there exists a constant γ > 1 such that ξ̄ · Re(A) ξ ≥ γ|ξ|2 and
choose m > 1. Classical trace theorems and Schwarz’s inequality ensure the continuity
of the sesquilinear form A and the antilinear form L. On the other hand, by taking
the real and the imaginary part of A(V, V ), we have from the assumptions on Re(A),
Im(A), and η that

|A(V, V )| ≥ γ‖v‖2
H1(D) +‖w‖2

L2(D) +‖∇·w‖2
L2(D) −2Re(〈v̄, ν · w〉)+η0‖ν ·w‖2

L2(Γ2)
.

From the duality identity (3.7) and Schwarz’s inequality we have

2Re(〈v̄, ν · w〉) ≤ | 〈v̄, w〉 | ≤ ‖v‖H1(D)(‖w‖2
L2(D) + ‖∇·w‖2

L2(D))
1
2 .

Hence since γ > 1, we conclude that

|A(V, V )| ≥ γ − 1

γ + 1
(‖v‖2

H1(D) + ‖w‖2
L2(D) + ‖∇·w‖2

L2(D)) + η0‖ν · w‖2
L2(Γ2)

,

which means that A is coercive; i.e.,

|A(V, V )| ≥ C(‖v‖2
H1(D) + ‖w‖2

W (D)),

where C = min((γ − 1)/(γ + 1), η0). Therefore from the Lax–Milgram theorem we
have that the variational problem (3.8) is uniquely solvable, whence the modified
interior transmission problem has a unique solution (u, v) that satisfies

‖v‖H1(D) + ‖w‖H1(D,Γ2) ≤ C(‖f‖
H

1
2 (Γ)

+ ‖h‖
H− 1

2 (Γ)
+ ‖r‖L2(Γ2)),

where C > 0 is independent on f, h, r.

Theorem 3.4. Assume that ξ̄ · Re(A) ξ ≥ γ|ξ|2 with γ > 1 and η(x) ≥ η0 > 0.
Then the Fredholm alternative can be applied to the problem (IMTP).

Proof. Let us define

Y(D) :=
{
(v, w) ∈ H1(D) × H

1(D,Γ2) : ∇·A∇v ∈ L2(D) and ∆w ∈ L2(D)
}

and consider the operator G from Y(D) into L2(D) × L2(D) × H
1
2 (Γ1) × L2(Γ2) ×

H− 1
2 (Γ) defined by

G(v, w) =

{
∇·A∇v −mv, ∆w − w, (v − w)|Γ1

,

(
v − w + iη

∂w

∂ν

)
Γ2

,

(
∂v

∂νA
− ∂w

∂ν

)
Γ

}
,

where m > 1. We have shown that the inverse of G exists and is continuous. Since G
is continuous, we deduce that G is a bijective operator. Now consider the operator T
from Y(D) into L2(D) × L2(D) ×H

1
2 (Γ1) × L2(Γ2) ×H− 1

2 (Γ) defined by

T (v, w) = {(k2 + m)v, (k2 + 1)w, 0, 0, 0}.

By the compact embedding of H1(D) into L2(D), the operator T is compact. Hence
G + T is a Fredholm operator of index one, which proves the theorem.
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By modifying the variational approach of [9] in a similar way, one can also prove
the following result.

Theorem 3.5. Assume that ξ̄ ·Re(A−1) ξ ≥ γ|ξ|2 with γ > 1. Then the Fredholm
alternative can be applied to the problem (IMTP).

Lemma 3.6. Assume that ξ̄ · Im(A) ξ < 0 at a point x0 ∈ D and η ≥ η0 > 0 on
Γ2. Then (IMTP) has at most one solution.

Proof. Let us consider the homogeneous problem (i.e., f = h = r = 0). Applying
the divergence theorem to v and A∇v, making use of the boundary conditions, and
applying Green’s theorem for w and w, we obtain

∫
D

∇v ·A∇v dy −
∫
D

k2|v|2 dy =

∫
D

|∇w|2 dy −
∫
D

k2|w|2 dy +

∫
Γ2

iη

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds.

Hence

Im
(∫

D

∇v ·A∇v dy

)
= 0 and

∫
Γ2

η

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds = 0.

Since ξ̄ · Im(A)ξ < 0 in a small ball Bx0 ⊂D, from the first equality we obtain that
∇v = 0 in Bx0 , whence v ≡ 0 in D since the unique continuation principle holds for
(3.5)(i). From the boundary conditions and the integral representation, formula w
also vanishes in D.

We summarize the above analysis in the following theorem.
Theorem 3.7. Assume that ξ̄ · Im(A) ξ < 0 at a point x0 ∈ D and η ≥ η0 > 0.

In addition, assume that there exists a constant γ > 1 such that

either ξ̄ · Re(A) ξ ≥ γ|ξ|2 or ξ̄ · Re(A−1) ξ ≥ γ|ξ|2 ∀ ξ ∈ C
2.

Then the interior transmission problem (IMTP) has a unique solution (v, w) which
satisfies

‖v‖2
H1(D) + ‖w‖2

H1(D,Γ2)
≤ C (‖f‖

H
1
2 (Γ)

+ ‖h‖
H− 1

2 (Γ)
+ ‖r‖L2(Γ2)

).(3.10)

The values of k for which (IMTP) is not uniquely solvable are called the trans-
mission eigenvalues. The latter may occur, for example, if ξ̄ · Im(A) ξ = 0 in D. In
this case, from the proof of Lemma 3.6 we obtain that ∂w

∂ν = 0 on Γ2, whence the
eigenvalues of (IMTP) form a subset of the transmission eigenvalues corresponding to
the (usual) interior transmission problem discussed in [7]. Moreover, if Γ2 = Γ, then
the eigenvalues of (IMTP) form a subset of the Neumann eigenvalues of −∇ ·A∇.

4. The inverse problem. The inverse problem that we consider here is to
determine both the shape of the scattering object D and the surface conductivity
η from a knowledge of the far field pattern u∞(x̂, d) for all incident plane waves
ui := eikx·d, d ∈ Ω, and all observation directions x̂ ∈ Ω. (Note that it suffices to
know the far field pattern corresponding to all d ∈ Ω1 ⊂ Ω and all x̂ ∈ Ω2 ⊂ Ω; of
particular interest is the case d = −x̂ ∈ Ω0 ⊂ Ω.) We start the investigation of the
inverse problem by stating a uniqueness theorem for determining the support D.

Theorem 4.1. Let the domains D1 and D2 with the boundaries Γ1 and Γ2,
respectively; the matrix valued functions A1 and A2; and the functions η1 and η2

determined on the portions Γ1
2 ⊆ Γ1 and Γ2

2 ⊆ Γ2, respectively (either Γ1
2 or Γ2

2 or
both can possibly be empty sets), satisfy the assumptions of (MTP ) in section 2.
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Moreover, let us assume that either ξ̄ · �(A1) ξ ≥ γ|ξ|2 or ξ̄ · �(A−1
1 ) ξ ≥ γ|ξ|2, and

either ξ̄ · �(A2) ξ ≥ γ|ξ|2 or ξ̄ · �(A−1
2 ) ξ ≥ γ|ξ|2 for some γ > 1. If the far field

patterns u1
∞(x̂, d) corresponding to the data D1, A1, η1 and u2

∞(x̂, d) corresponding to
the data D2, A2, η2 coincide for all x̂, d ∈ Ω, then D1 ≡ D2.

This theorem is proved in [8] for the case of Maxwell’s equations in R
3. In the

scalar case under consideration, one can adapt the approach of Hähner in [15] to
prove the above theorem. Note that the main ingredient of Hähner’s approach is
the well-posedness of the (modified) interior transmission problem investigated in
section 3.1.

The next question to ask is the uniqueness of the surface conductivity η. From the
above theorem we can now assume that D is known. Furthermore, we require that for
an arbitrarily choice of Γ2, A, and η there exist at least one incident plane wave such
that the corresponding total field u satisfies ∂u

∂ν

∣∣
Γ0

�= 0, where Γ0 ⊂ Γ is an arbitrary
portion of Γ. In the context of our application this is a reasonable assumption since
otherwise the portion of the boundary where ∂u

∂ν

∣∣
Γ0

= 0 for all incident plane waves
will behave like a perfect conductor, contrary to the assumption that the metallic
coating is thin enough for the incident field to penetrate into D. We can prove the
following result.

Theorem 4.2. Assume that η ∈ C(Γ2) and that k is not a Neumann eigenvalue
for −∇ · A∇. Then, under the above assumption and for fixed D and A, the sur-
face conductivity η is uniquely determined from the far field pattern u∞(x̂, d) for all
x̂, d ∈ Ω.

Proof. Let D and A be fixed, and suppose there exist η1 ∈ C(Γ
1

2) and η2 ∈ C(Γ
2

2)
such that the corresponding scattered fields us,1 and us,2, respectively, have the same
far field patterns u1

∞(x̂, d) = u2
∞(x̂, d) for all x̂, d ∈ Ω. Then from Rellich’s lemma,

us,1 = us,2 in R
2\D. Hence, from the transmission condition, the difference V = v1−v2

satisfies

∇·A∇V + k2 V = 0 in D,(4.1)

∂V

∂νA
= 0 on Γ,(4.2)

V = −i(η̃1 − η̃2)
∂u1

∂ν
on Γ,(4.3)

where η̃1 and η̃2 are the extension by zero of η1 and η2, respectively, to the whole of
Γ and u1 = us,1 + ui. Assuming that k is not a Neumann eigenvalue for −∇·A∇ (in
particular, this is the case if Im(A) < 0 at x0 ∈ D, (4.1)), (4.2) implies that V = 0
in D, and hence (4.3) becomes

(η̃1 − η̃2)
∂u1

∂ν
= 0 on Γ

for all incident waves. Since for a given Γ0 ⊂ Γ there exists at least one incident plane

wave such that ∂u1

∂ν

∣∣
Γ0

�= 0, the continuity of η1 and η2 in Γ
1

2 and Γ
2

2, respectively,
implies that η̃1 = η̃2.

We now define the far field operator F : L2(Ω) → L2(Ω) by

Fg(x̂) :=

∫
Ω

u∞(x̂, d)g(d) ds(d)(4.4)

and introduce the far field equation

(Fg)(x̂) = γe−ikx̂·z, g ∈ L2(Ω), z ∈ D,(4.5)
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where γ = eiπ/4
√

8πk
and γe−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z) := i
4H

(1)
0 (k|x−z|) to the Helmholtz equation in R

2, with H
(1)
0 being a Hankel

function of the first kind of order zero. A reconstruction of D can be obtained by
using the linear sampling method which characterizes the support D from a solution
of the far field equation (4.5) (see, e.g., [3], [7]). Assuming that D is known, our goal
is to provide a formula for computing the L∞ norm of η in terms of the solution of
the far field equation (4.5).

To this end, assuming that k is not a transmission eigenvalue, for z ∈ D we denote
by vz and wz the unique solution of the interior transmission problem

∇·A∇vz + k2 vz = 0 in D,

∆wz + k2 wz = 0 in D,

vz − (wz + Φ(·, z)) = 0 on Γ1,(4.6)

vz − (wz + Φ(·, z)) = −iη
∂

∂ν
(wz + Φ(·, z)) on Γ2,

∂vz
∂νA

− ∂

∂ν
(wz + Φ(·, z)) = 0 on Γ.

We recall that a Herglotz wave function with kernel g ∈ L2(Ω) is an entire solution
of the Helmholtz equation defined by

vg(x) =

∫
Ω

eikx·dg(d)ds(d), x ∈ R
2.(4.7)

The following theorem holds.
Theorem 4.3. Assume that k is not a transmission eigenvalue. Let ε > 0,

z ∈ D, and (wz, vz) be the unique solution of (4.6). Then there exists a Herglotz wave
function vgz

ε
with kernel gzε ∈ L2(Ω) such that

‖wz − vgz
ε
‖H1(D,Γ2) ≤ ε.(4.8)

Moreover, there exists a positive constant c > 0 independent of ε and z such that

‖(Fgzε )(x̂) − γe−ikx̂·z‖L2(Ω) ≤ cε.(4.9)

Proof. To prove the first part of the theorem we first show that the operator
H : L2(Ω) → H

1
2 (Γ1) × L2(Γ2) defined by

(Hg)(x) :=

⎧⎪⎨
⎪⎩

∫
Ω

e−iky·x̂g(x̂)ds(x̂), y ∈ Γ1,

∂

∂ν

∫
Ω

e−iky·x̂g(x̂)ds(x̂) + i

∫
Ω

e−iky·x̂g(x̂)ds(x̂), y ∈ Γ2,
(4.10)

has dense range. To this end it suffices to show that the corresponding dual operator
H∗ : H̃− 1

2 (Γ1) × L2(Γ2) → L2(Ω) defined by

〈Hg, φ〉
H

1
2 (Γ1),H̃

− 1
2 (Γ1)

+ 〈Hg, ψ〉L2(Γ2),L2(Γ2)
= 〈g, H∗(φ, ψ)〉L2(Ω),L2(Ω)

for all g ∈ L2(Ω), φ ∈ H̃− 1
2 (Γ1), ψ ∈ L2(Γ2) is injective. By interchanging the order

of integration, one can show that

H∗(φ, ψ)(x̂) =

∫
Γ

e−iky·x̂φ̃(y) ds(y) +

∫
Γ

∂e−iky·x̂

∂ν
ψ̃(y) ds(y) + i

∫
Γ

e−iky·x̂ψ̃(y) ds(y),
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where φ̃ ∈ H− 1
2 (Γ) and ψ̃ ∈ L2(Γ) are the extension by zero to the whole boundary

Γ of φ and ψ, respectively. Assume that H∗(φ, ψ) = 0. Since H∗(φ, ψ) is, up to a
constant, the far field pattern of the potential

P (x) =

∫
Γ

Φ(x, y)φ̃(y) ds(y) +

∫
Γ

∂Φ(x, y)

∂ν
ψ̃(y) ds(y) + i

∫
Γ

Φ(x, y)ψ̃(y) ds(y),

which satisfies the Helmholtz equation in De, from Rellich’s lemma we have that
P (x) = 0 in De. As x → Γ, the following jump relations (in the L2 limit sense [12],
[16]) hold:

P+ − P−|Γ1 = 0, P+ − P−|Γ2
= ψ,

∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
Γ1

= −φ,
∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
Γ2

= −iψ,

where by the superscript + and − we distinguish the limits obtained by approaching

the boundary Γ from De and D, respectively. Using the fact that P+ = ∂P+

∂ν = 0, we
see that P satisfies the Helmholtz equation and

P−|Γ1 = 0,
∂P−

∂ν
+ iP−

∣∣∣∣
Γ2

= 0,

where the equalities are understood in the L2 limit sense. Using Green’s theorem and
a parallel surface argument, one can conclude as in Theorem 2.1 in [3] that P = 0 in
D, whence from the above jump relations φ = ψ = 0.

Now let w ∈ H
1(D,Γ2) be a solution of the Helmholtz equation in D. From the

above we can approximate w|Γ1
∈ H

1
2 (Γ1) and ∂w

∂ν + iw|Γ2
∈ L2(Γ2) by Hg. Hence

using the a priori estimate for the solution of the mixed boundary value problem for
the Helmholtz equation (see Theorem 2.3 in [3]),

‖w‖H1(D) +

∥∥∥∥∂w∂ν
∥∥∥∥
L2(Γ2)

≤ C

(
‖w‖

H
1
2 (Γ1)

+

∥∥∥∥∂w∂ν + iw

∥∥∥∥
L2(Γ2)

)
,

we obtain that w can be approximated by a Herglotz wave function vg with respect
to the H

1(D,Γ2)-norm, which proves the first part of the theorem. Note that, by a
change of variable, vg defined by (4.7) can be written as

∫
Ω
e−ikx·dg(d)ds(d).

Next let z ∈ D. Then γe−ikx̂·z is the far field pattern of the radiating solution
Φ(x, z). Let wz and vz be the unique solution of (4.6). Obviously vz and Φ(x, z)
satisfy (MTP) with incident field the H1

loc(R)-extension of wz. The well-posedness of
(MTP) (section 3) together with the classical trace theorems and the approximation
of wz by a Herglotz wave function vgz

ε
show that for every ε > 0

‖(Fgzε )(x̂) − γe−ikx̂·z‖L2(Ω) ≤ c1‖us
gz
ε
− Φ(·, z)‖H1(De∩BR) ≤ c‖vgz

ε
− wz‖H1(D) ≤ cε

for c1, c > 0, where us
gz
ε

is the scattered field corresponding to vgz
ε

as the incident wave.
(Note that by superposition Fgzε coincides with us

gz
ε
.) This ends the proof.

Now let us define Wz by

Wz := wz + Φ(·, z).(4.11)

In particular, since wz ∈ H
1(D,Γ2), ∆wz ∈ L2(D), and z ∈ D, we have that Wz|Γ ∈

H
1
2 (Γ), ∂Wz

∂ν |Γ ∈ H− 1
2 (Γ), and ∂Wz

∂ν |Γ2 ∈ L2(Γ2).
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Lemma 4.4. For every two points z1 and z2 in D we have that

−2

∫
D

∇vz1 · Im(A)∇vz2 dx + 2

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds(4.12)

= −4kπ|γ|2J0(k|z1 − z2|) + i (wz1(z2) − wz2(z1)) ,

where wz1 , Wz1 and wz2 , Wz2 are defined by (4.6) and (4.11), respectively, and J0 is
a Bessel function of order zero.

Proof. Let z1 and z2 be two points in D and vz1 , wz1 , Wz1 and vz2 , wz2 , Wz2 the
corresponding functions defined by (4.6) and (4.11). Applying the divergence theorem
to vz1 , vz2 and using (4.6) together with the fact that A is symmetric, we have∫

Γ

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds =

∫
D

(
∇vz1 ·A∇vz2 −∇vz2 ·A∇vz1

)
dx

+

∫
D

(
vz1∇·A∇vz2 − vz2∇·A∇vz1

)
dx = −2i

∫
D

∇vz1 · Im(A)∇vz2 dx.

On the other hand, from the boundary conditions we have∫
Γ

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds

=

∫
Γ

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds− 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds.

Hence

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx + 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds

=

∫
Γ

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds =

∫
Γ

(
Φ(·, z1)

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂Φ(·, z1)

∂ν

)
ds

+

∫
Γ

(
wz1

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂wz1

∂ν

)
ds +

∫
Γ

(
Φ(·, z1)

∂wz2

∂ν
− wz2

∂Φ(·, z1)

∂ν

)
ds.

Green’s theorem applied to the radiating solution Φ(·, z) of the Helmholtz equation
in De implies that [13]

∫
Γ

(
Φ(·, z1)

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂Φ(·, z1)

∂ν

)
ds = −2ik

∫
Ω

Φ∞(·, z1)Φ∞(·, z2)ds

= −2ik

∫
Ω

|γ|2e−ikx̂·z1eikx̂·z2 ds = −4ikπ|γ|2J0(k|z1 − z2|),

and from the representation formula for wz1 and wz2 we now obtain

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx + 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds

= −4ikπ|γ|2J0(k|z1 − z2|) + wz2(z1) − wz1(z2).

Dividing both sides of the above relation by i yields the result.
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In the following we consider a ball Br ⊂ D of radius r contained in D and define
a subset of L2(Γ2) by

V :=

⎧⎨
⎩f ∈ L2(Γ2) :

f =
∂Wz

∂ν

∣∣∣∣
Γ2

with Wz = wz + Φ(·, z),

z ∈ Br and wz, vz the solution of (4.6).

⎫⎬
⎭

Lemma 4.5. Assuming that k is neither a transmission eigenvalue nor a Neu-
mann eigenvalue for −∇ ·A∇, then V is complete in L2(Γ2).

Proof. Let ϕ be a function in L2(Γ2) such that for every z ∈ Br∫
Γ2

∂Wz

∂ν
ϕ ds = 0.

Construct v ∈ H1(D) and w ∈ H
1(D,Γ2) as the unique solution of the interior

transmission problem

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆w + k2 w = 0 in D,

(iii) v − w = 0 on Γ1,

(iv) v − w = −iη
∂w

∂ν
+ ϕ on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= 0 on Γ.

Then we have

0 =

∫
Γ2

∂Wz

∂ν
ϕ ds =

∫
Γ

∂Wz

∂ν
(v − w) ds + i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds

=

∫
Γ

∂Wz

∂ν
v ds−

∫
Γ

∂Wz

∂ν
w ds + i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds.(4.13)

Next from the equations for vz and v, the divergence theorem, and the transmission
conditions, we have∫

Γ

∂Wz

∂ν
v ds =

∫
Γ

∂vz
∂νA

v ds =

∫
Γ

∂v

∂νA
vz ds

=

∫
Γ

∂w

∂ν
Wz ds− i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds.(4.14)

Finally, substituting (4.14) into (4.13) and using the integral representation formula
yields

0 =

∫
Γ

(
∂w

∂ν
Wz −

∂Wz

∂ν
w

)
ds =

∫
Γ

(
∂w

∂ν
wz −

∂wz

∂ν
w

)
ds

=

∫
Γ

(
∂w

∂ν
Φ(·, z) − ∂Φ(·, z)

∂ν
w

)
ds = w(z) ∀z ∈ Br.(4.15)

The unique continuation principle for the Helmholtz equation now implies that w = 0
in D. Hence if k is not a Neumann eigenvalue corresponding to −∇·A∇ (e.g., if
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Im(A) < 0 at a point x0 ∈ D), then v ≡ 0 and therefore ϕ = 0, which proves the
lemma.

Now we are ready to prove the main result of this section.
Theorem 4.6. Let η ∈ L∞(Γ2) be the surface conductivity of (MTP), and assume

that Im(A) = 0 in D and k is neither a transmission eigenvalue nor a Neumann
eigenvalue for −∇ ·A∇. Then

‖η‖L∞(Γ2) = sup
zi, zj ∈ Br

αi ∈ C

∑
i,j αiαj

(
−4πk|γ|2J0(k|zi − zj |) + iwzi(zj) − iwzj (zi)

)
2‖

∑
i αi

∂
∂ν (wzi + Φ(·; zi))‖2

L2(Γ2)

,

(4.16)

where wz is such that (wz, vz) solves (4.6) and the sums are arbitrary finite sums.
Proof. We recall that

‖η‖L∞(Γ2) := ess sup η = sup
f∈L2(Γ2)

1

‖f‖2
L2(Γ2)

∫
Γ2

η(x)|f |2ds.

The theorem then follows from Lemmas 4.4 and 4.5 by fixing first z2 and then z1 and
considering linear combinations of ∂Wz

∂ν for different z ∈ Br.
Given that D is known, wz in the right-hand side of (4.16) still cannot be com-

puted, since it depends on the unknown functions η and A. However, from Theorem
4.3, we can use in (4.16) an approximation to wz given by the Herglotz wave function
vgz with kernel gz being the (regularized) solutions of the far field equation (4.5).

In the particular case where the coating is homogeneous, i.e., the surface conduc-
tivity is a positive constant η > 0, we can further simplify (4.16). In particular, fix
an arbitrary point z0 ∈ Br and consider z1 = z2 = z0. Then (4.12) simply becomes

η =
−2kπ|γ|2 − Im (wz0(z0))

‖ ∂
∂ν (wz0 + Φ(·; z0))‖2

L2(Γ2)

.(4.17)

A drawback of (4.16) and (4.17) is that the extent of the coating Γ2 is not known.
Thus, in practice these expressions provide only a lower bound for ‖η‖L∞(Γ2). How-
ever, if the object is fully coated, that is, Γ2 = Γ, we can compute an approximation
of ‖η‖L∞(Γ2) by (4.12) and (4.17), where Γ2 is replaced by of Γ.

5. Remarks on Maxwell’s equations in R
3. The analysis of the previous

three sections for the case of scattering by an infinite cylinder can in principle be
extended to the scattering of electromagnetic waves by a bounded dielectric in R

3.
In this case the direct scattering problem is given by (2.1)–(2.6), and the existence of
a unique solution to this problem was established in [8]. The results for the inverse
scattering problem for an infinite cylinder established in section 4 of this paper can
in turn be extended to the case of Maxwell’s equations in R

3, provided that one can
establish the existence of a unique solution to the interior transmission problem

∇× Ez − ikHz = 0
in D,

∇×Hz + ikEz = 0
(5.1)

∇× Eint
z − ikH int

z = 0
in D,

∇×H int
z + ikN(x)Eint

z = 0
(5.2)
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together with the boundary relations

ν × Eint
z − ν × Ez = ν × Ee(·, z, q) on Γ,

ν ×H int
z − ν ×Hz = ν ×He(·, z, q) on Γ1,(5.3)

ν ×H int
z − ν ×Hz = −η [ν × (Ez + Ee(·, z, q)) × ν] + ν ×He(·, z, q) on Γ2,

where Ee(·, z, q), He(·, z, q) is the electric dipole defined by

Ee(x, z, q) :=
i

k
∇x ×∇x × qΦ(x, z), He(x, z, q) := ∇x × qΦ(x, z),(5.4)

where q ∈ R
3 is a constant vector and

Φ(x, z) :=
1

4π

eik|x−z|

|x− z| .

Unfortunately this result remains an open problem. (For the existence of a unique
solution to a modified version of (5.1)–(5.3), see [8].)

Assuming the existence of a unique solution of (5.1)–(5.3), one can now proceed
to derive the three-dimensional analogue of Theorem 4.6; i.e., if Im(N) = 0 and k is
not a transmission eigenvalue, then

‖η‖L∞(Γ2) = sup
zi ∈ Br, q ∈ R

3

αi ∈ C

∑
i,j αiαj

[
−‖q‖2A(zi, zj , k, q) + q · Ezi(zj) + q · Ezj (zi)

]
2‖

∑
i αi ν × (Ezi + Ee(·, zi, q))‖2

L2
t (Γ2)

,

(5.5)

where Br ⊂ D is a ball of radius r;

A(zi, zj , k, q) =
k2

6π

[
2j0(k|zi − zj |) + j2(k|zi − zj |)(3 cos2 φ− 1)

]
,(5.6)

j0 and j2 being spherical Bessel functions of order 0 and 2, respectively; φ is the angle
between (zi−zj) and q; and Ez, E

int
z is the unique solution of the interior transmission

problem (5.1)–(5.3). In particular, Ez can be approximated by

Egz (x) := ik

∫
Ω

eikx·dgz(d)ds(d),(5.7)

where Ω := {x ∈ R
3 : |x| = 1} and gz is the (regularized) solution of the far field

equation ∫
Ω

E∞(x̂, d, g(d))ds(d) = Ee,∞(x̂, z, q).(5.8)

Here E∞ is the electric far field pattern corresponding to the scattering problem (2.1)–
(2.6), and Ee,∞ is the electric far field pattern of the electric dipole (5.4). For details
in the case of a perfect conductor coated by a dielectric, see section 3 of [5].

In the special case when η is a constant, (5.5) simplifies to

η =
− k2

6π‖q‖2 + Re (q · Ez0(z0))

‖ν × (Ez0 + Ee(·, z0, q))‖2
L2

t (Γ2)

,(5.9)

where z0 is an arbitrary point in D.
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6. Numerical examples. In this section we shall present some numerical tests
of the inversion scheme using synthetic far field data for the Helmholtz equation. For
a given scatterer, the far field data is computed by using a cubic finite element code
to approximate the near field, and then employing a near to far field transformation
[18]. The finite element computational domain is terminated by a rectilinear perfectly
matched layer using a linear absorption function in the layer [2], [10].

Having computed approximate values of the far field pattern at N uniformly
spaced points on the unit circle for N incoming waves, we have an N ×N matrix A
of approximate far field data

Am,n = uh,∞(dm, dn) where dm =

(
cos

(
2π(m− 1)

N

)
, sin

(
2π(m− 1)

N

))T

for 1 ≤ m,n ≤ N, where uh,∞ is the finite element far field pattern. To this we add
further noise with parameter ε to obtain Aε using

(Aε)m,n = Am,n(1 + ε(ξ1,m,n + iξ2,m,n)),

where ξ1,m,n and ξ2,m,n are given by a random number generator, uniformly dis-
tributed in the range [−1, 1]. Unless otherwise stated, ε = 0.01 in these studies.

For a given sampling point z, the discrete far field equation is then to compute
�g = (g1, . . . , gN ) such that Aε�g = �b, where

bm = Nγ exp
(−ik(z · dm))

(2π)
, 1 ≤ m ≤ N.

This ill-conditioned problem is solved approximately using the Tikhonov regulariza-
tion and the Morozov discrepancy principle as described, for example, in [14].

6.1. Exact knowledge of the boundary. We start as in [5], assuming an
exact knowledge of the boundary in order to assess the accuracy of (4.17) without
the added error of computing an approximation to the boundary of the scatterer. In
this case, for a given scatterer, we compute �g for z = z0 using the Morozov method
outlined in the previous section, and then approximate (4.17) using the trapezoidal
rule with 100 integration points. After limited experiments, we choose z0 = (0, 0)T

(both upcoming examples have this point as their centroid).

To simplify the presentation, we have limited our discussion to two scatterers:
an ellipse given by x = 0.5 cos(s) and y = 0.2 sin(s), s ∈ [0, 2π], and the rectangle
[−0.5, 0.5] × [0.4, 0.4]. In (2.7) we choose A = (1/4)I. In all cases k = 5.

For the ellipse we consider either a fully coated or partially coated object. The
partially coated boundary is shown in Figure 6.1. In Figure 6.2 we show results of
the reconstruction of a range of conductivities η for the fully coated ellipse, partially
coated ellipse, and fully coated rectangle. For each exact η we compute the far field
data, add noise, and compute an approximation to wz0 , as discussed before. Despite
the noise on the data, η is well approximated in the case of the fully coated scatterers,
provided that the conductivity is not too large. In all cases the approximation of η
deteriorates for large conductivities, and as expected, (4.17) leads to an underestimate
of η when the boundary is partially coated. These limited examples suggest that (4.17)
provides a viable method for reconstructing η, provided that η is small enough and
the boundary of the scatterer is known sufficiently accurately.
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Fig. 6.1. A diagram showing the coated portion of the partially coated ellipse as a thick line.
The dotted square is the inner boundary of the PML, and the solid square is the boundary of the
finite element computational domain.
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Fig. 6.2. Computation of η using the exact boundary. Panel (a) shows results for the fully and
the partially coated ellipse. Panel (b) shows the corresponding results for the fully coated rectangle.
Clearly in all cases the approximation of η deteriorates for large conductivities.

6.2. The ellipse. We now wish to investigate the solution of the full inverse
problem. We start by using the standard linear sampling method to approximate the
boundary of the scatterer. In particular we compute 1/‖�g‖ for z on a uniform grid in
the sampling domain. In the upcoming numerical results we have arbitrarily chosen
N = 61, and we sample on a 101 × 101 grid on the square [−1, 1] × [−1, 1]. This
procedure takes around 10 seconds in MATLAB on an Apple G5 computer, so it is
not time-consuming.

Having computed �g for each sample point, we have a discrete level set function
1/‖�g‖. Choosing a contour value C then provides a reconstruction of the support of
the given scatterer. We extract the edge of the reconstruction and then fit this using
a trigonometric polynomial of degree M , assuming that the reconstruction is star-like
with respect to the origin. (For more advanced applications it would be necessary to
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Fig. 6.3. Illustration of the steps in the computation of η. First the standard linear sampling
method is used to compute 1/‖�g‖, as shown in panel (a) (the bar labeled λ shows the wavelength
of the radiation). Choosing a cutoff C (in this case C = 0.3), the surface in panel (a) provides an
approximation to the boundary of the scatterer shown as shaded blocks in panel (b). Each square in
this figure contains one sampling point z at its center. We also show in panel (b) the outline of the
true scatterer as a smooth solid line, and as a white line the fit of the trigonometric series to the
reconstruction. In this case C is chosen too small and the computed boundary lies outside the true
scatterer.

employ a more elaborate smoothing procedure.) Thus for an angle θ the radius of the
reconstruction is given by

r(θ) = �
(

M∑
n=−M

rn exp(inθ)

)
,

where r is measured from the origin (since in all the examples here the origin is within
the scatterer). The coefficients rn are found using a least squares fit to the boundary
identified in the previous step of the algorithm. Once we have a parameterization
of the reconstructed boundary, we can compute the normal to the boundary and
evaluate (4.17) for some choice of z0 (in the examples always z0 = (0, 0)T ) using the
trapezoidal rule with 100 points. This provides our reconstruction of η.

Figure 6.3 shows the main steps for evaluating our prediction of η for the ellipse.
Here we choose η = 1 on the entire ellipse (fully coated). In (a) we see a plot of 1/‖�g‖
(normalized so that the maximum value is 1) as a function of position. In this case
the choice ε = 0.01 for the additional error in the far field pattern gives an error of
1.3% in the spectral norm for A.

We then make the arbitrary choice C = 0.3 (i.e., due to the normalization, the
value is 0.3 times the maximum of 1/‖�g‖). Figure 6.3(b) shows a plot of the pixels
separating regions where 1/‖�g‖ > C and 1/‖�g‖ < C. For clarity, we have graphed
only the region [−0.6, 0.6] × [−0.6, 0.6]. The black pixels in Figure 6.3(b) are then
fitted using M = 8 in the trigonometric polynomial for r(θ), and the resulting curve
is shown as a light curve on the figure. We also indicate, using a thick black line, the
true ellipse. We have deliberately chosen a contour value C that does not give the
best reconstruction of the ellipse so that the different geometric features can be easily
seen. Using this reconstruction results in a predicted value of η = 0.8372 (compared
to the true value η = 1).
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Fig. 6.4. Panel (a) shows the computed value of η as a function of the cutoff C. The dashed
line is the true value η = 1, and the dotted line marks the maximum predicted η. The corresponding
reconstruction of the ellipse is shown in panel (b) using the same convention as in panel (b) of
Figure 6.3.
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Fig. 6.5. Reconstruction of a range of η. For each exact η we apply the reconstruction algorithm
using a range of cutoffs and plot the corresponding reconstruction. An exact reconstruction would
lie on the dotted line.

With both scatterers in this study we have observed that a poor choice of the
cutoff C tends to result in a predicted value of η that is too small. Therefore we now
suggest sweeping through a range of values of C, and we find that the maximum value
of η correlates with a good reconstruction of the scatterer and a better approximation
of the true value of η. We show this in Figure 6.4 for the fully coated ellipse. The
largest predicted value of η is η = 1.05 when C = .3567, and the reconstruction of the
scatterer is better than choosing C = 0.3.

The reconstruction algorithm is next investigated for a range of values of η. For
each exact η we apply the reconstruction algorithm using multiple cutoffs and plot
the corresponding reconstruction of η. The results are shown in Figure 6.5 and should
be compared to those in Figure 6.2(a). Given that the shape of the object and the
parameter η are both being reconstructed, the results show reasonable agreement of
the reconstruction up to approximately η = 1.5. For larger values of η the recon-
struction deteriorates, perhaps because the field inside the scatterer diminishes as η
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Fig. 6.6. Reconstruction of the partially coated ellipse for η = 1. (a) The indicator function
1/‖�g‖ resulting from the standard linear sampling method. (b) The computed value of η for a range
of cutoffs C. The best reconstruction (maximum value of η) is η = 0.61793 when C = 0.3114. (c)
The reconstruction of the ellipse using C = 0.3114. (d) The reconstruction of a range of η; this
should be compared to Figure 6.2(a).

increases. In this case the linear sampling method is able to provide a sufficiently
accurate approximation of the ellipse so that the reconstruction of η in Figures 6.2
and 6.5 is of comparable accuracy.

Next we consider the partially coated ellipse (see Figure 6.1). The inversion
algorithm is unchanged (both the boundary of the scatterer and η are reconstructed).
The results are shown in Figure 6.6(a)–(c) when η = 1, and the results for a range
of η are shown in Figure 6.6(d). The linear sampling method can still reconstruct
the ellipse with reasonable fidelity despite the partial coating, and so the results in
Figure 6.6(d) and Figure 6.2(a) are comparable. Recall that, for a partially coated
obstacle, (4.17) provides only a lower bound for η.

6.3. Rectangular scatterer. Finally we show the reconstruction of the surface
conductivity of the fully coated rectangular scatterer. Results for a range of η are
shown in Figure 6.7. Comparing this to the reconstruction computed using the exact
boundary (shown in Figure 6.2(b)), the results are much worse.

The deterioration of the results for the full inversion scheme can be explained by
considering one choice of η in detail. In Figure 6.8 we show the full reconstruction
procedure for η = 1. As in the case of the ellipse, we use the linear sampling method
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Fig. 6.7. Results of reconstructing a range of conductivities for the fully coated rectangle.
We plot the computed conductivity against its exact value. The results should be compared to Fig-
ure 6.2(b), and are seen to be substantially worse than that case.
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Fig. 6.8. Details of the reconstruction of η when the exact value is η = 0.5. (a) The indicator
function computed by the linear sampling method. Clearly, whatever the choice of C, the reconstruc-
tion of the scatterer will not provide an accurate normal. (b) The best reconstruction corresponding
to C = 0.52, which yields the computed value of η = 0.28.

to provide an indicator function for the boundary of the rectangle, but, compared to
the ellipse, the reconstruction of the boundary shown in Figure 6.8(b) (at the best
cutoff C) is now quite poor. From this reconstruction we need to compute the normal
derivative of wz0 . It is clear that this will be poorly approximated, and thus (4.17)
will provide a poor approximation to η.

7. Conclusion. We have provided a method for estimating the surface conduc-
tivity of a scatterer from far field measurements. Numerical experiments show that
this method can be combined with the linear sampling method to simultaneously
identify the shape of the scatterer and the conductivity, provided that the shape of
the scatterer can be computed with sufficient accuracy. Limitations include the fact
that the method becomes inaccurate for large values of the surface conductivity, and
the quality of the reconstruction of the conductivity can also be adversely influenced
by the quality of the reconstruction of the scatterer. This may in part be due to the
need to use the normal derivative of the Herglotz wave function in (4.17). We now
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plan to investigate the use of the electric far field pattern, which should allow us to
avoid the normal derivative. However considerable mathematical difficulties need to
be overcome, and in particular the existence of a solution of the interior transmission
problem is not known in this case.
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