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Abstract. A variational method is given for determining the essential supremum of the surface
impedance of a partially coated perfect conductor from a knowledge of the far field pattern of the
time-harmonic electric field at fixed frequency. It is assumed that the shape of the scatterer has been
determined (e.g., by solving the far field equation and using the linear sampling method). Numerical
examples are given for the scalar case with constant surface impedance.
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1. Introduction. In order to avoid detection by radar, hostile objects are often
partially coated by a material designed to reduce the radar cross section of the scat-
tered wave. From the point of view of target identification a key question to answer
is, given the shape of a scattering obstacle (which can be determined, for example,
by the linear sampling method [2], [3]), is the obstacle coated or not and if so what
are the electrical properties of the coating? The simplest example of such a problem
is the case of a perfect conductor that is partially coated by a dielectric. In this case
the direct scattering problem is a mixed boundary value problem for Maxwell’s equa-
tions where on the coated part of the boundary the electromagnetic field satisfies an
impedance boundary condition [9], [12] and on the remaining part of the boundary
the tangential component of the total electric field vanishes. The inverse problem of
determining whether or not the obstacle is coated, and, if so, what the values of the
surface impedance are, is complicated by the fact that the extent of the coating (if
indeed the object is coated at all!) is not known a priori.

In this paper we will provide a variational method for determining the essential
supremum of the surface impedance (which may be zero if the scatterer is not coated!)
from a knowledge of the far field pattern of the scattered electric field corresponding to
a time-harmonic incident plane wave at fixed frequency. In the special case where the
surface impedance is a constant, this of course yields this constant. However, in neither
case does our method provide information on how much of the scattering obstacle is
coated. (In particular, there could be no coating at all or the entire obstacle could be
coated!) Our analysis is based on our recent investigations of the inverse scattering
problem for partially coated obstacles where the aim was to determine the shape of
the scattering obstacle with unknown boundary condition from a knowledge of the
electric far field pattern [2], [3]. As we show in this paper, the far field equation that
was used in [2] and [3] to determine the shape can also be used in conjunction with a
variational method to determine the essential supremum of the surface impedance on
the coated portion of the boundary. Although for the sake of exposition we assume in
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this paper that we have full-aperture far field data, we point out at the end of section
3 how all of our results remain valid for the practical case of limited-aperture data.

Given the shape of the scattering obstacle, the problem of determining lower
bounds for the surface impedance in the scalar case when the obstacle is completely
coated has previously been considered by Colton and Kress [6] (full-aperture scattering
data) and Colton and Piana [8] (limited-aperture scattering data). In particular, the
paper of Colton and Piana has had a strong influence on the approach used in the
present paper. We also draw the reader’s attention to a recent paper of Akduman
and Kress [1], where a potential theoretic method is given for determining the surface
impedance in the case when the shape of the scatterer is known and the obstacle is
completely coated.

The plan of our paper is as follows. We first consider the scattering of time-
harmonic plane waves by a partially coated infinite cylinder (which in fact can be
totally coated, partially coated or not coated at all). This leads to the investigation
of a mixed boundary value problem for the two-dimensional Helmholtz equation in
the exterior of a bounded domain D with Lipschitz boundary Γ. Assuming the surface
impedance λ = λ(x) on the coated portion ΓI of Γ is in L∞(ΓI), we derive a variational
method for determining ess supλ(x) from a knowledge of the far field pattern of the
scattered wave. We then extend this result to the case of Maxwell’s equations in R

3.
In the final section of our paper we consider several numerical examples in the scalar
case when the surface impedance is a constant.

2. The scalar case. We consider the scattering of an electromagnetic time har-
monic plane wave by a perfectly conducting infinite cylinder that is (partially) coated
by an inhomogeneous dielectric material. This leads to a mixed boundary value prob-
lem for the Helmholtz equation [2]. In particular let D ⊂ R

2 be an open bounded
region with Lipschitz boundary Γ such that R

2 \ D is connected. We assume that
the boundary Γ has a Lipschitz dissection Γ = ΓD ∪ Π ∪ ΓI , where ΓD and ΓI are
disjoint, relatively open subsets of Γ, having Π as their common boundary in Γ (see
e.g., [10]). Furthermore, boundary conditions of Dirichlet and impedance type with
the surface impedance a bounded measurable function λ ∈ L∞(ΓI) are specified on
ΓD and ΓI , respectively. We assume that the surface impedance is positive and uni-
formly bounded, i.e., λ(x) ≥ λ0 > 0 for x ∈ ΓI . Let ν denote the unit outward normal
vector defined almost everywhere on ΓD ∪ΓI . The total field u = us+ eikx·d given as
the sum of the unknown scattered wave and incident plane wave satisfies

∆u+ k2u = 0 in R
2 \D,(2.1a)

u = 0 on ΓD,(2.1b)

∂u

∂ν
+ iλ(x)u = 0 on ΓI ,(2.1c)

where k > 0 is the wave number and d is a unit vector describing the incident direction.
Moreover, the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0(2.2)

uniformly in x̂ = x/|x| with r = |x|.
The well-posedness of the exterior mixed boundary value problem is established in

[2] (in [2] λ was assumed to be constant, but all the results remain valid if λ = λ(x) ∈
L∞(ΓI)). In particular it is shown that the direct scattering problem (2.1a)–(2.2) has
a unique solution u ∈ Hloc(De).
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It is easy to see [5] that the scattered field has the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂, d) +O(r−3/2),(2.3)

where u∞ is the far field pattern of the scattered wave. The far field pattern defines
the far field operator F : L2(Ω) → L2(Ω) by

(Fg)(x̂) :=

∫
Ω

u∞(x̂, d)g(d)ds(d), g ∈ L2(Ω).(2.4)

The corresponding interior mixed boundary value problem is also studied in [2].
In particular we consider the following problem: find uz ∈ H1(D) that satisfies

∆uz + k2uz = 0 in D,(2.5a)

uz = −Φ(·, z) on ΓD,(2.5b)

∂uz
∂ν

+ iλ(x)uz = −∂Φ(·, z)
∂ν

− iλ(x)Φ(·, z) on ΓI(2.5c)

for a fixed z ∈ D, where Φ is the fundamental solution to the Helmholtz equation
defined by

Φ(x, z) :=
i

4
H

(1)
0 (k|x− z|)(2.6)

with H
(1)
0 being a Hankel function of the first kind of order zero. Then in [2] it is

shown that (2.5a)–(2.5c) has a unique solution uz ∈ H1(D) provided ΓI �= ∅ and
λ �= 0.

Next we introduce the far field equation

(Fg)(x̂) = γe−ikx̂·z, g ∈ L2(Ω), z ∈ D,(2.7)

where γ = eiπ/4√
8πk

and γe−ikx̂·z is the far field pattern of Φ(x, z).

A Herglotz wave function with kernel g ∈ L2(Ω) is an entire solution of the
Helmholtz equation defined by

vg(x) =

∫
Ω

eikx·dg(d)ds(d), x ∈ R
2.

The following theorem is proved in [2].
Theorem 2.1. Let ε > 0, z ∈ D, and uz be the unique solution of (2.5a)–(2.5c).

Then there exists a Herglotz wave function vgzε with kernel gzε ∈ L2(Ω) such that

‖uz − vgzε ‖H1(D) ≤ ε.(2.8)

Moreover, there exists a positive constant c > 0 independent of ε such that

‖(Fgzε )(x̂)− γe−ikx̂·z‖L2(Ω) ≤ cε.(2.9)

Now let us define wz by

wz := uz +Φ(·, z).(2.10)
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In particular, since uz ∈ H1(D) and z ∈ D, we have that wz|Γ ∈ H
1
2 (Γ), ∂wz

∂ν |Γ ∈
H− 1

2 (Γ), and

wz|ΓD
= 0 and

(
∂wz
∂ν

+ iλwz

)
|ΓI

= 0(2.11)

interpreted in the sense of the trace theorem.
Lemma 2.2. For every two points z1 and z2 in D we have that

2

∫
ΓI

wz1λ(x)wz2 ds = −4kπ|γ|2J0(k|z1 − z2|) + i (uz1(z2)− uz2(z1)) ,(2.12)

where uz1 , wz1 and uz2 , wz2 are defined by (2.5a)–(2.5c) and (2.10), respectively, and
J0 is a Bessel function of order zero.

Proof. Let z1 and z2 be two points in D and uz1 , wz1 and uz2 , wz2 the corre-
sponding functions defined by (2.5a)–(2.5c) and (2.10). From (2.11) we have that

2i

∫
ΓI

wz1λ(x)wz2 ds =

∫
Γ

(
wz1

∂wz2
∂ν

− wz2
∂wz1
∂ν

)
ds

=

∫
Γ

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds

+

∫
Γ

(
uz1

∂Φ(·, z2)
∂ν

− Φ(·, z2)∂uz1
∂ν

)
ds

+

∫
Γ

(
Φ(·, z1)∂uz2

∂ν
− uz2

∂Φ(·, z1)
∂ν

)
ds.

From Green’s theorem applied to the radiating solution Φ(·, z) of the Helmholtz equa-
tion in De and the uniformity of the asymptotic relation (2.3) we have (see [7])

∫
Γ

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds = −2ik

∫
Ω

Φ∞(·, z1)Φ∞(·, z2)ds

= −2ik
∫

Ω

|γ|2e−ikx̂·z1eikx̂·z2 ds = −4ikπ|γ|2J0(k|z1 − z2|).

Now from the representation formula for uz1 and uz2 we obtain

2i

∫
ΓI

wz1λ(x)wz2 ds = −4ikπ|γ|2J0(k|z1 − z2|) + uz2(z1)− uz1(z2).

Finally, dividing both sides of the above relation by i yields the result.
In the following let us consider a ball Br ⊂ D of radius r contained in D and

denoted by

W :=

{
f ∈ L2(ΓI) :

f = wz|ΓI
with wz = uz +Φ(·, z),

z ∈ Br and uz the solution of (2.5a)–(2.5c)

}
.

Now we are ready to prove the main result of this section.
Theorem 2.3. Let λ ∈ L∞(ΓI) be the surface impedance of the scattering problem

(2.1a)–(2.2). Then
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‖λ‖L∞(ΓI) = sup
zi∈Br

αi∈C

∑
i,j

αiαj
[−4πk|γ|2J0(k|zi − zj |) + i

(
uzi(zj)− uzj (zi)

)]
2‖∑

i

αi (uzi +Φ(·; zi)) ‖2
L2(Γ)

,(2.13)

where uz is the solution to (2.5a)–(2.5c) and the sums are arbitrary finite sums.

Proof. First we show that W is complete in L2(ΓI). To this end let ϕ be a
function in L2(ΓI) such that for every z ∈ Br∫

ΓI

wzϕds = 0.

Construct v ∈ H1(D) as the unique solution of the interior mixed boundary value
problem [2]

∆v + k2v = 0 in D,

v = 0 on ΓD,

∂v

∂ν
+ iλ(x)v = ϕ on ΓI .

Then for every z ∈ Br, using the boundary conditions and the integral representation
formula, we have that

0 =

∫
ΓI

wzϕds =

∫
ΓI

wz

(
∂v

∂ν
+ iλv

)
ds =

∫
Γ

wz

(
∂v

∂ν
+ iλv

)
ds

=

∫
Γ

(
uz
∂v

∂ν
+ iλuzv +Φ(·, z)∂v

∂ν
+ iλΦ(·, z)v

)
ds

=

∫
Γ

[
uz
∂v

∂ν
+ v

(
−∂uz
∂ν

− ∂Φ(·, z)
∂ν

− iλΦ(·, z)
)]

ds

+

∫
Γ

(
Φ(·, z)∂v

∂ν
+ iλvΦ(·, z)

)
ds = v(z).

Now the unique continuation principle implies that v(z) = 0 for all z ∈ D, whence
from the trace theorem ϕ = 0.

We now show that

‖λ‖L∞(ΓI) := ess supλ = sup
f∈L2(ΓI)

1

‖f‖2
L2(ΓI)

∫
ΓI

λ(x)|f |2ds.

The theorem then follows from Lemma 2.2 and the denseness of W in L2(ΓI) by fixing
first z2 and then z1 and considering linear combinations of wz for different z ∈ Br

together with the fact that ‖wz‖L2(Γ) = ‖wz‖L2(ΓI). (Note that wz1 and wz2 are not
orthogonal with respect to λ(x) and hence two different points are needed.) To prove
the above identity, let C = ess supλ > 0. Obviously,

1

‖f‖2
L2(ΓI)

∫
ΓI

λ(x)|f |2ds ≤ C ∀f ∈ L2(ΓI).
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Now for every 0 < ε < C the set Mε = {x ∈ ΓI : |λ(x)| ≥ C − ε} has a positive
measure and for an fε ∈ L2(ΓI) supported in Mε we have

1

‖fε‖2
L2(ΓI)

∫
ΓI

λ(x)|fε|2ds ≥ (C − ε),

which ends the proof.
Given that D is known (for example, by using the far field equation and the linear

sampling method as discussed in [2]), uz in the right-hand side of (2.13) still cannot
be computed since it depends on the unknown function λ. However, from Theorem
2.1, we can use in (2.13) an approximation to uz given by the Herglotz wave function
vgz with kernel gz being the (regularized) solutions of the far field equation (2.7).

In the particular case where the surface impedance is a positive constant λ > 0 we
can further simplify the formula (2.13). In particular, fix an arbitrary point z0 ∈ Br

and consider z1 = z2 = z0. Then (2.12) simply becomes

λ =
−2kπ|γ|2 − Im (uz0(z0))

‖uz0 +Φ(·; z0)‖2
L2(Γ)

.(2.14)

Note that the expressions on the right-hand sides of (2.13) and (2.14) can be used as
a target signature to detect if an obstacle is coated or not. In particular an object is
coated if and only if the numerator is nonzero.

3. The vector case. We now turn our attention to the electromagnetic scatter-
ing problem for a (partially) coated perfect conductor in R

3. In particular let D ⊂ R
3

be a bounded region with boundary Γ such that De := R
3 \ D is connected. Each

simply connected piece of D is assumed to be a Lipschitz curvilinear polyhedron.
Moreover, we assume that the boundary Γ = ΓD ∪ Π ∪ ΓI is split into two disjoint
parts ΓD and ΓI having Π as their possible common boundary in Γ and that each
part ΓD and ΓI can be written as the union of a finite number of open smooth faces
(ΓjD)j=1,...,ND

and (ΓjI)j=1,...,NI
, respectively, where eij denotes the common edge of

two adjacent faces Γi and Γj . Let ν denote the unit outward normal defined almost
everywhere on Γ.

The direct scattering problem for the scattering of a time-harmonic electromag-
netic plane wave by a partially coated obstacle D is to find an electric field E and a
magnetic field H := 1

ik curlE such that

curl curlE − k2E = 0 in R
3 \D,(3.1a)

ν × E = 0 on ΓD,(3.1b)

ν × curlE − iλ(x)(ν × E)× ν = 0 on ΓI ,(3.1c)

where the surface impedance λ ∈ L∞(ΓI) satisfies λ(x) ≥ λ0 > 0. The total electric
field E is given by

E = Ei + Es,(3.2)

where Es is the scattered field satisfying the Silver–Müller radiation condition

lim
r→∞(curlEs × x− ikrEs) = 0(3.3)



DETERMINATION OF SURFACE IMPEDANCE 715

uniformly in x̂ = x/|x|, where r = |x| and the incident field Ei is given by

Ei(x) :=
i

k
curl curl peikx·d = ik(d× p)× deikx·d,(3.4)

where k > 0 is the wave number, d is a unit vector giving the direction of propagation,
and p is the polarization vector. The well-posedness of the direct problem is estab-
lished in [3] (in [3] λ was assumed to be constant, but all the results remain valid if
λ = λ(x) ∈ L∞(ΓI)). In particular it is shown that there exists a unique solution E,
and H = 1

ik curlE of (3.1a)–(3.4), and, moreover, E ∈ X(De ∩BR,ΓI) for every ball
of radius R containing D, where X(De ∩BR,ΓI) is the Sobolev space defined by

X(De ∩BR,ΓI) := {u ∈ H(curl, De ∩BR) : ν × u|ΓI
∈ L2

t (ΓI)}

with

H(curl, De ∩BR) := {u ∈ (L2(De ∩BR))
3 : curlu ∈ (L2(De ∩BR))

3},

L2
t (ΓI) := {u ∈ (L2(ΓI))

3 : ν · u = 0 on ΓI}.

The scattered electric field Es has the asymptotic behavior [5]

Es(x) =
eik|x|

|x|
{
E∞(x̂, d, p) +O

(
1

|x|
)}

as |x| → ∞, where E∞ is a tangential vector field defined on the unit sphere Ω and
known as the electric far field pattern. The electric far field operator F : L2

t (Ω) →
L2
t (Ω) is then defined by

(Fg)(x̂) :=

∫
Ω

E∞(x̂, d, g(d))ds(d), x̂ ∈ Ω,(3.5)

for g ∈ L2
t (Ω). Note that by superposition Fg is the electric far field pattern of the

exterior mixed boundary value problem corresponding to the electromagnetic Herglotz
pair with kernel ikg as incident field. An electromagnetic Herglotz pair is defined to
be a pair of vector fields of the form

Eg(x) =

∫
Ω

eikx·dg(d)ds(d), Hg(x) =
1

ik
curlEg(x),(3.6)

where g ∈ L2
t (Ω). It is easily seen that Eg, Hg is a solution of Maxwell’s equations

curlE − ikH = 0, curlH + ikE = 0 in R
3. Now let us consider the electric dipole

with polarization q defined by

Ee(x, z, q) :=
i

k
curlx curlx qΦ(x, z), He(x, z, q) := curlx qΦ(x, z),(3.7)

where Φ is the fundamental solution of the Helmholtz equation in R
3 defined by

Φ(x, z) :=
1

4π

eik|x−z|

|x− z| , x �= z and x, z ∈ R
3.
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If z ∈ D, then Ee(x, z, q) and He(x, z, q) satisfy Maxwell’s equations in R
3 \D, and

the corresponding electric far field pattern Ee,∞(x̂, z, q) is given by

Ee,∞(x̂, z, q) =
ik

4π
(x̂× q)× x̂ e−ikx̂·z.(3.8)

As in the scalar case, we also need the interior mixed boundary value problem
corresponding to the scattering problem which is studied in detail in [3]. (For the
case when either ΓI = ∅ or ΓD = ∅, see [11].) In particular, let Ez ∈ X(D,ΓI) be the
unique solution of

curl curlEz − k2Ez = 0 in D,(3.9a)

ν × [Ez + Ee(·, z, q)] = 0 on ΓD,(3.9b)

ν × curl (Ez + Ee(·, z, q)) − iλ[ν × (Ez + Ee(·, z, q))]× ν = 0 on ΓI(3.9c)

for a fixed but arbitrary z ∈ D. Define

Wz := Ez + Ee(·, z, q)(3.10)

and let uT := (ν × u)× ν be the tangential component of a function u ∈ H(curl, D).
Note that (Wz)T |ΓI

∈ L2
t (ΓI) and that Wz depends on the artificial polarization q as

well. We now look for a solution to the far field equation

Fg(x̂) = Ee,∞(x̂, z, q), z ∈ D,(3.11)

where F is given by (3.5). We have the following result (see [3, Thm. 3.2]).
Theorem 3.1. For every ε > 0 and z ∈ D there exists an electric Herglotz wave

function Egzε with kernel gzε ∈ L2
t (Ω) such that

‖Ez − ikEgzε ‖X(D,ΓI) ≤ ε,(3.12)

where Ez is the solution of (3.9a)–(3.9c). Moreover, there exists a positive constant
c > 0 independent of ε such that

‖(Fgzε )(x̂)− Ee,∞(x̂, z, q)‖L2
t (Ω) ≤ cε.(3.13)

Our next aim is to find a relation that connects the surface impedance λ with Ez.
Lemma 3.2. For every two points z1 and z2 in D and polarization q ∈ R

3 we
have that

2

∫
ΓI

(Wz1)T · λ(W z2)T ds = −‖q‖2A(z1, z2, k, q) + k
(
q · Ez1(z2) + q · Ez2(z1)

)
,

where Ez1 , Ez2 and Wz1 , Wz2 are defined by (3.9a)–(3.9c) and (3.10), respectively,
and A(z1, z2, k, q) is a computable number depending only on z1, z2, k, and q.

Proof. By applying the second vector Green’s formula and using the boundary
conditions for Ez1 and Ez2 on Γ we obtain

2i

∫
ΓI

(Wz1)T · λ(W z2)T ds =

∫
Γ

(
ν ×Wz1 · curlW z2 − ν ×W z2 · curlWz1

)
ds

=

∫
Γ

(
ν × Ee(·, z1, q) · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEe(·, z1, q)

)
ds

+

∫
Γ

(
ν × Ez1 · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEz1

)
ds

+

∫
Γ

(
ν × Ee(·, z1, q) · curlEz2 − ν × Ez2 · curlEe(·, z1, q)

)
ds.(3.14)
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One can easily see that if E ∈ H(curl, D) and H = 1
ik curlE is a solution of Maxwell’s

equations and z ∈ D, we have

ν × Ee(y, z, q) · curly E(y) = − i

k
(−ik)curlz curlz qΦ(y, z) · (ν ×H(y))

= −q · curlz curlz Φ(y, z)(ν ×H(y))

and

ν × E(y) · curly Ee(y, z, q) = ikν × E(y) ·He(y, z, q) = ikq · curlzΦ(y, z)(ν × E(y)),

and therefore from the Stratton–Chu formula∫
Γ

(
ν × Ee(y, z, q) · curly E(y)− ν × E(y) · curly Ee(y, z, q)

)
= ikq · E(z).(3.15)

Moreover (see [7]),∫
Γ

(
ν × Ee(·, z1, q) · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEe(·, z1, q)

)
ds

= −2ik
∫

Ω

Ee,∞(·, z1, q) · Ee,∞(·, z2, q)ds

= − ik3

8π2

∫
Ω

((x̂× q)× x̂) · ((x̂× q)× x̂) e−ikx̂·(z1−z2)ds(3.16)

= − ik3

8π2

∫
Ω

(‖q‖2 − (x̂ · q)2) e−ikx̂·(z1−z2)ds := −i‖q‖2A(z1, z2, k, q),

where by straightforward calculations

A(z1, z2, k, q) =
k3

6π

[
2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 φ− 1)

]
(3.17)

with j0 and j2 being spherical Bessel functions of order 0 and 2, respectively, and φ
is the angle between (z1 − z2) and q. Hence using (3.15) and (3.16) in (3.14) and
dividing both sides of (3.14) by i yield the result.

Next we consider a subset E of L2
t (ΓI) defined by

E :=

{
f ∈ L2

t (ΓI) :
f = (Wz)T |ΓI

withWz = Ez + Ee(·, z, q),
z ∈ Br, Ez the solution of (3.9a)–(3.9c) and q ∈ R

3

}
,

where Br is a ball of radius r contained in D.
Lemma 3.3. E is complete in L2

t (ΓI).
Proof. Let ϕ ∈ L2

t (ΓI) such that for every z ∈ Br∫
ΓI

(Wz)T · ϕds = 0.

Let E ∈ X(D,ΓI) be the solution of the interior mixed boundary value problem [3]

curl curlE − k2E = 0 in D,

ν × E = 0 on ΓD,

ν × curlE − iλET = ϕ on ΓI .
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Then for z ∈ Br and q ∈ R
3, using the fact that (Wz)T = ET = 0 on ΓD, the second

vector Green’s formula, and (3.15), we have that

0 =

∫
ΓI

(Wz)T · ϕds =
∫

Γ

Wz · (ν × curlE − iλET ) ds

=

∫
Γ

[Ez · (ν × curlE)− iλEz · ET + Ee(·, z, q) · (ν × curlE)− iλEe(·, z, q) · ET ] ds

=

∫
Γ

[Ez · (ν × curlE)− E · (ν × curlEz)] ds

+

∫
Γ

[−E · (ν × curlEe(·, z, q)) + iλET · Ee(·, z, q)] ds

+

∫
Γ

[Ee(·, z, q) · (ν × curlE)− iλEe(·, z, q) · ET ] ds

=

∫
Γ

[Ee(·, z, q) · (ν × curlE)− E · (ν × curlEe(·, z, q))] ds

= −
∫

Γ

[(ν × Ee(·, z, q)) · curlE − (ν × E) · curlEe(·, z, q)] ds = ikq · E(z).

Thus q ·E(z) = 0 holds for all polarizations q ∈ R
3 and z ∈ Br, and hence E(z) = 0 for

z ∈ Br. By the unique continuation principle for the solution of Maxwell’s equations
in D we now see that E ≡ 0 in D, whence, by the trace theorem, ϕ ≡ 0, which proves
the lemma.

Combining Lemmas 3.2 and 3.3, we can prove in the same way as in the last part
of the proof of Theorem 2.3 the main result of this section.

Theorem 3.4. Let λ ∈ L∞(ΓI) be the surface impedance of the scattering problem
(3.1a)–(3.4). Then

‖λ‖L∞(ΓI)(3.18)

= sup
zi ∈ Br, q ∈ R

3

αi ∈ C

∑
i,j

αiαj
[−‖q‖2A(zi, zj , k, q) + k

(
q · Ezi(zj) + q · Ezj (zi)

)]
2‖∑

i

αi(Wzi)T ‖2
L2

t (Γ)

,

where Wz = Ez +Ee(·, z, q) with Ez being the solution to (3.9a)–(3.9c), A(zi, zj , k, q)
is given by (3.17), and the sums are arbitrary finite sums.

In the particular case where λ is a positive constant and setting z1 = z2 = z0 ∈ Br,
we obtain the following formula for constant surface impedance:

λ =
− k2

6π‖q‖2 + kRe (q · Ez0)
‖(Wz0)T ‖2

L2
t (Γ)

,(3.19)

where Wz0 = Ez0 + Ee(·, z0, q) with Ez0 being the solution of (3.9a)–(3.9c) corre-
sponding to z0 ∈ Br.

In both cases (3.18) and (3.19) Ez cannot be computed since λ appears in the
boundary conditions. However, from Theorem 3.1 we can approximate Ez by the
electric field ikEgz of the Herglotz electromagnetic pair with kernel ikgz, where gz

is a (regularized) solution of the far field equation (3.11) for z ∈ Br ⊂ D and E∞ is
the measured far field data (we again assume that D is known by using the far field
equation (3.11) and the linear sampling method as discussed in [3]). We note that, as
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in the scalar case, the numerator on the right-hand side of (3.18) and (3.19) can be
used as a target signature to detect whether or not a object is coated.

We conclude this section by remarking that, in both scalar and vector cases, it
suffices to know only the far field data for a limited-aperture Ω0 ⊂ Ω. In particu-
lar, in sections 2.3 and 3.2 of [4] it is proved that a Herglotz wave function and an
electromagnetic Herglotz pair and their first derivatives can be approximated uni-
formly on a compact subset of a disk BR of radius R by a Herglotz wave function
and an electromagnetic Herglotz pair, respectively, with kernel supported in a subset
Ω0 ⊂ Ω. The kernel of this new Herglotz wave function can now be used in place of
gzε in Theorems 2.1 and 3.1, and therefore the corresponding vgzε and Egzε can be used
as approximations of uz and Ez, respectively, in the above formulas.

4. Numerical examples. In this section we give some results of numerical
experiments performed in the scalar case when the surface impedance λ is a constant.
As shown in section 2, an approximation for λ is given by

−2kπ|γ|2 − Im (vgz (z))

‖vgz +Φ(·; z)‖2
L2(Γ)

, z = (x, y) ∈ D,(4.1)

where vgz =
∫ 2π

0
gz(d)eik(x cos θ+y sin θ)dθ, d = (cos θ, sin θ), and the kernel gz is the

solution of the far field equation∫ 2π

0

u∞(d, x̂)gz(d)dθ = γe−ikx̂·z, z ∈ Br ⊂ D.

The far field data is generated by the method of integral equations and is corrupted
by random noise. We fix k = 3, select a domain D, boundaries ΓD and ΓI (in most
of our examples ΓD = ∅), and a constant λ and then solve the corresponding forward
problem. We compute the far field pattern for 100 incident directions and observation
directions equally distributed on the unit circle and add random noise of 1% or 10%
to the Fourier coefficients of the far field pattern. Tikhonov regularization and the
Morozov discrepancy principle are then used to solve the ill-posed discrete far field
equation (see section 4 of [2] for details). We choose the sampling points z on a uniform
grid of 101× 101 points in the square region [−5, 5]2 and compute the corresponding
gz. To visualize the obstacle we plot the level curves of the inverse of the discrete
02 norm of g (note that by the linear sampling method the boundary of the obstacle
is characterized as the set of points where the L2-norm of g starts to become large;
see [2]). Then we compute (4.1) at the sampling points in the disk centered at the
origin with radius 0.5 (in our examples this circle is always inside D). Although (4.1)
is theoretically a constant, because of the ill-posed nature of the far field equation
we evaluated (4.1) at all the grid points z in the disk and exhibit the maximum, the
average, and the median of the computed values of (4.1). In all tested cases there
are some outliers for the minimum value but this is not the case for the maximum.
The average and median of the numbers obtained by evaluating (4.1) at the sampling
points show that these numbers accumulate near the maximum value and that the
average, median, and maximum each provides a reasonable approximation to the true
impedance.

For our examples we select two scatterers shown in Figure 4.1 (the kite and the
peanut).
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Fig. 4.1. The boundary of the scatterers used in this study: kite/peanut. When a mixed
condition is used for the peanut, the thicker portion of the boundary is ΓD.
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Fig. 4.2. These figures show the reconstruction of a kite with impedance boundary con-
dition with 1% noise: on the left with λ = 5 and on the right with λ = 9.

We have obviously left open a number of interesting numerical questions, e.g.,
what is observed when λ = 0, what is the dependence of the algorithm on the wave
number k, etc. In particular, the examples given here are preliminary in nature. Note
that only in the example of the peanut do we consider an object that is really partially
coated.

4.1. The kite. We consider the impedance boundary value problem for the kite
described by the equation (the left curve in Figure 4.1)

x(t) = (1.5 sin(t), cos(t) + 0.65 cos(2t)− 0.65) , 0 ≤ t ≤ 2π,

with impedance λ = 2, λ = 5, and λ = 9. In Figure 4.2 we show two examples of the
reconstructed kite (the reconstructions for the other tested cases look similar). Note
that the reconstruction of the boundary is quite accurate so one obtains a good guess
for the equation of the boundary Γ of the scatterer. In the numerical results for the
reconstructed λ shown in Tables 4.1 and 4.2 we use the exact boundary Γ when we
compute the L2(Γ)-norm that appears in the denominator of (4.1).

4.2. The peanut. Next we consider a peanut described by the equation (the
right curve in Figure 4.1)

x(t) =

(√
cos2(t) + 4 sin2(t) cos(t),

√
cos2(t) + 4 sin2(t) sin(t), 0 ≤ t ≤ 2π

)

rotated by π/9. Here we choose the surface impedance λ = 2 and λ = 5 and consider
the case of a totally coated peanut (i.e., impedance boundary value problem) as well as
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Table 4.1
The reconstruction of the surface impedance λ for the kite with 1% noise.

Maximum Average Median
λ=2 2.050 1.975 1.982
λ=5 4.976 4.679 4.787
λ=9 8.883 8.342 8.403

Table 4.2
The reconstruction of the surface impedance λ for the kite with 10% noise.

Maximum Average Median
λ=2 2.043 1.960 1.957
λ=5 4.858 4.513 4.524
λ=9 9.0328 8.013 7.992

of a partially coated peanut (i.e., mixed Dirichlet-impedance boundary value problem
with ΓI being the lower half of the peanut as shown in Figure 4.1). Two examples of
the reconstructed peanut are presented in Figure 4.3 where, as expected, one notices
that for the mixed case the Dirichlet portion of the boundary is more visible. In
practice the exact boundary is not available to compute the L2(Γ)-norm in (4.1). As
suggested by the reconstruction of the peanut, the natural guess for the boundary of
the scatterer is the ellipse shown by dashed line in Figure 4.4. So we also examine
the sensitivity of our formula on the approximation of the boundary by using this
ellipse for computing ‖vgz + Φ(·; z)‖L2(Γ) in (4.1). The recovered values of λ for our
experiments are shown in Tables 4.3 and 4.4.
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Fig. 4.3. The figure on the left shows the reconstruction of a peanut with impedance
boundary condition with λ = 5. The figure on the right shows the reconstruction of a peanut
with mixed condition with λ = 5 on the impedance part. Both examples are for k = 3 with
1% noise.

4.3. Conclusions. We have presented the results of some numerical experiments
for the scalar case with constant surface impedance. The only a priori information
we use is that the coating is homogeneous. Our results suggest that the maximum,
median, and average values obtained by evaluating (4.1) at a set of sampling points
in a disk closely approximate the true value of λ. We have further shown that even if
the boundary of the scatterer is not known exactly, reasonable approximations to the
impedance can still be obtained. Numerical experiments need to be done in R

3 and
for the nonhomogeneous coating where the scheme is a variational problem. This will
be the subject of a forthcoming work.
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Fig. 4.4. The dashed line is the approximated boundary we use for computing
‖vgz + Φ(·; z)‖L2(Γ) in (4.1) in the case of a peanut with impedance boundary condition.

Table 4.3
Reconstruction of λ for the peanut with 1% noise.

Maximum Average Median
λ=2 impedance 2.192 1.992 1.979

λ=2 imped., approx. bound. 2.395 1.823 1.886
λ=2 mixed conditions 2.595 2.207 2.257

λ=5 impedance 5.689 4.950 5.181
λ=5 imped., approx. bound. 5.534 4.412 4.501

λ=5 mixed conditions 5.689 4.950 5.180

Table 4.4
Reconstruction of λ for the peanut with 10% noise.

Maximum Average Median
λ=2 impedance 2.297 1.985 1.978

λ=2 imped., approx. bound. 2.301 1.828 1.853
λ=2 mixed conditions 2.681 2.335 2.374

λ=5 impedance 5.335 4.691 4.731
λ=5 imped., approx. bound. 5.806 4.231 4.313

λ=5 mixed conditions 5.893 4.649 4.951
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