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Abstract. This paper concerns the transmission eigenvalue problem for an
inhomogeneous media of compact support containing small penetrable homo-

geneous inclusions. Assuming that the inhomogeneous background media is

known and smooth, we investigate how these small volume inclusions affect
the real transmission eigenvalues. Note that for practical applications the real

transmission eigenvalues are important since they can be measured from the

scattering data. In particular, in addition to proving the convergence rate
for the eigenvalues corresponding to the perturbed media as inclusions’ volume

goes to zero, we also provide the explicit first correction term in the asymptotic

expansion for simple eigenvalues. The correction terms involves the eigenvalues
and eigenvectors of the unperturbed known background as well as information

about the location, size and refractive index of small inhomogeneities. Thus,
our asymptotic formula has the potential to be used to recover information

about small inclusions from a knowledge of real transmission eigenvalues.

1. Introduction. The transmission eigenvalue problem, which is a non-selfadjoint
and non-linear eigenvalue problem, appears in the study of the scattering problem
for inhomogeneous media [7]. The corresponding transmission eigenvalues can be
determined from the scattering data [3], [13] and provide information about material
properties of the scattering media [4], [5]. Hence they can play an important role
in a variety of inverse problems related to target identification and non-destructive
testing [11]. The transmission eigenvalue problem is a non-selfadjoint and nonlinear
problem that is not covered by the standard theory of eigenvalue problems for elliptic
operators. In the past few years transmission eigenvalues have become an important
area of research in inverse scattering theory. Since the first proof of existence of
transmission eigenvalues in [5] and [16], the interest in the transmission eigenvalue
problem has increased, resulting in a number of important advancements in this
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area. For an updated survey on the topic we refer the reader to [7] (see also the
special issue of Inverse Problems Vol. 29, No 10).

This paper is a continuation of the study started in [8]. In particular we consider
the transmission eigenvalue problem corresponding to an inhomogeneous media per-
turbed by small volume penetrable inclusions, and investigate the behavior of the
corresponding transmission eigenvalues as the volume of perturbation goes to zero.
In the current paper the transmission eigenvalue problem is written as a non-linear
eigenvalue problem for a compact operator following the fourth order formulation
approach developed in [6] and [5]. This approach restricts us to study the pertur-
bation of only real eigenvalues, which from practical application point of view is
sufficient since the real eigenvalues are measurable from the scattering data. Our
discussion allows for the unperturbed media to be inhomogeneous as opposed to
[8] where the unperturbed media is assumed homogeneous. On the other hand, in
[8], the convergence of the eigenvalues and eigenvectors was obtained for the entire
spectrum (complex eigenvalues included). Unfortunately, there is a term missing
in the expression for the first order correction in the asymptotic expansion of the
eigenvalues calculated in [8]. In the current paper, for a simple transmission eigen-
value, we also obtain explicit formulas for the first correction term, hence correcting
the formula obtained in [8]. Our calculations are based on a nonlinear version [14] of
Osborn’s theorem [15] which is valid only for simple eigenvalues. For the nonlinear
eigenvalue problem, we are finding an eigenvalue λ of T (λ), that is, the operator
depends on λ. Simplicity is required when applying Osborn’s theorem because the
multiplicity introduces other eigenvalues λi, which are not equal to λ, and hence
not nonlinear eigenvalues. Hence the case of multiple eigenvalues is still not com-
pleted and of interest since it is known that transmission eigenvalues, in some cases
even the first eigenvalue, can have multiplicity greater than one. Of course other
approaches that use some existing symmetry, such as J-selfadjointness [12], can be
considered to study the perturbation of transmission eigenvalues. Note however
that the transmission eigenvalue problem is inherently non-selfadjoint.

The paper is structured as follows. In the next section we formulate the transmis-
sion eigenvalue problem as a nonlinear eigenvalue problem for a compact operator
and introduce the analytical framework. In Section 3 we prove the main conver-
gence results needed to later obtain asymptotic expressions for the transmission
eigenvalues. For the convenience of the reader in Section 4 we recall the nonlin-
ear perturbation formula for the general case proven in [14] and use it to provide
an explicit expression with a correction term for the perturbation of real simple
transmission eigenvalues. We present the proof of a few technical lemmas in the
Appendix.

2. Problem statement. Let our domain D ⊂ Rd (d = 2, 3) be bounded with C2

boundary, and let n0 ∈ C∞(D) be the given smooth background coefficient which
becomes constant near the boundary of D. That is, we assume that

(1) n0 − n̂0 has compact support in D for some constant n̂0.

This background n0 will be perturbed by small volume inhomogeneities of arbitrary
smooth shape. For i = 1, . . . ,m, we define the bounded shapes Bi to be smooth
deformations of a ball centered at the origin, so that zi+εBi is a small inhomogeneity
centered at zi. We also assume that ε is small enough so that each scaled ball is
separated from the others and the boundary, in particular (zi+εBi)∩(zj+εBj) = ∅
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for i 6= j. We let Wε be the union of these inhomogeneities, that is

Wε :=

m⋃
i=1

(zi + εBi) ,

and we define the perturbed squared index of refraction nε:

(2) nε(x) =

{
ni x ∈ zi + εBi, i = 1, . . . ,m
n0 x ∈ D \Wε

where the ni ∈ R are constants. Let H2
0 (D) denote the Sobolev space given by

H2
0 (D) :=

{
u ∈ H2(D) : u =

∂u

∂ν
= 0 on ∂D

}
.

or, equivalently, the H2 closure of C∞0 (D) functions. Consider now the interior
transmission eigenvalue problem corresponding to a scalar isotropic media with
these small inhomogeneities. We wish to find nontrivial w, v ∈ L2(D) with w− v ∈
H2

0 (D) satisfying

∆w + τnεw = 0 in D(3)

∆v + τv = 0 in D(4)

w = v on ∂D(5)

∂w

∂ν
=
∂v

∂ν
on ∂D.(6)

Note that the boundary conditions are equivalently stated as w − v ∈ H2
0 (D). In

relation to the scattering problem, the eigenvalue parameter τ := k2 where k is the
wave number proportional to the frequency. The transmission eigenvalue problem is
non-selfadjoint and in special cases is known to have complex eigenvalues. However
here we limit ourselves to the study of real eigenvalues, which are the only ones
that can be measured from scattering data and used to obtain information about
the media.

Definition 1. Values of τ ∈ R+ for which the eigenvalue problem (3)-(6) has a
nontrivial solution are called transmission eigenvalues.

In [6], the transmission eigenvalue problem was shown to posses an infinite set of
real transmission eigenvalues assuming that nε−1 ≥ α > 0 or 0 ≤ β ≤ 1−nε(x) < 1
for α and β independent of ε. Here we assume that nε − 1 ≥ α > 0, and note that
all of the following could just as likely be done in the second case. We also note that
the existence of real or complex eigenvalues is proven under weaker assumptions in
[17]. However, our approach makes fundamental use of the framework developed in
[6], hence we need the above assumptions. Under our assumption, it is proven in
[4], [9], that all transmission eigenvalues τε are uniformly bounded below by τ0 :=
λ1(D)/α+1 where λ1(D) is the first Dirichlet eigenvalue of −∆ in D. Therefore we
may assume that all transmission eigenvalues lie in [τ0, +∞), and this assumption
plays an important role in our proofs later on.

The goal of this paper is to find an asymptotic expansion with respect to ε
for transmission eigenvalues of the perturbed problem. Since everything in our
problem is real valued, throughout the paper, for sake of simplicity, we assume that
the involved Sobolev spaces contain real valued functions over real numbers field.
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Given our assumptions, the transmission eigenvalue problem (3) is equivalent to
the fourth order nonlinear eigenvalue problem [5] for u = w − v ∈ H2

0 (D)

(7) (∆ + τnε)
1

nε − 1
(∆ + τ)u = 0,

which in variational form is stated as follows: find u ∈ H2
0 (D) such that

(8)

∫
D

1

nε − 1
(∆u+ τu)(∆φ+ τnεφ) dx = 0 for all φ ∈ H2

0 (D).

Following the definitions in [5], we rephrase this in terms of variationaly defined
operators. Let us define the bilinear forms on H2

0 (D)×H2
0 (D),

(9) Aτ,ε(u, φ) =

(
1

nε − 1
(∆u+ τu), (∆φ+ τφ)

)
L2(D)

+ τ2(u, φ)L2(D)

for ε ≥ 0 and

(10) B(u, φ) = (∇u,∇φ)L2(D).

Note that due to the restrictions on nε, the bilinear forms will be bounded [6],
[7]. Hence by the Riesz Representation Theorem, we may define operators Aτ,ε,B :
H2

0 (D)→ H2
0 (D) such that

(11) Aτ,ε(u, φ) = (Aτ,εu, φ)H2
0 (D) and B(u, φ) = (Bu, φ)H2

0 (D)

for all u, φ ∈ H2
0 (D). Notice that B is compact due to the compact embedding of

H2(D) into H1(D), and Aτ,ε is invertible since Aτ,ε is coercive for all τ > 0 [6]. It
is convenient to use the inner product and norm on H2

0 (D) induced by the bilinear
form Aτ,0:

(12) (u, φ)A := Aτ,0(u, φ) = (Aτ,0u, φ)H2
0 (D) and ‖u‖A :=

√
(u, u)A

where we note that these norms depend on τ . Here ε = 0 corresponds to the
unperturbed case, i.e. the media with refractive index n0. We also denote the
adjoint with respect to this inner product by ∗, that is for an operator T : H2

0 (D)→
H2

0 (D),

(13) (Tu, φ)A = (u, T ∗φ)A for u, v ∈ H2
0 (D).

We may now rewrite the variational form (8) of the transmission eigenvalue problem
as

(14) (Aτ,εu− τBu, φ)H2
0 (D) = 0

for u, φ ∈ H2
0 (D), or equivalently, finding u ∈ H2

0 (D) such that

(15) (I − τA−1τ,εB)u = 0.

Define the linear operator Tε(τ) : H2
0 (D)→ H2

0 (D) for ε ≥ 0 and τ ∈ C such that

(16) Tε(τ) := A−1τ,εB,

so we can write (15) as

(17) τTε(τ)u = u.

We have now rephrased the problem as a nonlinear eigenvalue perturbation prob-
lem. That is, would like to find τ such that there exists a nontrivial u ∈ H2

0 (D)
satisfying

τTε(τ)u = u
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for ε > 0. If ε = 0, then nε = n0 in the definition of T0(τ), and this corresponds to
our background problem. Our goal is to find a correction formula for the eigenva-
lues of the perturbed problem in terms of the eigenvalues and eigenvectors of the
background problem. To this end, we will apply Theorem of [14], an application of
Osborn’s theorem for approximating the eigenvalues of compact operators [15]. We
can apply the theorem if Tε(τ) converges to T0(τ) in norm, and this convergence
restricted to the eigenspace of T0(τ) dictates the speed of which τε approaches τ .

For sake of the reader convenience, we state here the main result of this paper
which will be proven in Section 4.

Theorem 2.1. Let d = 2, 3, u be a solution to (8) for ε = 0 (i.e. nε := n0), and
τ and τε be transmission eigenvalues corresponding to n0 and nε respectively, such
that τ is simple. Then for u chosen such that ‖u‖A = 1,

τε − τ = εdτ

m∑
i=1

|Bi|
n0(zi)− ni

(n0(zi)− 1)2
(∆u(zi) + τu(zi))

2

1 + τ2(DT0(τ)u, u)A
+ o(εd).

where

(DT0(τ)u, u)A =− 2
1

τ

(
1

n0 − 1
u,∆u+ τu

)
L2(D)

− 2 (u, u)L2(D) .

The proof of this results requires many technical and auxiliary results that will
follow. The next section will contain some estimates which will give us these conver-
gence rates and will show that the hypotheses of the theorem are satisfied. Section 4
contains the application of this eigenvalue correction theorem; and in the appendix
we prove several technical lemmas used throughout the the paper.

3. Operator convergence. In this section we prove some lemmas which will allow
us to successfully apply the nonlinear eigenvalue correction theorem [14]. First, we
prove convergence in the H2

0 norm for A−1τ,εf assuming smoothness on f . Next, we
introduce a correction term which we will use to improve the convergence rate. We
then prove that we have operator norm convergence of A−1τ,εB, and, finally, we derive

an asymptotic formula for A−1τ,εf in the inner product of H2
0 (D).

To simplify the analysis, we will assume a single inhomogeneity Wε = εB centered
at the origin. The arguments carry over easily to the more general case.

3.1. Strong convergence of A−1τ,ε . For a fixed f ∈ H2
0 (D), define uε for ε > 0 as

(18) uε = A−1τ,εf and u0 = A−1τ,0f.

Lemma 3.1. Let Aτ,ε be defined as in (11) and f ∈ H2
0 (D). If A−1τ,0f ∈ C2,α(D)

for some α > 0, then

‖A−1τ,εf − A−1τ,0f‖H2
0 (D) ≤ Cτ εd/2,

that is,
‖uε − u0‖H2

0 (D) ≤ Cτ εd/2,
where Cτ is independent of ε and Cτ = C0 + C1τ + C2τ

2 with Ci independent of τ
for i = 0, 1, 2.

Proof. Since Aτ,εuε = Aτ,0u0 = f , we have that for φ ∈ H2
0 (D),

(19) 0 = (Aτ,εuε − Aτ,0u0, φ)H2
0 (D)

= (Aτ,ε(uε − u0), φ)H2
0 (D) + (Aτ,εu0 − Aτ,0u0, φ)H2

0 (D).
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From the definitions (11) of Aτ,ε and Aτ,0, we have

(20) (Aτ,εu0 − Aτ,0u0, φ)H2
0 (D) =

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0∆φdx

+ τ

∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0∆φ dx+ τ

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0φdx

+ τ2
∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0φ dx.

Since we assume that u0 ∈ C2,α(D) by the fact that nε − n0 is zero outside of
Wε = εB, we have a bound on the first term,∣∣∣∣ ∫

D

(
1

nε − 1
− 1

n0 − 1

)
∆u0∆φ dx

∣∣∣∣
≤ C0

∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣
∞
‖∆u0‖∞

∫
εB

|∆φ|dx

≤ C0‖χεB‖L2(D)‖φ‖H2
0 (D)

≤ C0ε
d/2‖φ‖H2

0 (D),(21)

and the second∣∣∣∣ ∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0∆φdx

∣∣∣∣ ≤ ∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣
∞
‖u0‖∞

∫
εB

|∆φ|dx

≤ C1ε
d/2‖φ‖H2

0 (D).(22)

For the other terms, we can obtain the desired convergence rate from Sobolev em-
bedding theorem∣∣∣∣ ∫

D

(
1

nε − 1
− 1

n0 − 1

)
∆u0φdx

∣∣∣∣ ≤ ∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣
∞
‖∆u0‖∞

∫
εB

|φ|dx

≤ C1ε
d‖φ‖L∞(D)

≤ C1ε
d‖φ‖H2

0 (D)(23)

and∣∣∣∣ ∫
D

(
1

n1 − 1
− 1

n0 − 1

)
u0φdx

∣∣∣∣ ≤ C2

∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣
∞
‖u0‖∞

∫
εB

|φ|dx

≤ C2ε
d‖φ‖H2

0 (D).(24)

Thus, we have shown that

(25) (Aτ,ε(uε − u0), φ)H2
0 (D) ≤ Cτ εd/2‖φ‖H2

0 (D)

where Cτ = C0 + C1τ + C2τ
2. By choosing φ = uε − u0, the desired result follows

from the coercivity of the bilinear form Aτ,ε
(26) C‖uε − u0‖2H2

0 (D) ≤ Cε
d/2‖uε − u0‖H2

0 (D).

Note that the coercivity constant C for Aτ,ε on H2
0 (D) is independent of ε and τ

provided we assume τ > τ0 := λ1(D)/(α+ 1) (see (13) in [6]).

We now construct an appropriate corrector function and use it to improve the
estimates for the convergence of A−1τ,ε . To do this, we will rescale the problem to
one in which the inhomogeneity shape is fixed, similar to what was done in [8]. In
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what follows, we identify n0 with its constant extension to Rd, which is well defined
and smooth by the assumption (1). Define

(27) y = x/ε, D̃ =
D

ε

and

(28) ñ(y) = nε(x) =

{
n1 y ∈ B
n0 y ∈ Rd \B.

Let the function ṽB ∈ H2
0 (D̃) solve

(29)

∫
D̃

1

ñ− 1
∆y ṽB∆yφ dy =

∫
B

∆yφ(y) dy

for any φ ∈ H2
0 (D̃). The existence and uniqueness of ṽB follows from the Riesz

representation theorem. Since the domain D̃ is increasing with ε, we also define
a limiting function vB on all of Rd. To do this, we introduce the Sobolev space
following [2]:

W 2
0 (Rd) =

{
u ∈ D′(Rd) : 0 ≤ |m| ≤ k, ρ|m|−2(lnω)−1D|m|u ∈ L2(Rd)

k + 1 ≤ |m| ≤ 2, ρ|m|−2D|m|u ∈ L2(Rd)

where weights are given by ρ := (1 + |x|2)1/2 and ω := (2 + |x|2); indices k = 1 if
d = 2 or k = −1 if d = 3. This space is equipped with the usual H2 norm with the
indicated weights. Then the function vB ∈W 2

0 (Rd) satisfies

(30)

∫
Rd

1

ñ− 1
∆yvB∆yφdy =

∫
B

∆yφ(y) dy

for all φ ∈ W 2
0 (Rd). As shown in [8], we may choose vB such that it satisfies the

following decay conditions at infinity:

(31) vB(y) = o(|y|2−d/2), ∇ · vB(y) = o(|y|1−d/2), D2vB(y) = o(|y|−d/2).

Remark 3.2. By its definition (30), vB is a weak solution to the partial differential
equation:

(32) ∆y
1

ñ− 1
∆yvB = ∆yχB .

Due to the decay conditions (31), the Laplacian is invertible [2] and we have the
identity

(33) ∆yvB = (ñ− 1)χB .

Recall that u0 := A−1τ,0f as in the previous proof (18). We define the correction

ũ(1) to be

ũ(1) :=−
(

1

n1 − 1
− 1

n0(0)− 1

)(
∆u0(0) + τu0(0)

)
ṽB(x/ε).(34)

Notice, this function is in H2
0 (D) since ṽB(y) ∈ H2

0 (D̃) thus it will act as a correction
term in the H2

0 (D) norm. However, since ṽB depends on ε, to derive an asymptotic
formula we also define the correction term u(1) ∈ H2(D)

u(1) :=−
(

1

n1 − 1
− 1

n0(0)− 1

)(
∆u0(0) + τu0(0)

)
vB(x/ε).(35)
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where vB is defined by (30). Note that these two corrections are close to each other
due to the lemmas in the appendix, in particular Lemma 5.1. The following lemma
and its corollary describe precisely the error when these corrections are introduced.

Lemma 3.3. Let d = 2, 3. For Aτ,ε and ũ(1) defined by (11) and (34) respectively,

if f ∈ H2
0 (D) and A−1τ,0f ∈ C2,α(D) for some α > 0, then

‖A−1τ,εf − A−1τ,0f − ε2ũ(1)‖H2
0 (D) ≤ Cτo(εd/2),

that is,

‖uε − u0 − ε2ũ(1)‖H2
0 (D) ≤ Cτo(εd/2),

where Cτ =
∑2
i=0 Ciτ

i for Ci independent of τ .

Corollary 3.4. Let u(1) defined by (35), if the conditions of Lemma 3.3 hold, then

‖∆uε −∆u0 − ε2∆u(1)‖L2(D) ≤ Cτo(εd/2),

where Cτ =
∑2
i=0 Ciτ

i for Ci independent of τ .

Proof of Corollary 3.4. The proof follows from the above Lemma 3.3 and Lemma
5.1 (originally from [8]).

Proof of Lemma 3.3. Starting from (19), we add and subtract Aτ,εε2ũ(1) to the right
hand side to have

(36) 0 = (Aτ,ε(uε − u0 − ε2ũ(1)), φ) + (Aτ,εu0 − Aτ,0u0 + Aτ,εε2ũ(1), φ)H2
0 (D).

As in the previous proof, we have the estimate

(Aτ,εu0 − Aτ,0u0 + Aτ,εε2ũ(1), φ)H2
0 (D) =

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0∆φdx

+ τ

∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0∆φdx

+ (Aτ,εε2ũ(1), φ)H2
0 (D) +O

(
εd‖φ‖H2

0 (D)

)
.(37)

First we will show that

(38) (Aτ,εε2ũ(1), φ)H2
0 (D)

= −
(

1

n1 − 1
− 1

n0(0)− 1

)(
∆u0(0) + τu0(0)

) ∫
εB

∆φ(x) dx+ o
(
ε2‖φ‖H2

0 (D)

)
.

We begin by considering

(39) ε2(Aτ,εṽB(·/ε), φ)H2
0 (D) = ε2

(
1

nε − 1
∆ṽB(·/ε),∆φ

)
L2(D)

+ ε2τ

(
∆ṽB(·/ε), 1

nε − 1
φ

)
L2(D)

+ ε2τ

(
1

nε − 1
ṽB(·/ε),∆φ

)
L2(D)

+ ε2τ2
((

1

nε − 1
+ 1

)
ṽB(·/ε), φ

)
L2(D)

.
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For the second term in (39), observe that by using Cauchy-Schwarz and ∆y = ε2∆x

for y = x/ε, ∣∣∣∣ε2τ(∆ṽB(·/ε)−∆vB(·/ε), 1

nε − 1
φ

)
L2(D)

∣∣∣∣
≤ τ

∥∥∥∥ 1

nε − 1

∥∥∥∥
L∞(D)

‖∆y ṽB −∆yvB‖L2(D)‖φ‖L2(D)

≤ Cτo(εd/2)‖φ‖H2
0 (D)(40)

where the last line follows from Lemma 5.1. We now use the smoothness of n0 to
replace it with its value at the center of the ball. Since nε−n0 only has support on
εB, by Taylor’s theorem we have for ζx = εξx,

(41) ε2τ

(
∆vB(·/ε),

(
1

nε − 1
− 1

n0 − 1

)
φ

)
L2(D)

= ε2τ

(
∆vB(·/ε),

(
1

n1 − 1
− 1

n0(0)− 1
+ ε∇

(
1

n0(ζx)− 1

)
(ξx)

)
φ

)
L2(εB)

.

We will first bound the term without the gradient of n0. For convenience define

(42) δn =
1

n1 − 1
− 1

n0(0)− 1
.

We calculate

ε2τ

∣∣∣∣(∆vB(·/ε),
(

1

n1 − 1
− 1

n0(0)− 1

)
φ

)
L2(εB)

∣∣∣∣
= −εδnτ (∇yvB(·/ε),∇φ)L2(εB) + ε2τδn(∂νvB(·/ε), φ)L2(∂(εB))

≤ Cε‖∇yvB(·/ε)‖L2(εB)‖∆φ‖L2(D) + ε2τδn(∂νvB(·/ε), φ)L2(∂(εB)).(43)

After the change of variables y = x/ε,

≤Cεd/2+1‖∇yvB‖L2(B)‖∆φ‖L2(D) + ε2τδn(∂νvB(·/ε), φ)L2(∂(εB))

≤Cεd/2+1‖∆φ‖L2(D) + ετδn(∂νyvB(·/ε), φ)L2(∂(εB))(44)

because vB ∈ H2(B). To bound the second term, we change variables and use
continuity of v to show

ετδn(∂νyvB(·/ε), φ)L2(∂(εB)) ≤ετδn‖φ‖L∞(∂(εB))‖∂νyvB(·/ε)‖L1(∂(εB))

≤ετδn‖φ‖L∞(D)‖∂νyvB(y)‖L1(∂B)ε
d−1

≤Cτεdτδn‖φ‖H2
0 (D)‖∂νyvB(y)‖L1(∂B)

=O
(
εd‖φ‖H2

0 (D)

)
(45)

since vB is bounded in H2(B). Estimating the term in (41) with the gradient of
n0, we obtain

ε2τ

(
∆vB(·/ε), ε∇

(
1

n0(ζx)− 1

)
· (ξx)φ

)
L2(εB)

≤ Cτε
∥∥∥∥∇( 1

n0 − 1

)∥∥∥∥
L∞(D)

‖φ‖L∞(D)

∫
εB

|∆yvB |dx

Inverse Problems and Imaging Volume 9, No. 3 (2015), 725–748



734 Fioralba Cakoni, Shari Moskow and Scott Rome

≤ Cτε‖φ‖H2
0 (D)‖χεB‖L2(D)‖∆yvB‖L2(D)

≤ Cτεd/2+1‖φ‖H2
0 (D).(46)

Therefore, we have

ε2τ

(
∆vB(·/ε), 1

nε − 1
φ

)
L2(D)

=τ

(
∆vB(·/ε), 1

n0 − 1
φ

)
L2(D)

+O
(
εd/2+1‖φ‖H2

0 (D)

)
.(47)

Because n0 ∈ C∞(D) and φ ∈ H2
0 (D), one clearly has

(48)

∥∥∥∥∆

(
1

n0 − 1
φ

)∥∥∥∥
L2(D)

≤ C‖∆φ‖L2(D).

Therefore, we compute the bound∣∣∣∣∣ε2τ
(

∆vB(·/ε), 1

n0 − 1
φ

)
L2(D)

∣∣∣∣∣ =

∣∣∣∣∣ε2τ
(
vB(·/ε),∆

(
1

n0 − 1
φ

))
L2(D)

∣∣∣∣∣
≤ Cε2‖vB(·/ε)‖L∞(D)

∥∥∥∥∆

(
1

n0 − 1
φ

)∥∥∥∥
L2(D)

≤ Cε2‖vB‖L∞(Rd)‖φ‖H2
0 (D)

≤ Cε2‖φ‖H2
0 (D)(49)

since vB ∈ L∞(Rd) for d = 2, 3. Now, we will estimate the third term of (39) using
Cauchy-Schwarz∣∣∣∣∣ε2τ

(
1

nε − 1
ṽB(·/ε),∆φ

)
L2(D)

∣∣∣∣∣ ≤ C
∥∥∥∥ 1

nε − 1

∥∥∥∥
L∞(D)

‖ε2ṽB(·/x)‖L2(D)‖∆φ‖L2(D)

= o
(
εd/2‖φ‖H2

0 (D)

)
(50)

by Proposition 5.2. For the last term we may do similarly to obtain∣∣∣∣∣ε2τ2
((

1

nε − 1
+ 1

)
ṽB(·/ε), φ

)
L2(D)

∣∣∣∣∣
≤ C

∥∥∥∥ 1

nε − 1
+ 1

∥∥∥∥
L∞(D)

‖ε2ṽB(·/x)‖L2(D)‖φ‖L2(D)

= o
(
εd/2‖φ‖H2

0 (D)

)
.

Combining the above inequalities, we may write

ε2(Aτ,εṽB(·/ε), φ)H2
0 (D) =ε2

(
1

nε − 1
∆ṽB(·/ε),∆φ

)
L2(D)

+ o
(
εd/2‖φ‖H2

0 (D)

)
.

(51)
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Observe by definition of ṽB(x/ε) combined with a change of variables y = x/ε,

ε2
(

1

nε − 1
∆ṽB(·/ε),∆φ

)
L2(D)

= ε2
∫
D

∆ṽB(x/ε)∆φdx

=
1

ε2

∫
D̃

∆y ṽB(y)∆yφ(εy) εddy

=
1

ε2

∫
B

∆yφ(εy) εddy

=

∫
εB

∆xφ(x) dy.(52)

Thus, we have the asymptotic formula

(53) (Aτ,εε2ũ(1), φ)H2
0 (D)

= −
(

1

n1 − 1
− 1

n0(0)− 1

)(
∆u0(0) + τu0(0)

) ∫
εB

∆φ(x) dx

+ o
(
εd/2‖φ‖H2

0 (D)

)
.

Using the support of nε − n0 and the definition of Aτ,εε2ũ(1) in (37), we have that

(Aτ,εu0 − Aτ,0u0 + Aτ,εε2ũ(1), φ)H2
0 (D)

=

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆u0∆φ dx+ τ

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
u0∆φ dx

−
∫
εB

(
1

n1 − 1
− 1

n0(0)− 1

)(
∆u0(0) + τu0(0)

)
∆φ dx

+o(εd/2‖φ‖H2
0 (D)).(54)

Recall that by assumption we have u0 = A−1τ,0f ∈ C2,α(D) for some α > 0 and

constant C, so we will be able to estimate the remaining terms of (54).∣∣∣∣ ∫
εB

((
1

n1 − 1
− 1

n0 − 1

)
∆u0−

(
1

n1 − 1
− 1

n0(0)− 1

)
∆u0(0)

)
∆φdx

∣∣∣∣
≤ Cεα

∫
εB

|∆φ|dx

≤ Cεα‖χεB‖L2(D)‖φ‖H2
0 (D)

≤ Cεd/2+α‖φ‖H2
0 (D).(55)

Similarly, we will use that u0 is Lipschitz on D to show∣∣∣∣ ∫
εB

((
1

n1 − 1
− 1

n0 − 1

)
u0−

(
1

n1 − 1
− 1

n0(0)− 1

)
u0(0)

)
∆φ dx

∣∣∣∣
≤ Cε

∫
εB

|∆φ|dx

≤ Cε‖χεB‖L2(D)‖φ‖H2
0 (D)

≤ Cεd/2+1‖φ‖H2
0 (D).

Choose φ = uε − u0 − ε2ũ(1). By the argument of the past lemmas and since the
coercivity of constant associated with Aτ,ε is independent of ε and τ ≥ τ0, we have
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that

‖uε − u0 − ε2ũ(1)‖2H2
0 (D) = o

(
εd/2‖uε − u0 − ε2ũ(1)‖H2

0 (D)

)
.(56)

We can now combine the previous lemma and the technical lemma in the last
section to prove the convergence of BA−1τ,εf .

Lemma 3.5. Let d = 2, 3. For Aτ,ε and B defined by (11). If f ∈ H2
0 (D) and

A−1τ,0f ∈ C2,α(D) for some α > 0, then

‖B(A−1τ,ε − A−1τ,0)f‖H2
0 (D) ≤ Cτo(εd/2)

where Cτ =
∑2
i=0 Ciτ

i for Ci independent of τ .

Proof. By the definition of the operator B, we have that for φ ∈ H2
0 (D)

(B(A−1τ,ε − A−1τ,0)f, φ)H2
0 (D) = (∇(A−1τ,ε − A−1τ,0)f,∇φ)L2(D)

= ((A−1τ,ε − A−1τ,0)f,∆φ)L2(D)

≤ ‖(A−1τ,ε − A−1τ,0)f‖L2(D)‖φ‖H2
0 (D).(57)

Choosing φ = B(A−1τ,ε − A−1τ,0)f , the inequality becomes

(58) ‖B(A−1τ,ε − A−1τ,0)f‖H2
0 (D) ≤ ‖(A−1τ,ε − A−1τ,0)f‖L2(D).

From the previous lemma we have

(59) ‖A−1τ,εf − A−1τ,0f − ε2ũ(1)‖L2(D) = o(εd/2).

We note by Proposition 5.2 the correction term ε2ũ(1) defined by (34) is o(εd/2).

3.2. Norm convergence of A−1τ,εB. We now show operator norm convergence of

A−1τ ′,εB for τ ′ in an open set containing τ .

Lemma 3.6. Let d = 2, 3, τ > τ0 > 0, and let Aτ,ε and B be defined by (11). Then,
there exists an α with 0 < α < 1 and an open bounded set U containing τ such that
for all τ ′ ∈ U

‖A−1τ ′,εB− A−1τ ′,0B‖L(H2
0 (D)) ≤ Cεα

for a C independent of τ ′ but depending on choice of U .

Proof. Let f, φ ∈ H2
0 (D) and note that from (19) we have that

(Aτ,ε(uε − u0), φ)H2
0 (D) = −(Aτ,εu0 − Aτ,0u0, φ)H2

0 (D)

hence we estimate the term in the right hand side. To this end, we define uε =
A−1τ,εBf for ε ≥ 0 as in Lemma 3.1. We begin by using (20) from the proof of
Lemma 3.1,

(Aτ,εu0 − Aτ,0u0, φ)H2
0 (D) =

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0∆φ dx

+ τ

∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0∆φdx

+ τ

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0φdx

+ τ2
∫
D

(
1

nε − 1
− 1

n0 − 1

)
u0φdx
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=I + II + III + IV.(60)

We are immediately able to bound II, III and IV

(61) II, III ≤ Cτ‖A−1τ,0B‖εd/2‖f‖H2
0 (D)‖φ‖H2

0 (D)

and

(62) IV ≤ Cτ2‖A−1τ,0B‖εd/2‖f‖H2
0 (D)‖φ‖H2

0 (D)

where the estimates follow from (22), (23), (24) and the Sobolev embedding of
H2

0 (D) into C0,α(D). For the remaining term I, we need to use the fact that u0 is
more regular then |f | due to the presence of compact B. Because Bf solves

(63) ∆∆Bf = −∆f,

standard elliptic regularity [1] yields that Bf ∈ H4(D) for f ∈ H2
0 (D). Furthermore,

by looking at the variational form for Aτ,0, one finds that given u = Bf , A−1τ,0u also
solves a fourth order elliptic equation:
(64)

∆∆A−1τ,0u = ∆

(
1

n0 − 1
∆u

)
+ τ∆

(
1

n0 − 1
u

)
+ τ

1

n0 − 1
∆u+ τ2

(
1

n0 − 1
+ 1

)
u,

Therefore, if f ∈ H2
0 (D), elliptic regularity again implies that Bf ∈ H4(D) and

hence that A−1τ,0Bf ∈ H4(D). Therefore, we have the bound

(65) ‖A−1τ,0Bf‖H4(D) ≤ ‖A−1τ,0‖L(H4(D))‖B‖L(H4(D),H2
0 (D))‖f‖H2

0 (D).

The Uniform Boundedness Principle applied to the set {A−1τ,0 : τ ∈ U, U compact}
yields a bound in H4(D) uniform in τ . That is, for some C independent of τ ,

(66) ‖A−1τ,0Bf‖H4(D) ≤ C‖f‖H2
0 (D).

Therefore, we may compute a bound for the integral I,∣∣∣∣∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆u0∆φ dx

∣∣∣∣
≤

∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣ ‖∆u0‖L2(εB) ‖∆φ‖L2(D)

≤
∣∣∣∣ 1

n1 − 1
− 1

n0 − 1

∣∣∣∣ ∫
D

χεB(∆u0)2 dx.(67)

Let 1 < p < 2 and let p∗ be its Sobolev conjugate so that they satisfy 1/p∗ =
1/p− 1/d. Recall that L2(D) ⊂ Lp(D) and therefore H1(D) ⊂W 1,p(D) ⊂ Lp∗(D).
Let q be the Hölder dual to p̂ := p∗/2 that is 1/q + 1/p̂ = 1. It is important to
notice that by our choice of p, 1/q > 0. We may now calculate∣∣∣∣∫

D

χεB(∆u0)2 dx

∣∣∣∣ ≤ C‖(∆u0)2‖Lp̂(D)|εB|1/q = C‖∆u0‖2Lp∗ (D)|εB|
1/q(68)

≤ C‖∆u0‖2H1(D)ε
1/q ≤ C‖u0‖2H3(D)ε

1/q ≤ C‖f‖2H2
0 (D)ε

1/q

through u0 = A−1τ,0Bf and (65). This along with (67) and (68) implies

(69) I ≤ Cε1/(2q)‖f‖H2
0 (D)‖φ‖H2

0 (D).

We conclude the proof using (60) and the uniform coercivity of Aτ,ε for τ > τ0 as
in the end of the proof of Lemma 3.1. The bounds derived will hold for any τ ′ ∈ U
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by the same argument and since U is compact we can choose the constant C in the
final estimate independent of τ ′.

3.3. An asymptotic formula. Having established the order of convergence of the
operators involved in the transmission eigenvalue problem, we next proceed with an
asymptotic formula for the operator Aτ,ε, where we explicitly display the first term
in the asymptotic expansion. Such a formula is later used to obtain the correction
term for the eigenvalues.

Lemma 3.7. Let d = 2, 3, f ∈ H2
0 (D) and φ ∈ H2

0 (D)
⋂
C2,α(D). If A−1τ,0f ∈

C2,α(D) for some α > 0, then(
(Aτ,ε − Aτ,0)(u0 + ε2ũ(1)), φ

)
H2

0 (D)
= εd|B| n0(0)− n1

(n0(0)− 1)2

(∆u0(0)∆φ(0) + τ(u0(0)∆φ(0) + ∆u0(0)φ(0)) + τ2u0(0)φ(0)) + o(εd)

for ũ(1) defined by (34).

Proof. By definition and using the support of nε − n0,

((Aτ,ε − Aτ,0)(u0 + ε2ũ(1)), φ)H2
0 (D)

=

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆(u0 + ε2ũ(1))∆φdx

+ τ

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
(u0 + ε2ũ(1))∆φ dx

+ τ

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆(u0 + ε2ũ(1))φ dx

+ τ2
∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
(u0 + ε2ũ(1))φ dx

=I + II + III + IV.(70)

We consider first II and IV which are the most straightforward. After a change of
variables, the term containing u0 in II is

τεd
∫
B

(
1

n1(εy)− 1
− 1

n0(εy)− 1

)
u0(εy)∆φ(εy) dy

= τεd|B|
(

1

n1 − 1
− 1

n0(0)− 1

)
u0(0)∆φ(0) + o(εd),(71)

because the integrand is continuous, whereas the term containing ũ(1) is

τεd
∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
ε2ũ(1)∆φdy

≤ τ
∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥2
L∞(D)

‖∆φ‖L∞(D)

∫
εB

ε2ṽB dx

≤ Cτ‖χεB‖L2(D)‖ε2ṽB‖L2(D) ≤ Cτεd/2o(εd/2)(72)

by Proposition 5.2. Therefore,

(73) II = τεd|B|
(

1

n1 − 1
− 1

n0(0)− 1

)
u0(0)∆φ(0) + o(εd),
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and the same reasoning yields

(74) IV = τ2εd|B|
(

1

n1 − 1
− 1

n0(0)− 1

)
u0(0)φ(0) + o(εd).

Now let us consider I:∣∣∣∣∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆(ε2ũ(1) − ε2u(1))∆φdx

∣∣∣∣
≤ C

∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥2
L∞(D)

‖∆φ‖L∞(D)‖χεB‖L2(D)‖∆y(ṽB − vB)‖L2(D)

≤ C‖∆φ‖L∞(D)ε
d/2o(εd/2)

= o(εd)(75)

by Lemma 5.1 and the fact that φ ∈ C2,α(D). Next, we recall that

(76) δn =

(
1

n1 − 1
− 1

n0(0)− 1

)
.

We now change of variables, note that ∆y = ε2∆, and recall our C2,α assumption
on u0 so that we have

I =εd
∫
B

(
1

n1 − 1
− 1

n0(εy)− 1

)
∆(u0(εy) + ε2u(1)(y))∆φ(εy) dy

=εd
∫
B

(
1

n1 − 1
− 1

n0(εy)− 1

)
∆u0(εy)∆φ(εy) dy

− εdδn(∆u0(0) + τu0(0))

∫
B

(
1

n1 − 1
− 1

n0(εy)− 1

)
∆yvB(y)∆φ(εy)dy + o(εd)

=εd|B|
(

1

n1 − 1
− 1

n0(0)− 1

)
∆u0(0)∆φ(0)

− εd(∆u0(0) + τu0(0))

(
1

n1 − 1
− 1

n0(0)− 1

)2

∆φ(0)

∫
B

∆yvB(y)dy + o(εd)

(77)

by the Lebesgue Dominated Convergence Theorem. Similarly,

III =τεd|B|
(

1

n1 − 1
− 1

n0(0)− 1

)
∆u0(0)φ(0)

− τεd
(

1

n1 − 1
− 1

n0(0)− 1

)2

(∆u0(0) + τu0(0))φ(0)

∫
B

∆yvB(y)dy

+ o(εd).(78)

Due to Remark 3.2,

(79)

∫
B

∆yvB(y)dy =

∫
B

(ñ(y)− 1) dy = (n1 − 1)|B|

since n1 is constant. The previous equality implies

(80) δn

(
|B| −

(
1

n1 − 1
− 1

n0(0)− 1

)∫
B

∆yvB(y)dy

)
= |B| n0(0)− n1

(n0(0)− 1)2

for δn defined by (76). By collecting terms we have the formula in the statement of
the theorem.
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4. A correction formula for transmission eigenvalues. Now we turn our at-
tention to the transmission eigenvalue problem. In what follows let u be the solution
to

(81)

∫
D

1

n0 − 1
(∆u+ τu)(∆φ+ τn0φ) dx = 0 for all φ ∈ H2

0 (D).

normalized with respect to the A-inner product, that is, the A-normalized eigen-
function of the transmission problem for the unperturbed media, and we define uε
to be

(82) uε = A−1τ,εBu = Tε(τ)u for ε ≥ 0.

Recall that u0 = T0(τ)u = u/τ . The unperturbed eigenfunction u is known to
be H4(D)

⋂
H2

0 (D) due to standard elliptic regularity results [1]. We will assume
throughout this section that τ is simple, i.e., the eigen-space is one-dimensional.
To derive the eigenvalue correction, we will apply a nonlinear eigenvalue correction
theorem which was a corollary of [15]. For the convenience of the reader, we restate
it (Corollary 4.1 of [14]) here:

Theorem 4.1 (Nonlinear Eigenvalue Correction [14]). Let X be a Banach space
and {Tε(λ) : X → X} a set of compact operator valued functions of λ which are
analytic in a region U of the complex plane, such that Tε(λ) → T0(λ) in norm as
ε→ 0 uniformly for λ ∈ U . Let λ0 6= 0, λ0 ∈ U be a simple nonlinear eigenvalue of
T0,

λ0T0(λ0)φ = φ,

define DT0(λ0) to be the derivative of T0 with respect to λ evaluated at λ0, and let
φ be the normalized eigenfunction and φ∗ its dual. Then for any ε small enough
there exists λε, a simple nonlinear eigenvalue of Tε, such that if

λ20〈DT0(λ0)φ, φ∗〉 6= −1

we have the following formula

λε − λ0 = λ20
〈(T0(λ0)− Tε(λ0))φ, φ∗〉

1 + λ20〈DT0(λ0)φ, φ∗〉

+O

(
sup
λ∈U
‖(Tε(λ)− T0(λ))

∣∣
R(E)
‖‖(T ∗ε (λ)− T ∗0 (λ))

∣∣
R(E)∗

‖
)

where R(E) is the space spanned by φ and R(E)∗ is its dual or the space spanned
by φ∗.

We will apply this theorem using the A-inner product defined in the second
section, and thus u will satisfy ‖u‖A = 1. We note that this inner product depends
on τ , and therefore we keep track of how all constants depend on τ . The lemmas
from the previous section are sufficient to prove the following:

Lemma 4.2. Let d = 2, 3, Tε(τ) defined by (16) for ε ≥ 0, and u be the solution to
the variational problem (8). Then,

‖Tε(τ)u− T0(τ)u‖A ≤ Cτ εd/2

and

‖T ∗ε (τ)u− T ∗0 (τ)u‖A = C ′τo(ε
d/2)
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where Cτ =
∑3
i=0 Ciτ

i and C ′τ =
∑3
i=0 C

′
iτ
i and Ci, C

′
i are independent of τ .

Furthermore, there exists open set U ⊂ R+ containing τ with U compact such that

Tε(τ
′)→ T0(τ ′)

uniformly in the operator norm for all τ ′ ∈ U .

Proof. The first is obvious from Lemma 3.1 because the bilinear form Aτ,0 is
bounded

(83) Aτ,0(φ, φ) ≤ ‖Aτ,0‖L(H2
0 (D))‖φ‖2H2

0 (D).

To derive a finer estimate on the constant, we compute

Aτ,0(φ, φ) =

∫
D

1

n0 − 1
|∆φ+ τ2φ|+ τ2|φ|dx

≤ max

{
1,

∥∥∥∥ 1

n0 − 1

∥∥∥∥
L∞(D)

}
(1 + Cτ2)‖φ‖2H2

0 (D)

≤ (C̃0 + C̃1τ
2)‖φ‖2H2

0 (D)(84)

for some C̃0, C̃1 independent of τ . Therefore, combining the previous inequality
with the Cτ in Lemma 3.1 and computing:

(85) (C̃0 + C̃1τ
2)1/2 ≤ C(C

1/2
0 + C

1/2
1 τ)

we have the first bound in the statement of the theorem. To prove the faster
convergence of the adjoint, notice that for a fixed ε, the adjoint of Tε(τ) (of course
with respect to the A-inner product) is

(86) Tε(τ)∗ = A−1τ,0BA
−1
τ,εAτ,0

since both Aτ,ε and B are self adjoint with respect to the standard inner product
[6]. So we may compute using coercivity,

(T ∗ε (τ)u− T ∗0 (τ)u, φ)A =
(
B(A−1τ,ε − A−1τ,0)Aτ,0u, φ

)
H2

0 (D)

≤‖B(A−1τ,ε − A−1τ,0)Aτ,0u‖H2
0 (D)‖φ‖H2

0 (D)

≤ 1

C
‖B(A−1τ,ε − A−1τ,0)Aτ,0u‖H2

0 (D)‖φ‖A.(87)

Let us choose φ = T ∗ε (τ)u−T ∗0 (τ)u. Since A−1τ,0Bu = 1
τ u ∈ H

2
0 (D)

⋂
H4(D), Lemma

3.5 yields the desired result. The last assertion in the statement of the lemma follows
directly from Lemma 3.6 and (84).

Next, we compute an asymptotic expansion for the inner product that appears
in the eigenvalue correction theorem.

Lemma 4.3. Let d = 2, 3, Tε(τ) defined by (16) for ε ≥ 0, and u be the solution to
the variational problem (81). Then

((T0(τ)− Tε(τ))u, u)A

= εd
|B|
τ

n0(0)− n1
(n0(0)− 1)2

(
∆u(0)2 + 2τu(0)∆u(0) + τ2u2(0)

)
+ o(εd)

= εd
|B|
τ

n0(0)− n1
(n0(0)− 1)2

(∆u(0) + τu(0))2 + o(εd).
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Proof. Due to Lemma 3.7, it is sufficient to show that

((T0(τ)− Tε(τ))u, u)A = ((Aτ,ε − Aτ,0)(u0 + ε2ũ(1)), u)H2
0 (D) + o(εd)

where u0 = 1
τ u and ũ(1) is defined by (34). Because uε = Tε(τ)u, we notice that

Aτ,εuε = Aτ,0u0 = Bu so that

(uε − u0, φ)A =((Aτ,0 − Aτ,ε)uε, φ)H2
0 (D) + (Aτ,εuε − Aτ,0u0, φ)H2

0 (D)

=((Aτ,0 − Aτ,ε)uε, φ)H2
0 (D).(88)

We must now construct an approximation for this term. Let zε := uε−u0−ε2ũ(1) ∈
H2

0 (D). We claim

(89) ((Aτ,ε − Aτ,0)zε, φ)H2
0 (D) = o(εd).

Indeed, using the support of nε − n0,

((Aτ,ε − Aτ,0)zε, φ)H2
0 (D)

=

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆zε∆φ dx+ τ

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
zε∆φdx

+ τ

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆zεφdx+ τ2

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
zεφ dx.

The second term we may discard using Sobolev embedding and Lemma 3.3:∣∣∣∣ ∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
zε∆φ dx

∣∣∣∣
≤
∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥
L∞(D)

‖zε‖L∞(D)‖∆φ‖L∞
∫
εB

dx

≤ C‖zε‖H2
0 (D)ε

d

= o(ε
3d
2 ).(90)

Similarly, we can calculate the last term by the same approach∣∣∣∣ ∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
zεφdx

∣∣∣∣
≤
∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥
L∞(D)

‖zε‖L∞(D)‖φ‖L∞εd(91)

= o(ε
3d
2 ).(92)

The remaining terms follow a similar technique∣∣∣∣ ∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆zε∆φ dx

∣∣∣∣
≤
∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥
L∞(D)

‖∆φ‖L∞(D)

∫
D

χεB |∆zε|dx

≤ C‖χεB‖L2(D)‖zε‖H2
0 (D)

≤ Cεd/2o(εd/2)(93)
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and∣∣∣∣ ∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆zεφdx

∣∣∣∣
≤
∥∥∥∥ 1

n1 − 1
− 1

n0 − 1

∥∥∥∥
L∞(D)

‖φ‖L∞(D)

∫
D

χεB |∆zε|dx

= o(εd).(94)

By applying Lemma 3.7,

(95) ((T0(τ)− Tε(τ))u, φ)A = εd|B| n0(0)− n1
(n0(0)− 1)2

(∆u0(0)∆φ(0) + τ(u0(0)∆φ(0) + ∆u0(0)φ(0)) + τ2u0(0)φ(0)) + o(εd).

Since u0(0) = 1
τ u(0), we have completed the proof by taking φ = u.

For the denominator in the correction theorem, we must compute the derivative
of T0(τ) with respect to τ , DT0(τ). In fact this derivative is DT0(τ)u = v where
v ∈ H1

0 (D) solves

(96)

∆∆Aτ,0v = ∆

(
1

n0 − 1
A−1τ,0Bu

)
+

1

n0 − 1
∆A−1τ,0Bu+ 2τ

(
1

n0 − 1
+ 1

)
A−1τ,0Bu.

This calculation is rigorously justified in the appendix.

Theorem 4.4. Let d = 2, 3, u be a solution to (81), and Tε(τ) defined by (16) for
ε ≥ 0. For u chosen such that ‖u‖A = 1 we have that

τε − τ = εdτ |B| n0(0)− n1
(n0(0)− 1)2

(∆u(0) + τu(0))2

1 + τ2(DT0(τ)u, u)A
+ o(εd)

if the denominator is nonzero, where

(DT0(τ)u, u)A =− 2
1

τ

(
1

n0 − 1
u,∆u+ τu

)
L2(D)

− 2 (u, u)L2(D) .

Proof. Define uε = Tε(τ)u. We note that the condition ‖u‖A = 1 can be restated
as

(97) 1 = Aτ,0(u, u) = τ(Aτ,0A−1τ,0Bu, u)H2
0 (D) = τ‖∇u‖2L2(D)

hence we can assume that ‖∇u‖2L2(D) = 1
τ . Therefore, Lemma 4.2 grants us the

operator convergence needed for application of the nonlinear eigenvalue theorem
(Theorem 4.1) and a compact U on which the convergence holds. Hence constants
in Lemma 4.2 may be made uniform for τ ∈ U , yielding

(98) O

(
sup
λ∈U
‖(Tε(λ)− T0(λ))

∣∣
R(E)
‖‖(T ∗ε (λ)− T ∗0 (λ))

∣∣
R(E)∗

‖
)

= o(εd).

in the case of a simple eigenvalue. Applying the theorem gives the formula

τε − τ =τ2
((T0(τ)− Tε(τ))u, u)A
1 + τ2(DT0(τ)u, u)A

+ o(εd)

=τεd|B| n0(0)− n1
(n0(0)− 1)2

(∆u(0) + τu(0))2

1 + τ2(DT0(τ)u, u)A
+ o(εd)(99)
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after substituting in the result of Lemma 4.3. The value for (DT0(τ)u, u)A in the
statement of the theorem is given by (115) and Proposition 5.3.

As discussed in Section 3, the arguments used in the case of a single inhomo-
geneity carry over to multiple inhomogeneities. In particular, define

n(y) =

{
ni y ∈ Bi, i = 1, . . . ,m
n0 y ∈ Rd \B

and for i = 1, . . . ,m define the functions ṽBi and vBi as before by

(100)

∫
D̃

1

ñ− 1
∆y ṽBi

∆yφ dy =

∫
Bi

∆yφ(y) dy

for any φ ∈ H2
0 (D̃) and

(101)

∫
Rd

1

ñ− 1
∆yvBi∆yφdy =

∫
Bi

∆yφ(y) dy

for φ ∈W 2
0 (Rd). We may then define the correction terms ũ(1) and u(1) by

ũ(1) =−
m∑
i=1

(
1

ni − 1
− 1

n0(zi)− 1

)(
∆u0(zi) + τu0(zi)

)
ṽBi(x/ε)(102)

and

u(1) = −
m∑
i=1

(
1

ni − 1
− 1

n0(zi)− 1

)(
∆u0(zi) + τu0(zi)

)
vBi(x/ε)(103)

where we note that zi is the center of Bi. This yields our final theorem.

Theorem 4.5. Let d = 2, 3, u be a solution to (81), and Tε(τ) defined by (16) for
ε ≥ 0. Then for u chosen such that ‖u‖A = 1,

τε − τ = εdτ

m∑
i=1

|Bi|
n0(zi)− ni

(n0(zi)− 1)2
(∆u(zi) + τu(zi))

2

1 + τ2(DT0(τ)u, u)A
+ o(εd).

where

(DT0(τ)u, u)A =− 2
1

τ

(
1

n0 − 1
u,∆u+ τu

)
L2(D)

− 2 (u, u)L2(D) .

We conclude by remarking that the formula in Theorem 4.5 can be potentially
used to obtain information about the small penetrable inclusion, more specifically
the location and refractive index. We note that the transmission eigenvalues for the
perturbed media τε can be measured from scattering data, whereas the transmission
eigenvalues τ and eigenvectors u for the unperturbed media can be computed since
n0(x) is known.

5. Appendix: Technical lemmas. In this section, we will collect the technical
lemmas that are necessary for several of the results in this paper. The first lemma
involves the asymptotic behavior of ṽB whereas the second computes the derivative
of T0(τ).
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5.1. Convergence of ṽB. Our goal is to prove ε2ṽB converges to 0 at the appropri-
ate rate in the L2(D) norm. To do so, we will show that ε2(ṽB(x/ε)−vB(x/ε))→ 0
in L2(D). Afterwards, we can use that ε2vB itself converges to 0 yielding the desired
result. Before we prove this, we restate a lemma from [8].

Lemma 5.1. [8] Let d = 2, 3, ṽB be the solution to (29) and vB be the solution to
(30). Then we have that

‖∆yvB −∆y ṽB‖L2(D) = o(εd/2).

The proof of this lemma in [8] is for the constant n0 case, but the identical proof
holds for n0 smooth with property (1). Since vB(x/ε) is not in H2

0 (D), we require
a separate bound on its L2 norm.

Proposition 5.2. Let d = 2, 3. For ṽB defined by (29),

‖ε2ṽB(·/ε)‖L2(D) = o(εd/2).

Proof. Recall vB is defined by (30). We aim to bound the L2 norm of ε2(ṽB(x/ε)−
vB(x/ε)) by the L2 norm of its Laplacian, which we know from Lemma 5.1 is o(εd/2).
To do so, we will construct a correction term which allows us to use Poincaré’s
inequality. We define v1 to be the solution to

(104)

{
∆yv1 = 0 in D
v1 = −vB(·/ε) in ∂D

for d = 2, 3. Since vB ∈ W 2
0 (Rd), vB ∈ L∞(Rd) and in particular vB ∈ C0(∂D).

Since the domain is C2, v1 is a classical solution and so v1 ∈ C2(D)
⋂
C0(D) [10].

From the maximum principle for harmonic functions,

(105) ‖v1‖L∞(D) ≤ ‖v1(x/ε)‖L∞(∂D).

The decay conditions of vB (31) imply that vB(y) = o(|y|2−d/2) = o(εd/2−2) for
y = x/ε and x ∈ ∂D; furthermore the estimate is uniform in ε. Using the maximum
principle,

ε2‖v1‖L2(D) ≤ε2|D|1/2C‖vB(·/ε)‖L∞(∂D)

≤ε2|D|1/2Co(εd/2−2)

=Co(εd/2).(106)

For convenience, define Vε := ε2(ṽB(x/ε) − vB(x/ε) − v1(x/ε)) and assume to the
contrary that ‖Vε‖L2(D)/ε

d/2 does not converge to 0. Therefore there exists a sub-
sequence εk → 0 and C > 0 such that

(107) C ≤
‖Vεk‖L2(D)

ε
d/2
k

Noting that by construction Vεk ∈ H1
0 (D), Poincaré’s Inequality yields

(108) 1 ≤
‖Vεk‖L2(D)

Cε
d/2
k

≤
‖Vεk‖2L2(D)

C2εdk
≤ C̃p

‖∇Vεk‖2L2(D)

C2εdk
.

As v1 ∈ C2(D), we have that Vεk ∈ H2(D)
⋂
H1

0 (D); thus integration by parts is
valid, yielding

‖∇Vεk‖2L2(D) = −(Vεk ,∆Vεk)L2(D) ≤ ‖Vεk‖L2(D)‖∆Vεk‖L2(D)(109)
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Substituting this into (108), we conclude

(110)
‖Vεk‖L2(D)

Cεd/2
≤
‖Vεk‖L2(D)

εd/2
‖∆Vεk‖L2(D)

Cεd/2
.

Because ε2∆ = ∆y and ∆v1 = 0,

(111) 1 ≤
‖∆Vεk‖L2(D)

Cε
d/2
k

=
‖∆y ṽB −∆yvB‖L2(D)

Cε
d/2
k

= o(1)

from Lemma 5.1, which is a contradiction. Thus ‖Vk‖L2(D) = o(εd/2). To conclude,

we must justify why each correction ε2v1 and ε2vB are at least o(εd/2) in the L2

norm. First, (106) implies the claim for v1, and finally, vB ∈ C0(Rd) implies

(112) ε2‖vB(·/ε)‖L2(D) ≤ ε2|D|1/2‖vB‖L∞(Rn).

5.2. Derivative of T0(τ) with respect to τ . To apply the theorem, we must
have the derivative of T0(τ) = A−1τ,0B with respect to τ evaluated at a function u.
However, since B does not depend on τ , this problem is equivalent to the derivative
of A−1τ,0 evaluated at Bu. Thus it is only necessary to compute DA−1τ,0. With that in

mind, for u ∈ H2
0 (D) we define the solution map Lτ to variational problem:

(113) ∆∆Aτ,0Lτu = ∆

(
1

n0 − 1
A−1τ,0u

)
+

1

n0 − 1
∆A−1τ,0u+ 2τ

(
1

n0 − 1
+ 1

)
A−1τ,0u

which exists and is bounded due to Riesz Representation. Further, define for u ∈
H2

0 (D),

(114) uτ = A−1τ,0u.

Notice that by construction,

(Lτu, φ)A =(Aτ,0Lτu, φ)H2
0 (D)

=

(
1

n0 − 1
uτ ,∆φ

)
L2(D)

+

(
1

n0 − 1
∆uτ , φ

)
L2(D)

+ 2τ

((
1

n0 − 1
+ 1

)
uτ , φ

)
L2(D)

(115)

Proposition 5.3. Let d = 2, 3 and τ > 0. Then −Lτ as defined by (113) is the
derivative of A−1τ,0 with respect to τ . That is, DA−1τ,0 = −Lτ .

Proof. Observe since Aτ+h,0uτ+h = Aτ,0uτ = u,

(Aτ+h,0(uτ+h − uτ + hLτu), φ) =(Aτ+h,0uτ+h − Aτ+h,0uτ + hAτ+h,0Lτu, φ)H2
0 (D)

=(Aτ,0uτ − Aτ+h,0uτ + hAτ+h,0Lτuτ , φ)H2
0 (D)

=− (2th+ h2)

∫
D

(
1

n0 − 1
+ 1

)
uτφ dx

− h
∫
D

1

n0 − 1
(uτ∆φ+ ∆uτφ) dx

+ h(Aτ+h,0Lτu, φ)H2
0 (D).(116)
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From the definition of the bilinear form, there exists a constant depending on τ
and D such that

(Aτ+h,0u, φ)H2
0 (D) = (Aτ,0u, φ)H2

0 (D) + h

(
∆u+ τu,

1

n0 − 1
φ

)
L2(D)

+ h

(
1

n0 − 1
u,∆φ+ τφ

)
L2(D)

+ 2h(τ + h)

((
1

n0 − 1
+ 1

)
u, φ

)
L2(D)

= (Aτ,0u, φ)H2
0 (D) +O(h‖u‖H2

0 (D)‖φ‖H2
0 (D))(117)

where the above estimate uses that H2
0 is embedded in C0. Using the above in-

equality and (115),

(Aτ+h,0Lτu, φ)H2
0 (D) =

(
1

n0 − 1
uτ ,∆φ

)
L2(D)

+

(
1

n0 − 1
∆uτ , φ

)
L2(D)

+ 2τ

((
1

n0 − 1
+ 1

)
uτ , φ

)
L2(D)

+O
(
h‖uτ‖H2

0 (D)‖φ‖H2
0 (D)

)
.(118)

Substituting this into (116) yields

(Aτ+h,0(uτ+h − uτ + hLτu), φ) =− h2
∫
D

(
1

n0 − 1
+ 1

)
uτφdx+O(h2‖φ‖H2

0 (D))

≤ Ch2
(

1

n0 − 1
+ 1

)
‖uτ‖L2(D)‖φ‖H2

0 (D)

+O
(
h2‖uτ‖H2

0 (D)‖φ‖H2
0 (D)

)
.(119)

Of course, we have the bound

(120) ‖uτ‖L2(D) ≤ C‖uτ‖H2
0 (D) ≤ C‖A−1τ,0‖L(H2

0 (D))‖u‖H2
0 (D)

Choosing φ = uτ+h − uτ + hLτu, we have by coercivity that

(121) C‖uτ+h − uτ + hLhu‖H2
0 (D) = O

(
h2‖u‖H2

0 (D)

)
where C can be chosen to be independent of τ . To finish, we divide by h‖u‖H2

0 (D)C

and take the supremum over u ∈ H2
0 (D),

(122)
‖A−1τ+h,0 − A−1τ,0 + hLτ‖L(H2

0 (D))

h
= O(h).

Therefore the Frechet derivative DA−1τ,0(τ) = −Lτ .
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