
In recent years, a new approach has been devel-
oped in the study of the inverse scattering prob-
lem for electromagnetic waves. In this approach, 
a weak scattering assumption has been avoided, 

and no use has been made of nonlinear optimi-
zation methods. Instead, a study is made of the 
analytic properties of the far-field operator, and 
the results of this study are used to determine the 
support of the scattering object together with an 
estimate of the material properties of the scat-
terer. This article introduces this new approach in 
inverse electromagnetic scattering theory, which is 
called the qualitative approach to inverse scatter-
ing theory.

INVERSE SCATTERING THEORY
Inverse scattering theory is central to such diverse 
application areas as medical imaging, geophysi-
cal exploration, and nondestructive testing. The 
growth of this field has been driven  by the real-
ization that the inverse scattering problem is both 
nonlinear and ill posed, thus presenting difficul-
ties in the development of efficient inverse algo-
rithms. Although linearized models continue to 
play an important role in many applications, the 
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increased need to focus on problems in which multiple scat-
tering effects can no longer be ignored has led to the nonlin-
earity of the inverse scattering problem playing a central role. 
In addition, the possibility of collecting large amounts of data 
over a limited region of space has led to the situation where the 
ill-posed nature of the inverse scattering problem becomes of 
central importance.

Initial efforts to deal with the nonlinear and ill-posed 
nature of the inverse scattering problem have focused on the 
use of nonlinear optimization methods, in particular New-
ton’s method and various versions of what are now called 
decomposition methods. For a discussion of this approach to 
the inverse scattering problem together with numerous refer-
ences, see [1]. Although efficient in many situations, the use 
of nonlinear optimization methods suffers from the need for 

strong a priori information to implement such an approach. 
Hence, to circumvent this difficulty, a recent trend in inverse 
scattering theory has focused on the development of the quali-
tative approach, in which the amount of a priori information 
needed is drastically reduced but at the expense of obtaining 
only limited information about the scatterer, such as connec-
tivity, support, and an estimate on the values of the constitu-
tive parameters. Examples of such an approach are the linear 
sampling method, the factorization method, and the theory of 
transmission eigenvalues.

The qualitative approach to inverse scattering theory was 
initiated by Colton and Kirsch in 1996 [2]. In this paper, they 
introduced a linear integral equation of the first kind, called 
the far-field equation, whose solution could be used as an 
indicator function to determine the support of the scattering 

obstacle. Obtaining the solution of the far-
field equation is an ill-posed problem, and 
the determination of a regularized solution 
to this problem is complicated by the fact 
that, in general, the noise-free equation 
has no solution. In particular, the general 
theory of ill-posed problems is not immedi-
ately applicable. This problem was solved by 
Kirsch in 1999 [3]. Having determined the 
support of the scatterer by the aforemen-
tioned methods (called, respectively, the 
linear sampling method and factorization 
method), the next step in the qualitative 
approach to inverse scattering theory is to 
obtain estimates on the material properties 
of the scatterer. This was accomplished by 
Cakoni, Gintides, and Haddar in 2010 [4] 
using transmission eigenvalues first intro-
duced by Kirsch [5] and Colton and Monk 
[6]. The development of the aforementioned 
themes is the subject of this article. For 
a more detailed discussion, together with 
numerical examples, refer to the recently 
published monograph [7] for scalar prob-
lems and to the monograph [8] for Max-
well’s equations.

SCATTERING BY 
INHOMOGENEOUS MEDIA
We consider the scattering of an incident 
time harmonic electromagnetic field by a 
possibly anisotropic medium of compact 
support Dr  (Figure 1). The known incident 
field , HE ii  impinges on the inhomoge-
neous scatterer occupying the domain .D  
This creates a scattered field , HE ss  outside 
D  and a total field ,E H in .D  The unit 
normal vector o  points outward from .D  
Assuming ( )exp i t~-  dependence on time, 
this is modeled by the following set of Max-
well’s equations, where , HE ii  is the given 
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electromagnetic incident field, , HE ss  is the scattered electro-
magnetic field, and ,E H  is the total field inside :D
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Here, ~ is the interrogation frequency, v is the unit outward 
normal to ,D  and the constants 00 2e  and 00 2n  are the 
electric permittivity and magnetic permeability of the vacuum 
(for simplicity, we consider the inhomogeneity embedded in 
vacuum, but the discussion here can be extended to a more 
complicated background; see [8] and [9]). In addition, the 3 × 3 
real matrix valued functions ( )xe  and ( )xv  are the electric per-
meability and conductivity inside the inhomogeneity (again, we 
take for simplicity the magnetic permeability of the medium to 
be the same as in the vacuum, but the discussion here is valid 
with slight modification if this is not the case; see [8] and [10]). 
Expressing the magnetic field in terms of the electric field, we 
can rewrite the aforementioned set of equations as follows:
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where the above radiation condition, known as the Silver–
Muller radiation condition, is assumed to hold uniformly with 

respect to / ,x x x k 0 0~ ne= =t  is the wavenumber, and the 
3 × 3 matrix valued function re  with ( )L D3 -entries is given by

( ) ( ) ( ) .x x i x
r

0 0~
v

e
e
e

e
= +

The mathematical theory for Maxwell’s equations makes use 
of spaces of functions with a well-defined curl in the last-squares 
sense. More precisely, for a generic open set , ( , )H curlO O  
contains square-integrable functions with a square-integrable 
curl in .O  For exterior problems on unbounded domains, we 
denote by ( , )H curl Oloc  the space of functions in ( ; )H Bcurl  for 
any compact subset B O1  (see [11]). Assuming that Ei satisfies 

E k E 0curl curl i i2- =  in R3  (possibly excluding one point for 
the case of point sources), and under the physical assumptions

( ) ( ) ,0· and ·r r
2

0 1$ $p e p a p p e pr r

it can be shown that the direct scattering problem has a unique 
solution ( , )E H Dcurl!  and ( , ).\E H Dcurl Rs 3

loc! r

In this article, our main interest will be in the inverse scat-
tering problem where, from a knowledge of Es on a surface C
corresponding to several interrogating fields Ei  and possibly 
a range of frequencies, we want to obtain the support D and 
estimates on .re  Methods for doing this are called qualitative 
in inverse scattering theory (compare with [7], [8], and [20]). To 
fix our ideas, we assume that the incident field is a plane wave 
given by

( ; , , ): ( ) ,E x d p k ik d p dei ikx d·# #=

where d S2!  is the direction of propagation, :S2 = 
,:x x 1R3! =" ,  and ,p p 0R3! =Y  denotes the polarization. 

Then, the scattered electric field Es  has the asymptotic behavior

( ; , , ) ( ; , , )E x d p k
x

e E x d p k O
x
1| |

s
ik x

= +3 t c m' 1,

as x " 3  uniformly with respect /x x x=t  (see [9]). The 
tangential function ( ; , , )E x d p k3 t  defined on the unit sphere 
S2  is the far-field pattern of the scattered field, and we assume 
that ( ; , , )E x d p k3 t  is known for all ,x d S2!t  and (possibly) 

[ , ].k k k1 2!  It is also possible to consider only ( ; , , )E x d p k3 t  
to be known for ,x dt  on an open subset of S2  (see [8] and [12]), 
but for the sake of simplicity, we shall not consider this situa-
tion in this article. In our investigation of the inverse scattering 
problem, our primary interest will be the far-field operator 
: ( ) ( )F L LS St t

2 2 2 2"  (( )L St
2 2  contains square-integrable tangen-

tial fields on ),S2  defined by

	 ( ) ( ): ( ; , ( ), ) ( ).Fg x E x d g d k ds d
S2

= 3t t# � (1)

We note that F is a linear compact operator. Clearly, Fg is 
the far-field pattern of the scattered field corresponding to the 
incident field, being an electric Herglotz wave function with 
kernel g defined by

(Es,Hs)

(Ei,Hi )

R3\D
µ0, ε0

µ0, ε (x)
D

(E, H )∂D

FIGURE 1. An illustration of the direct electromagnetic 
scattering problem for inhomogeneous media.
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	 ( ): ( ) ( ) ( ).E x e g d ds d g L Sg
ikx d

t
2 2·

S2
!= # � (2)

Note that F  is related to scattering operator S  (see, e.g., [9]) by

.I F2
1S
r

= +

The basic mathematical property of the far-field operator 
is formulated in the following statement [4], [5]: the far-field 
operator : ( ) ( )F L LS St t

2 2 2 2"  is injective and has a dense range 
if and only if there does not exist a nontrivial solution to the 
homogeneous interior transmission problem

	 ,E k E D0curl curl in0
2

0- = � (3)

	 ,E k E D0curl curl inr
2e- = � (4)

	 ,E E Don0# # 2o o=  and� (5)
	 ,curlE E Dcurl on0# # 2o o= � (6)

such that :E Eg0 =  is an electric Herglotz wave function.
Values of k C!  for which the transmission eigenvalue 

problem (3)–(6) has a nontrivial solution are called transmission 
eigenvalues. Transmission eigenvalues are related to nonscatter-
ing frequencies. In particular, if k is a transmission eigenvalue 
and the eigenfunction E0  that solves E k E 0curl curl 0

2
0- =  

in D can be extended outside D as a solution E0u  of the same 
equation, then the scattered field due to E0u  as an incident wave 
is identically zero.

By separating variables, it is easy to see that if D is a sphere 
centered at the origin with constant scalar relative permittivity 

,re  then at a transmission eigenvalue E0  is an electric Herglotz 
wave function, and therefore it does not scatter by this inhomo-
geneity. Unfortunately, in general, such an extension of E0  does 
not exist (see [13] for domains with a corner in the scalar case). 
However, since electric Herglotz wave functions are dense in 
the set (see [9])

( ): ,U L D U k U D0curl curl in2 2! - =" ,

at a transmission eigenvalue, it is possible to superimpose plane 
waves such that this superposition produces an arbitrarily small 
scattered field.

THE DETERMINATION OF THE SUPPORT
We now address the problem of determining the support D  
of the scattering obstacle from a knowledge of the far-field 
pattern ( ; , , )E x d p k3 t  for ,x d S2!t  and k fixed. Note that 
no knowledge of re  is assumed. The first issue to address 
is uniqueness. In [14] the following result is proven: If 

,D ,r1 1e  and ,D ,r2 2e  give rise to the same far-field data, 
i . e . ,  ( ; , , ) ( ; , , )E x d p k E x d p k( ) ( )1 2=3 3t t  for all , ,d x S2!t  for 
three linearly independent polarizations and one fixed ,k  
then .D D1 2=

Our problem now is to determine the support D without any 
a priori knowledge of .re  The first step in this direction was the 
linear sampling method [2], [8], [15]. This method is based on 
solving the far-field equation

	 ( ) ( ) ( , , , )Fg x E x z q k= 3t t � (7)

for ( ,), ,g L x zS S Rt
2 2 2 3! ! !t  and for q R3!  and k 02

fixed, where

( , , , ) ( )E x z q k ik x q xe4
ikx z·# #

r
=3

-t t t t

is the far-field pattern of the electric dipole ( , , , )E x z q ke  
given by

( , , , ): ( , )E x z q k
k

x z q
4
1 curl curle

2r
U=

with

( , ):x z
x z
e | |ik x z

U =
-

-

denoting the radiating fundamental solution to the Helmholtz 
equation. It can be shown (see [8] and [16]) that, if k is not a 
transmission eigenvalue, then there exists a Herglotz kernel 

:g g, , , ,z z q k= ee  satisfying

	 ( , , , ) ,Fg E x z q k, ( )z L St
2 2 1 e- 3e t � (8)

such that
1)	 for , limz D E ( )g L D0 ,z 2! "e e  exists and
2)	 for , ,limz D E ( )g L D0 ,z 2 3" ="e e

where Eg ,z e  is the electric Herglotz wave function given by (2) 
with : .g g ,z= e  Since the far-field equation is ill posed (the sin-
gular values of the compact far-field operator F decay exponen-
tially), it is necessary to use regularization techniques. What is 
done in practice is to apply Tikhonov regularization [1], [8], [17] 
to the far-field equation and solve

	 ( ) ( , , , ),I F F g F E x z q ka + = ))
3 t � (9)

where 02a  is the regularization parameter and F)  is the 
adjoint operator to .F  We denote by ( )g L S, , ,z q k t

2 2!a  the result-
ing solution. In reality, F is replaced by the noisy measured far-
field operator ,Fd  whose kernel is now the measured far-field 
data ( ; , , )E x d p k3

d t  with noise level .02d  Using the Herglotz 
kernels, we can define the indicator function

( ) ,z
g g g

1 1 1I
, , , , , , , , ,z q k L z q k L z q k L1 2 2 2 3 2

= + +
a a a

where , ,q q qand1 2 3  are three independent artificial polariza-
tion vectors and z R3!  is an artificial source point. The artificial 
source point z is usually taken to lie at the vertices of a uniform 
grid in the region of ,R3  where the unknown scatterer is assumed 
to be. Using these computed values, the linear sampling method 
then visualizes the support D of the inhomogeneity as the surface

( )z CI =

for some ad hoc constant C  that signals the transition 
between small and large values of .I  The choice of the search 
grid for z is where the main a priori information for the linear 
sampling method is needed: we need to know the approximate 
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size of the unknown scatterer and the approximate position to 
choose a search grid with sufficient resolution in the region to 
be scanned.

The assumptions on the material properties needed for the 
linear sampling method to work in addition to the ones stated in 
the introduction are that
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for some 02c  in an arbitrary neighborhood of the bound-
ary ,D2  which guarantees that the interior transmission 
problem (3)–(6) is a compact perturbation of an invertible 
operator [19].

The linear sampling approach appears to work satisfactorily 
in that the numerical results confirm the viability of the method 
[8]. For example, in Figure 2 we show computational results 
from [18], where an inhomogeneous and disconnected scatter, 
coated with a thin, highly conducting layer, is reconstructed 
from far-field measurements. We use , ,k I4 2re= =  and 92 
incident waves and measurement points. The two balls are cov-
ered by a thin conducting layer with the impedance parameter 
set to 1 (see [18] for details).

That transmission eigenvalues have a profound effect on 
the reconstruction is shown in Figures 3 and 4. In Figure 3, 
it is clear that a scatterer is to be found centered at the ori-
gin and that the choice of threshold C will have relatively 
little effect on the predicted size of the scatterer due to the 
rapid rise in ( )zI  near the edges of the scatterer. In contrast, 
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FIGURE 3. The reconstruction of a dielectric sphere of radius 1 with I16re =  using the wavenumber k = 2.1 (not a transmission 
eigenvalue for the sphere). (a) A contour map of  ( )zI  in the plane z = 0. (b) A mesh plot of ( )zI  along the line .z z 01 3= =  (c) A 
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when the same problem is solved at a transmission eigen-
value, as shown in Figure 4, we see that, although a plot of 
( )zI  peaks inside the scatterer, it is difficult to predict the 

size of the scatterer.
A problem with the linear sampling method is that it is not 

clear whether the regularized solution g , , ,z q ka  computed by 
Tikhonov regularization inherits the same properties as the 
approximate solution g ,z e  of the far-field equation satisfying 
(8). The unsatisfactory state of the mathematical justifica-
tion of the linear sampling method stems from the fact that, 
even if k is not a transmission eigenvalue, in general there 
does not exist a solution of the far-field equation. Hence, try-
ing to solve the regularized far-field equation with noisy data 

( ; , , )E x d p k3
d t  lies outside the general theory of ill-posed 

problems. Attempts to fill this mathematical gap started with 
Kirsch’s factorization method [20]. For the case of Maxwell’s 
equation, assuming that (10) holds in all ,D  in [21] and [22] it 
is shown that

( , , , ) ,z D E x z q k Fanger #
/1 2+! !3 t ^ h

where F#  is the operator given from the real and imaginary 
parts of F  by ( ) ( ) ,F F F# 0 1= +  which is obviously known 
from the measurements.

In the case of a dielectric when ( ) ,0r1 e =  the far-field 
operator is normal (see [1]), and in this case a simpler method 
can be derived. It can be shown that z D!  if and only if 

( , , , )E x z q k3 t  is in the range of .F F /1 4)^ h  This fact can be used 
as in [24] to show the following result. Assume that k is not 
a transmission eigenvalue and ( ) .0r1 e =  Let :g g, , , ,z z q k=a a  
be the solution of the Tikhonov regularized far-field equa-
tion (9), and let Eg , , ,z q ka  be the corresponding Herglotz wave 
function. Suppose that ( )L Sz

2 2!{  is the unique solution of 
( , , , )F F E x z q k/1 4

{ =)
3 t^ h  for .z D!  Then two assertions can 

be made:
1)	 for ,z D!  ( ) ,limc E z Cz L g z L0 ,z2 2# #{ {"a a  
2)	 for , ( ) .limz D E zg0 ,z 3" ="a a

Since z L2{  for z D!  is given in terms of the Picard’s 
series, the previous result provides a convergence result for 
the linear sampling method and a rigorous characterization of 
D  in terms of ( )E zg ,z a  [see Figure 5, where we compare the 
use of ( )E zg ,z a  instead of the most commonly used indicator 
function ( )].zI

Under the less restrictive assumption on the relative 
permittivity (10) and for limited aperture data, Audibert 
and Haddar [26] have recently developed the generalized 
linear sampling method, which provides a rigorously justified 
characterization of the support D  of re  by modifying the 
far-field equation. More specifically, the far-field equation is 
replaced by the problem of finding a minimizing sequence of 
the functional

( , ): , ,J g E Bg g Fg Ez
L

z
2a= + -3 3a ^ h

where the operator : ( ) ( )B L LS St t
2 2 2 2"  is given in terms of 

the far-field operator F and is such that ,Bg g L2^ h  is equiva-
lent to .E ( )g L D2  For the application of the generalized linear 
sampling method to electromagnetic scattering problems, we 
refer the reader to [16]. The linear sampling method and its 
more refined versions have been widely used for various elec-
tromagnetic inverse scattering problems with more complicated 
material structure than our reference problem in this article. 
For example, in Figure 6 we show an example from [9] of recon-
structing a perfectly conducting torus in a conducting half-
space from near-field measurements in the dielectric half-space 
above. This is a model problem for detecting buried objects. 
We emphasize that the support of the scattering medium can 
be determined by this method without making any use of the 
material properties of the scatterer (however, the background 
medium must be known).

ESTIMATES FOR THE MATERIAL PROPERTIES
Having determined the support D without knowing any-
thing about the material properties, we would like to get 
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eigenvalue for the sphere). (a) A contour map of ( )zI  in the plane .z 02 =  (b) A mesh plot of  ( )zI  along the line .x x 01 3= =   
(c) A reconstruction of the sphere using the same method for choosing the isosurface value C  as in Figure 3 and marked in 
(b) as a light blue line.
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some information about the (possibly matrix-valued) relative 
permittivity .re  To this end, we appeal to the transmission 
eigenvalue problem

.
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Even when re  is real, this is a nonself-adjoint eigenvalue prob-
lem [27]. Nevertheless, when re  is real, the existence of infinitely 
real transmission eigenvalues was proved in [4] (in particular 
cases, it is shown that complex transmission eigenvalues also exist 
[28]). To use transmission eigenvalues to obtain information about 
the material properties of the media, we must know whether the 
real transmission eigenvalues can indeed be determined from the 
scattering data (we only consider real transmission eigenvalues, 
since physically the wavenumber k 0 0~ ne=  must be real). A 
positive answer to this question is given in [7], where it is shown 

that real transmission eigenvalues can be seen from the behavior 
of the regularized solution of the far-field equation

( )( ) ( , , , ), ,Fg x E x z q k z D!= 3t t

the same equation used to determine the support .D  The fol-
lowing result holds true. Let :g g, , , ,z z q k=a a  be the Tikhonov 
regularized solution of the far-field equation, i.e., the solution of

( ) ( , , , ), .I F F g F E x z q k z D!a + =) )
3 t

Let Eg ,z a  be the electric Herglotz wave function with kernel .ga  
Then for any ball ,B D E ( )g L D,z 21 a  is bounded as 0"a  for 
every z B!  if and only if k is not a transmission eigenvalue.

The aforementioned results suggest that, if we keep z D!  
and solve the far-field equation varying the wavenumber ,k  
the transmission eigenvalues will coincide with those values of 
k where E ( )g L D,z 2a  or (mostly used in practice) g , ( )z L S2 2a  
becomes large (for a simple example where transmission eigen-
values can be computed analytically, see Figure 7).
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FIGURE 5. The reconstruction of a dielectric cube I2re =^ h with a conductive coating and an impedance parameter of 0.1 at  
k = 3 using the linear sampling method with 96 incidence and measurement directions (see [25] for details). (a) The exact scatterer. 
(b) The reconstruction using the linear sampling method. (c) The contours of  ( )zI  in the plane .z 03 =  (d) The reconstruction of 
the scatterer using the indicator ( ) .E zg , , ,z q ka  In this example, the indicator ( )E zg , , ,z q ka  gives the best reconstruction even though 
this example is not covered by the theory mentioned in this article because of the surface conducting layer. (Figure courtesy of 
[25], reproduced with permission.)
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As an alternative characterization of transmission eigen-
values, we remark that under the assumption that the far-field 
operator F  is normal (e.g., if ( ) 0r1 e =  in ),D  the transmis-
sion eigenvalues can be observed in the phase behavior of the 
eigenvalues of the far-field operator. This was first proven for the 
scalar scattering problem in [22] and then for the electromag-
netic scattering problem in [23]. We briefly describe this result. 
To this end, let us assume that ( )I· r

2$p p c pe -r  in D for 
some constant .02c  Since in this case the far-field operator Fk   
(we explicitly indicate here the dependence on )k  is normal, it 
has an infinite number of eigenvalues ( )kjm  accumulating to 0, 
such that ( ( )) ,k 0j1 2m  and they lie on a circle in the complex 
plane with the center on the imaginary axis and touching tan-
gentially the real axis at the origin. Let us write these eigenval-
ues as ( ) ( ) .k r k e ( )

j j
i kjm = j  In [22], it is shown that, if k is not a 

transmission eigenvalue, then ( ( ))k 0j0 2m  for j N!  is large 
enough, and thus ( )k 0j "j  as .j " 3  However, if we define 

( ): ( ) [ , )maxk k 0j j !j j r=) " , and

( ) ,lim k
k k0
j r=

"
)

then k 00 2  is a transmission eigenvalue. This relationship is 
referred to as an inside–outside duality (see [22] and the refer-
ences therein).

Before examining what information transmission eigen-
values carry about the material properties of the scattering 
medium, we first briefly review the history of the transmission 
eigenvalue problem. The transmission eigenvalue problem 
in scattering theory was introduced by Kirsch [5] in 1986 and 
Colton and Monk [6] in 1988. The fact that transmission eigen-
values form a discrete set (for the scalar case of isotropic media) 
was shown by Colton, Kirsch, and Päivärinta [29] and Rynne 
and Sleeman [30] in 1989 and 1991, respectively, while for Max-
well’s equations this was shown by Haddar and Monk [31] and 
Haddar [32] in 2002 and 2004, respectively. Finally (after a gap 
of 20 years), the existence of at least one transmission eigen-
value for the scalar case of isotropic media and large contrast 
was shown by Päivärinta and Sylvester in [33]. The existence 
of an infinite set of real transmission eigenvalues for general 
anisotropic media for both scalar and Maxwell’s equations was 
given by Cakoni, Gintides, and Haddar in 2010 [4]. This paper 
also contained a basic monotonicity property of transmission 
eigenvalues, which opened the possibility of using transmission 
eigenvalues in nondestructive testing, as investigated in [34] and 
[35]. Since the appearance of these papers, there has been an 
explosion of interest in the transmission eigenvalue problem; 
see the recent monograph by Cakoni, Colton, and Haddar for 
further details and references [7].

In what follows, we will assume that ( ) 0r1 e =  in D and

· (
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FIGURE 7. The average L2 norm of g ,z a  against the 
wavenumber k. We averaged over 81 sources randomly 
placed in a unit sphere with .I16re =  Red points 
indicate the values of k corresponding to analytically 
calculated transmission eigenvalues. There is an excellent 
correspondence between peaks in the norm of g ,z a  and 
these eigenvalues.
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FIGURE 6. An example of the reconstruction of a buried 
object. In the air ,z 03 2^ h  the permittivity is ,Ire =  whereas 
for z 03 1  it is set ( . ) .i I2 0 5re = +  The torus is a perfect 
conductor. The point sources are located on a 25 × 25 array 
of size 3 3# m  at / ,z 23 m=  where λ is the wavelength of 
the incident field in the air. (a) An exact scatterer. (b) A 
reconstruction using the surface ( ) . ( ).maxz z0 5I Iz=  (Figure 
courtesy of [9], reproduced with permission.)
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in ,\D D0r  where D D0 1  is an open subset of D  (possibly 
empty) where Ire =  (i.e., we are allowing for the presence of 
voids in the media). We note that, if the inhomogeneous media 
is conducting [i.e., ( ) 0r1 2e  in an open subset of ]D  embed-
ded in a nonconducting background (such as a vacuum), real 
transmission eigenvalues do not exist. In particular, setting

: inf inf ·,
| |

minr
D

r
1
p pe e=

p =

and

: ,sup sup ·,
| |

maxr
D

r
1
p pe e=

p =

we have the following. Assume that .1,minr 2e  Then, there 
exists an infinite discrete set of real transmission eigenvalues k j

accumulating at 3+  and satisfying

( , ) ( , ) ( ( ), )k B k D k x D, ,max maxj r j r j r1 # #e e e  and

	 ( , ) ( , ),k D k B, ,min minj r j r 2# #e e

where .B D B2 11 1

Given D  (known a priori or determined by the linear sam-
pling method) and after computing ( ( ), ),k x Dr1 e  which is the 
first real transmission eigenvalue corresponding to D  with 
relative permittivity ( ),xre  from the far-field equation, one 
can now determine a constant n0  such that the first transmis-
sion eigenvalue ( , )k n D1 0  of the isotropic media n I0  with 
support D  satisfies ( , ) ( ;( ), )k n D k x Dr1 0 1 e=  hence, by the 
above result, we have n, ,min maxr r0# #e e . This computed n0  
will detect changes in the anisotropy of the scattering medi-
um. If the original inhomogeneous media is isotropic [i.e., 
( ) ( ) ,x n x Ire =  with n(x) a bounded scalar function], numeri-

cal results show that

| | ( ) .n D n x dx1
D

0 . #

Numerical evidence for this in the case of a transverse 
electric polarized wave in two dimensions can be found in [35] 
(see Figure 8 and Table 1), which we now describe. In these 
numerical experiments, a piecewise constant medium is con-
sidered inside a circle of radius 0.5. The two regions are of 
equal area, having relative permittivity ,r r ie e=  in the inner 
region and ,r r ee e=  in the outer annulus [see Figure 8(a)]. 
Two experiments are considered in [35]: 1) the domain is 
assumed known (a circle of radius 0.5), or 2) the domain is first 
constructed using the linear sampling method. Then, using 
transmission eigenvalues, an estimate is computed for n0  as 
described previously. The results are shown in Table 1. For the 
exact geometry, the results show that n0  is a rough estimate of 
the average permittivity.

For isotropic homogeneous media with constant relative 
permittivity ,1r 2e  the first transmission eigenvalue ( )k r1 e  
is strictly monotonically decreasing and is continuous with 
respect to .re  This implies that the first transmission eigenvalue 
uniquely determines the constant relative permittivity. Similar 
results can be obtained in the case when the maximum relative 

TABLE 1. THE RESULTS FOR  
RECONSTRUCTING N0 USING EITHER THE 

EXACT OR APPROXIMATE BOUNDARY FOR  
THE DOMAIN SHOWN IN FIGURE 8.

r,ee r,ie k1

n0—Exact 
Shape

n0—Reconstructed 
Shape

8 8 2.98 8.07 7.61 

11 5 3.27 7.05 6.69

22 19 1.76 20.28 18.86 

67 61 0.97 64.11 59.42

Table courtesy of [35], reproduced with permission.
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optimal reconstruction. (Figure courtesy of [35], reproduced with permission.)
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permittivity 1,maxr 1e  as well as for media with voids ,D D0 1  
where ( )x Ire =  [27] and [36]. This is also shown in the top row 
of Table 1.

CONCLUSIONS
We have surveyed the fundamental ideas and the state of the 
art of qualitative methods and transmission eigenvalues for 
solving the electromagnetic inverse scattering problem for 
anisotropic inhomogeneous media. A drawback of the qualita-
tive approach is the amount of spatial multistatic data needed. A 
possible remedy could be to use time-domain data and develop 
linear sampling and factorization methods in the time domain. 
Preliminary results for the scalar problem in [37] are promis-
ing. A drawback of the use of transmission eigenvalues is that it 
needs data for a range of frequencies and that it does not work 
for media with absorption. It is possible to introduce a new 
eigenvalue problem by modifying the far-field equations with an 
artificial eigenvalue parameter. Such an idea was applied in [38].
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