
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2003; 26:413–429 (DOI: 10.1002/mma.360)
MOS subject classi�cation: 35 P 25; 35 J 05; 78A 25

Combined far-�eld operators in electromagnetic inverse
scattering theory

Fioralba Cakoni† and David Colton∗;‡

Department of Mathematical Sciences; University of Delaware; Newark; 19716 DE; U.S.A.

Communicated by R. Kre�

SUMMARY

We consider the inverse scattering problem of determining the shape of a perfect conductor D from
a knowledge of the scattered electromagnetic wave generated by a time-harmonic plane wave incident
upon D. By using polarization e�ects we establish the validity of the linear sampling method for solving
this problem that is valid for all positive values of the wave number. We also show that it su�ces to
consider incident directions and observation angles that are restricted to a limited aperture. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The linear sampling method is a technique for recovering the shape of a scattering object
from a knowledge of the far-�eld pattern of the acoustic or electromagnetic scattered wave
[1–5]. Its advantages over other methods for solving the same problem are that it is a lin-
ear algorithm that does not rely on any weak scattering assumptions and it is not necessary
to know the boundary conditions on the scatterer a priori. The disadvantages compared to
other methods are that it requires multi-static data distributed over the unit sphere and that
the method fails at values of the wave number corresponding to eigenvalues of an associated
interior boundary value problem. The purpose of this paper is to address both of these disad-
vantages for the special case of the scattering of an electromagnetic plane wave by a perfect
conductor.
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414 F. CAKONI AND D. COLTON

The di�culty with eigenvalues in the linear sampling method is due to the fact that the far-
�eld operator has eigenvalues (cf. Reference [6], Corollary 8.18). Hence, in order to overcome
this problem, we must modify the far-�eld operator. The same problem occurs in the dual
space method [6] for solving the inverse scattering problem and in the case of the scattering
of electromagnetic waves by a perfect conductor a resolution to this di�culty was given in
References [7,8] by considering a linear combination of far-�eld operators corresponding to
di�erent polarizations of the incident �eld. Since the linear sampling method had its origin in
the dual space method by moving the origin to an arbitrary point z �=0, it is not unreasonable
to expect that a similar modi�cation should be possible for the linear sampling method. We
show in this paper that this is indeed the case. However, the analysis is not as straightforward
as might at �rst be expected. In particular, it is now necessary to rely on new approximation
properties of Herglotz wave functions and electromagnetic Herglotz pairs as developed in
References [9,10] as well as requiring a factorization of the modi�ed far-�eld operator, neither
of which was needed in References [7,8]. We note that the approach used here to eliminate
the problem of eigenvalues in the linear sampling method relies heavily on the polarization of
the incident and scattered �elds and hence is only applicable to the case of electromagnetic
scattering. For the case of acoustic waves a di�erent method for eliminating eigenvalues in
the linear sampling method is currently being investigated by Muniz [11].
As previously mentioned, a second problem with the linear sampling method is that it

requires a large amount of multi-static data for its successful implementation. Indeed, perhaps
due to the fact that in most discussions of the linear sampling method it is assumed that
full aperture scattering data is available, some assume by ‘large’ it is meant ‘full aperture’
(cf. the Introduction to Reference [12]). As pointed out by the referee to Reference [12],
this is de�nitely not the case. We will address this ‘limited aperture’ problem in Sections 2.3
and 3.2.
In what follows, for the sake of motivation and clarity, we will �rst consider the two-

dimensional case of scattering by a perfectly conducting in�nite cylinder. We will then proceed
to a discussion of the full three-dimensional vector case corresponding to the scattering due
to a perfectly conducting bounded obstacle in R3.

2. THE SCALAR CASE

2.1. Formulation of the direct and inverse scattering problem

In this section we consider the scattering of a plane time-harmonic electromagnetic wave by
a perfectly conducting in�nite cylinder. We assume that the axis of the cylinder coincides
with the unit vector nz on the z-axis and that the incident wave propagates in a direction per-
pendicular to the cylinder. Let D denote the bounded and simply connected cross-section of
the cylinder with Lipschitz boundary @D and � the unit outward normal to @D de�ned almost
everywhere on @D. If we further assume that the incident electric wave is polarized paral-
lel to the z-axis, then it is known that the electric �eld has only a component in the nz
direction. If Ẽe−i!t is this component and we assume that the incident electric �eld is
given by

E i(x; t)= exp i(kd·x −!t)nz
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where d is the incident direction such that d·nz=0, k¿0 is the wave number, ! is the
frequency and x∈R2, then Ẽ satis�es

(i) �Ẽ + k 2Ẽ=0 in R2\ �D
(ii) Ẽ(x)= exp(ikd·x) + E(x)
(iii) Ẽ(x)=0 for x∈ @D
(iv) lim

r→∞
√
r
(
@E
@r

− ikE
)
=0

(1)

where r= |x| and the radiation condition (1) (iv) is satis�ed uniformly in x̂= x=r.
Now assume that the incident electric wave is polarized perpendicular to the z-axis. Then

the magnetic �eld has only a component in the nz direction, and if H̃e−i!t is this component
and we assume that the incident electric �eld is given by

H i(x; t)= exp i(kd·x −!t)nz
then H satis�es

(i) �H̃ + k 2H̃ =0 in R2\ �D
(ii) H̃ (x)= exp(ikd·x) +H (x)

(iii)
@H̃
@�
(x)=0 for x∈ @D

(iv) lim
r→∞

√
r
(
@H
@r

− ikH
)
=0

(2)

The existence and uniqueness of solutions to (1) and (2) are well known [13,6]. In partic-
ular, these solutions Ẽ and H̃ belong to H 1

loc(R2\ �D) and the scattered �elds E and H have
the asymptotic behaviour [6]

E(x) =
eikr√
r
E∞(x̂;d) +O

(
1
r3=2

)
(3)

H (x) =
eikr√
r
H∞(x̂;d) +O

(
1
r3=2

)
(4)

where E∞(x̂;d) and H∞(x̂;d) are the far-�eld patterns corresponding to the Dirichlet problem
(1) and the Neumann problem (2), respectively.
The inverse obstacle scattering problem we are concerned with is to determine D from

a knowledge of both E∞(x̂;d) and H∞(x̂;d) for x̂ and d on the unit circle � and �xed wave
number k.

2.2. The linear sampling method for combined far-�eld data

The linear sampling method as introduced in Reference [3] and developed further in Ref-
erences [1,4,5] for solving the inverse obstacle scattering problem makes use of only the
electric far-�eld E∞. However, the price paid for using only the electric far-�eld pattern is
that it is necessary to assume that k 2 is not an eigenvalue of the interior Dirichlet problem
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416 F. CAKONI AND D. COLTON

for Laplace’s equation. In order to avoid this problem in this section of our paper we will
assume that both E∞ and H∞ are known. In particular, we consider the combined far-�eld
operator F :L2(�)→L2(�) de�ned by

(Fg)(x̂) := �
∫
�
E∞(x̂;d)g(d) ds(d) + �

∫
�
H∞(x̂;d)g(d) ds(d); x̂∈� (5)

where g∈L2(�) and �¿0 and �¡0 are real numbers. Note that by superposition the �rst
integral and the second integral in (5) are the far-�eld patterns of the exterior Dirichlet
problem (1) and the Neumann problem (2), respectively, corresponding to the Herglotz wave
function

Vg(x)=
∫
�
eikx·dg(d) ds(d); x∈R2 (6)

with kernel g∈L2(�) as incident �eld.
For z ∈R2 we now consider the far-�eld equation

(Fg)(x̂)=�∞(x̂; z) (7)

where �∞(x̂; z)= (ei�=4=
√
8�k)e−ikx̂·z is the far-�eld pattern of the fundamental solution

�(x; z)=H (1)
0 (k|x − z|) (8)

with H (1)
0 denoting a Hankel function of the �rst kind of order zero. The transmission problem

associated with the far-�eld equation (7), which we shall refer to as problem (TP), is given
a function h∈H−1=2(@D) �nd E ∈H 1

loc(R2\ �D) and W ∈H 1(D) such that

(i) �E + k 2E=0 in R2\ �D
(ii) �W + k 2W =0 in D
(iii) E +W =0; on @D

(iv) �
@E
@�

− � @W
@�
= h on @D

(v) lim
r→∞

√
r
(
@E
@r

− ikE
)
=0

(9)

In particular, for z ∈D, (7) implies that if Vg is the Herglotz wave function with kernel g then
by Rellich’s lemma

�E(x) + �H (x)=�(x; z); x∈R2\ �D; z ∈D
where E is the radiating solution to

�E + k 2E=0 in R2\ �D; E + Vg=0 on @D (10)

and H is the radiating solution to

�H + k 2H =0 in R2\ �D; @H
@�
+
@Vg
@�
=0 on @D (11)
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Since the Herglotz wave function is an entire solution to the Helmholtz equation one obtains
that this E and W =Vg satisfy (9) for h= @�=@�. Conversely, if E and W =Vg are a solution to
(9) with h= @�=@� and H is the unique solution of (11) then �E(x)+ �H (x) and �(x; z) are
radiating solutions to the same Neumann boundary value problem for the Helmholtz equation,
whence they are equal which means that the kernel g of Vg is the solution of the far-�eld
equation (7).
The transmission problem (9) can be reformulated as a particular case of the transmission

problem considered by H	ahner in [14]. In particular, the approach of Reference [14] allows
the boundary to be Lipschitz as far as H 1 regularity of the solutions is concerned. Hence
from Reference [14] we have the following result.

Theorem 2.1
Let h∈H−1=2(@D), and let �¿0 and �¡0 be real numbers. Then problem (TP) has a unique
solution E ∈H 1

loc(R2\ �D), W ∈H 1(D) which satisfy

‖W‖H 1(D) + ‖E‖H 1(BR ∩ (R2\ �D)) 6 C‖h‖H−1=2(@D) (12)

where BR is a disk of radius R containing D and C¿0 is a constant depending on R but not
on h.

De�nition 2.2
The operator B :H−1=2(@D)→L2(�) maps h∈H−1=2(@D) onto the far-�eld pattern �E∞+�H∞
of the radiating solution �E + �H with H being the unique radiating solution of

�H + k 2H =0 in R2\ �D; @H
@�
+
@W
@�
=0 on @D (13)

and E and W the unique solution of (TP) with boundary condition h.

We note that E is the solution of (10) with Vg=W . Hence from (12), the well posedness
of the exterior Neumann problem, and the fact that the operator which takes the restriction
to H 1=2(@BR) of a radiating solution of the Helmholtz equation to the corresponding far-�eld
pattern is injective and compact we obtain that B :H−1=2(@D)→L2(�) is a continuous linear
operator that is injective and compact. (Note that if �E + �H =0 then h=0 by (9) (iv) and
(13).)

Theorem 2.3
The set B(H−1=2(@D)) is dense in L2(�).

Proof
Let B� :L2(�)→H 1=2(@D) be the dual operator of B such that

〈Bh; g〉L2(�); L2(�) = 〈h;B�g〉H 1=2(@D); H−1=2(@D)

with h∈H−1=2(@D) and g∈L2(�) and 〈· ; ·〉 the duality pairing. De�ne U := �E + �H where
E;H are as above. Note that from (9)(iv) and (13) we have that U satis�es (@U=@�)|@D= h.
By superposition we can write

〈Bh; g〉L2(�); L2(�) = �
∫
@D

(
U
@Vg
@�

− Vg @U@�
)
ds= �

∫
@D

(
U
@Vg
@�

− hVg
)
ds
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418 F. CAKONI AND D. COLTON

where � := ei�=4=
√
8�k and Vg is the wave Herglotz function Vg(x)=

∫
� e

−ikx·dg(d) ds(d). Let
Ũ be the unique radiating solution of the exterior problem

�Ũ + k 2Ũ =0 in R2\ �D; @Ũ
@�
=
@Vg
@�

on @D

Applying Green’s formula to the radiating solutions U; Ũ of the Helmoltz equation in R2\ �D
we obtain

〈Bh; g〉L2(�); L2(�) = �
∫
@D

(
Ũ
@U
@�

− hVg
)
ds= �

∫
@D
h
(
Ũ − Vg

)
ds

whence

B�g= �(Ũ − Vg)@D ∈H 1=2(@D)

Now let B�g=0. Then Ũ |@D=Vg|@D and from the boundary condition @Ũ =@�|@D= @Vg=@�|@D.
Therefore using Green’s formula we can extend Ũ to a solution of the Helmholtz equation in
R2 satisfying the Sommerfeld radiation condition at in�nity. But this implies Ũ ≡ 0 and con-
sequently Vg≡ 0, whence g≡ 0. The injectivity of B� and the relation kernB�=(rangeB)a,
where (·)a denotes the polar (or annihilator) set (cf. Reference [13]), imply

{g∈L2(�): 〈g; h〉=0 for all h∈ rangeB}= {0} (14)

whence the range of B is dense in L2(�). This ends the proof.

We now turn to our main goal, that is the study of the far-�eld equation (7) for var-
ious ‘sampling’ points z ∈R2. To this end, let S be the operator which maps a function
h∈H−1=2(@D) onto the component W of the solution to (TP) with boundary data h. From the
a priori estimate (12) and the inequalities (which follow from the continuity of the Dirichlet
to Neumann map, the trace theorem and (9)(iii))

‖h‖H−1=2(@D)6 �
∥∥∥∥@E@�

∥∥∥∥
H−1=2(@D)

+ |�|
∥∥∥∥@W@�

∥∥∥∥
H−1=2(@D)

6 C(‖E‖H 1=2(@D) + ‖W‖H 1(D))

= C(‖W‖H 1=2(@D) + ‖W‖H 1(D))6 C̃‖W‖H 1(D) (15)

where C and C̃ are positive constants, we conclude that the operator S is an isomorphism
between H−1=2(@D) and the Hilbert space

L(D) := {W ∈H 1(D); �W + k 2W =0 in the distribution sense}
equipped with the H 1(D) norm. Therefore by the bounded inverse theorem S−1 is continuous.
In terms of the operator B, using (10) and (11), we can now rewrite (7) as

(BS−1Vg)(x̂)=�∞(x̂; z) (16)

where Vg is the Herglotz wave function given by (6).
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COMBINED FAR-FIELD OPERATORS 419

We �rst assume that z ∈D. In this case one sees that �∞(x̂; z) is in the range B and in
particular B((@�(x; z)=@�)|@D)=�∞(x̂; z). Let Wz ∈L(D) and Ez be the solution of (9) with
boundary data h := (@�(·; z)=@�)|@D. Then from References [9,10] (see also Reference [15]) for
every �¿0 we can �nd a g�(·; z) such that the corresponding Herglotz wave function Vg�(·; z)
satis�es

‖Wz − Vg�(·; z)‖H 1(D) 6 � (17)

Hence the continuity of B and S−1 implies that for a positive constant C

‖�∞(x̂; z)− (BS−1Vg�(·; z))(x̂)‖H 1(D) = ‖(BS−1Wz)(x̂)− (BS−1Vg�(·; z))(x̂)‖H 1(D) 6 C�

Furthermore, if the point z approaches the boundary @D than ‖(@�(x; z)=@�)‖H−1=2(@D)→∞
because for z ∈ @D we have that � is not in H 1(BR ∩ (R2\ �D)) for BR ⊃ D a disk of radius R.
Hence (15) with h=(@�(·; z)=@�)|@D implies that the corresponding W satis�es

lim
z→@D

‖Wz‖H 1(D) =∞

and from (17) we �nally obtain that

lim
z→@D

‖Vg�(·; z)‖H 1(D) =∞ and lim
z→@D

‖g�(·; z)‖L2(�) =∞

Now let us assume that z ∈R2\ �D. In this case �∞(x̂; z) does not belong to the range of B
because �(x; z) has a singularity at z ∈R2\ �D. But, from Theorem 2.3 and the injectivity and
compactness of B, by using Tikhonov regularization we can construct a regularized solution
of the equation

(Bh)(x̂)=�∞(x̂; z) (18)

In particular, if h�z ∈H−1=2(@D) is the regularized solution of (18) corresponding to a ‘noise
level’ � and regularization parameter � (chosen by a regular regularization strategy, e.g. the
Morozov discrepancy principle), we have

‖(Bh�z )(x̂)−�∞(x̂; z)‖L2(�)¡� (19)

for an arbitrary small �¿0, and

lim
�→0

‖h�z‖H−1=2(@D) =∞ (20)

Note that in this case we have that �→ 0 as �→ 0. Let W�
z and E�z be the solution of (TP)

with boundary data h := h�z . Thus we can rewrite (19) as

‖(BS−1W�
z )(x̂)−�∞(x̂; z)‖L2(�)¡� (21)

and, by the same argument as in the case of z ∈D, the Herglotz wave function Vg�� (·; z) which
approximates W�

z ∈L(D) with an arbitrary small �¿0 satis�es

‖(BS−1W�
z )(x̂)− (BS−1Vg�� (·; z))(x̂)‖L2(�)¡� (22)

whence (22) combined with (21) gives

‖(BS−1Vg�� (·; z))(x̂)−�∞(x̂; z)‖L2(�)¡�+ � (23)
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420 F. CAKONI AND D. COLTON

Finally from (20) and (15) with h= h�z we have that

lim
�→0

‖W�
z ‖H 1(D) =∞

whence

lim
�→0

‖Vg�� (·; z)‖H 1(D) =∞ and lim
�→0

‖g�� (·; z)‖L2(�) =∞

We summarize these results in the following theorem.

Theorem 2.4
Let D be the bounded and simply connected cross-section of a perfectly conducting in�nite
cylinder with Lipschitz boundary @D. Then if F is the far-�eld operator de�ned by (5), where
�¿0 and �¡0 are real numbers, we have that
(1) if z ∈D then for every �¿0 there exists a solution g�(·; z)∈L2(�) of the inequality

‖Fg�(·; z)−�∞(·; z)‖L2(�)¡�
Moreover, this solution satis�es

lim
z→@D

‖g�(·; z)‖L2(�) =∞ and lim
z→@D

‖Vg�(·; z)‖H 1(D) =∞

where Vg� is the Herglotz wave function with kernel g� and
(2) if z ∈R2\ �D then for every �¿0 and �¿0 there exists a solution g�� (·; z)∈L2(�) of the

inequality

‖Fg�� (·; z)−�∞(·; z)‖L2(�)¡�+ �
such that

lim
�→0

‖g�� (·; z)‖L2(�) =∞ and lim
�→0

‖Vg�� (·; z)‖H 1(D) =∞

where Vg�� is the Herglotz wave function with kernel g
�
� .

The importance of theorems such as this for solving the inverse scattering problem has been
demonstrated in previous papers on the linear sampling method [1,2]. In particular, by using
regularization methods to solve the far-�eld equation Fg=�∞(·; z) for z on an appropriate
grid containing D, an approximation to g(·; z) can be obtained and hence @D can be determined
by those points where ‖g(·; z)‖L2(�) is not �nite (for numerical examples in the scalar case
see References [3,4]). Note however, in contrast to previous work on the linear sampling
method for non-absorbing media, the above theorem makes no restriction on k not being an
eigenvalue of the corresponding interior problem.

2.3. Limited aperture

In many cases of practical interest, the far-�eld data E∞(x̂; d) and H∞(x̂; d) is restricted to
the case when x̂ and d are on a subset �0 of the unit sphere �, i.e. we are concerned
with limited aperture scattering data. In order to handle this case, we note that from the
proof of Theorem 2.4 the function g� ∈L2(�) is the kernel of a Herglotz wave function
which approximates a solution to the Helmholtz equation in D with respect to the H 1(D)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:413–429



COMBINED FAR-FIELD OPERATORS 421

norm. Therefore to treat the limited aperture case it is enough to show that a Herglotz wave
function and its �rst derivative can be approximated uniformly on compact subsets of a disk
BR of radius R by a Herglotz wave function with kernel supported in a subset of �. This new
Herglotz wave function and the kernel can now be used in place of Vg� and g� in Theorem 2.4.
The above approximation property was previously established by Ochs [16]. Here we present
a di�erent proof of this result which can also be extended to the case of electromagnetic
waves (Section 3.2). Assuming that k 2 is not a Dirichlet eigenvalue for the disk BR (this is
not a restriction since we can always �nd a disk containing D and having this property), it
su�ces to show that the set of functions

Vg(x) :=
∫
�
g(d)eikx·d ds(d); g∈L2(�) with support in �0⊆�

for some subset �0⊆� is complete in L2(@BR), where @BR is the circle of radius R. Then
we obtain our desired approximation property from Theorem 5.4 in Reference [6].
Let ’∈L2(@BR) and suppose that for a �xed �0⊂� we have that

∫
@BR
’(x)

[ ∫
�0
�g(d)e−ikx·d ds(d)

]
ds(x)=0 (24)

for every g∈L2(�0). Our aim is to show that ’=0. To this end, we interchange the order
of integration to arrive at

∫
�0
�g(d)

[ ∫
@BR
’(x)e−ikx·d ds(x)

]
ds(d)=0 (25)

for every g∈L2(�0), which implies that the far-�eld pattern (S’)∞ of the single-layer
potential

(S’)(y) :=
∫
@BR
’(x)�(x; y) ds(x); y∈R2\ �BR; ’∈L2(@BR)

satis�es

(S’)∞(d)=
∫
@BR
’(x)e−ikx·d ds(x)≡ 0; d∈�0

By analyticity we can conclude that (S’)∞ ≡ 0 on �. Since the single-layer potential is
a solution to the Helmholtz equation, from Rellich’s lemma we obtain that S’≡ 0 in R2\ �BR,
whence by the continuity of S’ across @BR (cf. the proof of Theorem 5.5 in Reference [6]) we
have that S’≡ 0 in BR as well (because k 2 is not a Dirichlet eigenvalue for the Helmholtz
equation in BR). Finally by applying again the jump relation for the normal derivative of
S’ [6,13] we obtain that ’≡ 0.
For an example of limited aperture reconstructions in the case when �=0, �=1 and k 2 is

not a Dirichlet eigenvalue see Figure 5 of Reference [17] (as shown above, the problem of
Dirichlet eigenvalues can be avoided if we choose �¡0!).
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422 F. CAKONI AND D. COLTON

3. THE VECTOR CASE

3.1. The linear sampling method for combined far-�eld data

In this section we turn our attention to the scattering of a time-harmonic electromagnetic wave
by a bounded perfectly conducting obstacle in R3. In particular, let D⊂R3 be a bounded
domain such that R3\ �D is connected. The boundary @D of D is assumed to be a Lipschitz
curvilinear polyhedron, and � denotes the unit outward normal de�ned almost everywhere
on @D. After factoring out a term of the form e−i!t where ! is the frequency, we are then
led to the following boundary value problem for the electric �eld E and magnetic �eld H
References [6,18]:

∇×E − ikH =0 in R3\ �D (26)

∇×H + ikE =0 in R3\ �D (27)

�×E =0 on @D (28)

E = E i + E s (29)

H =H i +H s (30)

where the incident �eld E i, H i is given by

E i(x;d;p) =
i
k
∇×∇×peikd·x= ik(d×p)×deikd·x

H i(x;d;p) = ∇×peikd·x= ikd×peikd·x
(31)

and the scattered �eld E s, H s satis�es the Silver M	uller radiation condition

lim
r→∞ (H

s× x − rE s)= 0 (32)

uniformly in x̂= x=|x|, where r= |x|, k¿0 is the wave number, d∈� is a unit vector giving
the direction of the incident plane wave and p∈R3 is the polarization. Here � denotes the
unit sphere in R3.
We de�ne the spaces

H (curl; D) := {U ∈ (L2(D))3: ∇×U ∈ (L2(D))3}
L2t (@D) := {U ∈ (L2(@D))3 : � ·U =0 on @D}

H−1=2
div (@D) := {U ∈H−1=2(@D); div@D U ∈H−1=2(@D)}

H−1=2
curl (@D) := {U ∈H−1=2(@D); curl@D U ∈H−1=2(@D)}

It is known that, for smooth boundary and U ∈H (curl; D), �×U ∈H−1=2
div (@D) and �× (U × �)

∈H−1=2
curl (@D), and a duality pairing is de�ned between H

−1=2
div (@D) and H−1=2

curl (@D) [19]. We
remark that for Lipschitz boundaries the de�nition of the trace spaces of U→ �×U and
U→ �× (U × �) on @D needs a more careful investigation. In particular, these spaces are fully
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characterized (note di�erent notations H−1=2
‖div (@D) and H

−1=2
⊥curl (@D) are used!), the continuity

and surjectivity of the trace operators is proved and the duality pairing is interpreted in
Reference [20] (see also Reference [2]). However, for simplicity of our presentation, we will
keep the same notations for the trace spaces of U→ �×U and U→ �× (U × �), namely
H−1=2
div (@D) and H−1=2

curl (@D).
In References [19,18] it is shown that the direct scattering problem has a unique

solution E;H ∈Hloc(curl;R3\ �D), and moreover the scattered �eld E s; H s has the asymptotic
behaviour [6]

E s(x)=
eik|x|

|x|
{
E∞(x̂;d;p) +O

(
1
|x|

)}
; H s(x)=

eik|x|

|x|
{
H∞(x̂;d;p) +O

(
1
|x|

)}

as |x|→∞, where E∞(·;d;p) and H∞(·;d;p) de�ned on the unit sphere � are the electric
far-�eld pattern and the magnetic far-�eld pattern corresponding to the incident direction d
and polarization p. Moreover, they satisfy [6]

H∞(x̂;d;p) = x̂×E∞(x̂;d;p)

x̂ ·H∞(x̂;d;p) = x̂ ·E∞(x̂;d;p)=0

for all x̂; d∈� and p∈R3. As in the scalar case, we will investigate the possibility of deter-
mining @D from a knowledge of both E∞(x̂;d;p) and H∞(x̂;d;p×d), for x̂; d∈� and p∈R3
by using the linear sampling method. Note that the electric far-�eld pattern E∞(x̂;d;p) and
magnetic far-�eld pattern H∞(x̂;d;p×d) correspond to an incident �eld propagating in the
same direction d but polarized perpendicular to each other. We also note that H∞ can be
computed from a knowledge of E∞.
We again consider the combined far-�eld operator F :L2t (�)→L2t (�) de�ned by

(Fg)(x̂) := �
∫
�
E∞(x̂;d; g(d)) ds(d) + �

∫
�
H∞(x̂;d; g(d)×d) ds(d) (33)

where g∈L2t (�), and �¿0 and �¡0 are real numbers. An electromagnetic Herglotz pair is
de�ned to be a pair of vector �elds of the form

Eg(x)=
∫
�
eikx·dg(d) ds(d); Hg(x)=

1
ik

∇×Eg(x) (34)

with kernel g∈L2t (�). One can easily see by superposition that Fg is a linear combination
of the electric far-�eld pattern corresponding to the electromagnetic Herglotz pair with kernel
ikg(d) as incident �eld, i.e. the electric far-�eld pattern Eext∞ of E ext ; H ext satisfying the exterior
boundary value problem

∇×E ext − ikH ext = 0 in R3\ �D
∇×H ext + ikE ext = 0 in R3\ �D
�×E ext + ik�×Eg = 0 on @D

lim
r→∞ (H

ext × x − rE ext) = 0

(35)
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and the magnetic far-�eld pattern corresponding to the electromagnetic Herglotz pair with
kernel ikg(d)×d as incident �eld, i.e. the magnetic far-�eld pattern H̃∞ of Ẽ, H̃ satisfying
the exterior boundary value problem

∇× Ẽ − ikH̃ = 0 in R3\ �D
∇× H̃ + ikẼ = 0 in R3\ �D

�×∇× H̃ + ik�×∇×Eg = 0 on @D

lim
r→∞ (H̃ × x − rẼ) = 0

(36)

We note that the boundary condition in (36) follows from the perfectly conducting boundary
condition satis�ed by Ẽ, the identity ∇× H̃ + ikẼ=0 and expressing the electric �eld of the
Herglotz pair with kernel g(d)×d in terms of the electric �eld with kernel g(d).
The linear sampling method for solving the inverse problem consists of solving the far-�eld

equation

(Fg)(x̂)=Ee;∞(x̂; z; q) (37)

for a set of sampling points z ∈R3 and three linearly independent polarizations q∈R3, where
Ee;∞(x̂; z; q) is given by

Ee;∞(x̂; z; q)=
ik
4�
(x̂× q)× x̂e−ikx̂·z (38)

Note that Ee;∞ is the electric far-�eld pattern of the electric dipole Ee(x; z; q) := (i=k)∇x ×
∇x × q�(x; z), with �(x; z) := (1=4�) (eik|x−z|=|x − z|) and q∈R3.
The transmission problem associated with the far-�eld equation (37), which we will refer

to as the problem (TPM), is given a function h∈H−1=2
div (@D) �nd Eint ; H int ∈H (curl; D) and

E ext ; H ext ∈Hloc(curl;R3\ �D) such that
∇×E ext − ikH ext = 0; ∇×H ext + ikE ext = 0 in R3\ �D

∇×Eint − ikH int = 0; ∇×H int + ikEint = 0 in D

�×E ext − �×Eint = 0 on @D (39)

��×∇×E ext + ��×∇×Eint =w on @D

lim
r→∞(H

ext × x − rE ext)= 0

In particular, for z ∈D, (37) implies that
�E ext + �H̃ ≡Ee in R3\ �D

where E ext and H̃ are solutions of (35) and (36), respectively. Using the same argument as
in the scalar case, it is now easy to see that g∈L2t (�) is a solution of the far-�eld equation if
and only if there exists a solution to (TPM) with h := (1=ik)�×∇×Ee such that Eint coincides
with the electric Herglotz wave function −ikEg in D.
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By lifting the boundary data h∈H−1=2
div (@D) to a function in Hloc(curl;R3) one can rewrite

(TPM) as the problem considered by Kirsch and Monk [21], from which we have the fol-
lowing result.

Theorem 3.1
Let h∈H−1=2

div (@D), and let �¿0 and �¡0 be two di�erent �xed real numbers. Then problem
(TPM) has a unique solution Eint ; H int ∈H (curl; D), E ext ; H ext ∈Hloc(curl;R3\ �D). Moreover the
electric �eld satis�es

‖Eint‖H (curl; D) + ‖E ext‖H (curl; BR ∩R3\ �D)6C‖h‖H−1=2
div (@D) (40)

where BR is a ball of radius R containing D and C¿0 is a constant depending on R but not
on h.

De�nition 3.2
The operator D :H−1=2

div (@D)→L2t (�) maps h∈H−1=2
div (@D) onto the far-�eld pattern �Eext∞ +

�H̃∞ ∈L2t (�) of �E ext + �H̃ where E ext is the radiating electric �eld of the unique solution
of (TPM) with boundary data h and H̃ is the unique solution of (36) with ikEg replaced
by −Eint.
By the same argument as in the scalar case the operator D is compact and injective.

Theorem 3.3
The range of the operator D is dense in L2t (�).

Proof
As in the proof of Theorem 2.3 it is enough to show that the dual operator D� :L2t (�)→
H−1=2
curl (@D) de�ned by

〈Dh; g〉L2t (�); L2t (�) = 〈h;D�g〉H−1=2
div (@D); H−1=2

curl (@D)

with h∈H−1=2
div (@D) and g∈L2t (�), is injective. To this end we de�ne U := �E ext + �H̃ and

observe that �× curlU |@D= h. Then it is known [6] that U∞=(Dh)(x̂) is given by

(Dh)(x̂)=
ik
4�
x̂×

∫
@D

{
�(y)×U (y) + 1

ik
(�(y)×∇×U (y))× x̂

}
e−ikx̂·y ds(y)

The surface integrals are now understood as the duality pairing between H−1=2
div (@D) and

H−1=2
curl (@D). By changing the order of integration, using the boundary condition for U and the
relations

∇y ×Eg(y) = ik
∫
�
[g(x̂)× x̂]e−ikx̂·y ds(x̂)

∇y ×∇y ×Eg(y) = k 2
∫
�
[x̂× (g(x̂)× x̂)]e−ikx̂·y ds(x̂)
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where Eg=
∫
� g(x̂)e

−ikx̂·y ds(x̂), we obtain

〈Dh; g〉= 1
4�

∫
@D
[(�×U ) · (∇×Eg) + h ·Eg] ds (41)

Next, let Ũ be the unique radiating solution of ∇×∇× Ũ = k 2Ũ in R3\ �D such that �×∇× Ũ
= �×∇×Eg on @D. Then applying Green’s second vector theorem to U and Ũ and using
the boundary condition for Ũ yield

〈Dh; g〉= 1
4�

∫
@D
[−(�×∇× Ũ ) ·U + h ·Eg] ds

=
1
4�

∫
@D
[−(�×∇×U ) · Ũ + h ·Eg] ds= 1

4�

∫
@D
(Eg − Ũ ) · h ds

whence D�g= �× (Eg− Ũ )× �|@D ∈H−1=2
curl (@D). Now it is easy to see that D

� is injective. In
particular D�g=0 implies that, on the boundary @D, �× Ũ = �×Eg and �×∇× Ũ = �×∇×
Eg which gives Ũ =Eg=0 in R3 because Ũ is a radiating solution, whence g=0. This ends
the proof.
We are now at the position to study the far-�eld equation (37). Let P be the operator which

maps h∈H−1=2
div (@D) onto the interior electric component Eint ∈H (curl; D) of the solution to

(TPM) with boundary data h. An argument similar to that used for S in the scalar case
shows that P is in fact an isomorphism between H−1=2

div (@D) and the Hilbert space

M(D) := {W ∈H (curl; D); ∇×∇×W = k 2W in the distribution sense}
equipped with the H (curl; D) norm. In particular, P−1 is well de�ned and continuous. The
far-�eld equation (37) can now be rewritten as

(DP−1Eg)(x̂)=
1
ik
Ee;∞(x̂; z; q) (42)

We have now all the necessary ingredients to proceed exactly in the same way as in the scalar
case to show that we can always �nd a solution to a perturbation of (37) and that this solution
exhibits a speci�c behaviour. In particular if z ∈D we have showed that D((1=ik)�×∇×Ee|@D)
=Ee;∞. Let Eint be the interior electric �eld that solves (TPM) with boundary data h := (1=ik)�
×∇×Ee. Then from the results of Reference [9] (for comments on nonsmooth boundaries
see Reference [2]) for each �¿0 we can �nd an electromagnetic Herglotz pair with kernel
g�(·; z)∈L2t (�) such that Eg� approximates Eint ∈M(D) with respect to the H (curl; D) norm,
and moreover Eg� is an approximate solution to (42), i.e.∥∥∥∥(DP−1Eg�)(x̂)−

1
ik
Ee;∞(x̂; z; q)

∥∥∥∥
L2(�)

6 �

Furthermore, as z approaches the boundary @D, the fact that ‖�×∇×Ee‖H−1=2
div (@D)→∞ implies

that

lim
z→@D

‖Eg�(·; z)‖H (curl; D) =∞ and lim
z→@D

‖g�(·; z)‖L2t (�) =∞
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For z ∈R3\ �D we do not have that Ee;∞ is in the range of D due to the singularity of the
electric dipole Ee. However, from Theorem 3.3 by using a regularization argument and the
approximation property of electromagnetic Herglotz pairs we can again �nd Eg�� satisfying∥∥∥∥(DP−1Eg�� (·; z))(x̂)−

1
ik
Ee;∞(x̂; z; q)

∥∥∥∥
L2(�)

¡�+ � (43)

and

lim
�→0

‖Eg�� (·; z)‖H (curl; D) =∞ and lim
�→0

‖g�� (·; z)‖L2(�) =∞

where arbitrary small �¿0 measures the approximation by the Herglotz function, the arbitrary
small �¿0 measures the perturbation of (42) to ensure a right-hand side in the range of D
and �¿0 is the regularization parameter corresponding to � which additionally satis�es �→ 0
as �→ 0.
We can now formulate a theorem similar to Theorem 2.4 which provides the mathematical

bases of the linear sampling method for solving the inverse obstacle problem in electromag-
netic scattering by a perfect conductor by using combined far-�eld data. Note that in contrast
to Reference [22], no assumption is made on k not being a Maxwell eigenvalue.

Theorem 3.4
Let D⊂R3 be a bounded domain such that R3\ �D is connected and D has Lipschitz boundary
@D. Then if F is the far-�eld operator de�ned by (33), where �¿0 and �¡0 are real numbers,
we have that
(1) If z ∈D then for every �¿0 there exists a solution g�(·; z)= g�(·; z; q)∈L2t (�) of the

inequality

‖Fg�(·; z)− Ee;∞(·; z; q)‖L2(�)¡�
Moreover, this solution satis�es

lim
z→@D

‖g�(·; z)‖L2t (�) =∞ and lim
z→@D

‖Eg�(·; z)‖H (curl; D) =∞

where Eg� is the electric component of the elecromagnetic Herglotz pair with kernel g� and
(2) If z ∈R3\ �D then for every �¿0 and �¿0 there exists a solution g�� (·; z)= g�� (·; z; q)∈

L2t (�) of the inequality

‖Fg�� (·; z)− Ee;∞(·; z; q)‖L2(�)¡�+ �
such that

lim
�→0

‖g�� (·; z)‖L2t (�) =∞ and lim
�→0

‖Eg�� (·; z)‖H (curl; D) =∞

where Eg�� the electric component of the elecromagnetic Herglotz pair with kernel g
�
� .

3.2. Limited aperture

As we remarked in Section 2.3, to treat the case of limited aperture far-�eld data we only
need to show that the set of electromagnetic Herglotz pairs can be approximated uniformly
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on compact subsets of a ball BR of radius R by a Herglotz pair with kernel supported on
a subset of �. According to Reference [6, Theorem 7.10] it su�ces to show that the set of
functions

Eg(x) :=
∫
�
g(d)eikx·d ds(d); g∈L2t (�) with support in �0⊆�

for some subset �0⊆� is complete in L2t (@BR), provided k is not a Maxwell eigenvalue for
BR⊃D (which again is not a restriction since we can always �nd such a ball!).
To this end, let a∈L2t (@BR) and assume that for a �xed �0⊆� we have that∫

@BR
a(x)

[ ∫
�0
�g(d)e−ikx·d ds(d)

]
ds(x)=0 (44)

for every g∈L2t (�0). We want to show that a=0. By interchanging the order of integration
we arrive at ∫

�0
�g(d)

[ ∫
@BR
a(x)e−ikx·d ds(x)

]
ds(d)=0

for every g∈L2t (�0), which implies that

d×
∫
@BR
a(x)e−ikx·d ds(x)×d≡ 0; d∈�0 (45)

The left-hand side of (45) coincides with the far-�eld pattern (Va)∞ of the surface potential
de�ned by

(Va)(y) :=
1
k 2

∇y ×∇y ×
∫
@BR
a(x)�(x; y) ds(x); y∈R3\ �BR; a∈L2t (@BR)

By analyticity we can conclude that (Va)∞ ≡ 0 on �, which implies (Va)≡ 0 in R3\ �BR. The
continuity of �× (Va) across @BR, where � is the normal vector on @BR, implies that (Va)≡ 0
in BR as well since k is not a Maxwell eigenvalue for BR (cf. References [6,23, p. 172]).
Finally, by applying the jump relation for �×∇× (Va) across @BR [24,6] we obtain that a≡ 0.
This ends the proof.
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