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Preface

The inverse scattering problem for electromagnetic waves is an area of major impor-
tance in applied mathematics. In particular, one can argue that the invention of radar is one
of the most important inventions of the twentieth century. However, since radar is based
on a weak scattering approximation and typically ignores polarization effects, it is of lim-
ited use for many target identification problems involving complex environments in which
multiple scattering and/or polarization effects can no longer be ignored. For this reason
considerable effort has been made in recent years to avoid the incorrect models inherent
in the use of weak scattering approximations and instead to develop target identification
algorithms without invoking such approximations. Initial efforts in this direction focused
on nonlinear optimization techniques. However, although these techniques were successful
in certain applications, it soon became apparent that they relied too heavily on strong a
priori information about the scatterer and were numerically expensive as well. This then
led to the search for target identification algorithms that, while avoiding incorrect model
assumptions, were nevertheless easy to implement and required little a priori information.
One result of this search has been the introduction of a class of methods collectively known
as qualitative methods in inverse scattering theory (cf. [22]).

Qualitative methods in inverse scattering theory are characterized by the fact that,
although they avoid the problems inherent in the use of weak scattering approximations
or nonlinear optimization techniques, they typically recover less information than the lat-
ter two methods. In particular, with essentially no a priori assumptions about the material
properties or geometry of the scatterer, the qualitative approach to the inverse scattering
problem typically recovers the support of the scatterer as well as partial information on the
scatterer’s material properties. Furthermore, since the inversion algorithm is linear (even
though the inverse scattering problem itself is nonlinear), the implementation of a given
qualitative method is very rapid and easy to carry out (however, the implementation of a
given qualitative method typically requires more data than the use of a nonlinear optimiza-
tion scheme).

The oldest and most developed of the qualitative methods in inverse scattering theory
is the linear sampling method (LSM), first introduced by Colton and Kirsch [49] in 1996
for the scalar case, and it is this approach (for the vector case) that will be the main focus of
this book. For qualitative methods in electromagnetic inverse scattering theory other than
the LSM, we refer the reader to Chapter 5 of the recent monograph by Kirsch and Grinberg
[77] as well as to the article [69].

The basic material for this book was originally presented by one of us (Peter Monk)
at the NSF-CBMS Regional Conference on Numerical Methods in Forward and Inverse
Electromagnetic Scattering held at the Colorado School of Mines from June 3 to June 7

ix
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x Preface

in 2002. Since that time the book [93] has appeared, which treats the forward problem
in considerable detail. Hence in this book we have focused almost entirely on the inverse
problem. In addition to the LSM, we have included in our presentation a discussion of
uniqueness theorems and of the derivation of various inequalities on the material properties
of the scattering object from a knowledge of the far field pattern of the scattered wave.
Throughout our narrative the approximation properties of Herglotz wave functions and
the behavior of solutions to a novel interior boundary value problem called the “interior
transmission problem” play a central role.

It gives us considerable pleasure to acknowledge the long-term support of our re-
search by the Air Force Office of Scientific Research, in particular the encouragement and
guidance of Dr. Arje Nachman of the AFOSR and Dr. Richard Albanese of Brooks Air
Force Base, San Antonio, Texas. Without their support this book would probably not have
been written.

Monk would like to acknowledge the support of the National Science Foundation
(NSF) under a grant to the Conference Board of the Mathematical Sciences (CBMS) for
the NSF-CBMS Regional Conference on Numerical Methods in Forward and Inverse Elec-
tromagnetic Scattering held at the Colorado School of Mines (June 3–7, 2002). Particular
thanks go to Professors Graeme Fairweather and Paul Martin for organizing the conference
and for inviting a superb choice of participants.

Monk would also like to thank the Institute for Mathematics and Its Applications at
the University of Minnesota for a visiting position in the fall of 2010 during the final stages
of writing this book.
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Chapter 1

Inverse Scattering in Two
Dimensions

1.1 Introduction
Before launching into the rather complex problem of inverse electromagnetic scattering,
we shall start by discussing a simpler reduced problem. This idealized model will serve to
illustrate several issues to be faced when trying to solve inverse scattering problems.

Suppose we wish to solve the problem of finding the shape and location of a scatterer
consisting of finitely many parallel infinite cylinders embedded in a background medium.
One could consider, for example, long parallel metal rods in concrete (although we will
provide no further discussion of this case). We assume that it is possible to probe the scat-
terers by a known incident field due to line sources also parallel to the axis of the scatterers
and placed far from the objects to be imaged. The incident field will propagate through the
background medium and interact in some way with the scatterers depending on their mate-
rial makeup. This interaction will result in a scattered field that carries information about
the unknown scatterers. We then assume that the scattered field is measured far from the
object (usually at the same places as the sources of the incident field). From this scattered
field data we wish to infer the position, shape, and, perhaps, properties of the scatterers.

Mathematically, let us suppose that the axes of the sources and scatterers are paral-
lel to the x3 axis and that the electric field E(x , t), where x = (x1, x2, x3) denotes spatial
position and t denotes time, is polarized so that

E(x , t) = (0,0,E (x1, x2, t))T .

Then, under appropriate assumptions on the background medium, Maxwell’s equations
imply that E satisfies the scalar wave equation in the plane outside the scatterers:

1

c2

∂2E

∂ t2
=�E .

Here c = c(x1, x2) is the local speed of light in the background medium, and, of course,

�E = ∂2E

∂x2
1

+ ∂2E

∂x2
2

.

1
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2 Chapter 1. Inverse Scattering in Two Dimensions

In this book we will always consider monochromatic waves so that we assume

E (x1, x2, t) =�
(

u (x1, x2)e−iωt
)

,

where ω is the temporal frequency and u is independent of time (but now complex valued).
The temporal period is then 2π/ω, and the frequency

f = ω

2π
> 0.

The field u satisfies the time-harmonic wave equation (we shall now write u = u(x), where,
in this section only, x = (x1, x2))

�u + ω2

c2
u = 0 (1.1)

everywhere away from the scatterers.
To make progress in identifying the scatterers we have to assume that the background

speed c(x) is known. That the background speed has to be taken into account is in accord
with everyday experience. For instance, if we look at a pebble at the bottom of a still pond
of water, we will incorrectly judge its position because we assume a constant background
of air. In fact the water usually appears shallower than it really is, which is one reason
amongst many to check the depth of water using other means if you wish to, say, drive your
car through it. To correctly estimate the depth of the pond, we need to take into account
the change of refractive index (or speed of light) at the air–water interface. We shall simply
assume that c(x) is known (an alternative is to make the determination of c(x) part of the
inverse problem, but it is not obvious how to do this with the methods we shall discuss).

In this book we will, in fact, consider only one case where the background wave speed
c is not constant (see Chapter 6), and in the present chapter we will assume c(x)= c0, where
c0 is the speed of light in a vacuum. In this case it is convenient to define the wave number
as

k = ω

c0

so that (1.2) becomes the familiar Helmholtz equation (satisfied everywhere outside the
scatterers)

�u + k2u = 0. (1.2)

The probing or incident field, denoted by ui , is the field that would propagate if no scatterer
were present. Thus it is assumed to be a smooth solution of the background equation
(1.2), at least far from the source antenna (and in particular near the scatterers). Under
our assumptions that c is constant and that the scatterers are far from the antenna, we can
assume that, near the scatterers, the incident field is a plane wave given by

ui = exp(ikx ·d) ,

where d = (d1,d2) and |d| = 1. The vector d gives the direction of propagation of the wave,
and its wavelength λ is given by

λ= 2π

k
= 2πc

ω
= c

f
.
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1.1. Introduction 3

This formula is key to understanding the “popular science" inverse problem of determin-
ing the speed of light using a microwave oven and a packet of mini-marshmallows. (We
aren’t sure who first proposed this experiment, but for more information search “mini-
marshmallow speed of light” using your favorite Internet search engine.)1

If scatterers are not present, the incident field would propagate throughout the plane
R2, or, in other words, satisfy (1.2) for all x . However, if scatterers are present, the incident
field will interact with the scatterers to produce a scattered field, denoted by us . This field
also satisfies (1.2) away from the scatterer. Physically we measure the total field u given by

u = ui +us . (1.3)

The scattered field originates at the scatterer and propagates outwards. This physical con-
sideration then motivates the requirement that the scattered field satisfies the Sommerfeld
radiation condition

lim
r→∞r1/2

(
∂us

∂r
− ikus

)
= 0, (1.4)

where r = |x | and this limit is uniform in x̂ = x/ |x |. If c is not constant, more complex
radiation conditions may be required.

Equations (1.2), (1.3), and (1.4) do not uniquely determine Es since we have not
specified how the incident field interacts with the scatterer. But such knowledge should not
be needed to solve the inverse scattering problem of determining the shape (we don’t need
to know what we are looking at to see something!). Of course the details of the scattering
mechanism will determine how well we can find the shape of the scatterer; if the scatterer
is almost transparent, we will have more difficulty determining its shape compared to a
strongly reflecting object.

In this introductory discussion we shall assume that the scattered field can be mea-
sured far from the scatterer (typically at the same location as the source antennas). It can
be shown [50] that the scattered field has the asymptotic expansion far from the scatterer
given by

us (x) = eikr

√
r

u∞(x̂ ,d)+ O

(
1

r

)

as r →∞. The function u∞ is called the far field pattern of the scattered field and depends
on the incident direction d and the measurement direction x̂ = x/ |x | (as well as on the
wave number k and on the scatterers!).

While, in reality, we can have only finitely many receiving and transmitting antennas,
we shall assume for now that u∞(x̂ ,d) is known (“measured”) for all x̂ ∈ � and d ∈ �,
where � = {x̂ ∣∣ |x̂ | = 1

}
. From this data, for fixed k, we wish to reconstruct the location

and shape of the scatterers. It can be shown that exact knowledge of u∞(x̂ ,d) does indeed
uniquely determine the boundary of the scatterers in a wide variety of cases [50]. But, as we
shall see, this inverse problem is both nonlinear and ill-posed. In particular, the uniqueness
result does not imply the continuous dependence of the reconstruction on the far field data.

1The microwave oven needs to be primitive (i.e., have no mode stirrer); otherwise you need to remove
the turntable. If you don’t have proper experimental training (and firefighting skills) please just eat the
mini-marshmallows.
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4 Chapter 1. Inverse Scattering in Two Dimensions

1.2 Classical Inversion Techniques
We shall now give a brief description of several classical methods for attacking the inverse
scattering problem. In these methods we start by assuming a priori knowledge of the gen-
eral nature of the scatterer. We might, for example, assume that the scatterer is penetrable
and that it has an internal speed of light (and possibly absorption) that differs from the
known background. Suppose c(x1, x2) �= c0 in the scatterer. Letting n(x) = c2

0/c
2, we see

that n(x) = 1 outside the scatterer and n(x) �= 1 inside. In this case a complete set of equa-
tions for solving the forward problem (i.e., assuming n(x) is known) is to find u and us that
satisfy

�u + k2n(x)u = 0 in R
2,

u = ui +us in R
2,

r1/2
(
∂us

∂r
− iku2

)
→ 0 as r →∞.

(1.5)

It can be shown that for a wide class of functions n(x), this system has an appropriately
defined solution depending continuously on the data (i.e., the forward problem is well
posed) [50]. Moreover, the far field pattern is given by

u∞(x̂ ,d) =−eiπ/4

√
k3

8π

∫
R2

e−ikx̂ ·ym(y)u(y)ds(y), (1.6)

where m = 1− n. Turning to the inverse problem, we assume that u∞ is known but m is
unknown, so equation (1.6) provides a nonlinear equation for m (of course u depends on
m).

A very effective first approach to the inverse problem is to assume that the scattered
field is small in comparison to the incident field so that u 	 ui . Then (1.6) becomes the
weak scattering, or Born, approximation to the far field pattern

u∞(x̂ ,d) 	−eiπ/4

√
k3

6π

∫
R2

e−ik(x̂−d)·ym(y)ds(y), (1.7)

where we have used the assumption that ui is a plane wave in the direction d . If x̂ , d
are varied over �, we see that u∞(x̂ ,d) gives an approximation to the Fourier transform
of m for various values of the transform parameter ξ = k(x̂ − d). Note in particular that
|ξ | ≤ 2k so that the entire Fourier transform is not available. Equation (1.7) thus gives rise
to the problem of computing the inverse Fourier transform of u∞ (to determine m), but with
incomplete or band-limited data. This band-limited inversion is ill posed, but the solution
can be approximated by using a regularization method [97].

The Born approximation (1.7) is very popular [57], [10] because it is computation-
ally efficient and often very successful. However, the method rests crucially on the weak
scattering assumption (essentially linearization about the incoming field). If, for example,
there is multiple scattering (e.g., waves bouncing around a partially enclosed cavity such
as an aircraft engine inlet in three dimensions) or if m is too large, the approximation of
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1.2. Classical Inversion Techniques 5

(1.6) by (1.7) will not be accurate, and a poor reconstruction may result (see, for example,
[103]). There are, of course, several approaches for improving this situation, including the
so-called distorted Born approximation (see, for example, [42]).

If strong scattering, or multiple scattering, is expected, a common alternative is to
explicitly indicate that u depends on the unknown function m. For any suitable m̃ (not
necessarily the true m), we denote by u(x , m̃) the total field at x that solves (1.5) with
n = 1− m̃. This then has the following far field pattern u∞(x̂ ,d , m̃) given by (1.6):

u∞(x̂ ,d , m̃) =−eiπ/4

√
k3

8π

∫
R2

e−ikx̂ ·ym̃(y)u(y, m̃)ds(y).

Again, temporarily let umeas∞ (x̂ ,d) denote the measured data far field pattern. We can now
select a suitable admissible set A of possible functions m̃ (for example, constraining m̃ < 1
and perhaps putting bounds on derivatives of m̃). An optimal best fit to the data is then
found by solving

m∗ = argmin
m̃∈A

∫
�

∫
�

∣∣umeas∞ (x̂ ,d)−u∞(x̂ ,d , m̃)
∣∣2 ds(d)ds(x̂). (1.8)

Such problems may be solved by constrained optimization techniques (see, for example,
[11, page 173] and [60]). Usually these techniques are iterative, and it is necessary to
solve the forward problem for different m̃ during the iterations. This must be done many
times during the solution process, which can make this optimization approach rather slow.
Examples of this approach include the work of Kleinman and coworkers using integral
equation techniques [105], [79] and, more recently, the use of fast solvers and sophisticated
preconditioned iterative techniques by Hohage [70]. For an alternative approach see [2].
On the one hand, these techniques can handle a wide variety of data (by generalizing (1.8))
and constraints. On the other hand, they remain expensive and prone to problems with
stopping at local minima.

The next classical approach applies to a special class of scatterers at high frequency.
Suppose that the scatterer is perfectly reflecting such that a Dirichlet boundary condition is
satisfied on the boundary. If D denotes the bounded scatterer with boundary ∂D, then we
now have that u and us satisfy

�u + k2u = 0 in R
2 \ D,

u = ui +us in R
2 \ D,

u = 0 on ∂D,

r1/2
(
∂us

∂r
− ikus

)
→ 0 as r →∞.

In this case, using the Dirichlet boundary condition, we have the expression [50]

u∞(x̂ ,d) = −eiπ/4
√

8πk

∫
∂D

∂u

∂v
(y)e−ikx̂ ·y ds(y).

Again this is a nonlinear equation for ∂D in terms of u∞. We can attempt a least squares
optimization method similar to the previous case (see for example [11] and [100]). Newton
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6 Chapter 1. Inverse Scattering in Two Dimensions

methods are also used (see, for example, [82]). Both optimization and Newton methods are
computationally expensive but are applicable with reduced measurement data (e.g., just one
incident wave) compared to the qualitative methods that are the main focus of this book.

We now assume that the scatterer is smooth and convex, and also that ka is large,
where a is the diameter of the inscribed circle to D. In this special case, we may ap-
proximate ∂u/∂v by the high-frequency Kirchoff approximation [50]. To write down this
approximation, we define the illuminated zone by

∂D+
d = {x ∈ ∂D | ν ·d < 0} ,

where ν is the outward normal to D. The shadow region is then

∂D−
d = {x ∈ ∂D | ν ·d > 0} .

The Kirchoff approximation, which is based on assuming that the shadow is total and that
reflection in the illuminated zone can be approximated by locally linear scatterers, states
that

∂u

∂v
	
⎧⎨
⎩2

∂ui

∂ν
(x ,d) if x ∈ ∂D+

d ,

0 if x ∈ ∂D−
d ,

where, of course, ui (x ,d) = exp(ikx ·d). Thus

u∞(x̂ ,d) 	 −2eiπ/4
√

8πk

∫
∂D+

d

∂ui

∂ν
(y,d)e−ikx̂ ·y ds(y).

Using this expression we obtain [91]

eiπ/4u∞(x̂ ,d)+ e−iπ/4u∞(−x̂ ,−d) ≈ −2√
8πk

∫
∂D

∂ui

∂ν
(y,d)e−ikx̂·y ds(y).

Hence, via Green’s theorem, and using the fact that ui is a plane wave,

eiπ/4u∞(x̂ ,d)+ e−iπ/4u∞(−x̂ ,−d) ≈ 2k2/3

√
8π

∫
D

(1−d · x̂)eik(d−x̂)·y ds(y).

This formula becomes even simpler if we consider “back scattered” data, in which case
d =−x̂ (the data is measured only at the transmitter):

eiπ/4u∞(x̂ ,−x̂)+ e−iπ/4u∞(−x̂ , x̂) ≈ 4k2/3

√
8π

∫
D

e−2ikx̂ ·y ds(y). (1.9)

Thus, knowledge of back scattered data for all x̂ ∈� gives an approximation to the Fourier
transform of the characteristic function of D for the transform parameter ξ =−2kx̂ . Vary-
ing x̂ ∈� and k over kmin ≤ k ≤ kmax gives the Fourier transform for 2kmin ≤ |ξ | ≤ 2kmax,
and we can determine D by using an approximate band-limited inverse Fourier transform.
For details see [91]. This method is interesting because it requires only back scattered
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1.3. The Linear Sampling Method 7

data (which is more easily measured than multistatic data, where we assume knowledge of
u∞(x̂ ,d) for x̂ ∈ �, d ∈ �). In addition, it makes critical use of data for a range of wave
numbers. However, it is limited by the need to have a convex scatterer and high-frequency
data. For a more general physical optics method, and an example in which the method in
this book succeeds where the physical optics method fails, see [13].

In our brief review of classical inverse scattering, we have seen several methods that
either are based on asymptotic simplifications (e.g., the Born or Kirchoff approximation)
that could limit their domain of applicability, or involve nonlinear optimization. In addition
each method requires specific a priori data; for example we must typically know what type
of scatterer we are trying to reconstruct. The next method we shall discuss, and the method
that is the subject of this book, avoids some of these difficulties, but as we shall see has its
own limitations and disadvantages.

1.3 The Linear Sampling Method
From the limited survey of classical scattering techniques in the previous section, we see
that on the one hand, very efficient linearized methods based on band-limited Fourier trans-
forms can be constructed. On the other hand, this efficiency is gained at the expense of
needing very strong a priori data.

An alternative is offered by the linear sampling method (LSM). This method is rela-
tively rapid (compared to optimization approaches), requires very limited a priori data, and
involves only the solution of linear ill-posed problems. But it requires substantially more
input data than either optimization approaches or asymptotic methods.

The LSM was discovered (invented?), via numerical experiments, by Andreas Kirsch
while waiting for a flight to Germany at JFK International Airport in New York.2 The
method was first described in the paper of Colton and Kirsch [49].

The LSM is based on the “far field equation” of finding a function gz ∈ L2(�) such
that ∫

�

u∞(x̂ ,d)gz(d)ds(d) =
∞(x̂ , z), (1.10)

where 
∞(x̂ , z) is the far field pattern of the field due to a point source located at the
auxiliary point z. In two dimensions this field is given, in the near field, by


(x , z) = i

4
H (1)

0 (k |x − y|)

where H (1)
0 is the Hankel function of first kind of order zero. Its far field pattern is


∞(x̂ , z) = eiπ/4
√

8πk
e−ikx̂ ·z .

We shall argue that the function

ψ(z) = ‖gz‖−1
L2(�)

(1.11)

2This historical fact is not intended to suggest that airport waiting rooms provide an ideal venue for
mathematics, but it does attest to the computational power of laptop computers.
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8 Chapter 1. Inverse Scattering in Two Dimensions

can serve as an indicator function for the scatterer D as z varies over R2. In fact we shall
see that ψ(z) ∼ 0 outside D.

Note that (1.10) is, in general, ill posed since u∞ is a smooth function (in fact ana-
lytic) of x̂ and d . Thus we shall have to use regularization techniques when we approximate
the solution of (1.10) numerically [54]. In addition, this ill-posedness calls into question
the existence of solutions to (1.10), and the resolution of this problem calls for significant
analysis.

To see how this method might work, suppose for now that (1.10) has a solution for
some z ∈ R2. Then by Rellich’s uniqueness lemma (see Theorem 2.4), since both sides of
(1.10) are far field patterns, we have∫

�

us (x ,d)gz(d)ds(d) =
(x , z), x ∈R
2 \ D, (1.12)

since the left-hand side of (1.10) is the far field pattern of the left-hand side of (1.12).
We immediately see that if z ∈R2 \ D, (1.12) cannot hold, since the left-hand side of

(1.12) is bounded in L2 on compact subsets of R2 \D, whereas the norm of
 is unbounded
if the subset contains z. Thus (1.10) does not have a solution if z ∈ R2 \ D. Suppose now
that (1.10) has a solution for each z ∈ D. Assuming Dirichlet boundary data and D, fix
x ∈ ∂D, and let z approach x from inside D. The L2(D) norm of the right-hand side of
(1.12) blows up and hence so must the norm of the left-hand side of (1.12). Since the
scattered field is bounded, we must have ‖gz‖L2(�) →∞ as z → x . Thus we can hope that,
after using a regularization scheme to stabilize the ill-posed problem (1.10), the function
ψ(z) in (1.11) will be approximately zero for z �∈ D and approach zero as z approaches ∂D
from inside. The computation of gz thus gives a qualitative way to visualize D.

The foregoing heuristic argument fails in general because very few domains are such
that (1.10) admits an exact solution. The mathematical justification of the LSM then starts
by showing that there is an approximate solution (to arbitrary accuracy) of (1.10) that has
the desired blowup as z approaches ∂D. This analysis, which is different in detail for each
type of scatterer, will be the main mathematical content of this book. The missing link
in the full justification for the method is showing that this approximate gz is in fact the
one computed during the regularized solution of (1.10). In some cases (including the one
considered in this chapter for example) this is known [7].3 Indeed, the difficulty of fully
justifying the LSM approach to inverse scattering may well be one reason why Andreas
Kirsch has developed the more sophisticated “Factorization” method. This method has a
stronger mathematical foundation [77] but is more difficult to extend to general scattering
problems.

We can now summarize the main components of the LSM.

(1) Vary z over a grid in the region where D is sought.

(2) For each z, approximately solve (1.10) by some discrete regularization technique and
compute an approximate gz .

(3) Plot the indicator function ψ(z) given in (1.11) and extract information about the scat-
terer. For example we might choose a contour value C and use the level curveψ(z)=C

3The LSM has been the subject of some controversy; see [85] and [102].
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1.4. Regularization of the LSM 9

to approximate the boundary ∂D. This requires a good choice of C , which is still
broadly an open problem.

Step (1) requires a priori data on the size and approximate location of the scatterer. The
grid for z must be fine enough that some grid points lie in or close to the scatterer. In
addition D needs to be within the search domain if it is to be detected! A uniform grid for
the sampling point z is not necessarily the most efficient strategy. A multilevel approach
can be found in [45], [83].

Step (2) requires the numerical approximation of (1.10) by regularization techniques,
which we discuss in the next section.

For step (3) several approaches have been tried to extract data from the indicator
functionψ(z). We have advocated “calibrating” the method by computing forward data for
known objects (e.g., circles) of a size similar to the object to be reconstructed, and at the
wave number to be used in practice. Using this data, the best choice of C (for the circle)
can be computed. We then use this choice of C for more general objects [45]. Aramini et
al. [6] suggest using a “deformable model” approach to adjust the contour based on ψ(z)
itself. Another approach, assuming a known scatterer is near the scatterers to be identified,
is discussed in [84].

1.4 Regularization of the LSM
Equation (1.10) is ill posed due to the analyticity of u∞. Thus we need to regularize it
in order to obtain a reliable indicator (in the original paper [49] regularization was not
used, and the use of regularization accounts for some of the improvement in computational
results seen since then). We follow the “classical” approach described in [44], [54]. In this
approach a different regularization parameter is used for each z. More recently, Brignone et
al. [12] proposed using a single regularization parameter for all z. They term this approach
“no-sampling linear sampling” since the method is applied at the continuous level for all
z. This method is attractive because it avoids recomputing the regularization parameter for
each z. Nevertheless we obtain reasonable performance with the classical approach and,
since the numerical results we have reported (and will reproduce later in this book) are
computed via the classical approach, we shall describe it next.

The method starts by using a discrete data matrix uδ∞ that approximates u∞ at certain
data points. In the examples we shall present here we choose N equally spaced directions
on the unit circle,

d j = (cosθ j , sinθ j ), θ j = 2π j/N , j = 1, . . . , N .

Thus we have available an N × N matrix Aδ with

Aδ�,m = uδ∞(d�,dm), 1 ≤ �, m ≤ N ,

that approximates the exact data matrix A defined by

A�,m = u∞(d�,dm).

We assume ∥∥A− Aδ
∥∥≤ δ,
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10 Chapter 1. Inverse Scattering in Two Dimensions

where we use the spectral norm. This approximation may be due, in practice, to measure-
ment error. In our numerical tests, we first choose a test scatterer D and then compute
a synthetic approximation ucomp∞ (d�,dm) to u∞(d�,dm) by a finite element method. We
further perturb this data by random noise to avoid “inverse crimes” [50] using

uδ�,m(d�,dm) = ucomp∞ (d�,dm)(1+ εξ�,m), (1.13)

where ε > 0 is a parameter and ξ�,m is a uniformly distributed random number between −1
and 1. The actual value of δ used in our code is δ = ∥∥Acomp − Aδ

∥∥ and so may underesti-
mate the total error in the data since it ignores discretization error from the finite element
method.

A natural question is how large to choose N . It must be chosen depending on the
wave number and size of the object. In [40] it is recommended to choose, at least,

N > 2ka, (1.14)

where a is the radius of the circumscribing circle for D (which we have to assume a priori
known approximately, as we have seen). This estimate is in accord with our experience.

We now approximate (1.10) using the trapezoidal rule to approximate the integral on
the left-hand side, and we seek to compute �gz ∈CN such that

Aδ �gz = bz , (1.15)

where bz ∈ C
N and is given by (bz)� = h−1
∞(d�, z), 1 ≤ � ≤ N , where h = 2π/N arises

from the weight in the trapezoidal rule. At the present time, there is no theory for predicting
how well the solution of (1.15) approximates the solution of (1.10).

Because (1.10) is ill posed, we expect at best that (1.15) will be highly ill conditioned
as N increases, and this is seen in practice. The approach we shall use to handle this is from
[54]. Thus we actually use Tikhonov regularization to approximate the solution of (1.15)
by solving (

αz I + (Aδ)
∗

Aδ
)
�gαz = (Aδ)

∗ �bz , (1.16)

where αz > 0 is the regularization parameter yet to be determined, and (Aδ)∗ is the con-
jugate transpose of Aδ. We note that regularization with αz I is an expedient and is not
justified theoretically or by extensive numerical testing.

In our computations we choose αz by the Morozov principle. So αz is chosen such
that ∥∥Aδ �gαz −bz

∥∥2 = δ2
∥∥�gαz ∥∥2 , (1.17)

where the norm is the �2 norm. This can be easily calculated using the singular value
decomposition of Aδ . Let

Aδ = U SV ∗,

where U and V are N × N unitary matrices and S is a diagonal matrix with

Sp,p = σp ≥ 0, p = 1,2, . . . , N .

Then, using the fact that U is unitary,∥∥∥Aδ �gαz − �bz

∥∥∥= ∥∥∥SV ∗ �gαz −U∗ �bz

∥∥∥ ,
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1.5. Numerical Results in Two Dimensions 11

and since V is unitary, ∥∥�gαz ∥∥= ∥∥V ∗ �gαz
∥∥ .

Furthermore (1.16) may be rewritten as(
αz I +V S2V ∗) �gαz = V SU∗ �bz

or (
αz I + S2

)(
V ∗ �gz

)= SU∗ �bz .

Letting �vα = V ∗ �gαz we have

vαp =
(
αz +σ 2

p

)−1
σp

(
U∗ �bz

)
p

, p = 1, . . . , N .

So

∥∥∥Aδ �gαz − �bz

∥∥∥= N∑
p=1

(
αz

αz +σ 2
p

)2 ∣∣∣(U∗bz
)

p

∣∣∣2 ,

‖�gz‖2 =
N∑

p=1

(
σp

αz +σ 2
p

)2 ∣∣∣(U∗bz
)

p

∣∣∣2 .

The Morozov principle is then to seek αz to be the zero of

f (α) =
N∑

p=1

α2 − δ2σ 2
p(

σ 2
p +α

)2

∣∣(U∗bz
)∣∣2 .

Note that f (0)< 0 and if the singular values are ordered by

σ1 ≥ σ2 ≥ ·· · ≥ σN ≥ 0,

we have
f (δσ1) ≥ 0.

Since f ′(α) > 0, if α > 0, there is a unique root that can be computed by a combination
of bisection and secant iterations (in two dimensions we use the MATLAB fzero func-
tion). Note that this application of regularization theory is rather nonstandard since the
kernel uδ∞(x̂ ,d) is approximate and the right-hand side is exact (the opposite is usually as-
sumed). See [72], [73] for theory for this approach. We will return to conditions required
for Tikhonov regularization during our detailed mathematical discussion later.

1.5 Numerical Results in Two Dimensions
We now present some two-dimensional examples that will suggest to the reader that the
LSM can provide useful information. We hope these results will sustain the reader through
the rather more challenging material in the succeeding sections. Three-dimensional results
will be discussed in Sections 3.5, 5.4, and 6.4.
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12 Chapter 1. Inverse Scattering in Two Dimensions

As we have already mentioned, most of our results are for synthetic data. We choose
a domain D, predict u∞ using a finite element method (or any other convenient code), add
random noise, and then solve the inverse problem. Expressions of delight and amazement
follow when we recognize our initial figure!

We start with an example that is very special but allows us to avoid numerical issues
to a large extent: we consider scattering by a circular cylinder. This study is motivated by a
similar study in three dimensions in [43]. We follow this with two more challenging prob-
lems involving disconnected scatterers that show how the LSM can easily handle disjoint
and possibly different scatterers. Finally we show an example using measured data kindly
supplied by Professor F. Simonetti, Imperial College, London. This shows how the method
can be applied to near field scattering with a limited aperture of sources and receivers.

1.5.1 Scattering by a Circular Cylinder

Suppose D = {x ∈ R2 | |x |< a
}

is a disc of radius a. In this case the solution of (1.2)–
(1.4), together with the Dirichlet boundary condition that u = 0 on ∂D, can be expressed
using a series of special functions. In particular the following representation of the far field
pattern can be derived (cf. [50]):

u∞(θ ,φ) =−σ
∞∑

n=−∞

Jn(ka)

H (1)
n (ka)

exp(in (θ−φ)),

where σ = eiπ/4/
√

8πk, and Jn and H (1)
n are, respectively, the Bessel and Hankel functions

of the first kind of order n. The incident wave has the direction vector d = (cosφ, sinφ) and
the measurement direction x̂ = (cosθ , sinθ ). Expressing the function gz as a trigonometric
series with unknown coefficients

{
gz,m

}∞
m=−∞, we have

gz(φ) =
∞∑

m=−∞
gz,m exp(imφ),

and so the far field operator can be written as

2π∫
0

E∞(θ ,φ)gz(φ)dφ =−2πσ
∞∑

n=−∞
gz,n

Jn(ka)

H (1)
n (ka)

exp(inθ ).

From [50], the right-hand side of (1.9) can also be expanded as

e−ikz·x̂ = σ
∞∑

n=−∞
Jn(krz)i n exp(in (θ−ψ)),

where z = (rz cosψ ,rz sinψ). Formally we can then solve the far field equation to obtain

gz,m =−i n Jm(krz)

Jm(ka)
H (1)

m (ka), −∞< m <∞.

If rz = 0, we have gz,n = 0 for n �= 0, so the expansion for gz converges in that case.
Unfortunately this is the only case when the series converges, but it can be argued that the
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1.5. Numerical Results in Two Dimensions 13

series diverges faster for rz > a than for rz < a (see [43] in the case of R3). To obtain a
stable scheme when rz �= 0, we seek a regularized solution of the far field equation. One
possibility is to argue as in [43] and choose a spectral cutoff ε. Then we use only the
|n| ≤ Nε modes for which the Fourier coefficients of the far field operator are “significant”;
Nε is chosen so that

∣∣∣∣∣ Jn(ka)

H (1)
n (ka)

∣∣∣∣∣≥ ε for |n| ≤ Nε ,

∣∣∣∣∣ JNε+1(ka)

H (1)
Nε+1(ka)

∣∣∣∣∣< ε.
The idea is that low-amplitude, high-frequency components cannot be measured accurately
(due to their low amplitude) but have a disproportionate effect on instability and so should
not be allowed to influence the solution. In this case Collino, Fares, and Haddar [43]
suggest using the indicator ψ(z) = log10 ‖gNε

z ‖L2(�), where gNε
z =∑Nε

n=−Nε
gz,n exp(inθ ).

Traditionally we have not used spectral cutoff regularization. Instead we use the
Tikhonov/Morozov technique described earlier. We inject some noise into the data by
defining

uε∞,n = Jn(ka)

H (1)
n (ka)

(
1+ εξn√

Nε

)
,

where ξn is a random number drawn uniformly from the interval [−1,1] and ε > 0 is a
parameter. We choose ε = 0.01, giving a relative L2 error for the coefficients of E∞ of
0.9%. Then, using the known error in our approximate far field pattern to compute δ in the
Morozov scheme, we can solve the Tikhonov problem to get

gεz,n =−i n uε∞,n Jn(krz)∣∣uε∞,n

∣∣2 +γ 2
e−inφ

and gεz =∑Nk
n=−Nk

gεz,n exp(inθ ). In the results in Figure 1.1 we choose Nk = 14,36,138
when k = 3,12,60. The Tikhonov parameter γ is computed by the Morozov principle.

In Figure 1.1, we consider spectral regularization and show 1/‖gz‖L2(�) and
log10 ‖gz‖L2(�) as functions of rz = |z| along the x-axis. Either choice of indicator pro-
vides a characterization of the domain. When k = 1 the indicator is a simple function of rz
but varies relatively gradually for rz near rz = 1. This implies that it is difficult to make a
precise prediction about the radius of the target, but the presence of the target is clear. As
k increases, the gradient of the indicator increases near rz = 1, implying a more accurate
reconstruction, but by k = 60 the indicator is highly oscillating, and in particular there are
some oscillations for rz > 1 making a reliable prediction more complicated.

In Figure 1.2 we show results using the Tikhonov/Morozov scheme with the same
parameters as for Figure 1.1. The main conclusions are the same as for the spectral cutoff.
However, when k = 60 the oscillations in the indicator for rz > 1 are greatly reduced, and
hence a more reliable indication of the exterior of D is possible. In all cases there are more
artifacts inside D than in the exterior of D.
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14 Chapter 1. Inverse Scattering in Two Dimensions
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Figure 1.1. Reconstructions using spectral regularization. We plot the indicator
function along the real axis using (on the left) the reciprocal indicator and (on the right)
the logarithmic indicator. Curves for k = 1,12, and 60 are shown. The reciprocal indicator
gives a better indication of the presence of the scatterer.
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Figure 1.2. Reconstructions using Morozov/Tikhonov regularization. We plot the
indicator function along the real axis using (on the left) the reciprocal indicator and (on the
right) the logarithmic indicator. Curves for k = 1,12, and 60 are shown. As k increases,
the indicators become more oscillatory, but the gradient at r = 1 increases, thus giving a
more precise estimate of the radius.

1.5.2 Two Scatterers Using Synthetic Data

For the synthetic experiments in this subsection, the far field pattern is computed via a cubic
finite element code for a given domain D. We use the mesh shown in Figure 1.3(a) that is
refined near the corners of the two scatterers. As can be seen from the mesh, the left-hand
scatterer is impenetrable (Dirichlet boundary condition) while the right-hand scatterer has
an index of refraction possibly differing from the background. We can then use the data,
perturbed by noise (as described previously in Section 1.4 with parameter ε = 0.01), in our
inverse solver.
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(a) The mesh (b) Reconstruction

Figure 1.3. (a) The finite element mesh used to generate synthetic data for the
two scatterer problem. This makes clear that the left-hand scatterer is impenetrable but the
right-hand scatterer is penetrable. (b) The reconstruction obtained if we apply the LSM
when n(x) = 1 in the penetrable scatterer. Here we plot contours of the function ψ(x)
using the reciprocal indicator (1.11). The single impenetrable square is clearly imaged.
The thick bar at the lower edge of (b) shows the wavelength 2π/k.

We assume a priori that the scatterer has an internal radius of approximately unity and
is located within the search domain [−3,3]2 (using a uniform 101×101 grid of z values).
The wave number k varies from experiment to experiment, and we have used 90 incoming
wave directions and 90 far field values from directions uniformly distributed on the unit
circle.

In Figure 1.3(b) we show results when n(x)= 1 in the right-hand square. This means
that no scatterer is present there, and the LSM correctly reconstructs only the left-hand
square (here we plot the indicator function ψ(z) given by (1.11)). The wave number is
k = 20, and so the wavelength is λ = π/10 and is shown as a thick bar along the bottom
of the plot. The square is about 2 wavelengths in width, and so the boundary is sharply
defined, but there is also considerable interior structure to the indicator function, as we
would expect from our previous results for the unit circle.

Our next results are shown in Figure 1.4, where we have now set n(x)= 4 in the right-
hand square. Of course the very same LSM as used in the previous example is used here
as well, but now the LSM reconstructs two scatterers (or at least an extended dumbbell).
We show results for different wave numbers. Here the scatterers are always at most one
wavelength apart and hence difficult to distinguish. Surprisingly the higher wave number
results do not distinguish the objects as well as the lower wave numbers.

In Figure 1.5 we show results using the two squares (n(x) = 4 in the right-hand
square) but now we have moved the squares further apart. As expected, the squares can
now be distinguished as two objects more easily. At lower wave numbers we obtain a re-
construction free of internal oscillation, but with less fidelity than at higher wave numbers.

This example shows that the LSM can easily handle disconnected scatterers (i.e., the
same method is used regardless of the type and number of scatterers) but the quality of the
reconstruction will depend on the interaction of the scatterers.
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(c) k = 15 (d) k = 20.

Figure 1.4. Reconstruction of the two squares shown in Figure 1.3(a). We show
ψ(z) given by (1.11) for various k. The same LSM is used for these reconstructions as was
used for Figure 1.3, but the presence of the second scatterer is now visible (surprisingly,
the higher wave number results are less able to distinguish the two squares).

1.5.3 Real Data

In this section we describe some results of applying the LSM to real measured data. This
data was kindly supplied by Professor F. Simonetti, Imperial College, London.

The problem exemplifies the power of the LSM because it involves a fluid structure
interaction, a problem not discussed so far. However, exterior to the solid scatterers, the
pressure field in the fluid satisfies the Helmholtz equation, and hence an extension of the
simple LSM outlined in this chapter will apply (see [94] for details).

Long cylindrical polyoxymethylene (POM) copolymer rods are suspended in water
(with sound speed c = 1480 m/s). Sound pulses are launched by transducers (32 elements
spaced 1.5 mm apart and each 1 mm wide) located along the y-axis from −23.25 mm to
+23.25 mm. The pressure wave travels through the fluid and interacts with the POM scat-
terers (the wave actually penetrates the scatterers via fluid–solid interaction). The scattered
field is measured at the same transducers. The mathematical theory of the LSM in this case
is covered in [94], but since measurements are carried out in the fluid where the Helmholtz
equation again governs the time-harmonic pressure fields, we can use a standard LSM
modified for near field measurements. We write down the analogue of the far field op-
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(c) k = 15 (d) k = 20.

Figure 1.5. In this example we use the same squares as in Figure 1.4 but move
them further apart. As expected, the LSM more clearly detects two squares, and the fidelity
of the reconstruction generally improves as k increases.

erator. Let ps(x , y) denote the pressure field at position x due to a source at position y.
Assuming that the sources and receiver are located on a line segment L, the appropriate
near field equation is to seek gz ∈ L2(L) such that∫

L

ps(x , y)gz(y)dy =
(x , z)

for all x ∈ L. Here 
 is given by (1.3). After discretization by the trapezoidal rule, this
equation needs to be solved by regularization. We do not know statistics for the error
in the measurements, but we experimented with the Morozov parameter δ to give clean
reconstructions. The data is, in fact, measured in the time domain and hence, using the fast
Fourier transform, we have access to measurements at many frequencies. We chose two
frequencies for the results in Figure 1.6, again on the basis of obtaining artifact free results.
Note that we do not need to specify the scattering mechanism in our inversion scheme, so
no properties of POM are needed. We point out that we did not take into account interaction
between other transducers and the pressure field (except as point sources) or account for
the finite size of the transducers. This is likely reasonable since the scatterer is placed far
from the transducers (43 mm when the wavelength is roughly 1.3 mm).
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Figure 1.6. Results of reconstructing one POM rod (left panel) at 2.1MHz and
two POM rods (right panel) (at 1.7MHz). We plot 1/‖�gz‖ as a function of z (normalized
to a maximum value of unity). The position of the transducers is shown by small circles on
the y-axis, and the true boundary of the solid rods is shown as a larger circle or circles in
the search domain. Reproduced from [94] with permission.

Figure 1.6 shows our results and confirms that, despite the use of limited aperture
data, the LSM produces a prediction of the number and location of the scatterers even
when they touch.
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Chapter 2

Maxwell’s Equations

In this chapter we start our investigation of the inverse scattering problem for Maxwell’s
equations by presenting some basic results for solutions of the time-harmonic Maxwell’s
equations that will be needed in subsequent chapters. Since the focus of this book is the
inverse scattering problem rather than Maxwell’s equations in general, we shall make no
effort at completeness. In particular, we will provide little or no proof of the results given
but instead will refer the reader to either [50] or [93]. For more information on modeling
of electromagnetic phenomena see [106].

2.1 The Scattering of Electromagnetic Waves
We begin by considering electromagnetic wave propagation in a source free isotropic
medium in R3 with constant electric permittivity ε0, magnetic permeabilityμ0, and electric
conductivity σ0. The electromagnetic wave is then described by the electric field E and the
magnetic field H satisfying the time-domain Maxwell’s equations

curlE +μ0
∂H

∂ t
= 0,

curlH − ε0
∂E

∂ t
= σ0E .

In particular, for time-harmonic electromagnetic waves of the form

E (x , t) =�
{(
ε0 + iσ0

ω

)−1/2

E(x)e−iωt

}
,

H(x , t) =�
{
μ
−1/2
0 H (x)e−iωt

}
for x ∈R3 and frequency ω > 0, we see that the complex valued, space dependent fields E
and H satisfy the time-harmonic Maxwell’s equations

curl E − ik H = 0,

curl H + ik E = 0,
(2.1)

19
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20 Chapter 2. Maxwell’s Equations

where the wave number k is given by

k2 =
(
ε0 + iσ0

ω

)
μ0ω

2

with the sign of k chosen such that �k ≥ 0.
Now consider the scattering of a time-harmonic wave by an obstacle surrounded by

a homogeneous medium with vanishing conductivity σ0 = 0, i.e., k > 0. We first consider
the scattering of an incoming wave Ei , H i by a perfect conductor D, where D is a bounded
domain such that R3 \ D is connected and ∂D is piecewise smooth. We assume that Ei ,
H i is a solution of Maxwell’s equations (2.1) in all of R3 and that the total field E , H is
defined by

E = Ei + Es ,

H = H i + H s,
(2.2)

where Es , H s is the scattered field satisfying the Silver–Müller radiation condition

lim
r→∞

(
H s × x − r Es)= 0 (2.3)

uniformly for all directions x̂ = x/|x |, where r = |x |. We require that E , H satisfy
Maxwell’s equations (2.1) in R3 \ D and the perfectly conducting boundary condition

ν× E = 0 on ∂D, (2.4)

where ν is the unit outward normal to the boundary ∂D. If we define

H (curl; D) :=
{

u ∈ (L2(D))3 : curlu ∈ (L2(D))3
}

(2.5)

and Hloc(curl;R3 \ D) to be the space of functions u ∈ H (curl; BR \ D) for every ball BR :
{x : |x |< R} containing D in its interior, then it can be shown [93] that there is a unique so-
lution E , H = 1

ik curl E of the scattering problem (2.1)–(2.4), where E ∈ Hloc(curl;R3 \ D)
and the boundary condition (2.4) is interpreted by the trace theorem for H (curl) functions
[93].

For scattering by an obstacle that is not perfectly conducting but does not allow the
electromagnetic wave to penetrate deeply into the obstacle, the boundary condition (2.4) is
replaced by the impedance boundary condition

ν× (curl E)− iλ(ν× E)× ν = 0 on ∂D, (2.6)

where λ= λ(x) is a positive continuous function defined on ∂D. For technical reasons con-
nected to the trace properties of functions in H (curl; D), we must now look for a solution
E , H = 1

ik curl E of (2.1)–(2.3), (2.6) where E is in the space

X loc(R3 \ D) :=
{

u ∈ Hloc(curl;R3 \ D) : ν×u
∣∣∣
∂D

∈ L2
t (∂D)

}
, (2.7)

where L2
t (∂D) is the space of square integrable tangential vector fields defined on ∂D [93].

In general a subscript t on a function space denotes that the fields are tangential to the
relevant surface almost everywhere.
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2.2. The Stratton–Chu Formulae and Their Application 21

Scattering by a penetrable obstacle D with constant magnetic permeability μ0 but
a variable electric permittivity ε = ε(x)> 0 and electric conductivity σ (x)> 0 for x ∈ D
leads to a scattering problem for the time-harmonic Maxwell’s equations

curl E − ik H = 0

curl H + ikn(x)E = 0

}
in R

3, (2.8)

where k2 = ε0μ0ω
2 (i.e., we have assumed that σ0 = 0 in the background medium) and

n = n(x) is given by

n(x) := 1

ε0

(
ε(x)+ i

σ (x)

ω

)
,

and ε0, μ0 are the (constant) permittivity and permeability, respectively, of the homoge-
neous medium R3 \ D. The function

√
n is referred to as the refractive index. We assume

that n is piecewise continuous in R3 and note that our assumptions imply that n(x) = 1 for
x ∈ R3 \ D. It can be shown that there exists a unique solution to the scattering problem
(2.2), (2.3), (2.8) such that E and H are in Hloc(curl;R3 \ D) [78]. Similar results hold for
the case of an anisotropic medium, i.e., when n = n(x) is a 3×3 matrix [78].

2.2 The Stratton–Chu Formulae and Their Application
We again (and throughout this book) assume that D is a bounded domain such that R3 \ D
is connected and ∂D is smooth. The Stratton–Chu formulae are representation formulas
for solutions of Maxwell’s equations. To state these formulae (for their derivation see [93]
or [50]), define the radiating fundamental solution to the Helmholtz equation by


(x , y) := 1

4π

eik|x−y|

|x − y| , x �= y. (2.9)

This satisfies
�x
(x , y)+ k2
(x , y) =−δ(x − y)

together with the Sommerfeld radiation condition. Then if E , H ∈ C1(D) ∩C(D) is a
solution of Maxwell’s equations (2.1) in D, the first Stratton–Chu formula is

E(x) = curl
∫
∂D

ν(y)× E(y)
(x , y)ds(y)

+ 1

ik
curlcurl

∫
∂D

ν(y)× H (y)
(x , y)ds(y), x ∈ D,
(2.10)

H (x)=−curl
∫
∂D

ν(y)× H (y)
(x , y)ds(y)

− 1

ik
curlcurl

∫
∂D

ν(y)× E(y)
(x , y)ds(y), x ∈ D,
(2.11)

where ν is the unit outward normal to D. An immediate consequence of (2.10) and (2.11)
is the following theorem.
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22 Chapter 2. Maxwell’s Equations

Theorem 2.1. Any continuously differentiable solution of Maxwell’s equations is an ana-
lytic function of its Cartesian components.

Now assume that E , H ∈ C1(R3 \D)∩C(R3 \D) is a radiating solution to Maxwell’s
equations (2.1) in R3 \ D; i.e., E , H satisfy the Silver–Müller radiation condition (2.3).
Then we have the second Stratton–Chu formula

E(x) = curl
∫
∂D

ν(y)× E(y)
(x , y)ds(y)

− 1

ik
curlcurl

∫
∂D

ν(y)× H (y)
(x , y)ds(y), x ∈ R
3 \ D,

(2.12)

H (x)= curl
∫
∂D

ν(y)× H (y)
(x , y)ds(y)

+ 1

ik
curlcurl

∫
∂D

ν(y)× E(y)
(x , y)ds(y), x ∈ R
3 \ D,

(2.13)

where again ν is the outward normal to D (i.e., inward to R3 \ D).
For p a constant vector, the fields

Em(x) := curlx p
(x , y),

Hm(x) := 1

ik
curl Em(x)

(2.14)

represent the electromagnetic field generated by a magnetic dipole located at the point y
and satisfy Maxwell’s equations for x �= y. Similarly

He(x) := curlx p
(x , y),

Ee(x) := i

k
curl He(x)

(2.15)

represent the electromagnetic field generated by an electric dipole. The Stratton–Chu for-
mulae obviously give representations of solutions to Maxwell’s equations in terms of elec-
tric and magnetic dipoles distributed over the boundary. In this sense, the fields (2.14)
and (2.15) my be considered as radiating fundamental solutions to Maxwell’s equations.
Straightforward calculations show that the Cartesian components of the fundamental solu-
tions (2.14) and (2.15) satisfy the Sommerfeld radiation condition

lim
r→∞r

(
∂u

∂r
− iku

)
= 0

uniformly for y ∈ ∂D. Hence from the second Stratton–Chu formula we see that the Carte-
sian components of solutions to Maxwell’s equations satisfying the Silver–Müller radia-
tion condition also satisfy the Sommerfeld radiation condition. It is also easily verified, in
the same way, that the Cartesian components of a continuously differentiable solution of
Maxwell’s equations satisfy the Helmholtz equation

�u + k2u = 0.
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Solutions of Maxwell’s equations which are defined in all of R3 are called entire solu-
tions. In particular, each Cartesian component of an entire solution of Maxwell’s equations
is a solution of the Helmholtz equation in all of R3. Hence, if u is such a component,

u(x) =
∞∑

n=0

n∑
m=−n

anm jn(kr )Y m
n (x̂),

where jn is a spherical Bessel function, Y m
n is an orthonormalized spherical harmonic and

anm jn(kr ) =
∫

|x |=1

u(r x̂)Yn(x̂)ds(x̂)

for x̂ = x/|x |. But if u satisfies the Sommerfeld radiation condition, then the above for-
mula implies that anm = 0 for n ≥ 0,−n ≤ m ≤ n (since jn does not satisfy the radiation
condition) and hence u(x) = 0 for x ∈ R3. We thus have the following theorem.

Theorem 2.2. An entire solution of Maxwell’s equations satisfying the Silver–Müller radi-
ation condition must vanish identically.

We will now exploit the relationship between radiating solutions of the Helmholtz
equation and radiating solutions of Maxwell’s equations to derive two basic results for
solutions of Maxwell’s equations in exterior domains. To this end, we recall Rellich’s
lemma for the Helmholtz equation (see [50, Lemma 2.11]).

Theorem 2.3 (Rellich’s lemma). Let u ∈ C2(R3 \ D) be a solution to the Helmholtz equa-
tion satisfying

lim
r→∞

∫
|x |=r

|u(x)|2 ds = 0.

Then u = 0 in R
3 \ D.

Since radiating solutions of the Helmholtz equation have the asymptotic behavior
(see [50, Theorem 2.5])

u(x) = eikr

r
u∞(x̂)+ O

(
1

r2

)
,

Rellich’s lemma implies the following theorem.

Theorem 2.4. Let u ∈ C2(R3 \ D) be a radiating solution to the Helmholtz equation for
which the far field pattern u∞ vanishes identically. Then u = 0 in R

3 \ D.

We now return to radiating solutions of Maxwell’s equations. If E , H are radiating
solutions to Maxwell’s equations, then from the second Stratton–Chu formula it follows
that

E(x) = eikr

r
E∞(x̂)+ O

(
1

r2

)
, r →∞,

H (x)= eikr

r
H∞(x̂)+ O

(
1

r2

)
, r →∞,

(2.16)
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24 Chapter 2. Maxwell’s Equations

uniformly in x̂ , where

E∞(x̂) = ik

4π
x̂ ×

∫
∂D

{ν(y)× E(y)+ (ν(y)× H (y))× x̂}e−ikx̂ ·y ds(y),

H∞(x̂) = ik

4π
x̂ ×

∫
∂D

{ν(y)× H (y)− (ν(y)× E(y))× x̂}e−ikx̂ ·y ds(y).
(2.17)

E∞ and H∞ are known as the electric far field pattern and magnetic far field pattern,
respectively, and they clearly satisfy

H∞ = x̂ × E∞ (2.18)

and
x̂ · E∞ = x̂ · H∞ = 0. (2.19)

From Theorem 2.4 and our previous discussion we can now conclude that the following
theorem holds.

Theorem 2.5. Let E , H ∈ C1(R3 \ D) be a radiating solution to Maxwell’s equations
for which either the electric or the magnetic far field pattern vanishes identically. Then
E = H = 0 in R3 \ D.

Finally, using the identity (see [50, p. 161])

lim
r→∞

∫
|x |=r

(
|H × ν|2 +|E |2

)
ds = 2�

∫
∂D

ν× E · H ds

for radiating solutions of Maxwell’s equations, we have from Rellich’s lemma that the
following theorem is valid.

Theorem 2.6. Let E , H ∈ C1(R3 \ D)∩C(R3 \ D) be a radiating solution to Maxwell’s
equations satisfying

�
∫
∂D

ν× E · H ds ≤ 0.

Then E = H = 0 in R3 \ D.

We conclude this section with a basic property (cf. [50, Theorem 6.28]) of the electric
far field pattern corresponding to the scattering of an incident electromagnetic plane wave

Ei (x ,d , p) = i

k
curlcurl peikx ·d ,

H i (x ,d , p) = curl peikx ·d
(2.20)

by an obstacle, where the constant unit vector d gives the direction of propagation and the
constant vector p gives the polarization. A similar result also applies for the magnetic far
field pattern. In the next theorem,� := {x : |x |< 1} is the unit sphere.
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Theorem 2.7. The electric far field pattern E∞(x̂) = E∞(x̂ ,d , p) for the scattering of
plane electromagnetic waves by an obstacle or penetrable medium satisfies the reciprocity
relation

q · E∞(x̂ ,d , p) = p · E∞(−d ,−x̂ ,q)

for all x̂ ,d ∈� and all p,q ∈ R3.

From (2.17) we see that E∞ is an analytic function of x̂ on �. Hence from Theorem
2.7 we have the following theorem.

Theorem 2.8. The electric far field pattern E∞(x̂) = E∞(x̂ ,d , p) is an analytic function of
x̂ and d on the unit sphere �.

2.3 Vector Wave Functions and Electromagnetic Herglotz
Pairs

Let Y m
n ,−n ≤ m ≤ n, be an orthonormal system of spherical harmonics of order n > 0.

Then the tangential fields on the unit sphere

Um
n (x̂) := 1√

n(n+1)
GradY m

n (x̂),

V m
n (x̂) := x̂ ×U m

n (x̂),

where Grad denotes the surface gradient, are called vector spherical harmonics of order n.
It can be shown (see [50, Theorem 6.23]) that the vector spherical harmonics are a complete
orthonormal system in the space

L2
t (�) :=

{
a :�→ C

3
∣∣∣a ∈ L2(�),a · ν = 0

}
,

where � is again the unit sphere in R3.
Now let jn(t) be a spherical Bessel function and let h(1)

n (t) be a spherical Hankel
function of the first kind. The function jn(t) is an entire function of t with the asymptotic
behavior (cf. [50, Section 2.4])

jn(t) = 1

t
cos
(

t − nπ

2
− π

2

){
1+ O

(
1

t

)}
, t →∞, (2.21)

whereas h(1)
n (t) is analytic for t �= 0 and has the asymptotic behavior

h(1)
n (t) = 1

t
ei(t− nπ

2 − π
2 )
{

1+ O

(
1

t

)}
, t →∞. (2.22)

From this it is easy to see that

Mm
n (x) := curl

{
x jn(k|x |)Y m

n (x̂)
}

,

and 1
ik curl Mm

n (x) defines an entire solution to Maxwell’s equations and

Nm
n (x) := curl

{
xh(1)

n (k|x |)Yn(x̂)
}

,
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26 Chapter 2. Maxwell’s Equations

and 1
ik curl Nm

n (x) defines a radiating solution to Maxwell’s equations in R3 \ {0}. A short
computation shows that

Mm
n (x) = jn(k|x |) GradY m

n (x̂)× x̂,

Nm
n (x) = h(1)

n (k|x |) GradY m
n (x̂)× x̂ .

(2.23)

The functions Mm
n and Nm

n are known as spherical vector wave functions. For future use
we state the following vector addition theorem (see [50, Theorem 6.27]).

Theorem 2.9. We have


(x , y)p = ik
∞∑

n=1

1

n(n+1)

n∑
m=−n

Nm
n (x)Mm

n (y) · p

+ i

k

∞∑
n=1

1

n(n+1)

n∑
m=−n

curl Nm
n (x)curl Mm

n (y) · p

+ i

k

∞∑
n=0

n∑
m=−n

gradh(1)
n (k|x |)Y m

n (x̂) grad jn(k|x |)Y m
n (x̂) · p,

where the series and its term-by-term derivatives are uniformly convergent for fixed y with
respect to x and, conversely, for fixed x with respect to y on compact subsets of |x |> |y|.

We now consider a special case of entire solutions of Maxwell’s equations which will
play a special role throughout this book. In particular let g ∈ L2

t (�), where L2
t (�) is the

space of square integrable tangential vector fields on the unit sphere �. Then we define an
electromagnetic Herglotz pair to be a pair of vector fields of the form

Eg(x) :=
∫
�

eikx ·d g(d)ds(d),

Hg(x) := 1

ik
curl E(x)

(2.24)

for x ∈ R3. The vector field g is called the Herglotz kernel of the pair Eg , Hg. It is easily
seen that the property of the kernel g to be tangential is equivalent to div Eg = 0 in R

3

and that an electromagnetic Herglotz pair is an entire solution of Maxwell’s equations. By
using the asymptotic formula (2.21) it is possible to show (see [50, Theorem 6.30]) that an
entire solution E , H of Maxwell’s equations possesses the growth property

sup
R>0

1

R

∫
|x |<R

(
|E(x)|2 +|H (x)|2

)
dx <∞

if and only if it is an electromagnetic Herglotz pair. Using this result it is not difficult to
see that Mm

n and 1
ik curl Mm

n provide examples of electromagnetic Herglotz pairs. Finally,
we note that Eg = Hg = 0 if and only if g = 0 [50].
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2.3. Vector Wave Functions and Electromagnetic Herglotz Pairs 27

In closing, we recall that for a given scattering problem with incident field given by
(2.20) and corresponding far field pattern E∞, H∞, the far field pattern corresponding to

Ẽ i (x) =
∫
�

Ei (x ;d , g(d))ds(d),

H̃ i (x) =
∫
�

H i (x ;d , g(d))ds(d)

for g ∈ L2
t (�) is given by

Ẽ∞(x̂) =
∫
�

E∞(x̂ ;d , g(d))ds(d),

H̃∞(x̂) =
∫
�

H∞(x̂ ;d , g(d))ds(d).

In particular, for g ∈ L2
t (�) we can write

Ẽ i (x̂) = ik
∫
�

g(d)eikx ·d ds(d),

H̃ i (x̂) = curl
∫
�

g(d)eikx ·d ds(d);

i.e., Ẽ i , H̃ i is an electromagnetic Herglotz pair with kernel ikg.
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Chapter 3

The Inverse Scattering Problem
for Obstacles

In this chapter we consider the inverse scattering problem of determining the shape of a
perfect conductor, or the shape and surface impedance λ of an imperfect conductor, from
knowledge of the far field pattern of the scattered wave arising from the incident plane
wave given by (2.20). In order to consider both problems at the same time, we will in fact
consider the direct scattering problem to be the mixed boundary value problem of finding
E and H satisfying

curl E − ik H = 0,

curl H + ik E = 0
(3.1)

in R
3 \ D (where D satisfies the same hypothesis as in Chapter 2). Moreover, we assume

that the boundary ∂D = ∂DP ∪�∪ ∂DI is split into two disjoint parts ∂DP and ∂DI
having � as their possible common boundary in ∂D and that each part ∂DP and ∂DI can
be written as the union of a finite number of open smooth faces. Let ν denote the unit
outward normal defined almost everywhere on �. Then on the boundary ∂D = ∂DP ∪∂DI
we have that

ν× E = 0 on ∂DP ,

ν× curl E − iλ(ν× E)× ν = 0 on ∂DI ,
(3.2)

where λ = λ(x) ≥ λ0 > 0 is the surface impedance and is assumed to be a continuous
function defined on ∂DI . The total field is again given by

E = Ei + Es ,

H = H i + H s,
(3.3)

where Es , H s is the scattered field satisfying the Silver–Müller radiation condition

lim
r→∞(H s × x − r Es) = 0 (3.4)

uniformly in x̂ = x/|x |, where r = |x | and the incident field is the plane wave (2.20), i.e.,

Ei (x) := i

k
curlcurl peikx ·d = ik(d × p)×deikx ·d ,

H i(x) := curl peikx ·d = ikd × peikx ·d .
(3.5)

29
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30 Chapter 3. The Inverse Scattering Problem for Obstacles

In particular, the case of a perfect conductor corresponds to the case when ∂DI =∅, and the
case of an imperfect conductor corresponds to the case when ∂DP = ∅. In [27] it is shown
that there exists a unique solution E , H = 1

ik curl E to (3.1)–(3.5) with E in the space

X (R3 \ D,∂DI ) :=
{

u ∈ Hloc(curl ;R3 \ D) : ν×u
∣∣∣
∂DI

∈ L2
t (∂DI )

}

and (3.2) is interpreted in terms of an appropriate trace theorem.
As mentioned above, the inverse scattering problem that we will consider in this

chapter is to determine D and λ (if ∂DI �= ∅) from knowledge of the electric far field pattern
E∞ corresponding to (3.1)–(3.5) for a fixed wave number k > 0. We will begin in the next
section with a uniqueness theorem due to Kress [81] showing that D and λ are uniquely
determined from E∞. We then continue our presentation by establishing certain denseness
properties of electromagnetic Herglotz pairs, and we use these results to derive the linear
sampling method (LSM) for determining D and λ from knowledge of the electric far field
pattern E∞. We conclude this chapter by considering the problem of limited aperture far
field data.

3.1 A Uniqueness Theorem
Before presenting our promised uniqueness theorem, we first make a few preliminary ob-
servations. Since by Rellich’s lemma the electric far field pattern uniquely determines
the scattered field in the exterior of the scatterer, the question of uniqueness for the in-
verse problem is equivalent to the question of whether or not the total field can satisfy a
boundary condition of the form (3.2) for two different domains D1 and D2. We can imme-
diately exclude the case when D1 ∩ D2 = ∅ since in this case Es , H s is an entire solution
to Maxwell’s equations satisfying the Silver–Müller radiation condition, and therefore by
Theorem 2.2 must be identically zero. But then E = Ei and H = H i , and for Ei , H i given
by (3.5) this is impossible since Ei , H i cannot satisfy a boundary condition of the form
(3.2). Thus we can assume that D1 ∩ D2 �= ∅.

In the proof of our uniqueness theorem, we will make use of a mixed reciprocity
relation due to Potthast [101]. In particular, let Ee,∞(·, y, p) be the far field pattern due to
the incident field being an electric dipole (2.15), and let Es be the scattered field due to the
incident field being the plane wave (3.5). Then we have the identity

q · Es(z,d , p) = 4πp · Ee,∞(−d , z,q) (3.6)

for all z ∈ R
3 \ D, all incident directions d ∈�, and all polarizations p,q ∈R3.

Finally, we note that if the electric far field patterns corresponding to the incident
field (3.5) coincide for two linearly independent polarizations pi such that pi is tangential
to�, i = 1,2, then by linearity they coincide for all p ∈R3. Furthermore, if (3.2) is satisfied
for two surface impedances λ1 and λ2 defined on ∂DI1 and ∂DI2 , respectively, then λ1 = λ2
implies that ∂DI1 = ∂DI2 .

Theorem 3.1. Assume that D1 and D2 are two scatterers corresponding to the boundary
condition (3.2) (where ∂DI may be the empty set) for λ= λ1 and λ= λ2, respectively, such
that the electric far field patterns coincide for a fixed wave number k, all incident directions
d ∈�, all p ∈ R3, and all observation directions x̂ . Then D1 = D2 and λ1 = λ2.
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Proof. Since the far field patterns coincide, by Theorem 2.5 we have that Es
1(·,d , p) =

Es
2(·,d , p) in the unbounded component G of the complement of D1 ∩ D2 for all d ∈ �

and p ∈ R
3, where Es

i , i = 1,2, is the scattered field corresponding to Di . Then, for the
incident field being an electric dipole, from the mixed reciprocity relation (3.6) we can
conclude that E1,e,∞(·, z,q) = E2,e,∞(·, z,q) for all z ∈ G and all polarizations q ∈ R3. By
again using Theorem 2.5 we can conclude that for the corresponding scattered waves we
have that

Es
1,e(x , z,q) = Es

2,e(x , z,q) (3.7)

for all x , z ∈ G and all polarizations q .
Now assume that D1 �= D2. Then, without loss of generality, there exists x∗ ∈ ∂G

such that x∗ ∈ ∂D1 and x∗ �∈ D2. In particular, we have that zn := x∗+ 1
n ν(x∗)∈ G for suffi-

ciently large n. Then from the well-posedness of the direct scattering problem correspond-
ing to the obstacle D2 we have that as n →∞ the boundary condition (3.2) is assumed for
Es

2,e(x , x∗,q) at x = x∗. On the other hand, for q ⊥ ν(x∗), this boundary condition is not
satisfied for Es

1,e(x∗, zn ,q) as zn → x∗ since the electric dipole becomes unbounded as the
source location zn tends to x∗. This contradicts (3.7), and hence D1 = D2.

Now, setting D = D1 = D2 and E = E1 = E2 we assume that E satisfies (3.2) for
different surface impedances λ1 �= λ2 with corresponding domains of definition ∂D(1)

I and

∂D(2)
I . Assume that ∂D(1)

I �= ∅. Then ∂D(1)
I = ∂D(2)

I , since if this were not true, then
ν× E = ν× curl E = 0 on a surface � ⊂ ∂D and by the second Stratton–Chu formula,

Ẽ(x) :=
{

0, x ∈ D,

E(x), x ∈R
3 \ D,

H̃ (x) := 1

ik
curl Ẽ(x)

defines a solution of Maxwell’s equations in R
3 \ (∂D \�). By Theorem 2.1 we can now

conclude that E(x) = 0 for x ∈ R3 \ (∂D \�); i.e., the scattered field Es , H s is an entire
solution of Maxwell’s equations. By Theorem 2.2 this is a contradiction. Hence ∂D(1)

P =
∂D(2)

P and thus ∂DI = ∂D(1)
I = ∂D(2)

I . This implies that

(λ1 −λ2)ν× E = 0 on ∂DI ,

and hence on the open set U := {x ∈ ∂DI : λ1(x) �= λ2(x)} we have that ν× E = 0 on ∂DI .
The boundary condition (3.2) now implies that ν× curl E = 0 on ∂DI and, as before, this
is a contradiction. The case when ∂D(1)

c = ∅ can be treated analogously.

A challenging open problem is whether or not the electric far field pattern correspond-
ing to one incident plane wave determines the scatterer. Recent progress in this direction
has been obtained by Kress [81], Liu [86], and Liu, Zhang, and Zou [88] (see also [87]).

We note that in Theorem 3.1 the electric far field pattern can be replaced by the
magnetic far field pattern. This follows immediately from (2.18) and (2.19).
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32 Chapter 3. The Inverse Scattering Problem for Obstacles

3.2 Approximation Properties of Electromagnetic
Herglotz Pairs

Recall from (2.24) that Eg , Hg represents an electromagnetic Herglotz pair. In order to
establish the LSM for solving the inverse scattering problem, it is necessary to first derive
certain approximation properties of Herglotz wave functions. We will do this in this sec-
tion. In particular we will need to consider the following two function spaces: H (curl, D)
introduced in (2.5) with the norm

‖u‖2
H (curl ,D) := ‖u‖2

L2(D) +‖curlu‖2
L2(D), (3.8)

and

X (D,∂DI ) :=
{

u ∈ H (curl, D) : ν×u
∣∣∣
∂DI

∈ L2
t (∂DI )

}
equipped with the norm

‖u‖2
X (D,∂DI ) := ‖u‖2

H (curl ,D)+‖ν×u‖2
L2(∂DI ). (3.9)

Recall that the trace ν×u|∂D of a function u ∈ H (curl, D) is in

H−1/2(Div,∂D) :=
{

u ∈ H−1/2
t (∂D) : Divu ∈ H−1/2(∂D)

}
, (3.10)

where Div denotes the surface divergence, whereas the corresponding trace space of X (D,∂DI )
on ∂DP is given by [93]

Y (∂DP ) :=
{

f ∈
(

H−1/2(∂DP )
)3

: ∃u ∈ H0(curl , BR),

ν×u
∣∣∣
∂DI

∈ L2
t (∂DI ) and f = ν×u

∣∣∣
∂DP

}
,

(3.11)

where the ball BR := {x : |x |< R} contains D and H0(curl , BR) is the space of functions u
in H (curl, BR) such that ν×u|∂BR = 0. Then we set

X0(BR \ D;�I ) = X (BR \ D;�I )∩ H0(curl; BR).

Note that H−1/2(Div,∂D) is a Banach space with norm

‖u‖2
H−1/2(Div,∂D) := ‖u‖2

H−1/2(∂D) +‖Divu‖2
H−1/2(∂D), (3.12)

whereas Y (∂DP ) is a Banach space with respect to the norm

‖ f ‖2
Y (∂DP ) := inf

{
‖u‖2

H (curl ,BR) +‖ν×u‖2
L2(∂DI )

}
, (3.13)

where the infimum is taken over all functions u ∈ H0(curl , BR) such that ν × u|∂DI ∈
L2

t (∂DI ) and f = ν × u|∂DP . It can be shown (cf. [27]) that ‖ · ‖Y (∂DP ) is equivalent
to both of the norms

||| f |||1 := sup
φ∈X (D,�I )

∣∣〈 f ,φ〉1

∣∣
‖φ‖X (D,∂DI )

and ||| f |||2 := sup
φ∈X0(BR\D,�I )

∣∣〈 f ,φ〉2
∣∣

‖φ‖X (BR\D,∂DI )
,
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where for u ∈ H0(curl , BR) such that ν×u|∂DI ∈ L2
t (∂DI ) and f = ν×u|∂DP ,

〈 f ,φ〉1 : =
∫
D

(curl u ·φ−u · curl φ) dv−
∫
∂DI

ν×u ·φ ds, φ ∈ X (D,∂DI ), (3.14)

〈 f ,φ〉2 : =
∫

BR\D

(curl u ·φ−u · curl φ) dv+
∫
∂DI

ν×u ·φ ds, φ ∈ X0(BR \ D,∂DI ).

In particular Y (∂DP ) is a Hilbert space. The dual space Y (∂DP )′ of Y (∂DP ) with respect
to the duality pairing defined by (3.14) contains all ϕ ∈ Y (∂DP )′ that can be extended to
a function ϕ̃ ∈ H−1/2(Curl,∂D) defined on the whole boundary and satisfying ϕ̃|∂DI ∈
L2

t (∂DI ).
For future reference we note that the dual space of H−1/2(Div,∂D) is

H−1/2(Curl,∂D) :=
{

u ∈ H−1/2
t (∂D) : Curlu ∈ H−1/2(∂D)

}
, (3.15)

where Curl denotes the surface curl and the dual space Y (∂DP )′ of Y (∂DP ) is the set
of functions that can be extended to a function ϕ ∈ H−1/2(Curl,∂D) such that ϕ|∂DI ∈
L2

t (∂DI ).
We now show that the set of Herglotz wave functions Eg for g ∈ L2

t (�) is dense in
M(D), where

M(D) :=
{

E ∈ C2(D)∩C1(D) : curlcurl E = k2 E in D
}

and the closure of M(D) is taken in H (curl, D), i.e., with respect to the norm (3.8) [51].
To this end, we define the Herglotz operator H : L2

t (�) → M(D) by

(Hg)(x) :=
∫
�

eikx ·d g(d)ds(d), x ∈ D.

Lemma 3.2. For all g ∈ L2
t (�) and E ∈ M(D) we have that

(Hg, E)H (curl,D) = (g,H∗E), (3.16)

where H∗ : M(D) → L2
t (�) is given by

(H∗E)(d) := d×
⎧⎨
⎩(1+ k2)

∫
D

e−ikx ·d E(x)dx

−
∫
∂D

e−ikx ·dν(x)× curl E(x)ds(x)

⎫⎬
⎭×d , d ∈�,

with ν× curl E to be interpreted as the tangential trace of curl E ∈ H (curl, D), and where
the second integral is understood as the duality pairing between H−1/2(Div,∂D) and
H−1/2(Curl,∂D).
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34 Chapter 3. The Inverse Scattering Problem for Obstacles

Proof. For g ∈ L2
t (�) and E ∈ M(D) from the divergence theorem we have that

(Hg, E)H (curl,D) = (Hg, E)L2(D) + (Hg, curlcurl E)L2(D)

− (Hg,ν× curl E)L2(∂D),

and hence (3.16) follows from curlcurl E = k2 E and interchanging the order of integration.
The lemma now follows by a denseness argument.

We note that H∗E coincides with the far field pattern of the combined volume and
surface potential defined by

V (z) := 1

k2
(1+ k2)curlcurl

∫
D


(z, x)E(x)dx

− 1

k2 curlcurl
∫
∂D


(z, x)ν(x)× curl E(x)ds(x)
(3.17)

for z ∈ R3 \ D. Using curlcurl = −�+ graddiv, the divergence theorem, and Div[ν ×
Curl E] =−k2ν · E for E ∈ M(D), we have that

curlcurl
∫
D


(z, x)E(x)dx = k2
∫
D


(z, x)E(x)dx

−grad
∫
∂D


(z, x)ν(x) · E(x)ds(x)

and

curlcurl
∫
∂D


(z, x)ν(x)× curl E(x)ds(x)

= k2
∫
∂D


(z, x)ν(x)× curl E(x)ds(x)− k2 grad
∫
∂D


(z, x)ν(x) · E(x)ds(x)

for z ∈ R3 \ D. Substituting into (3.17) now gives

V (z) = (1+ k2)
∫
D


(z, x)E(x)dx −
∫
∂D


(z, x)ν(x)× curlE(x)ds(x)

− 1

k2 grad
∫
∂D


(z, x)ν(x) · E(x)ds(x) (3.18)

for z ∈ R3 \ D and E ∈ M(D). It can be shown [51] that the mapping E → V is in fact
bounded from H (curl, D) into Hloc(curl,R3 \ D).

Lemma 3.3. For E ∈ M(D) we have that

‖E‖2
H (curl ,D) =

∫
∂D

{
Et · ν× curlV −Vt · ν× curl E

}
ds,
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3.2. Approximation Properties of Electromagnetic Herglotz Pairs 35

where Et and Vt denote the tangential components of E and V , respectively, on ∂D and
the integral is understood in the same sense of duality pairing.

Proof. By a denseness argument it suffices to establish the above identity for E ∈ M(D).
In this case we can extend the identity (3.18) to z ∈ R3 \ ∂D and deduce that

�V + k2V =−(1+ k2)E and div V = 0 in D, (3.19)

ν×V+ = ν×V− and ν× curlV+ = ν× curlV− on ∂D, (3.20)

where the subscripts + and − denote the limits obtained by approaching ∂D from R3 \ D
and D, respectively. Using (3.19), (3.20), the equation curlcurl E = k2 E , and the diver-
gence theorem, we have that∫

D

{
|E |2 +|curl E |2

}
dx

=
∫
D

{
|E |2 + E · curlcurl E

}
dx +

∫
∂D

ν · E × curl E ds

= (1+ k2)
∫
D

|E |2 dx +
∫
∂D

ν · E ×{curlV−− curlV+} ds

=
∫
D

E ·
{

curlcurl V − k2V
}

dx +
∫
∂D

ν · E ×{curl V−− curlV+} ds

=
∫
D

{
curlcurl E − k2 E

}
·V dx +

∫
∂D

ν · {V−× curl E − E × curlV+
}

ds

=
∫
∂D

{
Et · ν× curlV−−Vt · ν× curl E

}
ds,

and the proof is complete.

We are now in position to prove our desired approximation theorem [51].

Theorem 3.4. The set of Herglotz wave functions Eg for g ∈ L2
t (�) is dense in M(D) with

respect to the H (curl, D) norm.

Proof. Assume that E ∈ M(D) is such that

(Hg, E)H (curl,D) = 0

for all g ∈ L2
t (�). Then by Lemma 3.2 we have that

(g,H∗E)L2
t (�) = 0

for all g ∈ L2
t (�), and hence H∗E = 0. But H∗E is the far field pattern of V defined by

(3.17), and hence by Rellich’s lemma we have that V = 0 in R3 \ D. Hence by Lemma 3.3
we have that E = 0, and the proof is complete.
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36 Chapter 3. The Inverse Scattering Problem for Obstacles

We now turn our attention to showing that Herglotz wave functions can be used to
approximate the solution of a certain mixed boundary value problem with respect to the
norm in X (D,∂DI ). In particular, let f ∈ Y (∂DP ), h ∈ L2

t (∂DI ), and consider the problem
of finding a solution E ∈ X (D,∂DI ) of the interior mixed boundary value problem

curlcurl E − k2 E = 0 in D, (3.21)

ν× E = f on ∂DP , (3.22)

ν× curl E − iλ(ν× E)× ν = h on ∂DI , (3.23)

where λ ∈ C(∂DI ) and λ(x) ≥ λ0 > 0. We then have the following theorem [27] (in [27]
λ was assumed to be constant, but all the results remain valid if λ ∈ C(∂DI )). Note that if
∂DP = ∅, then (3.21)–(3.23) is no longer a mixed boundary value problem but rather an
interior impedance boundary value problem.

Theorem 3.5. Assume that ∂DI �= 0. Then the interior boundary value problem (3.21)–
(3.23) has a unique solution E ∈ X (D,∂DI ) satisfying

‖E‖X (D,∂DI ) ≤ C
(‖ f ‖Y (∂DP ) +‖h‖L2(∂DI )

)
for some positive constant C.

We now define an operator H : L2
t (�) → Y (∂DP )× L2

t (�I ) by

H g :=
{
ν× Eg on ∂DP ,
ν× curl Eg − iλν× (Eg × ν) on ∂DI ,

where Eg is a Herglotz wave function with kernel g ∈ L2
t (�). By Theorem 3.5 we see that

H is injective provided ∂DI �= ∅.

Theorem 3.6. Assume that ∂DI �= ∅. Then the range of H is dense in Y (∂DP )× L2
t (∂DI ).

Proof. By the change of variables d → −d and replacing g(−d) by g(d), it suffices to
consider the operator H with Eg written as

Eg(x) =
∫
�

e−ikx ·d g(d)ds(d).

Let H := Y (∂DP )× L2
t (∂DI ) with dual space H ∗ := Y (∂DP )′ × L2

t (∂DI ) in the compo-
nentwise duality pairing. The dual operator H� : H ∗ → L2

t (�) of the operator H is such
that for every (a1,a2) ∈ H ∗ and g ∈ L2

t (�) we have that

〈H g, (a1,a2)〉H ,H∗ =
〈
g,H�(a1,a2)

〉
L2

t (�),L2
t (�)

.

It suffices to show that the dual operator H� is injective since [92]

(RangeH) = a KernH�,
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where

a KernH� := {(p1, p2) ∈ H : 〈(p1, p2), (q1,q2)〉H ,H∗ = 0

∀(q1,q2) ∈ KernH�} .
(3.24)

In particular, the injectivity of H� implies that (RangeH) = H . Simple computations
show that H� is defined by

H�[a1,a2] = d ×

⎧⎪⎨
⎪⎩
∫
∂DP

e−ikx ·d (a1 × ν)ds(x)

+ ikd ×
∫
∂DI

e−ikx ·d (a2 × ν)ds(x)− i
∫
∂DI

λe−ikx ·d [ν× (a2 × ν)] ds(x)

⎫⎪⎬
⎪⎭×d .

We note that H�[a1,a2] coincides with the far field pattern of the combined electric and
magnetic dipole distributions

P(z) = 1

k2
curlcurl

∫
∂DP


(x , z)(a1× ν)ds(x)

− curl
∫
∂DI


(x , z)(a2× ν)ds(x)− i

k2
curlcurl

∫
∂DI

λ
(x , z)[ν× (a2 × ν)]ds(x).

The potential P is well defined and satisfies curlcurl P − k2 P = 0 in R3 \ ∂D.
Now assume that H�[a1,a2] = 0. Then the far field pattern of P is zero, and hence

from Rellich’s lemma P = 0 in R3 \D. Since a1 ∈ Y (∂DP )′, there is an extension (ã1×ν)∈
H−1/2(Div,∂D) of a1 × ν such that (ã1 × ν)

∣∣∣
∂DI

∈ L2
t (∂DI ). This follows from the fact

that if ν×u ∈ H−1/2(Curl,∂D), then (ν×u)×ν is in H−1/2(Div,∂D). Hence we can write

P(z) = 1

k2 curlcurl
∫
∂D


(x , z)(ã1× ν)ds(x)− 1

k2 curlcurl
∫
∂DI


(x , z)(ã1× ν)ds(x)

− curl
∫
∂DI


(x , z)(a2× ν)ds(x)− i

k2
curlcurl

∫
∂DI

λ
(x , z)[ν× (a2 × ν)]ds(x).

Furthermore, as z → ∂D we have that

ν× P+− ν× P−
∣∣
∂DP

= 0, (3.25)

ν× P+− ν× P−
∣∣
∂DI

=−(a2 × ν), (3.26)

ν× curl P+− ν× curl P−
∣∣
∂DP

= (ã1 × ν), (3.27)

ν× curl P+− ν× curl P−
∣∣
∂DI

=−iλ[ν× (a2 × ν)], (3.28)

 



CCM boo
2010/11/2
page 38

�

�

�

�

�

�

�

�

38 Chapter 3. The Inverse Scattering Problem for Obstacles

where the subscripts again denote the limits obtained by approaching ∂D from R
3 \ D and

D, respectively. Therefore combining (3.26) and (3.28) and using the fact that ν× P+ =
ν× curl P+ = 0 we obtain

ν× P−
∣∣∣
∂DP

= 0, (3.29)

[
ν× curl P−+ iλν× (P−× ν)

] ∣∣∣
∂DI

= 0, (3.30)

which are understood in the L2-limit sense (cf. [50, p. 172]). Thus P is such that curlcurl P−
k2 P = 0 in D and satisfies the boundary conditions (3.29) and (3.30). Using the divergence
theorem and a parallel surface argument, one can now conclude (cf. [27, Theorem 2.3]) that
P = 0 in D. From (3.26), (3.27), and the fact that a1 and a2 are tangential fields, we can
now conclude that a1 = a2 = 0. Hence H� is injective and the proof is complete.

Theorems 3.5 and 3.6 now imply the following theorem [27].

Theorem 3.7. Assume that ∂DI �= ∅. Then the solution E ∈ X (D,∂DI ) of (3.21)–(3.23)
can be approximated by a Herglotz wave function Eg with kernel g ∈ L2(�) with respect
to the norm in X (D,∂DI ).

Note that if ∂DI = ∅, then X (D,∂DI ) = H (curl, D) and Theorem 3.7 reduces to
Theorem 3.4.

3.3 The Linear Sampling Method
Until a few years ago, essentially all algorithms for solving the inverse scattering problem
were based on either a weak scattering approximation, such as the Born or physical op-
tics approximation, or the use of nonlinear optimization techniques. Although nonlinear
optimization techniques avoid the restrictive modeling assumptions of weak scattering ap-
proximations, for many practical applications such approaches require a priori information
that may not be available. Hence in recent years alternative methods for imaging have been
developed which avoid incorrect model assumptions but, as opposed to nonlinear optimiza-
tion techniques, seek only limited information about the scattering object and do not rely
on any a priori knowledge of the geometry and physical properties of the scatterer. Exam-
ples of such approaches are the LSM [22], the factorization method [77], and the method
of singular sources [101]. In this section we will present the LSM for solving the inverse
electromagnetic obstacle problem [47], [80] (this method was first introduced for the scalar
problem in [49] and [54]). The inverse medium problem will be considered in Chapter 4.
For an introduction to the LSM for scalar problems we refer to the recent monograph of
Cakoni and Colton [22].

We first consider the case when the scattering object D is a perfect conductor, i.e., E ,
H is a solution of (2.1)–(2.4), and the incident field is a plane wave, i.e., Ei , H i is given by
(2.20). We assume that we know the electric far field pattern E∞(x̂ ,d , p) for all d , x ∈ �
(we will later consider the case of limited aperture data). Then we can define the far field
operator F : L2

t (�) → L2
t (�) by

(Fg)(x̂) :=
∫
�

E∞(x̂ ,d , g(d))ds(d), x̂ ∈�, (3.31)
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for g ∈ L2
t (�). Since the scattered field depends linearly on the polarization of the incident

field, F is a linear operator. Note that by superposition, Fg is the electric far field pattern
of the scattered field Es corresponding to the electric field of an electromagnetic Herglotz
pair with kernel ikg as incident field; i.e., Es is the solution of (2.1)–(2.4) with ν× Es =
−(ik)(ν× Eg) on ∂D, where Eg is the Herglotz wave function with kernel g. In particular
it follows from Theorem 2.5 that F is injective if and only if k is not a Maxwell eigenvalue
for D.

We now consider the linear first kind integral equation

(Fg)(x̂) = Ee,∞(x̂ , z,q), (3.32)

where

Ee,∞(x̂ , z,q) = ik

4π
(x̂ ×q)× x̂ e−ikx̂ ·z

is the far field pattern of an electric dipole with source at z and polarization q (we could
also have considered Ee,∞ to be the far field pattern of a magnetic dipole). Equation (3.32)
is known as the far field equation. If z ∈ D, it is seen that if g = gz is a solution of the far
field equation, then by Theorem 2.5 the scattered field Es

g due to the incident field ik Eg and

the electric dipole Ee(·, z,q) coincide in R
3 \D. Hence, by the trace theorem, the tangential

traces ν× Es
g =−ik(ν× Eg) and ν× Ee(·, z,q) coincide on ∂D. As z ∈ D tends to ∂D we

have that ‖ν× Ee(·, z,q)‖H−1/2(Div,∂D) →∞, and hence ‖ν× Eg‖H−1/2(Div,∂D) →∞ also.
Thus ‖g‖L2

t (�) →∞ and this behavior determines ∂D. Unfortunately, the above argument
is only heuristic since it is based on the assumption that g satisfies the far field equation for
z ∈ D, and in general the far field equation has no solution for z ∈ D. This follows from
the fact that if g satisfies the far field equation, then the Herglotz wave function ik Eg is the
solution of the interior boundary value problem

curlcurl Ez − k2 Ez = 0 in D, (3.33)

ν× [Ez + Ee(·, z,q)
]= 0 on ∂D, (3.34)

which in general is not possible. However, it follows from Theorem 3.4 that if k is not a
Maxwell eigenvalue for D (i.e., k is such that there exists a nontrivial solution of (3.33),
(3.34) for Ee set equal to zero), then the unique solution Ez ∈ H (curl, D) of (3.33), (3.34)
can be approximated arbitrarily closely in H (curl, D) by a Herglotz wave function. More
generally, if k is not a Maxwell eigenvalue, then the well-posedness of the interior problem
(3.33), (3.34) with −ν × Ee(·, z,q) replaced by an arbitrary tangential vector field f ∈
H−1/2(Div,∂D) implies that for every ε > 0 there exists a gε ∈ L2

t (�) such that

‖ν× Egε − f ‖H−1/2(Div,∂D) < ε. (3.35)

We now examine the far field equation more closely. To this end, we introduce the
bounded linear operator B : H−1/2(Div,∂D)→ L2

t (�), which maps a tangential vector field
f ∈ H−1/2(Div,∂D) to the far field pattern E∞ of the radiating solution Es of curlcurl Es −
k2 Es = 0 in R

3 \ D satisfying ν× Es = f on ∂D. Then in terms of the far field operator F
we have that

Fg =−ik B(ν× Eg).

B is a compact operator since it is the composition of the bounded linear solution operator
mapping the boundary data f onto (ν× Es ,ν× H s) ∈ (H−1/2(Div,�R))2, where �R :=
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40 Chapter 3. The Inverse Scattering Problem for Obstacles

{x : |x | = R} with the compact operator which takes this data onto the electric far field
pattern (we assume that D ⊂ BR := {x : |x |< R}).

Lemma 3.8. The operator B : H−1/2(Div,∂D) → L2
t (�) is injective with dense range.

Proof. Injectivity is a consequence of Theorem 2.5 and the uniqueness of the direct scat-
tering problem. To show that B has dense range, we consider the dual operator B� :→
L2

t (�) → H−1/2(Curl, D) given by

〈B f , g〉L2
t (�),L2

t (�) =
〈

f , B�g
〉

H−1/2(Div,∂D),H−1/2(Curl,∂D)
,

where 〈·, ·〉 denotes the duality pairing between the denoted spaces. By changing the order
of integration and integrating by parts it can be shown that (cf. [27])

〈B f , g〉L2
t (�),L2

t (�) =
1

4π

∫
∂D

[
f · (curl Eg − curl Ẽ

)]
ds, (3.36)

where Ẽ ∈ Hloc(curl ,R3 \ D) is the solution of

curlcurl Es − k2 Es = 0 in R
3 \ D,

ν× (Es − Eg
)= 0 on ∂D

and the Herglotz wave function Eg is written in the form (making the change of variables
as in the proof of Theorem 3.6)

Eg(x) :=
∫
�

g(d)e−ikx ·d ds(d).

Hence, noting that the integral in (3.36) is interpreted in the sense of duality between
H−1/2(Div,∂D) and H−1/2(Curl,∂D), we have that

(B�g)(x) = ν× (curl Eg(x)− curl Ẽ(x)
)× ν, x ∈ ∂D.

To show that B has dense range, it suffices to show that B� is injective. To this
end, B�g = 0 implies that ν× curl Eg = ν× curl Ẽ on ∂D and by definition we have that
ν× Eg = ν× Ẽ on ∂D. Now let BR : {x : |x |< R} be a ball containing D in its interior and
consider the solution Ê , Ĥ of Maxwell’s equation in BR defined by

Ê(x) :=
{

0, x ∈ D,
Ẽ(x)− Eg(x), x ∈ BR \ D,

Ĥ (x) := 1

ik
curl Ê(x).

Then using the first Stratton–Chu formula (2.10), (2.11) we see that Ê(x) = 0 for x ∈ BR ,
and, since R was arbitrary, Ê(x) = 0 for x ∈ R3, i.e., Eg(x) = Es(x) for x ∈ R3 \ D. By

 



CCM boo
2010/11/2
page 41

�

�

�

�

�

�

�

�

3.3. The Linear Sampling Method 41

Theorem 2.2 this is a contradiction unless Eg(x) = Es(x) = 0 for x ∈R3 \ D. By Theorem
2.1 this implies that Eg(x) = 0 for x ∈ R3 and hence g = 0, i.e., B� is injective.

Lemma 3.9. Ee,∞(x̂ , z,q) is in the range of B if and only if z ∈ D.

Proof. If z ∈ D, then B(−ν× Ee(·, z,q)) = Ee,∞(x̂ , z,q). Now let z ∈ R3 \ D and assume
that there is a tangential vector field f ∈ H−1/2(Div, D) such that B f = Ee,∞(·, z,q). Then
by Theorem 2.5 the scattered field Es corresponding to the boundary data f and the electric
dipole Ee(·, z,q) coincide in {x : x ∈ R3 \ D, x �= z}. But this is a contradiction since Es ∈
Hloc(curl ,R3 \ D) but E∞(·, z,q) is not.

Next we consider the ill-posed equation

B f = 1

ik
Ee,∞(·, z,q), z ∈ R

3. (3.37)

As noted in the proof of Lemma 3.9, for z ∈ D the tangential vector field fz := − 1
ik ν×

Ee(·, z,q) is the solution to (3.37). In particular, as z → ∂D we have that ‖ fz‖H−1/2(Div,∂D) →
∞. If z ∈R3 \D, then from Lemmas 3.8 and 3.9 and using Tikhonov regularization we can
construct a regularized solution to (3.37). In particular, there exists fz := f αz correspond-
ing to a parameter α = α(δ) chosen by a regular regularization strategy (e.g., the Morozov
discrepancy principle [50]) such that∥∥∥∥B fz + 1

ik
Ee,∞(·, z,q)

∥∥∥∥
L2

t (�)
< γ δ

for an arbitrary noise level δ and a constant γ ≥ 1 and

lim
α→0

‖ f αz ‖H−1/2(Div,∂D) →∞.

Noting that α→ 0 as δ→ 0 and using (3.35) to approximate f αz by ν×Eg in H−1/2(Div,∂D)
now yields the following result [18].

Theorem 3.10. Assume that k is not a Maxwell eigenvalue for D and that F is the far
field operator (3.31) corresponding to the scattering problem for a perfect conductor; i.e.,
E∞ is the electric far field pattern corresponding to (2.1)–(2.4), (2.20). Then the following
hold:

(1) For z ∈ D and a given ε > 0, there exists a gεz ∈ L2
t (�) such that

‖Fgεz − Ee,∞(·, z,q)‖L2
t (�) < ε,

and the corresponding Herglotz wave function ik Egεz converges to the solution of
(3.33), (3.34) in H (curl, D) as ε→ 0.

(2) For a fixed ε > 0 we have that

lim
z→∂D

‖Egεz ‖H (curl ,D) =∞ and lim
z→∂D

‖gεz ‖L2
t (�) =∞.
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42 Chapter 3. The Inverse Scattering Problem for Obstacles

(3) For z ∈R
3 \ D and a given ε > 0, every gεz ∈ L2

t (�) that satisfies

‖Fgεz − Ee,∞(·, z,q)‖L2
t (�) < ε

is such that

lim
ε→0

‖Egεz ‖H (curl ,D) =∞ and lim
ε→0

‖gεz ‖L2
t (�) =∞.

A similar result can also be obtained for scattering by a partially coated obstacle (i.e.,
the scattering problem (3.1)–(3.5)) or a fully coated obstacle (i.e., the scattering problem
(3.1)–(3.5) with ∂DP = ∅). In this case the analysis follows that for a perfect conductor,
except that instead of using Theorem 3.4 we now use Theorem 3.7, and the boundary
operator B now maps an ordered pair in Y (∂DP )× L2

t (∂DI ) onto the electric far field
pattern E∞ ∈ L2

t (�). For details see [27], where the following result is proved.

Theorem 3.11. Assume that ∂DI �= ∅ and let F be the far field operator (3.31) correspond-
ing to the scattering problem for a coated obstacle; i.e., E∞ is the electric far field pattern
corresponding to (3.1)–(3.5). Then the following hold:

(1) For z ∈ D and a given ε > 0, there exists a gεz ∈ L2
t (�) such that

‖Fgεz − Ee,∞(·, z,q)‖L2
t (�) < ε,

and the corresponding Herglotz wave function ik Egεz converges to the solution of
(3.21)–(3.23) in X (D,∂DI ) with f = −ν× Ee(·, z,q) and h = −ν× curl Ee(·, z,q)+
iλ(ν× Ee(·, z,q))× ν as ε→ 0.

(2) For a fixed ε > 0 we have that

lim
z→∂D

‖Egεz ‖X (D,∂DI ) =∞ and lim
z→∂D

‖gεz ‖L2
t (�) =∞.

(3) For z ∈R3 \ D and a given ε > 0, every gεz ∈ L2
t (�) that satisfies

‖Fgεz − Ee,∞(·, z,q)‖L2
t (�) < ε

is such that

lim
ε→0

‖Egεz ‖X (D,∂DI ) =∞ and lim
ε→0

‖gεz ‖L2
t (�) =∞.

Theorem 3.11 says that the Herglotz wave function ik Egεz is an approximation in
X (D,∂DI ) to the solution Ez of the interior mixed boundary value problem

curlcurl Ez − k2 Ez = 0 in D, (3.38)

ν× [Ez + Ee(·, z,q)
]= 0 on ∂DP , (3.39)

ν× curl (Ez + Ee(·, z,q))− iλ
[
ν× (Ez + Ee(·, z,q))

]× ν = 0 on ∂DI . (3.40)
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This fact enables us to obtain estimates for λ [21]. In particular, the following theorem
connects the surface impedance λ with Ez (and hence with ik Egεz ).

Theorem 3.12. Let z ∈ D, Wz := Ez + Ee(·, z,q) and let uT := (ν×u)×ν be the tangential
component of a function u ∈ H (curl, D). Then

∫
∂DI

(Wz )T ·λ(W z)T ds =− k2

6π
|q|2 + k�(q · Ez).

Proof. By applying the second vector Green’s formula and using the boundary conditions
for Ez on ∂D we obtain

2i
∫
∂DI

(Wz)T ·λ(W z)T ds =
∫
∂D

(
ν×Wz · curlW z − ν×W z · curlWz

)
ds

=
∫
∂D

(
ν× Ee(·, z,q) · curl Ee(·, z,q)− ν× Ee(·, z,q) · curl Ee(·, z,q)

)
ds

+
∫
∂D

(
ν× Ez · curl Ee(·, z,q)− ν× Ee(·, z,q) · curl Ez

)
ds (3.41)

+
∫
∂D

(
ν× Ee(·, z,q) · curl Ez − ν× Ez · curl Ee(·, z,q)

)
ds.

It is easily seen that if E ∈ H (curl, D) and H = 1
ik curl E is a solution of Maxwell’s equa-

tions and if z ∈ D, then

ν× Ee(y, z,q) · curl E(y) =− i

k
(−ik)curl zcurl zq
(y, z) · (ν× H (y)

)
=−q · curl zcurl z
(y, z)

(
ν× H (y)

) (3.42)

and

ν× E(y) · curl y Ee(y, z,q) = ikν× E(y) · He(y, z,q)

= ikq · curl z
(y, z)
(
ν× E(y)

)
.

(3.43)

Hence from the first Stratton–Chu formula (2.10), (2.11) we have that

∫
∂D

(
ν× Ee(y, z,q) · curl y E(y)− ν× E(y) · curl y E(y, z,q)

)
ds(y) = ikq · E(z). (3.44)
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44 Chapter 3. The Inverse Scattering Problem for Obstacles

One can also easily derive that∫
∂D

(
ν× Ee(·, z,q) · curl Ee(·, z,q)− ν× Ee(·, z,q) · curl Ee(·, z,q)

)
ds

=−2ik
∫
�

Ee,∞(·, z,q) · Ee,∞(·, z,q)ds

=− ik3

8π2

∫
�

|(x̂ ×q)× x̂|2 ds =−2ik3

6π
.

(3.45)

The theorem now follows from (3.41)–(3.45).

From Theorem 3.12 it now follows that

max
x∈∂D

λ(x) ≥ − k2

6π |q|2 + k�(q · Ez)

‖(Wz )T ‖2
L2(∂D)

(3.46)

with equality holding for λ(x) = constant. Since Ez can be approximated by ik Egεz where
gεz is given by Theorem 3.11, (3.46) provides a method for estimating maxλ(x) from a
knowledge of the electric far field pattern. It is also possible to derive a variational formula
for the determination of maxx∈∂D λ(x) [21]. In addition,

∫
∂D

λ|(ν×Wz)× ν|2 ds =− k2

6π
|q|2 + k�(q · Ez)

for z ∈ Br ⊂ D can be viewed as an integral equation for λ and thus can be used to com-
pute λ and consequently the support of the coating ∂DI . However, further analysis of the
integral operator on the left-hand side is necessary (see [29] for the scalar case). Numerical
examples using (3.46) will be given in Section 3.5.

The above results provide a characterization for the boundary ∂D of the scattering
obstacle D. Having found D it is then possible in the case of a coated obstacle to obtain
an estimate for maxx∈∂D λ(x) (without knowing ∂DI ). Unfortunately, since the behavior
of Egεz is described in terms of a norm depending on the unknown region D, Egεz cannot
be used to characterize D. Instead the LSM characterizes the obstacle by the behavior of
gεz . In particular, given a discrepancy ε > 0 and gεz , the ε-approximate solution of the far
field equation, the boundary of the scatterer is reconstructed as the set of points z where
the L2

t (�) norm of gεz becomes large. An open question is how to obtain numerically the
ε-approximate solution of the far field equation given by Theorem 3.10 or Theorem 3.11.
In all numerical experiments implemented to date, Tikhonov regularization combined with
the Morozov discrepancy principle is used to solve the far field equation.

Although all these experiments indicate that this regularized solution behaves the
same way as gεz given by Theorem 3.10 or Theorem 3.11, in general there is no mathemat-
ical justification for this behavior. However, for the case of the Helmholtz equation, Arens
and Lechleiter have shown [7], [8] that, in certain cases, applying Tikhonov regularization
to the far field equation leads to a solution g that exhibits the desired behavior.
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Obviously, in the context of the above discussion, it would be desirable to modify
the far field equation in such a way that it has a solution if and only if z ∈ D. This desire
motivated Kirsch to introduce the factorization method for solving the inverse scattering
problem of shape reconstruction [73], [74]. The applicability of the factorization method is
still limited to a restricted class of scattering problems. In particular, to date the method has
not been established for the case of Maxwell’s equations for a perfect conductor, for coated
obstacles, or for limited aperture scattering data. On the other hand, when applicable,
the factorization method provides a mathematical justification for using the regularized
solution of an approximate far field equation to determine D. A complete discussion of
the factorization method for solving the inverse scattering problem can be found in the
monograph [77].

3.4 Limited Aperture Data
In many cases of practical interest, the electric far field data E∞(x̂ ,d , p) is restricted to the
case when d and x̂ are on a subset �0 and �1, respectively, of the unit sphere � (possibly
�0 =�1). In the case of limited aperture data the far field equation (3.31) takes the form

∫
�0

E∞(x̂ ,d , g(d))ds(d) = Ee,∞(x̂ , z,q), x̂ ∈�1.

In order to handle this case, we note that the function gεz ∈ L2
t (�) in Theorem 3.10 or

Theorem 3.11 is the kernel of a Herglotz wave function which approximates the solution
of (3.33)–(3.34) or (3.38)–(3.40) with respect to an appropriate norm. Hence, as discussed
in [19], to treat the case of limited aperture data, it suffices to show that a Herglotz wave
function and its first derivatives can be approximated uniformly on compact subsets of a
ball BR of radius R centered at the origin by a Herglotz wave function with kernel supported
in a subset of �. This new Herglotz wave function and its kernel can now be used in place
of Egεz and gεz in Theorem 3.10 or Theorem 3.11. Thus, assuming that k is not a Maxwell
eigenvalue for BR (this is not a restriction since we can always find a ball containing D
that has this property), it suffices to show that the set of functions ν× Eg with g ∈ L2

t (�)
having support�0 ⊂� for some subset �0 ⊂� is complete in H−1/2(Div,∂BR).

To this end, let ϕ ∈ H−1/2(Curl,∂BR) and assume that for a fixed �0 ⊂ � we have
that

∫
∂BR

ϕ(x)

⎡
⎢⎣∫
�0

g(d)e−ikx ·d ds(d)

⎤
⎥⎦ ds(x) = 0 (3.47)

for every g ∈ L2
t (�0), where the first integral is interpreted in the sense of duality pairing.

We want to show that ϕ = 0. By interchanging the order of integration we arrive at

∫
�0

g(d)

⎡
⎢⎣ ∫
∂BR

ϕ(x)e−ikx ·d ds(x)

⎤
⎥⎦ ds(d) = 0
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for every g ∈ L2
t (�0), which implies that

⎛
⎜⎝d ×

∫
∂BR

ϕ(x)e−ikx ·d ds(x)

⎞
⎟⎠×d = 0, d ∈�0. (3.48)

The left-hand side of (3.48) coincides with the far field pattern of the surface potential
defined by

(Aϕ(x))(y) := 1

k2 curlcurl
∫
∂BR

ϕ(x)
(x , y)ds(x)

for y ∈R3 \∂BR . It can be shown [17] that ν× Aϕ is continuous across the boundary ∂BR ,
and A maps H−1/2(Curl, BR) into Hloc(Curl,R3 \∂BR). Since Aϕ is a radiating solution to
curlcurl E −k2 E = 0 in R3 \ B R , from (3.48) and Theorem 2.5 we have that Aϕ(y)= 0 for
y ∈ R3 \ B R . In particular ν× Aϕ = 0 on ∂BR in the sense of the trace theorem and, since
k is not a Maxwell eigenvalue, (Aϕ)(y)= 0 for y ∈ BR . Finally, applying the jump relation
for ν× (∇× (Aϕ)) across ∂BR , we obtain that ϕ = 0. This completes the proof.

Note that “backscattering” data coincides with taking�0 =−�1; i.e., d ∈�0 if and
only if −x̂ ∈ �0. Numerical examples of the reconstruction of D using limited aperture
electric far field data will be given in subsection 3.5.4. As will be seen, the quality of the
reconstruction of D deteriorates as the aperture decreases.

3.5 Numerical Examples in Three Dimensions
In this subsection we collect a few numerical examples for the LSM and related coefficient
problems in three dimensions. Unfortunately none of our examples use real data. Indeed
we adapt the strategy discussed in Section 1.5. We choose a scatterer, predict the far field
(or near field) measurements by a suitable forward solver, and then use the LSM to solve
the inverse problem. In every case, in order to avoid inverse crimes, extra noise is added as
described in equation (1.13).

Figure 3.1. Examples of grids for
the unit sphere � used in some of the studies
in this section. Left: a grid of 42 vertices used
for the case of the unit sphere. Right: a grid
of 92 points used for the other scatterers.

The computed far field pattern
Ecomp∞ (x̂ ,d , p) is determined for N mea-
surement points {x̂ j }N

j=1 on the unit sphere
(roughly uniformly distributed; see Figure
3.1). These directions also serve as in-
cident directions, and we use two mutu-
ally orthogonal polarizations per incident
wave, to be detailed shortly.

The method of discretization of the
far field equation is from [93]. In particu-
lar, an auxiliary vector p̂, | p̂| = 1, is chosen
such that p̂× x̂ j �= 0 for any j . Then two
polarizations are used, p̂θj = ( p̂× x̂ j )/| p̂×
x̂ j | and p̂φj = p̂× (x̂ j × p̂)/| p̂× (x̂ j × p̂)|.
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The N × N generalized “matrices” Aθ and Aφ are now defined by

Aθi, j = Ecomp∞ (x̂i , x̂ j , p̂θj ), Aφi, j = Ecomp∞ (x̂i , x̂ j , p̂φj ).

At each data point {x̂ j } on the unit sphere the Herglotz kernel is expanded as

g j (z,q) = gθj (z,q) p̂θj + gφj (z,q) p̂φj .

Then at the discrete level the far field equation (3.32) becomes

N∑
j=1

ω j (gθj (z,q)Aθi, j + gφj (z,q)Aφi, j ) = Ee,∞(x̂i , z,q) (3.49)

for 1 ≤ i ≤ N , where the weights ω j > 0 are chosen to give a consistent quadrature scheme

on the unit sphere. The 2N unknowns {gθj , gφj }, 1 ≤ j ≤ N , thus satisfy a 2N ×2N system

of equations (recall that the entries of the “matrices” Aθi, j and Aφi, j are themselves tangential

vectors). A single linear system can be obtained by taking the dot product of (3.49) with pθi
and pφi , respectively, for each i . Having obtained a standard linear system, noise is added
via (1.13) and, for each z and q , the resulting discrete far field equation is solved by the
Morozov/Tikhonov procedure given in Chapter 1. We use a uniform M × M × M grid of
sampling points uniformly spaced and containing the scatterer. For each z in the sampling
grid and for each polarization q = q1 = (1,0,0), q2 = (0,1,0), and q3 = (0,0,1), we can
compute an approximation to ‖g(z,q)‖L2(�) by using quadrature at the incident field points
(the points {x̂ j }N

j=1)) and hence compute an approximation to the indicator function

G(z) = 1

3

(
‖g(z,q1)‖−2

L2(�)
+‖g(z,q2)‖−2

L2(�)
+‖g(z,q3)‖−2

L2(�)

)1/2
.

Isosurfaces of G(z) close to zero give an approximation to the surface of the scatterer,
provided the right isosurface value is chosen. By this we mean that we choose C and plot
surfaces where G(z) = C . As in the case of two-dimensional reconstructions discussed in
Section 1.3, the choice of C is still largely an unsolved problem. We refer the reader to the
discussion at the end of that section for some references to possible approaches.

A study of G computed using spectral cutoff for a sphere is presented in [43]. In this
case, series solutions can be used to obtain explicit formulae for the scattered field and the
Herglotz kernel gz . This study inspired the two-dimensional results presented in subsection
1.5.1, and the qualitative conclusions are similar (although the results in three dimensions
are somewhat clearer than those in two dimensions).

3.5.1 A Disconnected Scatterer: Two Balls

Our first example is taken from [52] and is intended to illustrate two advantages of the
LSM. First, the method works for one or more scatterers without modification. Second, it
is not necessary to know the nature of the scatterer. In Figure 3.2 we show results of recon-
structing two penetrable balls, each having a conducting boundary condition with internal
parameter N(x) = 2I and conductivity η = 1 (cf. Section 4.6). The data was computed
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Figure 3.2. Reconstruction of two balls using the LSM in the case of a conducting
boundary condition with a fully coated scatterer and η = 1. Top left: the exact scatterer.
Top right: reconstruction. Bottom left: a contour plot of G(z) in the plane z3 = 0. Bottom
right: a contour plot of G(z) in the plane z2 = 0. The solid bar on the top right figure
indicates the wavelength of the radiation used. Reprinted from [52] with permission.

using the Ultra Weak Variational Formulation (UWVF) of Maxwell’s equations [71] and
noise with parameter ε = 0.01 was added (see (1.13)). The balls have unit radius and are
centered at (1,0,0) and (−1,0,0). The wave number is k = 6 (so the wavelength is 1.05)
and the conductivity parameter is η = 1. We use 92 incoming waves and measurements
(see Figure 3.1). As can be seen from Figure 3.2, provided a good isosurface of G(z) is
chosen, the balls can be reconstructed. The contour plots of G(z) in the same figure show
that if the isosurface value is chosen too small, we would predict a dumbbell scatterer. If
the value is chosen too large, we predict separated balls that are two small. In Figure 3.3,
also from [52], we show a reconstruction of two impenetrable balls, this time both having
an impedance boundary condition with impedance (see (3.23)) λ = 1. No change in the
inversion scheme is needed when reconstructing the scatterers in Figure 3.2 or 3.3 despite
their having quite different physical properties.
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Figure 3.3. Reconstruction of two balls with impedance boundary conditions
where λ = 1. Left: reconstruction. Right: a contour plot of 1/|�gz| in the plane z3 = 0.
Reprinted from [52] with permission.

3.5.2 The Teapot

Our next example is from [48]. The scatterer is a perfectly conducting teapot4 shown in
Figure 3.4(a). Forward data is computed using an integral equation method via the Electric
Field Integral Equation. For the teapot scatterer, the authors use successively k = 28, N =
252; k = 56, N = 252; and k = 96, N = 492 so the wavelength of the radiation ranges from
0.224 down to 0.0654. Results are shown in Figure 3.4. Two comments are in order: (1) the
increase of N with k is needed to maintain a good approximation to the far field operator
F and is consistent with our discussion of the need to increase N with k in two dimensions
(see (1.14)); (2) as k increases (and hence the wavelength decreases) the fidelity of the
reconstruction improves. This is to be expected on physical grounds.

The authors of [48] suggest that the roughness observed in the reconstruction at k =
96 is due to error in the forward solver. However, we have also observed increased surface
roughness whenever k increases (even if care is taken to keep the forward data at a fixed
accuracy independent of k).

3.5.3 Impedance Cube

Our next example underlines the need to have sufficiently many measurements to resolve
the far field pattern. Here the scatterer is a unit cube with impedance boundary data. The
forward problem is approximated by the UWVF [71], and the inverse problem is solved
as described at the start of this chapter. We choose the wave number k = 8, and λ varies
over the surface of the cube. In the left panel of Figure 3.5 we show the reconstruction
when the number of incident directions is N = 42 (see Figure 3.1) and show in the right

4Metal teapots, although poor at keeping tea hot, are quite common in tea drinking regions. The need for
the remote detection of a teapot should be obvious to any tea drinker.
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Figure 3.4. Reconstruction of the teapot. Top left: Original figure. Top right:
Reconstruction when k = 28. Bottom left: Reconstruction when k = 56. Bottom right: Re-
construction when k = 96. As expected, smaller features are seen at higher wave numbers.
Reprinted from [48] with permission.

panel when N = 92. The need for a sufficiently large N is obvious. As yet no estimate
for the minimum necessary N like that given in (1.14) has been suggested in the literature,
although it is reasonable to conjecture that N should be proportional to (ka)2, where a is a
representative radius for the scatterer.

3.5.4 Reconstruction of λ and Limited Aperture

We again present material from [52]. In particular we show how we can reconstruct λ, the
impedance parameter, from far field data using equation (3.46) (note that the inequality is
an equality if λ is constant). We consider two cases: first, the case when the boundary ∂D
also needs to be reconstructed (using the LSM) followed by λ, and second, the case when
∂D is known and only λ needs to be reconstructed. The scatterer is a simple unit sphere,
and k = 3 with an impedance boundary condition having constant impedance λ. Data is
computed for 42 incoming directions and 42 measurement points (see Figure 3.1). In Table
3.1 we show the reconstruction of λ using (3.46) for various choices of λ. Generally, when
∂D is known, the relative error is roughly constant except for λ= 0.1, whereas when both
the LSM (for shape reconstruction) and (3.46) are used, the error is more variable.

Unfortunately, even if the theory appears satisfactory (see Section 3.4), limited aper-
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Figure 3.5. Reconstruction of the unit cube when k = 8. An impedance boundary
condition with variable impedance is imposed on ∂D. Left panel: results for N = 42
incoming waves. Right panel: results for N = 96. The left panel shows typical results
when too few measurements are used.

Exact Exact ∂D LSM
0.1 0.069 0.072
1 0.96 0.97

1.22 1.17 1.17
2 1.93 1.53

c©2006 IEEE.

Table 3.1. Results for the reconstruction of the impedance λ for the unit sphere
at k = 3. The column “Exact ∂D” shows results using (5.29) with the exact boundary ∂D
and the column “LSM” shows results using the LSM followed by (5.29). Reproduced from
[52] with permission.

ture data can present a severe challenge for the LSM.5 In Figure 3.6 we show the results
of using incident directions chosen to lie in a small spherical cap in �. In particular we
show results when �0, the set of measurement directions, subtends an angle of 27◦ in the
direction d = (1,0,0) as shown in Figure 3.6(c). The measurement angles (multistatic)
are in �1 = −�0 (i.e., the transmitters and receivers are in the same place—we are using
multistatic data in the backscattering direction). We use 39 incoming directions and mea-
surements. The resulting reconstruction of the unit sphere is shown in Figure 3.6(c). We
see that in the cross-range direction (i.e., roughly orthogonal to the directions of propaga-
tion) the size of the ball is well constructed, but the reconstruction is highly elongated down
range. This is typical of limited aperture results, and the elongation increases as the size of
the cap decreases. Adding multistatic measurements from a second cap (shown in Figure
3.6(b)) improves the reconstruction on the side of the scatterer closest to the measurement
caps (remember that these are opposite the incident direction caps in the figures) as shown
in Figure 3.6(d). Contour plots shown in Figures 3.6(e), (f) reinforce these observations.

5Alleviating this problem would be an important development in extending the utility of the method.
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Figure 3.6. Results of reconstructing the unit sphere using limited aperture data,
where the sphere has an impedance boundary condition with λ= 0.1. Top row: the domain
�1. Middle row: isosurface. Bottom row: a contour plot of G(z) in the plane z3 = 0
corresponding to the middle row. Reprinted from [52] with permission.
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Chapter 4

The Inverse Scattering Problem
for Anisotropic Media

In this chapter we consider the inverse scattering problem for a penetrable scatterer. In
the context of the LSM, this was first considered by Haddar and Monk [66], who assumed
that the coefficient N(x) (see (4.2)) is smooth. This is obviously not generally a practical
assumption. So in this chapter we describe more recent results, including uniqueness the-
ory, where N(x) is allowed to be a discontinuous matrix function of position. Obviously,
all the results of this chapter hold true in the particular case of isotropic media, i.e., for
N(x) = n(x)I where n(x) is a piecewise smooth function in D. A related optimization
method, the dual space method, is considered in [50].

More specifically, we assume that the electric permittivity ε and conductivity σ of the
medium are real 3× 3 matrix valued functions, whereas the magnetic permeability of the
medium is a constant μ0. The positive constants ε0 and μ0 are the electric permittivity and
magnetic permeability of the dielectric background medium (i.e., the conductivity is zero).
Let the bounded region D ⊂R3 again be the support of the anisotropic inhomogeneity with
piecewise smooth boundary ∂D such that R3 \ D is connected. We denote by N(x) the ma-
trix index of refraction of the anisotropic medium defined by N(x) = (ε(x)+ iσ (x)/ω)/ε0
for x ∈ D. The scattering of time-harmonic electromagnetic incident fields Ei , H i by
the anisotropic medium leads to the following set of equations for the interior electric and
magnetic fields E , H and the scattered electric and magnetic fields Es , H s:

curl Es − ik H s = 0
curl H s + ik Es = 0

}
in R

3 \ D, (4.1)

curl E − ik H = 0
curl H + ik N(x)E = 0

}
in D, (4.2)

ν× (Es + Ei )− ν× E = 0
ν× (H s + H i)− ν× H = 0

}
on ∂D, (4.3)

where Ei , H i are taken to be plane waves given by

53

 



CCM boo
2010/11/2
page 54

�

�

�

�

�

�

�

�

54 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

Ei (x ,d , p) = i

k
curlcurl p eikx ·d

= ik(d × p)×d eikx ·d ,

H i (x ,d , p) = curl p eikx ·d ,

= ikd × p eikx ·d
(4.4)

and the Silver–Müller radiation condition

lim
r→∞(H s × x − r Es) = 0. (4.5)

To give our assumptions on the data for this problem, we first need to make precise the
definition of bounded positive definite matrix fields.

Definition 4.1. A matrix field K is said to be bounded positive definite on D if K ∈
L∞(D,C)3×3 and if there exists a constant γ > 0 such that

�(K ξ ,ξ ) ≥ γ |ξ |2 ∀ξ ∈ C and a.e. in D. (4.6)

We assume that N and N−1 are symmetric positive definite matrix fields whose en-
tries are piecewise smooth functions in D and ξ̄ ·�(N(x))ξ ≥ 0 for all ξ ∈C3 and all x ∈ D.
Note that in (4.1)–(4.5) the continuity of the tangential component of the electric and mag-
netic fields is assumed where N(x) is discontinuous. We assume that N(x) is discontinuous
across nonintersecting smooth interfaces.

The scattering problem (4.1)–(4.5) can be seen as a particular case of the following
transmission problem if we set f := ν× Ei and h := ν× H i :

curl Es − ik H s = 0
curl H s + ik Es = 0

}
in R

3 \ D, (4.7)

curl E − ik H = 0
curl H + ik N(x)E = 0

}
in D, (4.8)

ν× E − ν× Es = f
ν× H − ν× H s = h

}
on ∂D (4.9)

together with the Silver–Müller radiation condition (2.3). The following well-posedness of
the direct scattering problem is well known (see [78], [93]).

Theorem 4.2. Given f ,h ∈ H−1/2(Div,∂D) and the above assumptions on D and N, the
transmission problem (4.7)–(4.9) has a unique solution Es , H s ∈ Hloc(curl ,R3 \ D) and
E , H ∈ H (curl, D). Moreover, this solution satisfies

‖E‖H (curl ,D)+‖Es‖Hloc (curl ,BR\D) +‖H‖H (curl,D) +‖H s‖Hloc (curl ,BR\D)

≤ C
(‖ f ‖H−1/2(Div,∂D)+‖h‖H−1/2(Div,∂D)

)
(4.10)

for some positive constant C depending on R but not on f and h.
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The inverse problem we consider here is to determine D and some information about
N from the measured far field data at a fixed frequency. It is already known (cf. [64]) that
in the case of an anisotropic medium the (matrix) index of refraction N is not uniquely
determined by the electric far field pattern E∞(x̂ ,d , p) for x̂ ,d ∈� and p ∈R3 even if it is
known for an interval of frequencies. However, in the next section we show that the support
D of the inhomogeneity can be uniquely determined from a knowledge of E∞(x̂ ,d , p) for
x̂ ,d ∈ � and p ∈ R3 at a fixed frequency. An important ingredient for the uniqueness
theorem and for solving the inverse problem is the analysis of the corresponding interior
transmission problem which will be discussed in sections 4.1 and 4.2. We then derive
the LSM for the reconstruction of D and establish a lower bound for the Euclidean norm
of the matrix N that is computable from a knowledge of the far field data. We conclude
the chapter by outlining some results on the inverse scattering problem for an anisotropic
medium that is partially coated by a very thin layer of highly conductive material.

4.1 Uniqueness Theorems
To prove the uniqueness theorem for the determination of the support D of an anisotropic
medium, we follow the approach in [20], which is based on the ideas of [67]. In particular,
we first need to study the interior transmission problem corresponding to the scattering
problem (4.1)–(4.5). In this case, the interior transmission problem is formulated as the
problem of finding functions E , E0, H , and H0 defined in D that satisfy

curl E − ik H = 0
curl H + ik N(x)E = 0

}
in D, (4.11)

curl E0 − ik H0 = 0
curl H0 + ik E0 = 0

}
in D, (4.12)

ν× E − ν× E0 = φ

ν× H − ν× H0 = ψ

}
on ∂D. (4.13)

The well-posedness of this interior transmission problem is nontrivial and is the subject of
the following section. Our goal here is to show that a slightly modified interior transmission
problem has a unique solution in H (curl, D)× H (curl, D). It turns out that this modified
interior transmission problem provides a fundamental tool in the proof of the uniqueness
theorem.

The modified interior transmission problem. Without loss of generality we assume
that D is simply connected. This is not a restriction since, as will be seen in the follow-
ing sections, one need only consider the interior transmission problem in each connected
component of D separately. To take advantage of the jumps in the boundary conditions, we
formulate the modified interior transmission problem in terms of magnetic fields. To this
end let m be a positive number, F1, F2 ∈ (L2(D))3, and f ,h ∈ H−1/2(Div,∂D). We want
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to find H0, H ∈ H (curl, D) satisfying

curl curl H0 + H0 = F1 in D, (4.14)

curl N−1curl H +m H = F2 in D, (4.15)

ν× curl H0 − ν× N−1 curl H = f on ∂D, (4.16)

ν× H0 − ν× H = h on ∂D. (4.17)

Our aim is to reformulate (4.14)–(4.17) as a variational problem. To this end we introduce
the sesquilinear form A defined on H (curl, D)× H (curl, D) by

A(H0, V ;
,�) =
∫
D

[(curl H0) · (curl
)+ H0 ·
]dx +
∫
∂D

H0T · (ν×�)ds (4.18)

+
∫
D

[
1

m
(curl V ) · (curl�)+nV ·�

]
dx +

∫
∂D

(ν×V ) ·
T ds,

where (H0, V ) and (
,�) are in H (curl, D)× H (curl, D) and UT := ν× (ν×U ). We also
introduce the antilinear form

L(
,�) =
∫
D

[
F1 ·
+ 1

m
F2 · (curl�)

]
dx +

∫
∂D

(h×ν) · (ν×�)ds−
∫
∂D

f ·
T ds (4.19)

for (
,�) ∈ H (curl, D)× H (curl , D). Note that the integrals over ∂D are interpreted as
the duality between H−1/2(Div,∂D) and H−1/2(Curl,∂D).

The variational formulation of problem (4.14)–(4.17) is as follows: Find (H0, V ) ∈
H (curl, D)× H (curl, D) such that

A(H0, V ;
,�) = L(
,�) ∀(
,�) ∈ H (curl, D)× H (curl, D). (4.20)

The following theorem proves the equivalence of problems (4.16) and (4.20).

Theorem 4.3. (a) If (H0, H ) is a solution to (4.16), then (H0, V ) with V := N−1(curl H ) is
a solution to (4.20).

(b) Conversely, if (H0, V ) is a solution to (4.20), then (H0, H ) with H :=− 1
m (curl V )+

1
m F2 is a solution to (4.16).

Proof. (a) Let (H0, H ) be a solution of problem (4.16), and set V := N−1curl H . Since
curl V = F2 −m H , then V ∈ H (curl, D). Moreover, V satisfies

curl curl V +m N(x)V = curl F2 (4.21)

interpreted in the sense of distributions. Now taking the L2 scalar product of the first
equation of (4.14) and (4.15) with a function 
 ∈ H (curl, D), integrating by parts, and
using the boundary condition (4.16), which now takes the form

ν× curl H0 − ν×V = f on ∂D,
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we obtain ∫
D

[(curl H0) · (curl
)+ H0 ·�]dx +
∫
∂D

(ν×V ) ·
T ds

=
∫
D

F1 ·
dx −
∫
∂D

f ·
T ds. (4.22)

We now take the L2 scalar product of (4.21) with a function � ∈ H (curl, D) and integrate
by parts to obtain∫

D

[
1

m
(curl V ) · (curl
)+nV ·�

]
dx − 1

m

∫
D

F2 · (curl�)dx

− 1

m

∫
∂D

(curl V )T · (ν×�)ds + 1

m

∫
∂D

F2T · (ν×�)ds = 0. (4.23)

From the fact that curl V = F2 −m H and the boundary condition (4.17), we have

1

m

∫
∂D

[−(curl V )T + F2T ] · (ν×�)ds =
∫
∂D

H0T · (ν×�)ds−
∫
∂D

(h × ν) · (ν×�)ds.

Combining (4.24) with (4.23) and using (4.16) we finally obtain∫
D

[
1

m
(curl V ) · (curl�)+nV ·�

]
dx (4.24)

+
∫
∂D

H0T · (ν×�)ds = 1

m

∫
D

F2 · (curl�)dx +
∫
∂D

(h × ν) · (ν×�)ds.

Adding (4.22) and (4.24) shows that (H0, V ) is a solution of (4.20).
(b) Let (H0, V ) be a solution of (4.20). It is obvious that H0 and V satisfy (4.22) and

(4.24), respectively. Set H :=− 1
m curl V + F2

m . By taking sufficiently smooth test functions
� in (4.24), one sees that V satisfies

1

m
curl curl V + N(x)V = curl

F2

m
in D,

which means that curl H + N(x)V = 0 in D. Therefore H is in H (curl, D) and satisfies
(4.15). Now by taking smooth functions
, the variational expression (4.22) yields the first
equation of (4.14). It is easy to verify that the boundary conditions (4.16), (4.17) for H0
and H are also satisfied. This ends the proof.

Theorem 4.4. Assume that there exists a constant γ > 1 such that for x ∈ D

�( ξ̄ · N(x)ξ
)≥ γ |ξ |2 ∀ ξ ∈C

3 and
1

m
≥ γ . (4.25)
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58 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

Then problem (4.20) has a unique solution (H0, V ) ∈ H (curl, D)× H (curl, D). This solu-
tion satisfies the a priori estimate

‖H0‖H (curl ,D) +‖V ‖H (curl ,D) ≤ C
(‖F1‖L2(D) +‖F2‖L2(D) (4.26)

+ ‖ f ‖H−1/2(Div,∂D) +‖h‖H−1/2(Div,∂D)
)

,

where the constant C > 0 is independent of F1, F2, f , h, and ∂D.

Proof. Classical trace theorems and Schwarz’s inequality ensure the continuity of the
sesquilinear form A and of the antilinear form L on H (curl, D)× H (curl, D) as well as
the existence of a positive constant c independent of F1, F2, f , and h such that

‖L‖ ≤ c
(‖F1‖L2 +‖F2‖L2 +‖ f ‖H−1/2 +‖h‖H−1/2

)
. (4.27)

Next we take the real part of A for (H0, V ) ∈ H (curl, D)× H (curl, D) and use the assump-
tion (4.25) to obtain

�(A(H0, V ; H0, V )
)≥ γ ‖H0‖2

H (curl ,D)+‖V ‖2
H (curl ,D) +2�(〈H̄0, V

〉)
,

where
〈
H 0, V

〉
denotes the duality between H−1/2(Div,∂D) and H−1/2(Curl,∂D) defined

by 〈
H0, V

〉
:=
∫
∂D

(ν×V ) · H0T ds =
∫
D

[(curl V ) · H0 − (curl H0) ·V ]dx .

By Schwarz’s inequality we have that∣∣〈H0, V
〉∣∣≤ ‖H0‖H (curl ,D) ‖V ‖H (curl ,D) ,

and therefore

�(A(H0, V ; H0, V )
)≥ γ ‖H0‖2

H (curl ,D)+‖V‖2
H (curl ,D)−2 ‖H0‖H (curl ,D)‖V‖H (curl ,D) .

Using the identity γ x2+ y2−2xy = γ+1
2 (x − 2

γ+1 y)2+ γ−1
2 x2+ γ−1

γ+1 y2, we conclude that

�(A(H0, V ; H0, V )
)≥ γ −1

γ +1

(
‖H0‖2

H (curl ,D)+‖V‖2
H (curl ,D)

)
.

Now taking the imaginary part of A and using the fact that �(N) ≥ 0 implies that there
exists a positive constant c such that

�(A(H0, V ; H0, V )
)≥ c‖ν×V‖L2(∂D2).

Hence we have that∣∣A(H0, V ; H0, V )
∣∣≥ C1

(
‖H0‖2

H (curl ,D) +‖V‖2
H (curl ,D)

)
for some C1 > 0, and thus A is coercive. The unique determination of (H , V ) and the a
priori estimate are therefore a direct consequence of the Lax–Milgram lemma applied to A
in H (curl, D)× H (curl, D) and (4.27). This proves the theorem.
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Theorem 4.5. Under the assumptions of Theorem 4.4, problem (4.16) has a unique solution
(H0, H ) ∈ H (curl, D)× H (curl, D). This solution satisfies the a priori estimate

‖H0‖H (curl ,D)+‖H‖H (curl ,D)

≤ 2C
(‖F1‖L2(D)+‖F2‖L2(D) +‖ f ‖H−1/2(Div,∂D) +‖h‖H−1/2(Div,∂D)

)
,

where the constant C > 0 is independent of F1, F2, f , h, and ∂D.

Proof. It only remains to prove that the uniqueness of the variational problem (4.20) implies
the uniqueness of the modified interior transmission problem (4.16). Then the theorem is a
consequence of Theorems 4.3 and 4.4.

Consider two solutions (H01, H1) and (H02, H2) to (4.16). Then from Theorem 4.3,
(H01, Ncurl H1) and (H02, Ncurl H2) are two solutions to (4.20), whence H01 = H02 and
Ncurl H1 = Ncurl H2. Since N−1 is bounded and D is simply connected, the latter means
that there exists a function P ∈ H 1(D), uniquely determined up to a real constant, such that
H1 − H2 = curl P . Equation (4.15) yields m curl P = 0 in D and hence H1 = H2.

The extra condition �( ξ̄ · N(x)ξ
) ≥ γ |ξ |2 for some γ > 1, x ∈ D, and ξ ∈ C3 is

not an essential restriction. In particular, it is possible to prove that if �( ξ̄ · N−1(x)ξ
) ≥

γ |ξ |2 for some γ > 1, then there exists a unique solution of the modified transmission
problem (4.16). In this case one writes a variational formulation for V := curl H0 and H
in H (curl, D) and H (curl, D), respectively, and follows a similar procedure as above (see
[34] for the corresponding scalar case). Note also that, since N(x) is a symmetric matrix,
�( ξ̄ · N(x)ξ

)= ξ̄ ·�(N(x))ξ .

Unique determination of the support. We now turn our attention to proving a unique-
ness result for the determination of the support of an anisotropic inhomogeneity. As we
remarked at the beginning of this chapter, this is the best that one can do in this direction
since N is not uniquely determined. Throughout this section, we will assume that the ma-
trix of the index of refraction N has C1(D) entries and that the boundary ∂D is smooth,
assumptions which are needed for technical reasons only (see Remark 4.1). To this end,
we consider a slightly different inverse problem; namely, given the scattered fields Es |SR

and H s|SR on a large sphere SR of radius R surrounding D for all incident plane waves
Ei (x) = i

k curl curl p eikx ·d and H i (x) := curl p eikx ·d , x ∈ R3, with polarization p ∈ R3

and incident direction d ∈ �, find the support D of N (note that H can be computed from
E and conversely). Then the main result of this section states that D can be uniquely de-
termined by the above data. Note that from Rellich’s lemma the scattered fields Es |SR and
H s|SR on SR can be uniquely found from the electric far field pattern and conversely [50].
Hence the result proved here is equivalent to the result of the unique determination of D
from the knowledge of E∞(x̂ ,d , pi ) for x̂ ,d ∈� and p ∈R3. As usual, we assume that the
frequency is fixed.

We need the following regularity result for the solution of the transmission problem
(4.7)–(4.9) (see [20] for the proof). Let H 1/2

t (∂D) denote the space of tangential vector
valued functions in H 1/2(∂D).
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60 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

Lemma 4.6. Suppose that Div∂D f ∈ H 1/2(∂D), h ∈ H 1/2
t (∂D), and that D and N satisfy

the assumptions outlined at the beginning of this chapter and, in addition, N has C1(D)
entries and ∂D is smooth. Then the magnetic fields of the solution to the transmission
problem (4.7)–(4.9) satisfy H ∈ (H 1(D))3 and H s ∈ (H 1

loc(De))3. The following norm
estimate holds:

‖H‖H1(D) +‖H s‖H1(BR\D) ≤ C
(‖H‖H (curl,D) +‖H s‖H (curl ,BR\D)

+‖h‖
H1/2

t (∂D)
+‖Div∂D f ‖H1/2(∂D)

)
(4.28)

with C a positive constant depending on R but not on H , f , and h.

The same type of regularity can also be obtained for the electric fields E , Es .

Lemma 4.7. Suppose that f ∈ H 1/2
t (∂D), Div∂D h ∈ H 1/2(∂D), and that D and N satisfy

the assumptions outlined at the beginning of this chapter, and, in addition, N has C1(D)
entries and ∂D is smooth. Then the electric fields of the solution to the transmission prob-
lem (4.7)–(4.9) satisfy E ∈ (H 1(D))3 and Es ∈ (H 1

loc(De)). The following norm estimate
holds:

‖E‖H1(D) +‖Es‖H1(BR\D) ≤ C
(
‖E‖H (curl ,D)+‖Es‖H (curl ,BR\D)

+‖ f ‖
H1/2

t (∂D)
+‖Div∂D h‖H1/2(∂D)

)
(4.29)

with C a positive constant depending on R but not on E, f , and h.

Theorem 4.8. Let the domains D1 and D2 with the boundaries ∂D1 and ∂D2 and the index
of refraction N1 and N2, respectively, satisfy the assumptions outlined at the beginning of
this chapter. In addition, we assume that either ξ̄ ·�(N1)ξ ≥ γ |ξ |2 or ξ̄ ·�(N−1

1 )ξ ≥ γ |ξ |2,
and either ξ̄ ·�(N2)ξ ≥ γ |ξ |2 or ξ̄ ·�(N−1

2 )ξ ≥ γ |ξ |2 for some γ > 1. If the scattered fields
(E1, H1) corresponding to the data D1, N1 and (E2, H2) corresponding to the data D2, N2
coincide on a large sphere SR of radius R for all incident plane waves with arbitrary
direction d and polarization p, then D1 ≡ D2.

Proof. We consider the electromagnetic field generated by an electric dipole located at z
given by

Ei
e(x ; z, p) = i

k
curl x curl x p
(x , z),

H i
e (x ; z, p) = curl x p
(x , z), (4.30)

where
(x , z) is the fundamental solution to the Helmholtz equation given by (2.9).
Let G denote the unbounded connected component ofR3\(D1∩D2) and Es,1(2)

e (·, z, p)
and H s,1(2)

e (·, z, p) be the scattered fields corresponding to D1(2) and the incident field Ei :=
Ei

e(x ; z, p) and H i := H i
e(x ; z, p). Since the scattered fields coincide on SR for all plane

waves, then from the mixed reciprocity relation (3.6), Theorem 2.5, and the well-posedness
of the transmission problem we have that the scattered fields Es,1

e (·, z, p), H s,1
e (·, z, p) and

Es,2
e (·, z, p), H s,2

e (·, z, p) coincide in SR for all z.
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Now let us assume that D1 is not included in D2. Then there exists a point z such
that z ∈ ∂D1 and z /∈ ∂D2. In particular, we have that the points zn = z + ε

n ν(z) lie
in G for all natural numbers n and ε sufficiently small, where ν(z) is the unit outward
normal vector to ∂D1 at z. Due to the singular behavior of 
(x , z), it is obvious that
‖H i

e (·, zn ,ν(z))‖H (curl,D1) → ∞ as n → ∞, where H i
e(·, zn ,ν(z)) is the magnetic field of

the electric dipole (4.30) with polarization ν(z). We now consider the incident fields

Hn(x) = H i
e (x ; zn ,ν(z))

‖H i
e (· ; zn ,ν(z))‖H (curl ,D1)

,

En(x) =− 1

ik
curl Hn(x) (4.31)

for x ∈ D1 ∪ D2 and denote by E j ,s
n , H j ,s

n and E j ,int
n , H j ,int

n the corresponding solutions
of (4.1)–(4.5) for the domains D j , j = 1,2. Note that En(x) and Hn(x) are uniformly
bounded in H (curl, D1). The trace theorem for H (curl) and Theorem 4.2 then show that
the corresponding scattered fields and interior fields are uniformly bounded in their respec-
tive norms. For later use we need to show that the sequence Hn is uniformly bounded in
H 1(D1). To this end, with the help of a cutoff function χ supported in B2ε(z) and χ = 1 in
Bε(z), we first write

‖(1−χ)Hn +χHn‖H1(D1) ≤ C + ‖H i
e (· ; zn ,ν(z))‖H1(D1∩Bε(z))

‖H i
e (· ; zn ,ν(z))‖H (curl,D1∩Bε(z))

. (4.32)

Simple computations show that

‖H i
e (· ; zn ,ν(z))‖2

H1(D1∩Bε(z)) = ‖∇x
(x , zn)× ν(z)‖2
L2(D1∩Bε(z))

+‖∇x∇x
(x , zn)× ν(z)‖2
L2(D1∩Bε(z)) =

1

|zn − z|3 [A1 + O(|zn − z|)]

and

‖H i
e (· ; zn ,ν(z))‖2

H (curl ,D1∩Bε(z)) = ‖∇x
(x , zn)× ν(z)‖2
L2(D1∩Bε(z))

+‖k2
(x , zn)ν(z)+∇x∇x
(x , zn) · ν(z)‖2
L2(D1∩Bε(z)) =

1

|zn − z|3 [A2 + O(|zn − z|)] .

Furthermore a straightforward but long computation shows that

A2 = 2π

π∫
π/2

∞∫
0

t2(3cos2 θ+1)sinθ

(t2 +1−2t cosθ )3
dt dθ > 0,

whence (4.32) is uniformly bounded for n ∈ N .
Now let Bε(z) be a ball of radius ε > 0 centered at z. Since Ee(·, zn ,ν(z)) and

He(·, zn ,ν(z)) together with their derivatives are uniformly bounded in every compact sub-
set of R3 \ B2ε(z), from the estimates (4.10), (4.28), (4.29) applied to the scattered field
corresponding to D2, we have that

lim
n→∞‖En‖H1(D2) = lim

n→∞‖Hn‖H1(D2) = 0,
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62 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

whence
lim

n→∞‖E2,s
n ‖H1(BR∩G) = lim

n→∞‖H 2,s
n ‖H1(BR∩G) = 0.

But x̂ · H 1,s
n |SR = x̂ · H 2,s

n |SR , and therefore by the uniqueness of the exterior Maxwell
problem outside BR and unique continuation (cf. Theorem 2.1) we conclude that

lim
n→∞‖E1,s

n ‖H1(BR∩G) = lim
n→∞‖E2,s

n ‖H1(BR∩G) = 0,

lim
n→∞‖H 1,s

n ‖H1(BR∩G) = lim
n→∞‖H 2,s

n ‖H1(BR∩G) = 0.

Hence from trace theorems and with the help of a cutoff function χ ∈ C∞
0 (Bε′(z)), where

ε′ > 0 is small enough to ensure that Bε′(z)∩ D1 = Bε′(z)∩ Z , we conclude that

lim
n→∞‖ν×χH 1,s

n ‖H−1/2(Div,∂D1)

= lim
n→∞‖ν× (curl χH 1,s

n )‖H−1/2(Div,∂D1) = 0. (4.33)

Let D je denote the exterior of D j , j = 1,2. In the exterior of B2ε(z) the H 1(BR \ B2ε(z))
norm of En and Hn remain uniformly bounded, and therefore from regularity results (1−
χ)E1,s

n , (1− χ)H 1,s
n are also uniformly bounded in H 1((BR ∩ D1e) \ B2ε(z)). Using the

compact embedding of H 1(BR ∩ D1e) in H (1−τ )(BR ∩ D1e) for 0 < τ ≤ 1, we can now
select an H (curl, BR ∩D1e) convergent subsequence (1−χ)H 1,s

n j from (1−χ)H 1,s
n . Hence,

ν × (1− χ)H 1,s
n j and ν × [curl (1− χ)H 1,s

n j ] are convergent in H−1/2(Div,∂D1) as well.
Combining this fact with (4.33) we have that the sequences

ν× H 1,s
n j

and ν× curl H 1,s
n j

converge in the trace space H−1/2(Div,∂D1).
Estimate (4.28) shows that H 1,int

n is uniformly bounded in H 1(D1) because Hn is
uniformly bounded in H 1(D1), and consequently the boundary data is uniformly bounded
in the required trace spaces. Obviously, Hn j and H 1,int

n j in D1 solve the modified interior

transmission problem (4.16) with F1 := Hn j , F2 := H 1,int
n j , and boundary data f := ν ×

(curl × H 1,s
n j ), h := ν× H 1,s

n j . By using the compact embedding of H 1(D1) in L2(D1) we

can select from Hn j and H 1,s
n j convergent subsequences in L2(D1), which we again denote

by Hn j and H 1,s
n j . Theorem 4.5 now gives that Hn j converges with respect to the norm

H (curl, D1) to a function H0 ∈ H (curl, D1). Obviously H0 satisfies curl curl H0− k2 H0 =
0 in the weak sense. But H0|D1\B2ε(z) = 0 since the function Hn j converges uniformly to
zero outside the ball B2ε . Therefore H0 = 0 in all of D1. But this contradicts the fact that
‖Hn‖H (curl ,D1) = 1 for all n ∈ N .

Since one can derive the same contradiction for the assumption that D2 is not in-
cluded in D1, we have proved that D1 = D2.

Remark 4.1. The assumption that the matrix index of refraction has entries in C1(D) can
be relaxed to the assumption that the entries are piecewise smooth, as we have assumed
throughout this book. In this case, the regularity results stated in Lemmas 4.6 and 4.7 do
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not hold any longer. However, for a piecewise smooth index of refraction it is possible to
obtain [55] H s, s > 0, regularity for the electric and magnetic fields, which suffices to carry
through the proof of Theorem 4.8.

For a general anisotropic medium we cannot hope to determine ε and μ. However,
if N(x) = n(x)I , where n(x) is a smooth scalar function of position, it is possible to prove
the uniqueness of n(x) as we shall now show using the arguments of [53]. In particular,
in the remainder of this section we shall suppose that m(x) := 1− n(x) ∈ C3

0 (R3). We
begin with a few observations. Due to the assumption on the regularity of m, we have that
E , H ∈ C2(R3) and that the electric field E satisfies the vector Helmholtz equation

curlcurl E − k2nE = 0, (4.34)

where

E = Ei + Es together with divnE = 0 (4.35)

in R
3 and Es satisfies the Silver–Müller radiation condition. Furthermore, let S denote the

set

S = {E(x ,d j , pi ) : E is a solution of (4.34)–(4.35)},
where k is fixed, {d j } is a countable dense set in �, and pi , i = 1,2,3, are three linearly in-
dependent polarizations. Then if X denotes the closure in L2(BR) of the set of all solutions
to (4.34), (4.35) in BR := {x : |x | < R}, S is complete in X [68]. (For the scalar case see
Lemma 10.4 of [50]). We can now prove the following basic result [53].

Theorem 4.9. Suppose the solutions of (4.34)–(4.35) corresponding to the refractive in-
dices

√
n1 and

√
n2 have the same electric far field patterns for three linearly independent

polarizations p and all d ∈ �. Let BR be a ball containing the supports of m1 = 1− n1
and m2 = 1−n2, and let B be a ball in R3 such that B R ⊂ B. Then if E j ∈ C2(B) is any
solution of (4.34), (4.35) in B with n = n j , j = 1,2, we have that

∫
BR

E1(x) · (n1(x)−n2(x)) E2(x)dx = 0.

Proof. Let E1 and E2 be the solutions of the scattering problem (4.34)–(4.35) correspond-
ing to n1 and n2, respectively, which have the same electric far field patterns for three
linearly independent polarizations p and all d ∈ �. Then by Theorem 2.5 we have that
E1(x) = E2(x) for x ∈ R3 \ BR . Let E = E1 − E2, and let L j denote the differential oper-
ator defined by (4.34) with n = n j , j = 1,2. Then, since

L2(E) = L2(E1) = k2(n1 −n2)E1 (4.36)

and E(x) = 0 for x ∈R
3 \ BR , we have from Green’s theorem that∫
BR

E2 ·L2(E)dx =
∫
BR

L2(E2) · E dx = 0 (4.37)
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for all solutions E2 of L2(E2) = 0 in BR . But (4.36) and (4.37) now imply that∫
BR

E2(x) · (n1(x)−n2(x)) · E1(x)dx = 0,

and the theorem follows from the fact that S is complete in X .

Our next step is to construct a solution of (4.34), (4.35) of the form

E(x) = eiζ ·x (η+ Rζ (x)), (4.38)

where ζ ∈ C
3 \R3,η ∈C3 are constant vectors such that

ζ · ζ = k2, ζ ·η= 0.

Substituting (4.38) into (4.34), (4.35) gives

∇̃ × ∇̃ × Rζ = k2(n−1)η+ k2n Rζ , (4.39)

∇̃ · Rζ =−α · (η+ Rζ ), (4.40)

where ∇̃ := ∇+ iζ and α(x) := ∇n(x)/n(x). If we further define �̃ := ∇+ 2iζ · ∇ − k2

and use the formula
∇̃ × ∇̃ × Rζ =−�̃Rζ +∇̃∇̃ · Rζ ,

we have from (4.39) and (4.40) that

(�+2iζ ·∇)Rζ =−∇̃(α · (η+ Rζ ))+ k2m(η+ Rζ ), (4.41)

where again m = 1− n. Hence we must construct a solution to (4.41). To this end, for
1/2< δ < 1, we define the Hilbert space L2

δ (R
3) by

L2
δ (R

3) =

⎧⎪⎨
⎪⎩ f ∈ L2(R3) : ‖ f ‖δ :=

⎛
⎜⎝∫
R3

(
1+|x |2

)δ | f (x)|2 dx

⎞
⎟⎠

1/2

<∞

⎫⎪⎬
⎪⎭

and denote by H 2
δ (R3) the Sobolev space of functions having derivatives up to second order

in L2
δ (R

3). Define the Fourier transform F by

F( f ) = f̂ (ξ ) := 1

(2π)3

∫
R3

e−ix ·ξ f (x)dx

and the integral operator Gζ : L2
δ (R

3) → L2−δ(R3) by

Gζ ( f ) := F−1

(
f̂ (ξ )

ξ2 +2ζ · ξ

)
.
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From Proposition 3.6 of [104] and Proposition 2.1 of [96] we have that Gζ is bounded and
that there exists a positive constant C independent of ζ such that

‖Gζ ‖ ≤ C

|ζ | . (4.42)

Applying Gζ to (4.41) now yields the integral equation

Rζ = Gζ

[∇̃ (α · (η+ Rζ
))]− k2Gζ

[
m(η+ Rζ )

]
. (4.43)

We shall now show that for |ζ | sufficiently large there exists a unique solution to
(4.43). We first need to prove the following lemma, where n1/2 denotes the principal value
of the square root of n.

Lemma 4.10. For any v ∈ L2
δ (R

3) and |ζ | sufficiently large, the equation(
�+2iζ ·∇ +α · ∇̃)u = v

has a unique solution u ∈ H 2−δ(R3) satisfying

u =−n−1/2Gζ (n1/2v)+ fζ ,

where

‖ fζ ‖ ≤ C

|ζ |2
for some positive constant C independent of ζ .

Proof. From the identity

n−1/2 (�+2iζ ·∇)n1/2u = (�+2iζ ·∇ +α · ∇̃)u +qu,

where q :=�n1/2/n1/2 ∈ C1
0 (R3), we see that solving(

�+2iζ ·∇ +α · ∇̃)u = v
is equivalent to solving

(�+2iζ ·∇ −q) f = g, (4.44)

where f := n1/2u and g := n1/2v. But (4.44) can be rewritten as the integral equation

f +Gζ (g f ) =−Gζ g,

which by (4.42) can be solved by successive approximations for |ζ | sufficiently large (not-
ing that a function in L2−δ(R3) multiplied by a continuous function of compact support is
in L2−δ(R3)). By Lemma 2.11 of [96] we see that f , and hence u, is in H 2−δ(R3), and the
lemma is proved.

We can now prove the following theorem, which is the key ingredient of our promised
uniqueness theorem.
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Theorem 4.11. For |ζ | sufficiently large the integral equation (4.43) has a unique solution
Rζ ∈ C2(R3) that satisfies (4.39) and (4.40); i.e., E as defined by (4.38) satisfies (4.34) and
(4.35).

Proof. Straightforward calculations show that any solution Rζ of (4.43) in L2−δ(R3) is in
C2(R3) and satisfies (4.39) and (4.40) [53]. Hence to prove the theorem we must show
that for |ζ | sufficiently large there exists a solution Rζ ∈ L2−δ(R3) of the integral equation
(4.43). To this end, we must examine the term ∇̃ (α · (η+ Rζ

))
, which appears in the first

term of (4.43) and appears to go to infinity as |ζ | tends to infinity. From the vector identity

∇ (A · B) = A× (∇× B)+ B × (∇× A)+ (A ·∇) B + (B ·∇) A

we see that

∇̃ (α · (η+ Rζ
))= α× (∇̃ × Rζ

)+ (α · ∇̃) Rζ +
(
Rζ ·∇

)
α+∇̃ (α ·η) ,

and hence the terms which are potentially troublesome are α× (∇̃ × Rζ
)

and
(
α · ∇̃) Rζ .

However, by Lemma 4.10, the term
(
α · ∇̃) Rζ can be easily handled. Hence we must

examine Q := ∇̃ × Rζ . Since any solution of (4.43) satisfies (4.39), we see that

∇̃ × Q = k2 (n−1)η+ k2n Rζ ,

and hence
∇̃ × ∇̃ × Q = k2∇n+ (η+ Rζ

)+ k2 (n−1)ζ ×η+ k2nQ.

Since ∇̃ · Q = 0, this now implies that

�Q +2iζ ·∇Q = k2∇m × (η+ Rζ
)+ k2m (iζ ×η+ Q) ,

and since I + k2Gζm is invertible in L2−δ(R3) for large |ζ | we have that

Q =−
(

I + k2Gζm
)−1

Gζ

(
k2∇m × (η+ Rζ

)+ k2m (iζ ×η)
)

(4.45)

for |ζ | sufficiently large. We can now conclude that if Rζ ∈ L2−δ(R3) is a solution of (4.43),
then Rζ satisfies the integral equation

Rζ = Gζ [α× Q]+Gζ

[(
α · ∇̃) Rζ

]+Gζ

[(
Rζ ·∇

)
α
]

+Gζ

[∇̃α ·η]− k2Gζ

[
m
(
η+ Rζ

)]
,

(4.46)

where Q is given by (4.45). Furthermore, for |ζ | sufficiently large, the integral equation
(4.45), (4.46) has a unique solution in L2−δ(R3) due to (4.42) and Lemma 4.10.

We shall now use the unique solvability of (4.45), (4.46) to deduce that (4.43) also
has a unique solution in L2−δ(R3). To do this we first note that (4.43) is of Fredholm type
in L2(BR), where BR := {x : |x |< R} contains the support of m = 1− n. This follows
from the compact embedding of H q(BR) in L2(BR) for q = 1,2 and the facts that Gζm :
L2(BR) → H 2(BR) is bounded and Rζ → Gζ

[∇̃ (α · Rζ
)]

is bounded from L2(BR) into
H 1(BR) since

Gζ

(∇̃ f
)= F−1

(
iξ + iζ

ξ2 +2ζ · ζ f̂ (ξ )

)
.

 



CCM boo
2010/11/2
page 67

�

�

�

�

�

�

�

�

4.1. Uniqueness Theorems 67

Suppose now that Rh
ζ is a solution of the homogeneous equation

Rh
ζ = Gζ

[
∇̃
(
α · Rh

ζ

)]
− k2Gζ

[
m Rh

ζ

]
(4.47)

in L2(BR). Then Rh
ζ also satisfies the homogeneous equation corresponding to (4.45),

(4.46) (viewed as an integral equation in L2(BR)). Note that, since α and m have compact
support, Rh

ζ can be continued as a solution of (4.47) in L2(R3). Since this homogeneous

equation is invertible in L2(BR) as well as L2−δ(R3), we see that Rh
ζ = 0. Hence by the Fred-

holm alternative we can conclude that there exists a unique solution of (4.43) in L2(BR).
Defining Rζ (x) for x ∈R3 by the right-hand side of (4.43) and recalling that D ⊂ BR now
yields a solution of (4.43) that is defined in all of R3. From (4.43) and the compact support
of α and m we see that Rζ ∈ L2−δ(R3). The theorem is now proved.

We shall now use the above results to establish our desired uniqueness theorem. We
need the following simple lemma.

Lemma 4.12. Suppose ζ ∈ C3 \R3, η ∈ C3, satisfy ζ · ζ = k2 and ζ ·η = 0 such that as
|ζ | →∞, the limits

lim|ζ |→∞
ζ

|ζ | = ζ0, lim|η|→∞η = η0

exist. If Rζ is the solution of (4.39), (4.40) given by Theorem 4.11, then

Rζ = i |ζ |n−1/2Gζ

[
n−1/2α ·η0

]
ζ0 + fζ ,

where

lim|ζ |→∞‖ fζ ‖−δ = 0.

Proof. From (4.45), (4.46) we see that ‖Q‖−δ ≤ C , where the positive constant C is
independent of ζ . Since

∇̃ (α ·η) = iζ0 (α ·η) |ζ |+ O(1),

the lemma follows from (4.46) and Lemma 4.10.

We now choose two specific sets of vectors ζ , η, corresponding to n1 and n2, re-
spectively, satisfying the hypothesis of Lemma 4.12. In particular, we choose an arbitrary
vector ξ ∈ R

3 and assume that the coordinate axes have been rotated such that in the new
coordinate system ξ = (a,0,0). In this coordinate system we shall define vectors ζ1, ζ2 and
η1, η2, with the understanding that the corresponding vectors for an arbitrary ξ are obtained
by rotation. More specifically, for ξ = (a,0,0) we define ζ1, ζ2 and η1, η2 in terms of a real
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68 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

parameter c by

ζ1 =
⎛
⎝a

2
, i

√
c2 + a2

4
− k2,c

⎞
⎠ ,

ζ2 =
⎛
⎝a

2
,−i

√
c2 + a2

4
− k2,−c

⎞
⎠ ,

η1 = 1√
c2 +a2

(
c,0,−a

2

)
,

η2 = 1√
c2 +a2

(
c,0,

a

2

)

(4.48)

and note that

lim
c→∞η j = η0 := (1,0,0), j = 1,2,

lim
c→∞

ζ1

|ζ1| = ζ0 := 1√
2

(0, i ,1),

lim
c→∞

ζ2

|ζ2| = −ζ0,

and
ζ1 + ζ2 = ξ , ζ0 · ζ0 = 0, η0 · ζ0 = 0. (4.49)

Lemma 4.12 now implies that(
η1 + Rζ1

) · (η2 + Rζ2

)= 1+o(1) (4.50)

in the L1 norm over compact subsets of R3 as c →∞ since ζ0 · ζ0 = ζ0 ·η0 = 0. We can
now prove our desired uniqueness theorem [53] (see also [98]).

Theorem 4.13. Let m = 1−n ∈ C3
0 (R3) and let pi , i = 1,2,3, be three linearly independent

polarizations. Then n is uniquely determined by the electric far field patterns E∞(x̂ ,d , pi )
corresponding to the incident fields (4.4) (for p = pi ) for a fixed wave number k > 0,
d , x̂ ∈� and i = 1,2.

Proof. Suppose the electric far field patterns corresponding to n1 and n2 are the same. Let
Rζ j , j = 1,2, be the solution of (4.39), (4.40) corresponding to ζ j , η j and the refractive
index

√
n j with ζ j , η j given by an appropriate rotation of (4.48). Then from (4.50) we

have that
lim

c→∞
(
η1 + Rζ1

) · (η2 + Rζ2

)= 1,

and from (4.38), (4.49) and Theorem 4.9 we have that∫
BR

eiξ ·x (n1(x)−n2(x)) dx = 0

for all ξ ∈ R3. The theorem now follows by the Fourier Integral Theorem.

For an alternate proof of Theorem 4.13 based on the use of Fourier series see [68].
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4.2 The Interior Transmission Problem
The interior transmission problem plays an important role in the solution of the inverse
scattering problem for penetrable scatterers. In Section 4.1 we investigated the solvability
in H (curl, D) of a modified interior transmission problem, which differs from the interior
transmission problem by lower order terms in the equations. However, the approach there
cannot be used to prove that the interior transmission problem (4.11)–(4.13) is well posed
because it is not a compact perturbation of the modified one, due to the lack of compactness
of the embedding mapping from H (curl, D) into L2(D). In this section, we use a different
approach to study the well-posedness of the interior transmission problem, which provides
only the existence of L2(D) solutions and is based on a variational approach for a fourth
order differential equation equivalent to the interior transmission problem for the electric
field, which is developed in [65] and [36]. We refer the reader to [75] for an alternative
approach based on a combined integral equation and variational formulation in the isotropic
case.

To motivate the analysis of the interior transmission problem, we recall the definition
of the far field operator F : L2

t (�) → L2
t (�):

(Fg)(x̂) :=
∫
�

E∞(x̂ ,d , g(d))ds(d). (4.51)

The following important property of the far field operator is essential for the solution of the
inverse problem.

Theorem 4.14. The far field operator F : L2
t (�) → L2

t (�) corresponding to the scatter-
ing problem (4.1)–(4.5) is injective with dense range if and only if there does not exist a
nontrivial solution to the homogeneous interior transmission problem

curlcurl E − k2 N(x)E = 0
curlcurl E0 − k2 E0 = 0

}
in D, (4.52)

ν× E = ν× E0
ν× curl E = ν× curl E0

}
on ∂D (4.53)

such that E0 := Eg and H0 := Hg are an electromagnetic Herglotz pair with kernel ikg.

Proof. The injectivity of F is proved as follows. The equation Fg = 0 holds if and only
if the scattered field corresponding to the incident field (Eg , Hg) is identically zero, i.e.,
(4.52), (4.53) is satisfied. Since g = 0 if and only if Eg = 0, the statement on injectivity
follows. On the other hand, F has dense range if and only the L2 adjoint F∗ : L2

t (�) →
L2

t (�) of F is injective. But from the reciprocity relation

q · E∞(x̂ ,d , p) = p · E∞(−d ,−x̂ ,q)

we easily derive that
(F∗h)(d) = (Fg)(−d), d ∈�,

where g(x̂) = h(−x̂), whence F∗ is injective if and only if F is injective. This proves the
theorem.
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70 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

Definition 4.15. The values of k > 0 for which the homogeneous interior transmission
problem (4.52)–(4.53) has nontrivial solutions are called transmission eigenvalues.

Now we turn our attention to the main goal of this section, the study of the interior
transmission problem. Recalling that (·, ·)D denotes the L2(D) scalar product and

H0(curl , D) : = {u ∈ H (curl, D) : u × ν = 0 on ∂D},
where H (curl, D) is defined by (2.5), we define

U(D) : = {u ∈ H (curl, D) : curlu ∈ H (curl, D)}, (4.54)

U0(D) : = {u ∈ H0(curl , D) : curlu ∈ H0(curl , D)}, (4.55)

equipped with the scalar product (u, v)U = (u, v)curl + (curlu, curlv)curl and the corre-
sponding norm ‖·‖U. We note that C∞

0 (D) is dense in U0(D) (see the appendix of [65]).
Let F and F0 be two vector valued functions on D, and let ϕ, ψ be two tangential

vector fields on ∂D. After expressing the magnetic fields in terms of the electric fields,
the interior transmission problem (4.11)–(4.13) is formulated as the problem of finding two
vector valued functions E and E0 such that

curlcurl E − k2 N E = F in D,
curlcurl E0 − k2 E0 = F0 in D,

(4.56)

(E − E0)× ν = ϕ on ∂D,
curl (E − E0)× ν = ψ on ∂D. (4.57)

The existence of solutions to this problem will be studied for data that satisfies the following
assumption.

Assumption 4.1. The data F , F0, ϕ, and ψ is such that

(a) F and F0 are in L2(D)3.

(b) ϕ and ψ are tangential functions defined on ∂D such that there exists a function w
in U(D) satisfying

w× ν = ϕ and (curlw)× ν = ψ on ∂D.

Let us denote by Y (∂D) the set of (ϕ,ψ) satisfying (b) equipped with the norm

‖(ϕ,ψ)‖Y (∂D) := inf
w as in (b)

‖w‖U(D).

It is proved in [65] that if ∂D is a C3 boundary, then H 3/2
t (∂D)×H 1/2

t (∂D) is continuously
embedded in Y (∂D), where H 3/2

t (∂D) and H 1/2
t (∂D) are the spaces of tangential vectors

that componentwise are in H 3/2(∂D) and H 1/2(∂D), respectively. In the applications to
inverse problems w can be easily constructed from the fundamental solution Ee and a
suitable cutoff function.

Definition 4.16. A strong solution to (4.56)–(4.57) is a pair (E , E0) ∈ L2(D)3 that satisfies
(4.56) in the sense of distributions such that E − E0 ∈ U(D) and E − E0 satisfies (4.57).
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We remark that, in general, the solutions to this problem do not belong to H (curl, D).
Examples of such solutions can be easily constructed by taking

E = E0 = h,

where h is a function in L2(D)3 such that curlcurlh = 0 in D and curlh /∈ L2(D)3. In
cylindrical coordinates (r ,θ , z) and for D a bounded domain, where the z axis is tangent to
∂D and does not intersect D, one can take

h(r ,θ , z) = r−α cos(α θ )ez ,

where 0< α < 1, and ez denotes a vector in the z direction.
To study the existence and uniqueness of solutions to (4.56)–(4.57) we rewrite it as

a fourth order boundary value problem. For that purpose we need to assume that N − I is
invertible almost everywhere in D.

Setting
u = E − E0 and v = N E − E0, (4.58)

we obtain that
E = (N − I )−1(v−u), E0 = (N − I )−1(Nu − v). (4.59)

Taking the difference between two equations in (4.56) we get

curlcurlu = k2v+ (F − F0) in D. (4.60)

In particular,
E = (N − I )−1(k−2(curlcurlu − (F − F0))−u). (4.61)

Substituting for E in (4.56) one now obtains the following fourth order partial differential
equation satisfied by u:

(curlcurl − k2 N)(N − I )−1(curlcurlu − k2u)

= curlcurl(N − I )−1(F − F0)+ k2(N − I )−1(N F0 − F) in D.
(4.62)

In addition, from (4.57) one obtains that

u × ν = ϕ, (curlu)× ν = ψ on ∂D. (4.63)

Hence, based on (4.58)–(4.60) we can state the following result.

Theorem 4.17. Assume that (N − I )−1 is a bounded matrix field in D and that the data
satisfies Assumption 4.1. Then the existence and uniqueness of a strong solution to (4.56)–
(4.57) is equivalent to the existence and uniqueness of u ∈U(D) and v ∈ L2(D)3 satisfying
(4.60) and (4.62)–(4.63).

Variational formulations. The study of (4.62)–(4.63) will be done using a variational
framework. Using the denseness in U0(D) of regular functions with compact support in D
[65], one can easily see that u ∈ U(D) satisfies (4.62) if and only if(

(N − I )−1(curlcurlu − k2u), (curlcurlu′ − k2 N̄u′)
)

D

= ((N − I )−1(F − F0), (curlcurlu′ − k2u′)
)

D + k2
(
F0, u′)

D

(4.64)
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for all u′ ∈ U0(D). Now set

�(u′) =
(

(N − I )−1(F − F0), (curlcurlu′ − k2u′)
)

D
+ k2 (F0, u′)

D ,

which defines an antilinear form on U(D). Using the identity N(N − I )−1 = I +(N − I )−1,
one can rewrite (4.64) in one of the following equivalent forms:

Ak(u,u′)− k2B(u,u′) = �(u′) ∀u′ ∈ U0(D) (4.65)

or
−Ãk(u,u′)+ k2B(u,u′) = �(u′) ∀u′ ∈ U0(D), (4.66)

where Ak , Ãk , and B are sesquilinear forms on U(D)×U(D) defined by

Ak(u,u′) =
(

(N − I )−1(curlcurlu − k2u), (curlcurlu′ − k2u′)
)

D
+ k4 (u, u′)

D ,

Ãk(u,u′) =
(

(I − N)−1(curlcurlu − k2 Nu), (curlcurlu′ − k2 N̄u′)
)

D
+ k4 (Nu, u′)

D ,

and
B(u,u′) = (curlu, curlu′)

D , (4.67)

where the expression for B is obtained after using the identity(
curlcurlu, u′)

D = (curlu, curlu′)
D

for all (u,u′) ∈ U(D)×U0(D).
Our goal now is to establish the existence and uniqueness of u ∈ U(D) that satisfies

(4.64) and (4.63) by proving that (4.65) and (4.66) form a Fredholm set of equations given
suitable assumptions on N . For the study of (4.66) it is more convenient to use the following
equivalent expression of Ãk :

Ãk(u,u′) = (
N(I − N)−1(curlcurlu − k2u), (curlcurlu′ − k2u′)

)
D

+(curlcurlu, curlcurlu′)
D .

(4.68)

Lemma 4.18. Assume that there exists a constant γ > 0 such that

�((N − I )−1ξ ,ξ ) ≥ γ |ξ |2 ∀ξ ∈ C and a.e. in D, (4.69)

(respectively, �(N(I − N)−1ξ ,ξ ) ≥ γ |ξ |2 ∀ξ ∈ C and a.e. in D). (4.70)

Then Ak (respectively, Ãk) is a coercive sesquilinear form on U0(D)×U0(D).

Proof. Let us prove first the result for Ak . Using (4.69) yields

�(Ak(u0,u0)) ≥ γ ‖curlcurlu0 − k2u0‖2
L2(D) +‖u0‖2

L2(D).

Setting X = ‖curlcurlu0‖L2(D) and Y = k2‖u0‖L2(D), one has

‖curlcurlu0 − k2u0‖2
L2(D) ≥ X2 −2XY +Y 2,
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and therefore
�(Ak(u0,u0)) ≥ γ X2 −2γ XY + (1+γ )Y 2. (4.71)

Using the identity

γ X2 −2γ XY + (1+γ )Y 2 =
(
γ + 1

2

)(
Y − γ

γ + 1
2

X

)2

+ 1

2
Y 2 + γ

1+2γ
X2,

one concludes that
�(Ak(u0,u0)) ≥ γ

1+2γ

(
X2 +Y 2

)
. (4.72)

Integrating by parts, one has the following equality, valid for u0 ∈ U0(D):

‖curlcurlu0 − k2u0‖2
L2(D) = ‖curlcurlu0‖2

L2(D) −2k2‖curlu0‖2
L2(D) + k4‖u0‖2

L2(D).

Therefore
2k2‖curlu0‖2

L2(D) ≤ X2 +Y 2,

which combined with (4.72) yields the existence of a constant ck (independent of u0 and
γ ) such that

|Ak(u0,u0)| ≥ ck
γ

1+2γ
‖u0‖2

U. (4.73)

The sesquilinear form Ãk also satisfies (4.73) under condition (4.70) since (as one can
easily check)

�(Ãk(u0,u0)) ≥ (γ +1)X2 −2γ XY +γY 2.

Hence we can conclude a similar estimate to (4.73) for Ãk(u0,u0).

Based on the Riesz representation theorem we now define the operator B : U0(D) →
U0(D) by (

Bu0, u′)
U = B(u0 ,u′) ∀ u′ ∈ U0(D).

Lemma 4.19. The operator B : U0(D) → U0(D) is compact.

Proof. Let {un} be a bounded sequence in U0(D). We can extract a subsequence, denoted
again by {un}, that converges weakly to some u0 in U0(D). Now we recall, provided the
boundary of D is sufficiently smooth, that the space of functions

{u ∈ H0(curl , D) : divu = 0 in D}
is continuously embedded into H 1(D). We deduce that the sequence {curlun} is bounded
in H 1(D). By the Rellich compact embedding theorem, we deduce that {curlun} converges
strongly to curl u0 in L2(D). From the definition of B and using the Schwarz inequality
we obtain

‖B(un −u0)‖U(D) ≤ ‖curl(un −u0)‖L2(D).

Hence {Bun} converges strongly to Bu0 in U0(D).

Based on Lemmas 4.19 and 4.18, we are in position to prove the first main theorem
of this section.
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Theorem 4.20. Assume that (N − I )−1 or N(I −N)−1 is a bounded positive definite matrix
field on D and that k is not a transmission eigenvalue. Then for all data (F , F0,ϕ,ψ)
satisfying Assumption 4.1 there exists a unique solution u ∈ U(D) to (4.63)–(4.64) such
that

‖u‖U(D) ≤ C
(‖F‖L2(D)+‖F0‖L2(D) +‖(ϕ,ψ)‖Y (∂D)

)
,

where C > 0 is a constant independent of u and (F , F0,ϕ,ψ).

Proof. Let us first prove this theorem in the case where N(I − N)−1 is a bounded positive
definite matrix field on D. In this case, one can easily see that Ãk is a continuous sesquilin-
ear form on U(D)×U(D). Based on the Riesz representation theorem, one can therefore
define a continuous operator Ãk : U0(D) → U0(D) such that(

Ãku0, u′)
U = Ãk(u0 ,u′) ∀ u′ ∈ U0(D).

Lemma 4.18 and the Lax–Milgram theorem prove that Ãk : U0(D) →U0(D) is a bijective
operator. The identity (N − I )−1 = N(N − I )−1 − I implies that the antilinear form � is
continuous on U0(D). We denote by � ∈ U0(D) the Riesz representative of � in U0(D).
Let w be as in Assumption 4.9 and define m such that

−Ãk(w ,u′)+ k2B(u0 ,u′) = (m, u′)
U ∀ u′ ∈ U0(D).

Then (4.63)–(4.64) is equivalent to u =w+u0, where u0 ∈ U0(D) is the solution of

− Ãku0 + k2 Bu0 = m + � in U0(D). (4.74)

Since Ãk is an isomorphism and B is compact, the Fredholm alternative can be applied to
(4.74). Hence, assuming that k is not a transmission eigenvalue we have the existence and
uniqueness of a solution u0 to (4.74) satisfying the a priori estimate.

The proof in the case where (N − I )−1 is a bounded positive definite matrix can be
done exactly the same way by replacing − Ãk + k2 B by Ak + k2 B , where Ak : U0(D) →
U0(D) is defined by (

Aku0, u′)
U = Ak(u0 ,u′) ∀ u′ ∈ U0(D). (4.75)

This proves the theorem.

Theorem 4.21. Assume that (N − I )−1 or N(I −N)−1 is a bounded positive definite matrix
field on D. Then the following hold:

(a) The set of interior transmission eigenvalues, if they exist, is discrete, with +∞ as the
only possible accumulation point.

(b) If �(Nξ ,ξ )> 0 for all ξ ∈ C \{0} and almost everywhere in D, then the set of eigen-
values is empty.

Remark 4.2. We study the existence of transmission eigenvalues in Section 4.5.

Proof. The proof of part (a) is based on the use of the analytic Fredholm theory. For the
sake of presentation we consider only the case when (N − I )−1 is bounded and positive
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definite. Case (b) can be proved in the same way by replacing A(·, ·) with Ã(·, ·). We first
prove that A−1

k is analytic for k ∈ C in a neighborhood of the positive real axis, where Ak
is defined by (4.75). Let k1 > 0. Then there exists a positive constant C independent of k
such that

‖(Ak − Ak1 )u0‖ ≤ C(|k2 − k2
1|‖curlcurlu0‖L2(D)‖u0‖L2(D) +|k4 − k4

1|‖u0‖2
L2(D).

Hence, Ak is a bijective operator for |k − k1| sufficiently small. Moreover, since k  → Ak is
analytic, then k  → A−1

k is analytic in a neighborhood of k1.
It suffices to show that for k > 0 small enough, the operator Ak − B : U0(D) →

U0(D) is an isomorphism; in other words, sufficiently small positive k are not transmission
eigenvalues. To this end, let u0 ∈ U0(D) be such that

Ak(u0,u′)− k2B(u0,u′) = 0 ∀u′ ∈ U0(D).

First we observe that since u0 × ν = 0 on ∂D, we have

curlu0 · ν = 0 on ∂D.

On the other hand, the continuous embedding of

{u ∈ H0(curl , D) : divu = 0 in D}
into H 1(D)3 implies that curlu0 ∈ H 1

0 (D)3. The Poincaré inequality now implies the exis-
tence of a constant C > 0 such that

‖curlu0‖2
L2(D) ≤ C‖∇curlu0‖2

L2(D).

Let ṽ0 be the extension of curlu0 by zero outside D. Then

‖∇curlu0‖2
L2(D) = ‖∇ṽ0‖2

L2(R) = ‖curl ṽ0‖2
L2(R) +‖div ṽ0‖2

L2(R)

= ‖curl ṽ0‖2
L2(D)+‖div ṽ0‖2

L2(D).

We therefore obtain that

‖curlu0‖2
L2(D) ≤ C‖curlcurlu0‖2

L2(D).

From inequality (4.72) (satisfied here by Ak) we now obtain that

�(Ak(u0,u0)− k2B(u0,u0)) ≥ γ

1+2γ

(
‖curlcurlu0‖2

L2(D) + k4‖u0‖2
L2(D)

)
−Ck2‖curlcurlu0‖2

L2(D)
.

Therefore there are no eigenvalues such that k2 ≤ γ /(C(1+2γ )).
Part (b) does not require the assumption on the positive definite property of the cor-

responding matrices. Note that �(Nξ ,ξ )> 0 implies �((N − I )−1ξ ,ξ ) < 0. Now assume
that u0 is a solution of

Ak(u0,u′)− k2B(u0,u′) = 0 ∀u′ ∈ U0(D).
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Taking the imaginary part, one deduces that

curlcurlu0 − k2u0 = 0 ∈ D.

Since u0×ν = 0 and curlu0 ×ν = 0 on ∂D, the extension of u0 outside D by zero gives an
outgoing solution to Maxwell’s equation in R3 with vanishing far field. This implies that
this function vanishes on R3, and therefore u0 = 0.

4.3 Determination of the Support
This section is dedicated to the solution of the inverse problem for an anisotropic inho-
mogeneous medium. The inverse scattering problem we consider here is to determine the
support D and information on the index of refraction N from knowledge of the electric
far field pattern E∞(x̂ ,d , p) for all x̂ ∈ �1 ⊆�, d ∈ �2 ⊆�, p ∈ R3, and possibly for an
interval of frequencies. From Theorem 2.8 and Section 3.4, in the following we can assume
that we know the far field pattern for all d and x̂ in �.

We start with the determination of the support D using the LSM. Similarly to the
discussion of Section 3.3, the LSM for determining the support of the inhomogeneity is
based on the study of the far field equation

(Fg)(x̂) = Ee,∞(x̂ , z,q), z,q ∈ R
3,

where F is the far field operator defined by (4.51), with E∞(x̂ ,d , p) being the far field pat-
tern corresponding to the scattering problem (4.1)–(4.5) with incident field Ei := Ei (·, d , p),
H i := H i (·, d , p) being a time-harmonic plane wave given by (2.20), and Ee,∞(x̂ , z,q) be-
ing the electric far field pattern of the electric dipole given by (2.15). Consider now the
following interior transmission problem:

curlcurl Ez − k2N(x)Ez = 0
curlcurl Ez

0 − k2Ez
0 = 0

}
in D, (4.76)

ν× Ez − ν× Ez
0 = ν× Ee(·, d ,q)

ν× curl Ez − ν× curl Ez
0 = ν× curl Ee(·, d ,q)

}
on ∂D. (4.77)

At the beginning of Section 3.3 we showed that the far field equation (3.32) corre-
sponding to the scattering of a plane wave by a perfect conductor was solvable if and only
if there exists a solution Ez of the interior problem (3.33), (3.34) such that Ez is the electric
field of an electromagnetic Herglotz pair with kernel ikg. In the same way one can prove
the following theorem.

Theorem 4.22. There exists a solution g ∈ L2
t (�) of the far field equation (4.51) for an

inhomogeneous anisotropic medium if and only if there exists a solution Ez
0 of the inte-

rior transmission problem (4.76)–(4.77) and Ez
0 is the electric field of an electromagnetic

Herglotz pair with kernel ikg.

In order to connect the interior transmission problem (4.76)–(4.77) with the forward
scattering problem we need to consider the scattering problem (4.1)–(4.5) with more gen-
eral incident fields. To this end we define the space of incident fields

Hinc(D) :=
{

E0 ∈ L2(D) : such that curlcurl E0 − k2E0 = 0 in D
}

, (4.78)
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where the equation is satisfied in the distributional sense. For an E0 ∈ Hinc(D) we consider
the scattering problem for the scattered field Es corresponding to E0 as an incident field,

curlcurl Es − k2Es = 0 in R
3 \ D,

curlcurl Es − k2 N Es = k2(N −1)E0 in D,
ν× Es+ = ν× Es− on ∂D,

ν× curl Es+ = ν× curl Es− on ∂D,
lim

r→∞(curl Es × x − ikr Es) = 0,

(4.79)

where Es+ and Es− denote the limits of Es approaching ∂D fromR3\D and D, respectively.
It can be shown that (4.79) has a unique solution [78]. In particular, this solution Es satisfies
the a priori estimate

‖Es‖H (curl , BR) ≤ C‖E0‖L2(D), (4.80)

where C > 0 is a positive constant independent of E0, and BR is a ball of radius R. We
also note that the solution Es of (4.79) has the integral representation [65]

Es(x) = curl xcurl x

∫
D


(x , y)(N(y)− I )
(
Es (y)+ E0(y)

)
dy (4.81)

for x ∈ R
3 \ D, where 
(x , y) is given by (2.9).

We now show that Hinc(D) is the closure in L2(D) of the space of entire solu-
tions to Maxwell’s equations. To this end, consider Mm

n (x) := curl (xum
n (x)) and um

n (x) :=
jn(kb|x |)Y m

n (x/|x |), where
{
Y m

n , m =−n, . . . ,n, n = 0,1, . . .
}

is the set of orthonormal
spherical harmonics and jn denotes the spherical Bessel function of order n (see Section
2.3).

Lemma 4.23. The space

H := span
{

Mm
n , curl Mm

n : n = 1,2, . . . ,m =−n, . . . ,n
}

is dense in Hinc(D).

Proof. The proof is taken from [65]. Let H be the closure of H in Hinc(D) and let
E0 ∈ Hinc(D) be in the orthogonal complement of H . We define

E(x) =
∫
D


(x , y)E0(y)dy+ 1

k2 graddiv
∫
D


(x , y)E0(y)dy, x ∈ R
3,

where 
(x , y) is defined by (2.9). Using the regularity properties of the volume potential
(see [50, Theorem 8.2]) we have that E ∈ L2

loc(R3) and curl E ∈ H 1
loc(R3), whence E ∈

Uloc(R3). By definition we have that

curl curl E − k2E = E0 in D, (4.82)

curlcurl E − k2 E = 0 in R
3 \ D. (4.83)

Now let B be an open ball that contains D. Then (4.82) implies that in R3 \ B

E(x) = 1

k2
curl curl

∫
D


(x , y)E0(y)dy,
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and from Theorem 2.9 it follows that for all x ∈R
3 \ B

E(x) =
∞∑

n=1

i

n(n+1)

n∑
m=−n

[
k
(
E0, Mm

n

)
L2(D) Nm

n (x)

+ 1

k

(
E0,curl Mm

n

)
L2(D) curl Nm

n (x)

]
,

where (·, ·)L2(D) denotes the L2(D)-inner product, Nm
n (x) := curl(xh(1)

n (k|x |)Y m
n (x̂)), and

h(1)
n denotes the spherical Hankel function of the first kind of order n. From the fact that

E0 is orthogonal to H with respect to the L2(D)-inner product, we conclude that E = 0 in
R3 \ D. Hence, taking the L2(D)-inner product of (4.82) with E0, we obtain that

‖E0‖2
L2(D) =

(
curl curl E − k2 E , E0

)
L2(D)

. (4.84)

Finally, in view of zero boundary traces of E , and since the test functions are dense
in U0(D), we obtain after integrating by parts that the right-hand side of (4.84) is zero
since curl curl E0 − k2 E0 = 0 in the distribution sense. Hence E0 = 0, which ends the
proof.

Remark 4.3. As a consequence of Lemma 4.23 we have that the set of Herglotz electric
wave functions Eg for g ∈ L2

t (�) is dense in Hinc(D) with respect to the L2(D) norm.

We now turn our attention to the justification of the LSM for the determination of the
support D of the inhomogeneity. To this end let F : Hinc(D) → L2(�) be the operator that
takes E0 ∈ Hinc(D) to the far field of the corresponding radiating solution Es to (4.79). By
superposition we have that

(Fg)(x̂) = F (Eg)(x̂), x̂ ∈�. (4.85)

The integral representation (4.81) of Es and the far field asymptotic behavior of 
(x , y)
imply that

F (E0)(x̂) = k2
∫
D

e−ikx̂ ·y [x̂ × (N(y)− I )
(
Es (y)+ E0(y)

)× x̂
]

ds(y). (4.86)

The well-posedness of (4.79), Theorem 4.14, and (4.85) imply the following result.

Lemma 4.24. Assume that k is not a transmission eigenvalue. Then the operator F :
Hinc(D) → L2(�) is compact, injective, and has dense range.

Lemma 4.25. Assume that k is not a transmission eigenvalue. Then Ee,∞(x̂ , z,q) is in
the range of F if and only if z ∈ D. For z ∈ D, the unique solution Ez

0 ∈ Hinc(D) of
F (Ez

0) = Ee,∞(x̂ , z,q) satisfies limz→∂D ‖Ez
0‖L2(D) =∞.

Proof. Let z ∈ D and let Ez
0 ∈ L2(D), Ez ∈ L2(D) be the unique solution of the interior

transmission problem (4.76)–(4.77). Then Es := Ez(·, z,q) in R3 \ D, and Es := Ez − Ez
0
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in D is a solution to (4.79) with E0 := Ez
0 as the incident field. Furthermore, since the

far field of Es is Ee,∞(·, z,q), we conclude that F (Ez
0) = Ee,∞(·, x , z,q). The a priori

estimate (4.80) implies that for z ∈ D, ‖Ee(·, z,q)‖H (curl, BR\D) ≤ C‖Ez
0‖L2(D), and since

‖Ee(·, z,q)‖H (curl, BR\D) →∞ as z → ∂D, so does ‖Ez
0‖L2(D).

Now assume that z ∈R3\D and Ez
0 ∈ Hinc(D) is such that F (Ez

0)= Ee,∞(·, z,q). Let
Es ∈ Hloc(curl ,R3) be the scattered field corresponding to Ez

0. Then from Rellich’s lemma
(Theorem 2.3) and the unique continuation principle we conclude that Es = Ee(·, z,q) in
R3 \ (D∪{z}). This is a contradiction since Es is in Hloc(R3 \ D), whereas Ee(·, z,q) is not
due to the singularity at z.

Now we are ready to prove the main theorem of this section, which is the basis of the
LSM.

Theorem 4.26. Assume that k is not a transmission eigenvalue, and let F be the far field
operator corresponding to the scattering problem (4.1)–(4.5). Then

1. for z ∈ D and a given ε > 0 there exists a gεz ∈ L2
t (�) such that

‖Fgεz − Ee,∞(· , z,q)‖L2
t (�) < ε,

and the corresponding Herglotz function Egεz converges to Ez
0 in the L2(D) norm as

ε→ 0, where E0
z , Ez is the solution of (4.76)–(4.77).

2. for a fixed ε > 0, we have that

lim
z→∂D

‖Egεz ‖L2(D) =∞ and lim
z→∂D

‖gεz ‖L2
t (�) →∞.

3. for z ∈ R3 \ D and a given ε > 0, there exists gεz ∈ L2
t (�) satisfying

‖Fgεz − Ee,∞(x̂ , z,q)‖L2
t (�) < ε

such that
lim
ε→0

‖Egεz ‖L2(D) =∞ and lim
ε→0

‖gεz ‖L2
t (�) →∞.

Proof. Parts 1 and 2 of the theorem are a direct consequence of Lemmas 4.23 and 4.25.
The approximate solution gεz of the far field equation is the kernel of the Herglotz wave
function that approximates Ez

0 in the L2(D) norm with discrepancy ε, where E0
z , Ez is the

solution of (4.76)–(4.77). Thus Egεz , and consequently gz
ε , satisfies the stated properties

due to the behavior of Ez
0.

For z ∈R3\D, from Lemmas 4.24 and 4.25, by using Tikhonov regularization we can
construct a regularized solution to F (E0) = Ee,∞(·, z,q). In particular, there exists Ez

0 :=
Ez,α

0 corresponding to a parameter α = α(δ) chosen by a regular regularization strategy
(e.g., the Morozov discrepancy principle) such that

‖F (Ez
0)− Ee,∞(x̂ , z,q)‖L2

t (�) < δ
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for an arbitrary noise level δ and

lim
α→0

‖Ez
0‖L2(D) →∞.

Note that α→ 0 as δ→ 0. Part 3 of the theorem follows by approximating Ez
0 arbitrarily

closely by Eg .

This approximate (regularized) solution gεz given by Theorem 4.26 can now be used
to reconstruct D.

4.4 A Lower Bound for ‖N‖2

Having found D by the LSM, we are now concerned with finding some information on the
(matrix) index of refraction N from knowledge of E∞(x̂ ,d , p) for x̂ ,d ∈ � and p ∈ R3.
In the case of anisotropic media, as we mentioned before, E∞(d , x̂ , p) for all x̂ ,d ∈ �
and p ∈ R3 does not uniquely determine the matrix N even if this data is known for an
interval of values of k. Our aim is to provide inequalities that are satisfied by all dielectric
anisotropic media that give rise to the same far field data. The information needed to do
this is obtained from the smallest transmission eigenvalue, which can be determined from
the far field data. In particular, instead of avoiding transmission eigenvalues, as in the
LSM, we will now have them play a central role. Following the ideas in [25] and [28],
we will show that in certain circumstances a lower bound for the Euclidean norm of N(x)
can be obtained from knowledge of the smallest transmission eigenvalue. The existence of
transmission eigenvalues is proved in the following section.

To indicate why transmission eigenvalues can be computed from the far field data,
we remind the reader that the LSM fails when k is a transmission eigenvalue. In particular,
the norm of the (regularized) solution to the far field equation

(Fg) (x̂) = ik

4π
(x̂ ×q)× x̂e−ikx̂ ·z0 , z0 ∈ D, (4.87)

can be expected to be large for such values of k. This provides us with a method for
determining the smallest transmission eigenvalue from the far field data (see Section 3.5).

We now derive a relationship between N(x) and the smallest transmission eigenvalue.
Since transmission eigenvalues do not occur when the anisotropic medium is absorbing
(Theorem 4.21), in this section we assume that �(N) = 0.

Theorem 4.27. Assume that ξ̄ · (N − I )−1 ξ ≥ γ |ξ |2 in D for all ξ ∈C2 and γ > 0. Then all
transmission eigenvalues satisfy k2 ≥ γ

1+γ λ1(D), where λ1(D) is the first Dirichlet eigen-
value of −� on D.

Proof. We use the notation from Section 4.2. Since N is a real valued matrix, it follows
from the proof of Lemma 4.18 that

Ak(u,u) ≥ γ X2 −2γ XY + (γ +1)Y 2, (4.88)

where X = ‖curlcurlu‖L2(D) and Y = k2‖u‖L2(D). From the identity

γ X2 −2γ XY + (γ +1)Y 2 = ε
(

Y − γ

ε
X
)2 +

(
γ − γ 2

ε

)
X2 + (1+γ − ε)Y 2 (4.89)
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for γ < ε < γ +1, we now obtain that

Ak(u,u)− k2B(u,u) ≥
(
γ − γ 2

ε

)
‖curlcurlu‖2

L2(D) + (1+γ − ε)k2‖u‖2
L2(D)

− k2‖curlu‖2
L2(D). (4.90)

From the proof of Theorem 4.21 and the Poincaré inequality we have that

‖curlu‖L2(D) ≤
1

λ1(D)
‖curlcurlu‖L2(D), (4.91)

where λ1(D) is the first Dirichlet eigenvalue of −� on D. Hence from (4.90) and assuming
that γ < ε < γ +1 we have that

Ak(u,u)− k2B(u,u) ≥
(
γ − γ 2

ε
− k2

λ1(D)

)
‖curlcurlu‖2

L2(D) + (1+γ − ε)k2‖u‖2
L2(D).

Therefore there are no transmission eigenvalues for k2 <
(
γ −γ 2/ε

)
λ1(D) for γ < ε <

γ +1. In particular, taking ε arbitrarily close to γ +1, we have that if k2 <
γ

1+γ λ1(D), then
k is not a transmission eigenvalue. This proves the theorem.

Theorem 4.28. Assume that ξ̄ · N(I − N)−1 ξ ≥ γ |ξ |2 in D for all ξ ∈ C2 and γ > 0.
Then all transmission eigenvalues satisfy k2 ≥ λ1(D), where λ1(D) is the first Dirichlet
eigenvalue of −� on D.

Proof. The proof is similar to the proof of Theorem 4.27. Here we need to use the sesquilin-
ear form Ãk(u,u) which, since N is symmetric, can be rewritten as

Ãk(u,ψ) : =
(

N(I − N)−1
(

curlcurlu + k2u
)

,
(

curlcurlψ+ k2ψ
))

L2(D)

+ (curlcurlu, curlcurlψ)L2(D) .

Similarly as in the proof of Theorem 4.27, for γ < ε < γ +1 we have that

Ãk(u,u)− k2C(u,u) ≥ (1+γ − ε)‖curlcurlu‖2
L2(D) +

(
γ − γ 2

ε

)
k2‖u‖2

L2(D)

− k2 1

λ1(D)
‖curlcurlu‖2

L2(D),

where λ1(D) is the first Dirichlet eigenvalue of −� in D. In particular, Bk(u,u)−k2C(u,u)
is coercive as long as k2 < (γ + 1− ε)λ1(D) for γ < ε < γ + 1. In particular, by tak-
ing ε > 0 arbitrarily close to α we have that k such that k2 < λ(D) are not transmission
eigenvalues.

We are now ready to formulate the main result of this section, which provide esti-
mates on the matrix index of refraction N under the assumption that the anisotropic mate-
rial is a dielectric. Note that in this case the symmetric matrices N and N−1 are bounded
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below, i.e., ξ̄ ·N ξ ≥ β|ξ |2 and ξ̄ ·N−1 ξ ≥ α|ξ |2, for all ξ ∈ C2 \{0} and all x ∈ D for some
constants α > 0 and β > 0.

Let ‖N‖2 denote the Euclidean norm of N , which is the largest eigenvalue of N since
the matrix is positive definite. We denote by λ1(x) ≤ λ2(x) ≤ λ3(x) the eigenvalues of N
for x ∈ D. The above assumptions guarantee that β < λ1(x) and α < 1/λ3(x) for x ∈ D,
since λ3 is the reciprocal of the smallest eigenvalue of N−1, which by assumption is bigger
than α. We recall that

‖N‖2 = λ3 = sup
‖ξ‖=1

(ξ̄ · N ξ ) and λ1 = inf‖ξ‖=1
(ξ̄ · N ξ ).

Theorem 4.29.

1. Assume that �(N(x)) = 0 and ‖N(x)‖2 ≥ δ > 1 for all x ∈ D and some constant δ.
Then,

sup
D

‖N‖2 ≥ λ1(D)

k2 , (4.92)

where k is a transmission eigenvalue and λ1(D) is the first Dirichlet eigenvalue of
−� on D.

2. Assume that �(N(x)) = 0 and 0 < β ≤ ‖N(x)‖2 ≤ δ < 1 for all x ∈ D and some
constants β and δ. Then, if k is a transmission eigenvalue,

k2 ≥ λ1(D),

where λ1(D) is the first Dirichlet eigenvalue of −� on D.

Proof. To prove the first part of the theorem, let k be a transmission eigenvalue. The
assumptions on N imply that there exists a constant γ > 0 such that ξ̄ ·(N − I )−1 ξ ≥ γ |ξ |2.
Indeed,

inf
ξ∈C2

ξ̄ · (N − I )−1 ξ = 1

λ3 −1
|ξ |2 ≥ 1

1/α−1
|ξ |2 = γ |ξ |2, x ∈ D,

since 1< λ3 ≤ 1/α. Now, without loss of generality, we take

γ = inf|ξ |=1
ξ̄ · (N(x0)− I )−1 ξ for an appropriate x0 ∈ D.

From Theorem 4.27 we have that γ
γ+1 < k2/λ1(D). Using the fact that γ is the reciprocal

of the largest eigenvalue of N(x0)− I , we have that

γ = 1

λ3(x0)−1
= 1

‖N(x0)‖2 −1
≥ 1

supD ‖N(x)‖2 −1
.

Now since supD ‖N‖2 ≥ 1 by assumption, we conclude that

sup
D

‖N‖2 ≥ 1

γ
+1>

λ1(D)

k2 ,
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which proves the first part of the theorem.
In order to show the second part of the theorem, it suffices to show that the assump-

tions on N imply that there exists a constant γ > 0 such that ξ̄ · N(I − N)−1 ξ ≥ γ |ξ |2.
Then the result follows from Theorem 4.28. To this end, we have that N(I − N)−1 =
(I − N)−1 − I . Hence

inf
ξ∈C2

ξ̄ · N(I − N)−1 ξ = inf
ξ∈C2

ξ̄ · (I − N)−1 ξ −|ξ |2 =
(

1

1−λ3
−1

)
|ξ |2

≥
(

1

1−β −1

)
|ξ |2 = γ |ξ |2, x ∈ D.

This ends the proof.

The above theorem provides a lower bound for ‖N‖2 in terms of the first transmission
eigenvalue only in the case when it is known a priori that ‖N(x)‖2 ≥ δ > 1 for x ∈ D. In
particular, if k1 is the smallest transmission eigenvalue, then

sup
D

‖N‖2 ≥ λ1(D)

k2
1

, (4.93)

where λ1(D) is the first Dirichlet eigenvalue of −� on D. We remind the reader that D
(and hence λ1(D)) can be determined from the far field data using the LSM, and the first
transmission eigenvalue can also be computed from the far field data.

4.5 The Existence of Transmission Eigenvalues
As discussed above, transmission eigenvalues play an important role in the solution of
the inverse scattering problem for inhomogeneous media. On one hand, in the context
of sampling methods for reconstructing the support of the scatterer discussed in Section
4.3, one needs to avoid those frequencies that correspond to transmission eigenvalues, and
hence it is important to know that the transmission eigenvalues form a discrete set. This was
shown in Theorem 4.21. On the other hand, one can use transmission eigenvalues to obtain
information about physical properties of the scattering object as discussed in Section 4.4,
and therefore it is important to know whether they exist and to understand their connection
with the index of refraction. This application is based on the results in [26], which justify
the numerical observation that transmission eigenvalues can be computed from the far field
data. Either way, the investigation of the spectral properties of the interior transmission
problem has become an active area of research in inverse scattering theory. Note that
the LSM is based on keeping the wave number k fixed and determining the support D
of the scatterer by “sampling” a region containing D by the point z. On the other hand,
if z ∈ D is kept fixed and k is varied, we can use the far field equation to determine the
smallest transmission eigenvalue; i.e., the regularized solution of the far field equation
will have a large norm when k is a transmission eigenvalue. Then from knowledge of
the first transmission eigenvalue it is possible to obtain information about the index of
refraction of the inhomogeneous medium. Our goal in this section is to prove that there
exists an infinite discrete set of transmission eigenvalues defined by Definition 4.15 and
provide lower and upper bounds for the first transmission eigenvalue, thus improving the
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results presented in Section 4.4. We refer the reader to [30], [33], [38], [76] for more
detailed discussions on transmission eigenvalues in electromagnetic scattering theory. The
existence of transmission eigenvalues in the scalar case was first shown by Päivärinta and
Sylvester [99].

The interior transmission eigenvalue problem (4.52)–(4.53) can be set in the follow-
ing abstract analytic framework, which is introduced in [36]. In particular, let U be a sepa-
rable Hilbert space with scalar product (·, ·), let A be a bounded, positive definite, and self-
adjoint operator on U , and let B be a nonnegative, self-adjoint, and compact bounded linear
operator on U . Then there exists an increasing sequence of positive real numbers (λ j ) j≥1
and a sequence (u j ) j≥1 of elements of U such that Au j = λ j Bu j . The sequence (u j ) j≥1

forms a basis of (A ker(B))⊥, and if ker(B)⊥ has infinite dimension, then λ j → +∞ as
j →∞. Furthermore, these eigenvalues satisfy a min-max principle (see Corollary 2.1 in
[37]); namely,

λ j = min
W⊂U j

(
max

u∈W\{0}
(Au,u)

(Bu,u)

)
, (4.94)

where U j denotes the set of all j -dimensional subspaces W of U such that W ∩ker(B) =
{0}. These eigenvalues can be arranged in increasing order.

Let τ  −→ Aτ be a continuous mapping from ]0,∞[ to the set of self-adjoint and
positive definite bounded linear operators on U , and consider the generalized eigenvalue
problem

Aτu −λ j (τ )Bu = 0, u ∈ U . (4.95)

Obviously from (4.94) we have that λ j for every j ∈ N is a continuous function of τ in
]0,∞[. The following theorem provides the fundamental tool for proving the existence of
transmission eigenvalues.

Theorem 4.30. Let τ  −→ Aτ be a continuous mapping from ]0,∞[ to the set of self-
adjoint and positive definite bounded linear operators on U, and let B be a self-adjoint and
nonnegative compact bounded linear operator on U. We assume that there exists two
positive constants τ0 > 0 and τ1 > 0 such that

1. Aτ0 − τ0 B is positive on U;

2. Aτ1 − τ1 B is nonpositive on an m-dimensional subspace of U.

Then each of the equations λ j (τ ) = τ for j = 1, . . . ,m has at least one solution in [τ0,τ1],
where λ j (τ ) is the j th eigenvalue (counting multiplicity) of Aτ with respect to B, i.e.,
ker(Aτ −λ j (τ )B) �= {0}.

Proof. First, we can deduce from (4.94) that for all j ≥ 1, λ j (τ ) is a continuous function
of τ . Assumption 1 shows that λ j (τ0) > τ0 for all j ≥ 1. Assumption 2 implies in partic-
ular that Wk ∩ker(B) = {0}. Hence, another application of (4.94) implies that λ j (τ1) ≤ τ1
for 1 ≤ j ≤ k. The desired result is then obtained by applying the intermediate value
theorem.

Returning to the homogeneous interior transmission problem (4.52)–(4.53) we recall
that N , N−1, and either (N − I )−1 or (I − N)−1 are bounded positive definite real matrix
valued functions on D, and a solution of (4.52)–(4.53) is such that E ∈ (L2(D))3, E0 ∈
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(L2(D))3, and E − E0 ∈ U0(D), where U0(D) is defined by (4.55). As shown in Section
4.2, (4.52)–(4.53) is equivalent to finding u = E − E0 ∈ U0(D) such that

(curlcurl − k2 N)(N − I )−1(curlcurlu − k2u) = 0, (4.96)

which in variational form can be written as∫
D

(N − I )−1(curlcurlu − k2u) · (curlcurlv− k2 Nv)dx = 0 ∀ v ∈ U0(D). (4.97)

Letting τ := k2, we notice that (4.52)–(4.53) can be written as an operator equation

Aτu − τ Bu = 0 and Ãτu − τ Bu = 0, for u ∈ U0(D). (4.98)

Here the bounded linear operators Aτ : U0(D) → U0(D), Ãτ : U0(D) → U0(D), and
B : U0(D) → U0(D) are the operators defined using the Riesz representation theorem
associated with the sesquilinear forms Aτ , Ã, and B, which are given by

Aτ (u,v) :=
(

(N − I )−1(curlcurlu − τu), (curlcurlv− τv)
)

D
+ τ 2 (u, v)D , (4.99)

Ãτ (u,v) : =
(

N(I − N)−1(curlcurlu − τu), (curlcurlv− τv)
)

D
(4.100)

+ (curlcurlu, curlcurlv)D ,

and
B(u,v) := (curlu, curlv)D , (4.101)

respectively, where (·, ·)D denotes the L2(D)-inner product (see Section 4.2).
The properties of these operators are studied in Sections 4.2 and 4.4. Let σ∗(x)> 0

and σ ∗(x)> 0 be the smallest and the largest eigenvalue, respectively, of the positive def-
inite symmetric 3×3 matrix N . Recall that the largest eigenvalue σ ∗(x), which coincides
with the Euclidean norm ‖N(x)‖2, is given by σ ∗(x) = sup‖ξ‖=1(ξ̄ · N(x)ξ ), and the small-
est eigenvalue σ∗(x) is given by σ∗(x) = inf‖ξ‖=1(ξ̄ · N(x)ξ ). In the following we define
n∗ := supD σ

∗(x) and n∗ := infD σ∗(x). Let λ1(D) again be the first Dirichlet eigenvalue
for −� in D. The following lemma follows from the results of sections 4.2 and 4.4.

Lemma 4.31. The operators Aτ : U0(D) → U0(D), Ãτ : U0(D) → U0(D), τ > 0, and
B : U0(D) → U0(D) are self-adjoint. Furthermore, B is a positive compact operator. If
(N − I )−1 is a bounded positive definite matrix function on D, then Aτ is a positive definite
operator and

(Aτu − τ Bu,u)U0(D) ≥ α‖u‖2
U0(D) > 0 ∀ 0< τ <

λ1(D)

n∗ .

If N(I − N)−1 is a bounded positive definite matrix function on D, then Ãτ is a positive
definite operator and(

Ãτu − τ Bu,u
)
U0(D) ≥ α‖u‖2

U0(D) > 0 ∀ 0< τ < λ1(D).
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Note that the kernel of B : U0(D) → U0(D) is given by

Kernel(B) =
{

u ∈ U0(D) such that u := ∇ϕ, ϕ ∈ H 1(D)
}

.

To prove the existence of transmission eigenvalues we use Theorem 4.30. In particular, we
need to ensure that assumption 2 of this theorem is satisfied for the operators Aτ : U0(D)→
U0(D), Ãτ : U0(D) → U0(D), τ > 0, and B : U0(D) → U0(D). To this end, we need
to consider the corresponding interior transmission eigenvalue problems for a ball with a
constant index of refraction. Let BR ⊂ R3 be a ball of radius R centered at the origin and
let n0 > 0 be a constant different from one. In [50] it is shown, by using separation of
variables, that

curlcurlw− k2n0w = 0
curlcurlv− k2v = 0

}
in BR , (4.102)

w× ν = v× ν
curlw× ν = curlv× ν

}
on ∂BR (4.103)

has a countable discrete set of eigenvalues. Denote by kR,n0 the first transmission eigen-
value, which is the smallest zero of the determinants

Wp(k) = det

(
jp(k R) jp(k

√
n0 R)

− j ′p(k R) −√
n0 j ′p(k

√
n0 R)

)
for p ≥ 1, (4.104)

where jp is the spherical Bessel function of order p. We call u BR ,n0 :=wBR ,n0 −vBR ,n0 the
eigenfunction corresponding to kR,n0 . We have that u BR ,n0 ∈ U0(BR) and

∫
BR

1

n0 −1
(curlcurlu BR ,n0 − k2

R,n0
u BR ,n0 ) · (curlcurluBR ,n0 − k2

R,n0
n0u BR ,n0 )dx = 0.

(4.105)
By definition, the eigenvectors u BR ,n0 for (4.102)–(4.103) are not in the kernel of
B : U0(D) → U0(D).

Remark 4.4. The multiplicity of transmission eigenvalues is finite since if k1 is a trans-
mission eigenvalue, then the kernel of I − τ0 A−1/2

τ0 B A−1/2
τ0 or I − τ0 Ã−1/2

τ0 B Ã−1/2
τ0 , where

τ0 := k2
0, is finite since the operators τ0 A−1/2

τ0 B A−1/2
τ0 (if 1/(n − 1) > γ > 0) and

τ0 Ã−1/2
τ0 B Ã−1/2

τ0 (if n/(1−n)> γ > 0) are compact and self-adjoint.

The above discussion provides all the necessary ingredients to apply Theorem 4.30
to (4.98) to prove the existence of an infinite discrete set of transmission eigenvalues [33].

Theorem 4.32. Assume that N ∈ L∞(D,R3×3), satisfies either of the following assump-
tions for every ξ ∈C3 such that ‖ξ‖ = 1 and some constants α > 0 and β > 0:

(1) 1+α ≤ n∗ ≤ (ξ̄ · N(x)ξ ) ≤ n∗ <∞;

(2) 0< n∗ ≤ (ξ̄ · N(x)ξ ) ≤ n∗ < 1−β.
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Then there exists an infinite countable set of transmission eigenvalues corresponding to
(4.52)–(4.53) with +∞ as the only accumulation point.

Proof. First let us suppose that assumption (1) holds. This assumption also implies that

0<
1

n∗ −1
≤ (ξ̄ · (N(x)− I )−1 ξ ) ≤ 1

n∗ −1
<∞.

Therefore, from Lemma 4.31, Aτ and B satisfy the requirement of Theorem 4.30, with
U = U0(D), and also assumption 1 of Theorem 4.30, with τ0 ≤ λ1(D)/n∗. Next let k1,n∗
be the first transmission eigenvalue for the ball B of radius R = 1 and n0 := n∗. This
transmission eigenvalue is the smallest zero of (4.104) for R := 1 and n0 := n∗. By a
scaling argument, it is obvious that kε,n∗ := k1,n∗/ε is the first transmission eigenvalue
corresponding to the ball of radius ε > 0 with an index of refraction n∗. Now take ε > 0
small enough such that D contains m := m(ε) ≥ 1 disjoint balls B1

ε , B2
ε , . . . , Bm

ε of radius

ε, i.e., B j
ε ⊂ D, j = 1, . . . ,m, and B j

ε ∩ Bi
ε = ∅ for j �= i . Then kε,n∗ := k1,n∗/ε is the

first transmission eigenvalue for each of these balls with index of refraction n∗, and we let

u B j
ε ,n∗ ∈ U0(B j

ε ), j = 1, . . . ,m, be the corresponding eigenfunction. The extension by zero

ũ j of u B j
ε ,n∗ to the whole of D is obviously in U0(D) due to the boundary conditions on

∂B j
ε,n∗ . Furthermore, the vectors {ũ1, ũ2, . . . , ũm} are linearly independent and orthogonal

in U0(D) since they have disjoint supports, and from (4.105)

0 =
∫
D

1

n0 −1
(curlcurl ũ j − k2

ε,n∗ ũ j ) · (curlcurl ũ j − k2
ε,n∗n0ũ j )dx (4.106)

for j = 1, . . . ,m.
Let U be the m-dimensional subspace of U0(D) spanned by {ũ1, ũ2, . . . , ũm}. Since

each ũ j , j = 1, . . . ,m, satisfies (4.106) and each has disjoint supports, we have that for
τ1 := k2

ε,n∗ and for every ũ ∈ U(
Aτ1 ũ j − τ1 Bũ j , ũ j

)
U0(D)

(4.107)

≤
∫
D

1

n0 −1

(
curlcurl ũ j − k2

ε,n∗ ũ j
)
·
(

curlcurl ũ j − k2
ε,n∗n0ũ j

)
dx = 0. (4.108)

This means that assumption 2 of Theorem 4.30 is also satisfied, and therefore we can con-
clude that there are m(ε) transmission eigenvalues (counting multiplicity) inside [τ0, kε,n∗].
Note that m(ε) and kε,n∗ both go to +∞ as ε → 0. Since the multiplicity of each eigen-
value is finite we have shown, by letting ε→ 0, that there exists an infinite countable set of
transmission eigenvalues that accumulate at ∞.

If the index of refraction is such that assumption (2) of this theorem holds, then we
have that

0<
n∗

1−n∗
≤ N(x)(I − N(x))−1 ≤ n∗

1−n∗ <∞

and therefore according to Lemma 4.31, Ãτ and B , τ > 0, satisfy the requirements and
assumption 1 of Theorem 4.30 with U = U0(D) for τ0 ≤ λ1(D). In this case, based on
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(4.100) the rest of the proof for checking the validity of assumption 2 of Theorem 4.30
goes exactly in the same way as for the previous case if one replaces n∗ by n∗.

The following theorem provides lower and upper bounds for the first transmission
eigenvalue.

Theorem 4.33. Let k1,D,N(x) be the first transmission eigenvalue for (4.52)–(4.53) and let α
and β be positive constants. Denote by k1,D,n∗ and k1,D,n∗ the first transmission eigenvalue
of (4.52)–(4.53) for N = n∗ I and N = n∗ I , respectively.

1. If ||N(x)||2 ≥ α > 1, then 0< k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗.

2. If 0< ||N(x)||2 ≤ 1−β, then 0< k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗.

Proof. We sketch the proof for the case of ||N(x)||2 ≥ α > 1. Obviously, for any u ∈U0(D)
we have

‖∇ ×∇×u − τu‖2
D + τ 2‖u‖2

D

(n∗ −1)‖∇×u‖2
D

≤
(
(N − I )−1(∇×∇×u − τu), (∇×∇×u − τu)

)
D + τ 2‖u‖2

D

‖∇ ×u‖2
D

≤ ‖∇×∇×u − τu‖2
D + τ 2‖u‖2

D

(n∗ −1)‖∇×u‖2
D

. (4.109)

Therefore we have that for an arbitrary τ > 0

λ1(τ , D,n∗)− τ ≤ λ(τ , D, N(x))− τ ≤ λ1(τ , D,n∗)− τ , (4.110)

where λ1(τ , D,n∗), λ(τ , D, N(x)), and λ1(τ , D,n∗) are given by

λ1(τ , D) = inf
u∈W0(D)

(Aτu,u)U
(Bu,u)U

(4.111)

corresponding to the index of refraction n∗, N(x), and n∗, respectively. Now for τ1 :=
k2

1,D,n∗ we have that λ(τ1, D, N(x))−τ1 ≥ 0. Again using (4.110) for τ2 := k2
1,D,n∗ we have

that λ(τ2, D, N(x))−τ2 ≤ 0. Then by continuity of the mapping τ→ λ1(τ , D, N(x)) there is
an eigenvalue corresponding to D, N(x) between k1,D,n∗ and k1,D,n∗. To complete the proof
we need to show that this is the first eigenvalue for D, N(x). Indeed, if k1,D,N(x) < k1,D,n∗,
then from (4.110) λ1(τ3, D,n∗)− τ3 ≤ 0 for τ3 := k2

1,D,N(x). On the other hand, for τ0 > 0
sufficiently small we have λ1(τ0, D,n∗)− τ0 ≥ 0, which means that there is a transmission
eigenvalue for D, n∗ less than the first one, which is a contradiction. The theorem now
follows.

Recalling that k1,D,N(x) can be computed from the far field measurements, our ap-
proach to estimating n∗ and n∗ is based on computing a constant n such that k1,D,N(x) is the
first transmission eigenvalue corresponding to (4.52)–(4.53) with N := nI for this n. From
the above theorem, which shows that transmission eigenvalues for n constant are mono-
tonically decreasing with respect to n, we have that n∗ ≤ n ≤ n∗. To fully justify this idea
one needs to show that for a constant index of refraction the first transmission eigenvalue
depends continuously on n. This result is proved in [30].
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4.6 Partially Coated Objects
In certain applications the scattering object is (possibly) partially coated by a thin layer
of a highly conductive material. Such problems arise, for example, in the detection of
decoys and the testing of the integrity of coatings. In this section we formulate the inverse
problem for a coated anisotropic medium, state the main theorem of the LSM, and show
that the same solution of the far field equation that is used to determine the support of
the inhomogeneity can also be used to determine the surface conductivity, which gives
information about the thickness and physical properties of the coating. Let D be the support
of the anisotropic dielectric having the (matrix) index of refraction N . We assume that D
and the 3× 3 matrix valued function N(x) satisfy the assumptions stated at the beginning
of this chapter. In addition we assume that the boundary ∂D = ∂Du ∪∂Dc is split into two
open disjoint parts ∂Du and ∂Dc, where ∂Dc is the portion of the boundary coated by a thin
layer of highly conductive material. The physical properties of the thin coating layer are
described by the positive function η > 0, called the surface conductivity, which is defined
and bounded on ∂Dc [5]. We assume that the surface conductivity satisfies η(x) ≥ η0 > 0
on ∂Dc. Note that the case when ∂Dc = ∅ becomes the problem considered previously in
this chapter, whereas the case when ∂Du = ∅ corresponds to a fully coated obstacle.

The scattering of time-harmonic electromagnetic plane waves Ei , H i , given by (3.5),
by the (possibly) partially coated anisotropic medium leads to the same set of equations
given at the beginning of this chapter for the interior electromagnetic field E , H in D and
the scattered electromagnetic field Es , H s in R3 \ D, namely,

curl Es − ik H s = 0
curl H s + ik Es = 0

}
in R

3 \ D, (4.112)

curl E − ik H = 0
curl H + ik N(x)E = 0

}
in D, (4.113)

together with Silver–Müller radiation condition (4.5). On the boundary ∂D the tangential
component of the total electric field is continuous, whereas the tangential component of the
total magnetic field is continuous across the uncoated part ∂Du and satisfies the so-called
conducting boundary condition [5] on the coated part ∂Dc, i.e.,

ν× (Es + Ei )− ν× E = 0 on ∂D, (4.114)

ν× (H s + H i)− ν× H = 0 on ∂Du , (4.115)

ν× (H s + H i)− ν× H = η(x)ν×
[
(Es + Ei )× ν

]
on ∂Dc. (4.116)

The well-posedness of this problem is established in [20]. In particular it is shown that the
transmission problem (4.112)–(4.116) has a unique solution E ∈ X (D,∂Dc), Es ∈ X (R3 \
D,∂Dc), H ∈ H (curl, D), H s ∈ H (curl, De), and this solution depends continuously on
the incident field Ei , H i in the respective norms (see Chapter 3 for the definition of these
spaces).

The support D of the (partially) coated anisotropic obstacle can be determined by the
LSM from knowledge of the electric far field patterns E∞(x̂ ,d , p) for x̂ ,d ∈� and p ∈R3.
A uniqueness result for the support D is proved in [20] by using ideas similar to those in
the proof of Theorem 4.8. Indeed, all the results of Sections 4.1–4.3 can be proved for
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the current problem with the necessary modifications arising from the use of a different
solution space for the corresponding interior transmission problem

curlcurl Ez − k2 N(x)Ez = 0 in D, (4.117)

curlcurl Ez
0 − k2 Ez

0 = 0 in D, (4.118)

ν× Ez − ν× Ez
0 = ν× Ee(·, d ,q) on ∂D, (4.119)

ν× curl Ez − ν× curl Ez
0 = ν× curl Ee(·, d ,q) on ∂Du , (4.120)

ν× curl Ez − ν× curl Ez
0 = ν× curl Ee(·, d ,q)

+ ikη(x)ν× [(Ez
0 + Ee(·, z,q))× ν] on ∂Dc. (4.121)

The interior transmission problem (4.117)–(4.121) is studied in [36] by the same method
as the one presented in Section 4.2. In particular, it is shown that (4.117)–(4.121) has a
unique solution Ez

0 ∈ L2(D), Ez ∈ L2(D) such that Ez − Ez
0 ∈ U(D) and ν × Ez

0|∂Dc ∈
L2(∂Dc) provided that z ∈ D and k is not an η-transmission eigenvalue, which are the
values of k > 0 for which the uniqueness of interior transmission problem (4.117)–(4.121)
fails. In addition in [36] it is shown that η-transmission eigenvalues form a subset of the
transmission eigenvalues defined in Section 4.2 and therefore are at most discrete.

As the reader already knows, the LSM looks for a solution g ∈ L2
t (�) to the far field

equation

(Fg)(x̂) :=
∫
�

E∞(x̂ ,d , g(d))ds(d)= Ee,∞(x̂ , z,q), z,q ∈ R
3,

where now E∞(x̂ ,d , p) is the far field corresponding to the scattering problem for a par-
tially coated anisotropic media (4.112)–(4.116). The following theorem can be proved in
exactly the same way as Theorem 4.26.

Theorem 4.34. Assume that k is not an η-transmission eigenvalue and let F be the far field
operator corresponding to the scattering problem (4.112)–(4.116). Then

1. for z ∈ D and a given ε > 0 there exists a gεz ∈ L2
t (�) such that

‖Fgεz − Ee,∞(· , z,q)‖L2
t (�) < ε,

and the corresponding Herglotz function Egεz converges to Ez
0 in L2(D)∩ L2(∂Dc)

as ε→ 0, where E0
z , Ez satisfies the interior transmission problem (4.117)–(4.121).

2. for a fixed ε > 0, we have that

lim
z→∂D

‖Egεz ‖L2(D)∩L2(∂Dc) =∞ and lim
z→∂D

‖gεz ‖L2
t (�) →∞.

3. for z ∈ R3 \ D and a given ε > 0, there exists gεz ∈ L2
t (�) satisfying

‖Fgεz − Ee,∞(x̂ , z,q)‖L2
t (�) < ε

and such that

lim
ε→0

‖Egεz ‖L2(D)∩L2(∂Dc) =∞ and lim
ε→0

‖gεz ‖L2
t (�) →∞.
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We emphasize that the LSM for the determination of the support of the scattering
object is independent of the physical properties of the scattering object, as it is based on the
solution of the far field equation which has the same form for all of our scattering problems
(remember that the right-hand side can be the electric far field pattern of either a magnetic
dipole or an electric dipole).

Having determined D by the LSM, it is possible to use the approximate solution gεz to
the far field equation to estimate η. In particular, this is possible since Egεz approximates Ez

0,
where Ez

0, Ez is the unique solution of the interior transmission problem (4.117)–(4.121).
Before doing this we remark that a uniqueness result for η can be found in [22], [39]
(another uniqueness theorem can be shown in a way similar to that in [29] for the scalar
case).

In the following we formally derive an equation for η. The procedure is based on
the application of Green’s formulas to E0

z , Ez , which are less smooth than needed. This
technical difficulty can be avoided by connecting the solution of the interior transmission
problem with a direct scattering problem. We omit the details here and direct the reader to
[22], [39] and to the end of Section 6.3 for a similar situation.

Theorem 4.35. Assume that k is neither a Maxwell eigenvalue nor an η-transmission
eigenvalue and that �(N) = 0. Then, for any point z in D we have that

∫
∂Dc

η |ν× (Ez
0 + Ee(·, z,q))|2 ds =− k2

6π
‖q‖2 +�(Ez

0(z)
)

, (4.122)

where Ez, Ez
0 is a solution to the interior transmission problem (4.117)–(4.121).

Proof. Let Ez and Ez
0 be the unique solution of the interior transmission problem (4.117)–

(4.121). Applying the vector Green’s formula we have that

∫
∂D

(
ν× Ez · curl Ez − ν× Ez · curl Ez) ds = 2i

∫
D

E
z · �(N)Ez dx = 0. (4.123)

On the other hand, using the transmission conditions across ∂D and defining W z := Ez
0 +

Ee(·, z,q), we have that

∫
∂D

(
ν× Ez · curl Ez − ν× Ez · curl Ez) ds

=
∫
∂D

(
ν×W z · curl W z − ν×W z · curl W z) ds

−2ik
∫
∂Dc

η |(ν×W z)× ν|2 ds. (4.124)

Again using the vector Green’s formula, along with the integral representation formula, and
connecting the radiating solution Ee(·, z,q) to its far field pattern in a way similar to that in
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92 Chapter 4. The Inverse Scattering Problem for Anisotropic Media

the proof of Theorem 3.12, we obtain∫
∂D

(
ν×W z · curl W z − ν×W z · curl W z) ds (4.125)

=− ik3

3π
‖q‖2 + ikq ·

[
Ez

0(z)+ Ez
0(z)
]

.

Hence, combining (4.123), (4.124), and (4.125) we have that

2ik
∫
∂Dc

η |(ν×W z)× ν|2 ds =− ik3

3π
‖q‖2 + ikq ·

[
Ez

0(z)+ Ez
0(z)
]

,

which proves the result.

Equation (4.122) immediately provides a lower bound for η:

sup
x∈∂Dc

η(x) ≥ − k2

6π ‖q‖2 +�(Ez
0(z)
)∫

∂D |ν× (Ez
0 + Ee(·, z,q))|2 ds

.

In the particular case when the obstacle is fully coated (i.e., ∂Dc = ∂D and the coating
is homogeneous (i.e., η is a constant)), (4.122) provides an estimate for the constant η.
Finally, let η̃ denote the extension of η by zero to the whole boundary ∂D. Then we can
rewrite (4.122) as∫

∂D

η̃ |ν× (Ez
0 + Ee(·, z,q))|2 ds =− k2

6π
‖q‖2 +�(Ez

0(z)
)

, z ∈ Br ⊂ D. (4.126)

Viewing (4.126) as an integral equation for η̃, it is possible to solve it to determine η as
well as the coated part ∂Dc (see [29] in the scalar case).

We end with the important remark that Ez
0 can be approximated by the electric Her-

glotz wave function Egεz , with the kernel being the approximate solution to the far field
equation provided by Theorem 4.34.
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Chapter 5

The Inverse Scattering Problem
for Thin Objects

In many wave scattering problems occurring in practice one encounters thin objects, where
the thickness of the object is small compared to the wavelength and other characteristic
dimensions. Such problems can be mathematically modeled by a boundary value problem
for an open surface in R3. In this chapter we consider the inverse electromagnetic scattering
problem of determining the shape of a thin object, referred to as a screen, from knowledge
of the incident time-harmonic electromagnetic plane wave and the electric far field pattern
of the scattered wave at a fixed frequency. We will consider two types of thin objects,
namely, a perfect conductor and a thin object which is perfectly conducting on one side
and on the other side behaves as an imperfect conductor (e.g., a metallic thin object coated
on one side). The latter is called a mixed screen. The main goal of this chapter is to
establish the validity of the LSM for solving the inverse scattering problem for this class of
problems following [24] and [31].

5.1 Scattering by Thin Objects
Before studying the inverse scattering problem for screens we need to set up the analytical
framework for the direct scattering problem. To this end let � denote the screen. In the
following, � is assumed to be a bounded, simply connected, oriented, piecewise smooth
open surface in R3 bounded by a piecewise smooth boundary curve l. We consider �
as part of a piecewise smooth boundary ∂D of some bounded domain D ⊂ R3. Let ν
denote the normal vector to � that coincides with the outward normal vector defined almost
everywhere on ∂D. For a vector field u, we denote by ν × u+|� , γ+

T u|� , and ν · u+|�
(ν× u−|�, γ−

T u|�, and ν · u−|�) the restriction to � of the traces ν× u|∂D , γT u|∂D, and
ν ·u|∂D , respectively, from the outside (from the inside) of ∂D, where γT u := ν× (u × ν)
is the tangential component of u.

The perfectly conducting screen. After eliminating the magnetic field, the scattering of
electromagnetic incident waves by the open surface� with a perfectly conducting boundary

93
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94 Chapter 5. The Inverse Scattering Problem for Thin Objects

condition is modeled as the problem of finding a scattered field Es that satisfies

curl curl Es − k2 Es = 0 in R
3 \�, (5.1)

γ±
T Es = f on �, (5.2)

lim
r→∞(curl Es × x − ikr Es) = 0, (5.3)

where f :=−γ±
T Ei .

Mixed screen. The scattering of electromagnetic waves by the open surface �, which is
on one side a perfect conductor and on the other side an imperfect conductor, leads to the
boundary value problem

curl curl Es − k2 Es = 0 in R
3 \�, (5.4)

γ−
T Es = f on �−, (5.5)

ν× curl Es − iλγ+
T Es = h on �+, (5.6)

lim
r→∞(curl Es × x − ikr Es) = 0, (5.7)

where f :=−γ−
T Ei and h :=−(ν× curl Ei+− iλγ+

T Ei
)
, and Es is the scattered electric

field. Here λ := λ(x) is a piecewise continuous function on � such that λ(x) ≥ λ0 > 0
and depends on the thickness and material properties of the coating as well as on the wave
number k.

For both of the above direct scattering problems we assume that the incident field Ei

is the electric field of time-harmonic electromagnetic plane waves given by (4.4).
The direct scattering problem for perfectly conducting screens is studied in [1], [14],

and [24], whereas the direct scattering problem for mixed screens is studied in [31]. We
summarize here the main results concerning the direct problems, which play an essential
role in the study of the inverse problem. To this end, we need to properly define the trace
spaces on the open surface �. In particular, we first introduce the spaces

H 1/2(�) :=
{

u|� : u ∈ H 1/2(∂D)
}

,

H̃ 1/2(�) :=
{

u ∈ H 1/2(�) : suppu ⊆ �
}

.

Now we denote by H−1/2(�) the dual space of H̃ 1/2(�) and by H̃−1/2(�) the dual space
of H 1/2(�), with L2(�) as the pivot space. Note that H̃−1/2(�) can also be identified with

H̃−1/2(�) :=
{

u ∈ H−1/2(�) : suppu ⊆ �
}

.

Moreover, we define

H−1/2(Div,�) :=
{

u|� : u ∈ H−1/2(Div,∂D)
}

,

H−1/2(Curl,�) :=
{

u|� : u ∈ H−1/2(Curl,∂D)
}

,

where H−1/2(Div,∂D) and H−1/2(Curl,∂D) are defined by (3.10) and (3.15), respec-
tively. We denote by H̃−1/2(Div,�) the dual space of H−1/2(Curl,�) in the duality pair-
ing

〈
H−1/2(Div,∂D), H−1/2(Curl,∂D)

〉
. This space contains tangential fields u such that
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u ∈ (H̃−1/2(�))3, Divu ∈ H̃−1/2(�), and∫
∂D

u ·Gradv ds +
∫
∂D

Divu v ds = 0

for every v ∈ H
3
2 (�). The latter means that the normal trace of u at the edge l is well defined

and is zero, that is, νl · u|l = 0, where νl is the exterior normal vector at the boundary
l of � (for smooth screens see [1] and [41], and for piecewise smooth screens see [15],
[16], and [14]). Note also that a function u ∈ H̃−1/2(Div,�) can be extended by zero to a
function in H−1/2(Div,∂D). It is known that the trace operators ν× u±|� and γ±

T |� map
H (curl, BR \�) into H−1/2(Div,�) and H−1/2(Curl,�), respectively.

Theorem 5.1. Given f ∈ H−1/2(Curl,�), the scattering problem (5.1)–(5.3) has a unique
solution E ∈ Hloc(curl ,R3 \�), which depends continuously on f with respect to the norms
in the respective spaces.

For later use we note that the unique solution of (5.1)–(5.3) is given by

E(x) = 1

k2 curl x curl x

∫
�

φ(y)
(x , y)ds(y), (5.8)

=
∫
�

φ(y)
(x , y)ds(y)+ 1

k2 gradx

∫
�

div�φ(y)
(x , y)ds(y)

for x ∈ R
3 \� with φ ∈ H̃−1/2(Div,�) being the unique solution of the integral equation

Aφ = f , (5.9)

where the integral operator A : H̃−1/2(Div,�) → H−1/2(Curl,�) is an isomorphism and is
given by

(Aφ)(x) := γT

⎛
⎝∫
�

φ(y)
(x , y)ds(y)+ 1

k2
gradx

∫
�

div�φ(y)
(x , y)ds(y)

⎞
⎠.

We next consider the direct scattering problem for a mixed screen (5.4)–(5.7). Due to
the impedance condition the natural space for the solution of this problem is X (curl ,R3 \
�), which we recall is defined by

X (curl ,R3 \�) := {u ∈ Hloc(curl ,R3 \�) : ν×u+|� ∈ L2
t (�)},

equipped with the natural norm

‖u‖2
X (curl ,BR\�)

:= ‖u‖2
H (curl ,BR\�)

+‖ν×u+‖2
L2(�). (5.10)

We need to specify the space of γ−
T E for E ∈ X (curl ,R3 \�), which is obviously a closed

subspace of H−1/2(Curl,�) since X (curl , BR \�) is a closed subspace of H (curl, BR \�).
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(Note that γ+
T E ∈ H−1/2(Curl,�)∩ L2

t (�).) To this end we introduce

Y (�) : =
{

f ∈ (H−1/2(�))3 : ∃u ∈ H (curl, BR \�),

γ+
T u|� ∈ L2

t (�) and f = γ−
T u|�

}
,

which is a Banach space with respect to the norm

‖ f ‖2
Y (�) := inf{‖u‖2

H (curl ,BR\�)
+‖ν×u‖2

L2(�I )}, (5.11)

where the infimum is taken over all functions u ∈ H (curl, BR \�) such that γ+
T u|� ∈ L2

t (�)
and f = γ−

T u|� . Again let ∂D be a closed surface containing �, let BR be a large ball
containing D, and let u ∈ H (curl, BR \�) be such that ν×u|∂BR = 0, γ+

T u|� ∈ L2
t (�), and

f = γ−
T u|� . Applying integration by parts in D and BR \ D and using the fact that the

tangential components of functions in H (curl, BR \�) are continuous across ∂D \�, we
obtain

〈 f ,φ〉 : =
∫
�

(ν×u−) · (γ−
T φ)ds (5.12)

=−
∫
BR

(curl u ·φ−u · curl φ) dv+
∫
�

(ν×u+) · (γ+
T φ)ds.

Here φ ∈ X (curl , BR \�) is such that ν×φ|∂BR = 0. In particular (5.12) defines a duality
relation and characterizes the dual space Y ′(�) of Y (�) (see also (3.11), (5.12)).

Theorem 5.2. For any boundary data f ∈ Y (�) and h ∈ L2
t (�) there exists a unique solu-

tion E ∈ X (curl,R3 \�) of (5.4)–(5.7) which depends continuously on ( f ,h) with respect
to the norm in the respective spaces.

Let E∞(x̂ ,d , p) denote the far field pattern of the scattered field Es corresponding
to either problem (5.1)–(5.3) or (5.4)–(5.7). The inverse scattering problem we consider in
this chapter is to determine � from the knowledge of the electric far field E∞(x̂ ,d , p) for
x̂ ,d ∈� and p ∈ R3. (Note that we do not assume a priori any knowledge of λ.)

We end this section with a sketch of the proof of a uniqueness theorem for the inverse
problem. The proof presented here follows the general framework for the uniqueness of
electromagnetic inverse obstacle problems given in [81]. The main ingredients are the well-
posedness of the corresponding direct problem and the mixed reciprocity relation (3.6).

Theorem 5.3. Let B denote the boundary condition of either type (5.2) (perfectly con-
ducting screen) or type (5.5), (5.6) (mixed screen). Assume that �1 and �2 are two open
surfaces satisfying the assumptions in the beginning of this section, with the boundary con-
ditions B1 and B2, respectively, such that the far field patterns coincide for all incident
directions d and p ∈ R3. Then �1 = �2 and B1 = B2.

Proof. The proof proceeds along the same lines as the proof of Theorem 3.1. First, by
Rellich’s lemma (Theorem 2.5) from the coincidence of the far field pattern it follows that
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the corresponding scattered fields Es
1 and Es

2 coincide in the unbounded component G of
R3 \ (�1∪�2). Using the mixed reciprocity relation exactly in the same way as in the proof
of the first part of Theorem 3.1, we have that

Es
1,e(x , z, p) = Es

2,e(x , z, p), x , z ∈ G,

where Es
1,e(·, z, p) and Es

2,e(·, z, p) are the scattered electric fields due to the incident field
being an electric dipole located at z with polarization p for �1 and �2, respectively.

Now assume that �1 �= �2. Then we can find points x∗ ∈ �1 and x∗ /∈ �2, such that
ν(x∗) is defined, and consider zn = x∗ + 1

n ν(x∗) ∈ G. Then in view of the well-posedness
of the direct scattering problem for �2 with boundary condition B2, on one hand we obtain
that

lim
n→∞‖B1(Es

2,e(x , zn, p))− B1(Es
2,e(x , x∗, p))‖X1 = 0,

where X1 is the boundary data space corresponding to �1 with boundary condition B1. On
the other hand we find that

lim
n→∞‖B1(Es

2,e(x , zn , p))‖X1 = lim
n→∞‖B1(Es

1,e(x , zn, p))‖X1 =∞
because the boundary condition for Es

1,e(x , zn , p) is given in terms of the electric dipole
which does not belong to the boundary data space due to the singularity at z = x∗. We have
arrived at a contradiction, and hence �1 = �2.

Next, denoting � = �1 = �2, Es = Es
1 = Es

2, and the total field E = E1 = E2, we
assume that we have a different boundary condition B1 �= B2. If there is an open part �0
of � where λ1 �= λ2 (on the same side of �), then from (λ1 − λ2)γ+

T E = 0 we deduce
that γ+

T E = 0, and from the impedance condition we deduce ν× E+ = 0 on �0 as well.
Then from the Holmgren’s theorem (Theorem 2.4 in [80]; see also the second part of the
proof of Theorem 3.1) we conclude that E = 0 in R3 \ D, which is a contradiction. For the
same reason, it is not possible to have, on an open part �0 ⊂ �, different types of boundary
conditions since this also leads to zero Cauchy data for the total field on �0. This proves
that B1 = B2, which ends the proof of the theorem.

5.2 Approximation Theorems
As we have seen, approximations properties of electromagnetic Herglotz wave functions
are fundamental in the justification of the LSM. We show that appropriate traces of the scat-
tered field can be approximated by the corresponding traces of the electric Herglotz wave
functions given by (3.27). First, we proceed with the operator Hc : L2

t (�)→ H−1/2(Curl,�)
defined by

Hcg := γT Eg , (5.13)

where we recall that γT u := (ν×u)× ν.

Theorem 5.4. The range of Hc is dense in H−1/2(Curl,�).

Proof. As in Theorem 3.6 it suffices to consider the operator Hc with Eg written as

Eg(x) =
∫
�

e−ikx ·d g(d)ds(d). (5.14)
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The dual operator H�
c : H̃−1/2(Div,�) → L2

t (�) of the operator Hc is such that for every
α ∈ H̃−1/2(Div,�) and g ∈ L2

t (�) we have

〈Hcg,α〉
H−1/2

curl ,H̃−1/2
÷

=
〈
g,H�

c α
〉

L2
t ,L2

t

,

where 〈·, ·〉 denotes the duality pairing between the denoted spaces. It is enough to show
that the dual operator H�

c is injective. Then similarly to the proof of Theorem 3.6, the result
follows from the fact that the range of Hc can be characterized as (RangeHc)= aKernH�

c ,
where the annihilator a( ) is defined by (3.24). In particular, the injectivity of H�

c implies
that (RangeHc) = H−1/2(Curl,�). Simple computations shows that the dual operator H�

c
is defined by

H�
c (α) = d ×

⎧⎨
⎩
∫
�

α(x)e−ikx ·dα ds

⎫⎬
⎭×d .

One sees that H�
c (α) coincides with the far field pattern of the electric single layer potential

P(z) = 1

k2 curl curl
∫
�

α(x)
(x , z)ds(x), z /∈ �,

with 
(x , z) given by (2.9). The potential P(z) is well defined for z ∈ R
3 \� and satisfies

curlcurl P − k2 P = 0. In addition P : H̃−1/2(Div,�) → H (curl,R3 \�). Now let us as-
sume that H�

c (α) = 0. This means that the far field pattern of P is zero, and from Rellich’s
lemma P = 0 in R

3 \�. As z → � we have from the jump relations of the electric single
layer potential [41], [50] that

ν× curl P+− ν× curl P−|� = α. (5.15)

Hence from (5.15) we conclude that α = 0. Thus H� is injective, which proves the theo-
rem.

We remark that Theorem 5.4 implies that any function f ∈ H−1/2(Curl,�) can be
approximated arbitrarily closely by the tangential trace of a Herglotz function Eg .

Next, we prove a similar result for the mixed trace of the Herglotz wave function,
which will be used to study the inverse scattering problem for mixed screens. We first
define the operator Hm : L2

t (�) → Y (�)× L2
t (�) by

Hm g :=
⎧⎨
⎩

γT Eg on �−,

ν× curl Eg − iλγT Eg on �+,
(5.16)

with the Herglotz function Eg written as in (5.14).

Theorem 5.5. The range of Hm is dense in Y (�)× L2
t (�).

Proof. Let H := Y (�)× L2
t (�) with dual H ∗ := Y ′(�)× L2

t (�) in the componentwise
duality pairing. By the same reasoning as in the proof of Theorem 5.4 we need to prove the
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dual operator H�
m : H ∗ → L2

t (�) is injective. Straightforward calculations show that

H�
m [α,β] = d ×

⎧⎨
⎩
∫
�

e−ikx ·dα ds

−ik d ×
∫
�

e−ikx ·d (ν×β)ds − iλ
∫
�

e−ikx ·dβ ds

⎫⎬
⎭×d .

Note that α and β are tangential fields defined on �. Obviously, H�[α,β] coincides with
the far field pattern of the combined electric and magnetic potentials

Q(z) = 1

k2 curl curl
∫
�


(x , z)α(x)ds(x)+ curl
∫
�


(x , z)(ν×β(x))ds(x)

− iλ
1

k2 curl curl
∫
�


(x , z)β(x)ds(x), z /∈ �.

The potential Q(z) again is well defined for z ∈R
3 \� and satisfies curlcurl Q− k2 Q = 0.

Assume now that H�
m [α,β] = 0. This means that the far field pattern of Q is zero, and

from Rellich’s lemma Q = 0 in R
3 \�. As z → � we have that

ν× Q+− ν× Q−|� = ν×β, (5.17)

ν× curl Q+− ν× curl Q−|� = α− iλβ, (5.18)

where the jump relations are well defined in the sense of the L2 limit (see [50, p. 172])
due to the relation (5.12) and the fact that β is a square integrable tangential field. Hence
from (5.17) and (5.18) we conclude that α = β = 0. Thus H� is injective, which proves
the theorem.

We remark that Theorem 5.5 implies that any pair ( f , g) ∈ Y (�) × L2
t (�) can be

approximated arbitrarily closely by the mixed trace of the same Herglotz wave function
Eg .

5.3 Solution of the Inverse Problem
In this section we employ the above analysis to justify the LSM for determining the shape
of an open surface �. The justification of the LSM for an obstacle with an empty interior
differs from the one previously discussed for the cases of obstacles with nonempty interior
due to the fact that there are no interior sampling points.

Let E∞(x̂ ,d , p), x̂ ,d ∈�, and p ∈ R3 be the far field pattern corresponding to either
the scattering problem (5.1)–(5.3) or (5.4)–(5.7), and consider the far field operator F :
L2

t (�) → L2
t (�), which is again defined by (3.31). The LSM is based on the far field

equation
(Fg)(x̂) = E∞(x̂), x̂ ∈�, (5.19)

where the right-hand side E∞ is the far field pattern of a suitable (to be defined later)
radiating solution to Maxwell’s equations.
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Consider the solution operator Sc, which maps the data f ∈ H−1/2(Curl,�) to the
far field pattern of the solution to (5.1)–(5.3). Similarly, we consider the operator Sm ,
which maps the boundary data ( f ,h) ∈ Y (�)× L2

t (�) to the far field pattern of the radiating
solution to (5.4)–(5.7). Hence F and Sc are related through the relation

(Fg) =−Sc(Hcg), (5.20)

where Hc is given by (5.13) for the case of a perfectly conducting screen, and similarly F
and Sm are related through the relation

(Fg) =−Sm (Hm g), (5.21)

where Hm is given by (5.16) for the case of a mixed screen.

Lemma 5.6. Suppose that there does not exist a Herglotz wave function such that its
tangential component vanishes on �. Then the linear operator Sc : H−1/2

curl (�) → L2
t (�) is

injective, compact, and has dense range.

Proof. The injectivity follows from the uniqueness of the scattering problem and Rellich’s
lemma. Since Sc is the composition of the bounded operator that takes the boundary data
to the scattered solution on a large sphere ∂BR of radius R and the compact operator (see
[50, Theorem 6.8]) that maps data on ∂BR to the corresponding far field, Sc is compact.

Next, we prove that the range of Sc is dense by showing that the dual operator
S�

c : H̃−1/2(Div,�)× L2
t (�) is injective. To this end it is easy to see that

〈Sc(c), g〉 = 1

4π

∫
�

c · [ν× curl Ẽ−− ν× curl Eg
]

ds,

where now Ẽ ∈ H (curl, De) is the solution of (5.1)–(5.3) with boundary data

γ±
T Ẽ = γ±

T Eg on � (5.22)

and denotes the jump of the denoted function across �. Hence

4πS�
c g = [ν× curl Ẽ − ν× curl Eg

] ∈ H̃−1/2(Div,�). (5.23)

Now let S�
c g ≡ 0. Then from (5.22), (5.23), and the fact that the tangential components of

Eg and its kernel are continuous across �, we obtain that [ν× Ẽ ] = 0 and [ν×curl Ẽ] = 0
across �. Since Ẽ ∈ Hloc(curl ,R3) is a radiating solution to Maxwell’s equations, we
have that Ẽ = 0. Hence (5.22) implies that ν × Eg = 0 on �. But this is not possible
by assumption, and therefore Eg must be identically zero, which can happen only if the
kernel g ≡ 0. Hence, S�

c is injective, which implies that Sc has dense range. The proof is
now complete. We remark that there are special geometries of � that allow for a nontrivial
electric Herglotz wave function Eg to satisfy ν× Eg = 0 on �.

Lemma 5.7. The linear operator Sm : Y (�)× L2
t (�) → L2

t (�) is injective, compact, and
has dense range.
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Proof. The injectivity and compactness of Sm can be proved as in the first part of Lemma
5.6. To prove that Sm has dense range we will again show that the dual operator S�

m :
L2

t (�) → Y ′(�)× L2
t (�) is injective. Long, but straightforward, calculations [31] show

that

〈Sm ( f ,h), g〉 = 1

4π

∫
�

f · (ν× curl Ẽ−− ν× curl E−
g )ds

+ 1

4π

∫
�

h · (γ+
T Eg − γ̃+

T E)ds,

where Ẽ ∈ X (De,�) is the solution of the (5.4)–(5.7) with boundary data

γ−
T Ẽ = γT Eg on �, (5.24)

ν× curl Ẽ+− iλγ+
T Ẽ = ν× curl Eg − iλγT Eg on �.

Hence

4πS�
m g =

{
(ν× curl Ẽ−− ν× curl E−

g ) ∈ Y (�)′,
(γ+

T Eg −γ+
T Ẽ) ∈ L2

t (�).
(5.25)

Now let S�
m g ≡ 0. Then (5.25) and (5.24) imply that ν× (Ẽ − Eg)± = 0 and ν× (curl Ẽ −

curl Eg)± = 0. But since Ẽ is a radiating solution while Eg is an entire solution, we now
see that Eg must be identically zero, which can happen only if the kernel g ≡ 0. Hence, S�

m
is injective, which implies that Sm has dense range. This ends the proof of the lemma.

The following lemmas will help us to choose the right-hand side of the far field equa-
tion (5.19) appropriately. We denote by C∞

0 (L) the space of C∞ functions with compact
support in L.

Lemma 5.8. For any open surface L and a tangential field αL ∈ (C∞
0 (L)

)3
we define

E L∞ ∈ L2
t (�) by

E L∞ :=
⎛
⎝x̂ ×

∫
L

αL (y)e−ikx̂ ·yds(y)

⎞
⎠× x̂ . (5.26)

Then, E L∞ ∈ Range(Sc) if and only if L ⊂ �.

Lemma 5.9. For any open surface L and two tangential fields αL ,βL ∈ (C∞
0 (L)

)3
we

define E L∞ ∈ L2
t (�) by

E L∞ := x̂ ×
⎛
⎝∫

L

αL (y)e−ikx̂ ·yds(y)+ x̂ ×
∫
L

βL (y)e−ikx̂·yds(y)

⎞
⎠× x̂ . (5.27)

Then, E L∞ ∈ Range(Sm ) if and only if L ⊂ �.
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In the following we give the proof of Lemma 5.9. The proof of Lemma 5.8 is a
particular case of the proof of Lemma 5.9.

Proof. First, assume that L ⊂ � and let αL ,βL ∈ (C∞
0 (L)

)3 be tangential fields. We again
consider a closed boundary ∂D that contains �. We notice that (5.27) is the far field pattern
of the potential V defined by

V (x) := 1

k2
curl curl

∫
L

αL (y)
(x , y)ds(y)+ i

k
curl

∫
L

βL (y)
(x , y)ds(y).

Since the extensions α̃L and β̃L of αL and βL , respectively, by zero to the whole boundary
∂D are C∞ functions, we have that V is smooth enough and satisfies curl curl V −k2V = 0.
Moreover, using the jump relations of the vector potentials across ∂D [41], [50], we have
that V satisfies the following mixed boundary conditions on �:

f : = γ−
T V =− i

2k
β̃L × ν+ 1

k2 (Aα̃L )−+ i

k
(Bβ̃L)−,

h : = (ν× curl V +− iλγ+
T V
)= 1

2
α̃L + λ

2k
β̃L × ν+ ν× (Bα̃L)+

+ i

k
ν× (Aβ̃L)+− iλ

k2 (Aα̃L)++ λ

k
(Bβ̃L)+,

where the boundary operators A and B are given by

(Aφ)±(x) = γ±
T curl curl

∫
∂D

φ(y)
(x , y)ds(y),

(Bφ)±(x) = γ±
T curl

∫
∂D

φ(y)
(x , y)ds(y), x ∈ ∂D.

Since f ∈ Y (�) and h ∈ L2
t (�) we have that E L∞ is in the range of Sm .

Now let L �⊂� and assume, on the contrary, that E S∞ ∈ Range(Sm ); i.e., there exist
f ∈ Y (�) and h ∈ L2

t (�) such that E L∞ = Es∞, where Es∞ is the far field pattern of the
radiating solution Es to (5.4)–(5.7) corresponding to this boundary data f ,h. Hence by
Rellich’s lemma and the unique continuation principle, we have that Es(x) and

V (x) := 1

k2 curl curl
∫
L

αL (y)
(x , y)ds(y)+ i

k
curl

∫
L

βL (y)
(x , y)ds(y)

coincide for x ∈ R
3 \ (�∪ L). Now let x0 ∈ L, x0 /∈ �, and let Bε(x0) be a small ball with

its center at x0 such that Bε(x0)∩� = ∅. Then Es is analytic in Bε(x0) while V has a
singularity at x0, which is a contradiction. This proves the lemma.

Since, if L �⊂�, E L∞ /∈ RangeSc with E L∞ given by (5.26), or E L∞ /∈ RangeSm with
E L∞ given by (5.27), applying regularization techniques to the compact operators Sc or Sm ,
respectively, we have the following results.
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Lemma 5.10. Suppose that there does not exist a Herglotz wave function such that its
tangential component vanishes on �. Consider the equation

Sc( f ) = E L∞, f ∈ H−1/2(Curl,�),

where E L∞ is given by (5.26), and let L �⊂�. Then for every δ > 0 there exists fα depending
on the regularization parameter α > 0 such that

‖Sc( fα)− E L∞‖L2
t (�) < δ and lim

α→0
‖ fα‖H−1/2(Curl,�) =∞.

Lemma 5.11. Consider the equation

Sm ( f ,h) = E L∞, ( f ,h) ∈ Y (�)× L2
t (�),

where E L∞ is given by (5.27), and let L �⊂�. Then for every δ > 0 there exists ( fα,hα)
depending on the regularization parameter α > 0 such that

‖Sm ( fα ,hα)− E L∞‖L2
t (�) < δ and lim

α→0
‖( fα ,hα)‖Y (�)×L2

t (�) =∞.

Note that in the above lemmas α→ 0 as δ→ 0.
We now have all the ingredients to derive the LSM for screens. Denote by W the set

of piecewise smooth open surfaces L and consider the far field equation

(Fg)(x̂) = E L∞(x̂), L ∈ W , (5.28)

where E L∞ is given by (5.26) if F is the far field operator corresponding to (5.1)–(5.3), and
E L∞ is given by (5.27) if F is the far field operator corresponding to (5.4)–(5.7). Combining
Lemmas 5.8 and 5.10, using the factorization (5.20) of the far field operator F together with
the fact that any boundary function f ∈ H−1/2(Curl,�) can be approximated arbitrarily
close by Hcg for a g ∈ L2

t (�) (Theorem 5.4), and finally, making use of the continuity of
the operator Sc, we can prove the following theorem.

Theorem 5.12. Assume that � is a bounded, oriented, piecewise smooth open surface
and that there does not exist a Herglotz wave function such that its tangential component
vanishes on �. Then if F is the far field operator corresponding to (5.1)–(5.3) and E L∞ is
given by (5.26), we have the following:

1. If L ⊂ �, then for any arbitrary ε > 0 there exists a solution gL
ε ∈ L2

t (�) of the
inequality

‖FgL
ε − E L∞‖L2

t (�) < ε,

and the corresponding trace of the Herglotz wave function HcgL
ε converges in

H−1/2(Curl,�) as ε→ 0.

2. If L �⊂�, then for any arbitrary ε > 0, every solution gL
ε ∈ L2

t (�) of the inequality

‖FgL
ε − E L∞‖L2

t (�) < ε

is such that

lim
ε→0

‖gL
ε ‖L2

t (�) =∞ and lim
ε→0

‖HcgL
ε ‖H (curl,BR ) =∞,

where HcgL
ε is as defined by (5.13).
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104 Chapter 5. The Inverse Scattering Problem for Thin Objects

Note that, unlike the case of an obstacle with nonempty interior, the LSM fails for
special geometries instead of special frequencies.

Similarly, combining Lemmas 5.9 and 5.11, using the factorization (5.21) of the far
field operator F together with the fact that any boundary data ( f ,h) ∈ Y (�)× L2

t (�) can be
approximated arbitrarily close by Hm g for a g ∈ L2

t (�) (Theorem 5.5), and finally, making
use of the continuity of the operator Sm , we can prove the following theorem.

Theorem 5.13. Assume that � is a bounded, oriented, and piecewise smooth open surface.
Then if F is the far field operator corresponding to (5.4)–(5.7) and E L∞ is given by (5.27),
we have the following:

1. If L ⊂ �, then for any arbitrary ε > 0 there exists a solution gL
ε ∈ L2

t (�) of the
inequality

‖FgL
ε − E L∞‖L2

t (�) < ε,

and the corresponding trace of the Herglotz wave function Hm gL
ε converges in

Y (�)× L2
t (�) as ε→ 0.

2. If L �⊂�, then for any arbitrary ε > 0, every solution gL
ε ∈ L2

t (�) of the inequality

‖FgL
ε − E L∞‖L2

t (�) < ε

is such that

lim
ε→0

‖gL
ε ‖L2

t (�) =∞ and lim
ε→0

‖Hm gL
ε ‖Y (�)×L2

t (�) =∞,

where Hm gL
ε is as defined by (5.16).

There are several ways to implement the LSM. One way is to replace E L∞ in the far
field equation (5.28) by an expression independent of L and test by sampling points. To this
end, we note that as L degenerates to a point z with αL , βL an appropriate delta sequence,
we have that the integral in (5.27) approaches

ik

4π

[
(x̂ ×q1)× x̂e−ikx̂ ·z + (x̂ ×q2)e−ikx̂ ·z] ,

where q1,q2 are two constant vectors, and this equation can be used for both types of
screens considered here. Note that the first term is the electric far field of an electric dipole
and the second term is the magnetic far field of an electric dipole. In particular, one can
take q1 = q2 (which corresponds to choosing αL = βL) and obtain the following limiting
expression for E L∞:

ik

4π

[
(x̂ ×q)× x̂e−ikx̂ ·z + (x̂ ×q)e−ikx̂ ·z] ,

where q is a constant vector. These expressions for E L∞ are valid for both types of screens.
Hence, roughly speaking, independent of the physical properties of the screen, the shape
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of the screen � can be characterized as the set of points where the L2
t (�) norm of an

approximate (regularized) solution of the far field equation

(Fg)(x̂) = ik

4π

[
(x̂ ×q1)× x̂e−ikx̂ ·z + (x̂ ×q2)e−ikx̂ ·z] (5.29)

becomes large.
We end this chapter by noting that it is possible to use the approximate solution to

the far field equation to determine λ as well. We refer the reader to [107] for an approach
to doing this for a related problem in the scalar case.

5.4 Numerical Reconstruction of Screens
The majority of the theory and numerical results in this book relates to scatterers D with a
nonzero volume. Both heuristically and mathematically we make use of properties of the
far field equation for z ∈ D and z /∈ D. Remarkably, as shown in this chapter, the LSM can
also be used to image objects with zero volume. In particular, we have described a method,
culminating in equation (5.29), that allows us to use the LSM to approximate the shape of
screens [31].

We show two representative results from [24] that demonstrate the power of the
method. For a given screen, the authors solve the forward mixed screen problem using
the Ultra Weak Variational Formulation (UWVF) of Maxwell’s equations modified slightly
to allow for the mixed boundary conditions. After adding noise to the far field pattern com-
puted at the 42 points in Figure 3.1(a) using 42 incoming plane waves, this data is then
used to solve the inverse problem using a regularized version of (5.29). In the first exam-
ple, which again demonstrates how the LSM can handle disconnected scatterers with mixed
boundary conditions, two square screens are reconstructed. The upper square is a perfect
conductor on both upper and lower surfaces, while the lower square is a perfect conductor
on the lower surface and has an impedance boundary condition with λ = 2 on the upper
side. The results using k = 2 are shown in Figure 5.1.

The second example is an L-shaped scatterer, which is a perfect conductor on all
surfaces except the inner side (i.e., the side facing the viewer in Figure 5.2) of the vertical
square where there is an impedance boundary condition with λ = 2. The reconstruction
with k = 2 (so the wavelength is 3.14) is shown in Figure 5.2. Despite the long wavelength
in this case (compared to the scatterer) the method reconstructs the object. The perfectly
conducting surface is sharper, but even the impedance surface is reconstructed well.
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Figure 5.1. Here, the right panel shows the reconstruction of the disconnected
screens shown in the left panel. The upper screen is perfectly conducting, while the lower
screen is perfectly conducting on the lower surface and imperfectly conducting on the upper
surface. This figure is reproduced from [31] with permission.
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Figure 5.2. Here, the right panel shows the reconstruction of the L-shaped screen
shown in the left panel. All surfaces are perfectly conducting except the facing surface of
the vertical screen, which is imperfectly conducting. This figure is reproduced from [31]
with permission.
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Chapter 6

The Inverse Scattering Problem
for Buried Objects

Up to now we have only discussed the inverse scattering problem for obstacles situated in a
homogeneous background. However, in most applications the unknown target is embedded
in an inhomogeneous background. The use of electromagnetic fields to detect buried ob-
jects has a long history and continues to be an active area of research [3], [4], [9], [32], [61],
[62]. Of particular interest is the use of such methods to detect chemical waste deposits,
examine urban infrastructure, and locate land mines. However, from a practical point of
view, there are two main reasons why such imaging problems are challenging. The first is
the difficulty of distinguishing the scattered field due to the target from the scattered fields
due to the earth, the antenna, and, in particular, the air-earth interface. The second reason
is that the material properties of the target are in general unknown. For example, a land
mine can be made of metal or plastic, whereas a rusted barrel of chemical waste deposits is
typically modeled by a complicated mixed boundary value problem involving a dielectric
of unknown permittivity. Because of these reasons, traditional methods of imaging, such as
the use of weak scattering approximations and nonlinear optimization techniques, remain
problematic.

The linear sampling method (LSM) has a number of features which make it attractive
for the imaging of buried objects. In particular, it is a linear method that does not ignore
multiple scattering effects and determines the shape of a target without requiring any a
priori knowledge of the target’s physical properties. However, until recently, the imple-
mentation of the LSM for a nonhomogeneous background media required knowledge of
the Green’s function for the background media. This is obviously an unattractive feature if
it is desired to use this method for the detection of buried objects, particularly if the scat-
tering effects due to the antenna play a significant role. In order to overcome the problem
of needing to compute the Green’s function for the background media, a new version of
the LSM, based on the reciprocity gap functional, was introduced by Colton and Haddar
[46] for the scalar case and by Cakoni, Fares, and Haddar [32] for the vector case. How-
ever, in imaging nothing is free, and the price paid for avoiding the need to compute the
Green’s function is that one now needs to measure both the electric and magnetic fields
corresponding to time-harmonic electric dipoles as incident fields.

We begin this chapter with a brief discussion of the LSM for objects buried in a
known inhomogeneous background using near field measurements. However, the main

107
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108 Chapter 6. The Inverse Scattering Problem for Buried Objects

focus here is the analysis of the reciprocity gap functional method for solving the inverse
scattering problem for buried objects based on [32] and [46] (see also [63]). In order
to make the presentation more friendly to the reader, we assume that the background is
piecewise homogeneous and limit ourselves to the case of perfectly conducting objects
and inhomogeneous media. The approach is extendable to more general backgrounds [95]
as well as to more complicated objects, such as partially coated perfect conductors and
inhomogeneous media. We refer the reader to [35] and [23] for discussions of these cases.

6.1 Scattering by Buried Objects
We consider the scattering of a time-harmonic electromagnetic field of frequency ω by
a scattering object embedded in a piecewise homogeneous background medium in R3.
Throughout this chapter we assume that the magnetic permeability μ0 > 0 of the back-
ground medium is a positive constant, whereas the electric permittivity ε(x) and conduc-
tivity σ (x) are piecewise constant. Moreover, we assume that for |x | = r > R, for R
sufficiently large, σ = 0 and ε(x) = ε0. Then the electric field E and magnetic field H
in the background medium satisfy the time-harmonic Maxwell’s equations

∇×E − iωμ0H = 0, ∇× H̃ + (iωε(x)−σ (x))E = 0.

After an appropriate scaling [50] and elimination of the magnetic field, we now have that
in the background medium E satisfies

curl curl E − k2n(x)E = 0,

where E = 1√
ε0

E , k2 = ε0μ0ω
2, and n(x) = 1

ε0
(ε(x)+ i σ (x)

ω
). Note that the piecewise

constant function n(x) satisfies n(x) = 1 for r > R, �(n)> 0, and �(n) ≥ 0. The surfaces
across which n(x) is discontinuous are assumed to be piecewise smooth and closed.

The incident field is considered to be the electric field of an electric dipole located at
x0 ∈ � with polarization p ∈ R3, situated in a layer with constant index of refraction ns ,
and is given by

Ee(x , x0, p,ks) := i

ks
curl x curl x p

eiks |x−x0|

4π |x − x0| , (6.1)

where k2
s = k2ns . We denote by G(x , x0) the free space Green’s tensor of the background

medium and define Ei (x) := Ei (x , x0, p) =G(x , x0)p, which satisfies

curl curl Ei (x)− k2n(x)Ei (x) = p δ(x − x0) in R
3, (6.2)

where δ denotes the Dirac distribution. Note that Ei can be written as

Ei (x) = Ee(x , x0, p,ks)+ Es
b(x), (6.3)

where Es
b = Es

b(·, x0, p) is the electric scattered field due to the background medium.
The Green’s function Ei := Ei (x , x0, p) satisfies the Silver–Müller radiation condi-

tion
lim

r→∞(curl Ei × x − ikr Ei ) = 0 (6.4)

uniformly in x̂ = x/|x |, r = |x |.

 



CCM boo
2010/11/2
page 109

�

�

�

�

�

�

�

�

6.1. Scattering by Buried Objects 109

Remark 6.1. The analysis of the inverse problems considered in this chapter allows for
more complicated backgrounds. Possible cases are the following:

1. The index of refraction n of the background medium can be a piecewise continuous
function in a bounded region of R3 (not necessarily piecewise constant) but n must
still be equal to 1 outside a big ball.

2. It is also possible to consider the problem of objects buried in an unbounded multi-
layer medium. In this case, the radiation condition and mathematical analysis of the
forward problem become more complicated (see [56] for the case of a two-layered
medium).

In the above two cases, the following analysis of the inverse scattering problems remains
essentially the same.

Let D denote the support of the scattering object embedded in the piecewise homo-
geneous background described above. We suppose that R3 \ D is connected and that the
boundary ∂D is piecewise smooth. We denote by ν the outward unit normal defined almost
everywhere on ∂D. We consider the cases when D is a perfect conductor and D is an
inhomogeneous anisotropic media.

The scattering problem for a perfect conductor. The scattering problem for a
buried perfect conductor D, given Ei = Ei (· , x0, p) = G(· , x0)p, is to find the total field
E ∈ Hloc(curl ,R3 \ D ∪{x0}) such that the scattered field Es := (E − Ei ) ∈ Hloc(curl ,R3 \
D) satisfies

curl curl E − k2n(x)E = p δ(x − x0) in R
3 \ D, (6.5)

ν× E = 0 on ∂D, (6.6)

lim
r→∞

(
curl Es × x − ikr Es)= 0. (6.7)

The scattering problem for anisotropic media. We assume that the index of refraction
of the scattering object is a symmetric matrix-valued function denoted by N(x), x ∈ D,
whose entries are bounded, complex-valued, piecewise continuous functions such that

ξ̄ · �(N)ξ ≥ 0 and ξ̄ ·�(N)ξ ≥ γ |ξ |2∀ξ ∈C
3 and all x ∈ D, (6.8)

where γ is a positive constant. Note that we assume that the magnetic permittivity of
the scattering object is the same as that of the background medium. Then the scattering
problem for a buried anisotropic medium, given Ei = Ei (· , x0, p) = G(· , x0)p, is to find
Eint ∈ H (curl, D) and Es = E − Ei ∈ Hloc(curl ,R3 \ D) such that (Eint , E) satisfies

curl curl E − k2n(x)E = p δ(x − x0) in R
3 \ D, (6.9)

curl curl Eint − k2 N(x)Eint = 0 in D, (6.10)

ν× E − ν× Eint = 0 on ∂D, (6.11)

ν× curl E − ν× curl Eint = 0 on ∂D, (6.12)

lim
r→∞

(
curl Es × x − ikr Es)= 0. (6.13)
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Π

Λ

D G

xo

Figure 6.1. Example of a geometry for the LSM.

Note that (6.5) and (6.9), (6.10) are assumed to hold in the distributional sense,
whereas the boundary conditions are valid in the sense of traces. Of course the continuity
of E and curl E across the interfaces is assumed [93]. As already mentioned in Chapters 3
and 4 (see [20], [27], [78], [93]) both direct scattering problems are well posed.

6.2 Near Field Data
In this section we briefly describe the LSM for near field measurements. We consider a
bounded domain G such that D is contained in G and an open surface � is contained
in R3 \ G. In this configuration (see Figure 6.1) G is the interrogation region and � is
the surface, where the incident sources are placed. Let ∂G denote the piecewise smooth
boundary of G. Let � ⊆ ∂G be a part of the boundary ∂G, where the measurements
are made. Note that � may be a subset of ∂G and possibly the same as �. The inverse
scattering problem we are interested in is to determine D from knowledge of the tangential
components ν× Es of the scattered electric field Es = Es (· , x0, p) measured on � for all
point sources x0 ∈� and two linearly independent polarizations p tangent to� at x0. Here
and in what follows, ν is always the outward unit normal to the surface under consideration
unless otherwise stated.

Adapting the uniqueness proofs in Sections 2.1 and 4.1 (see also [81] and [20]) to
the case of near field data, one can prove that, under appropriate assumptions on N , D is
uniquely determined from a knowledge of the tangential component of the scattered electric
field on � corresponding to all x0 ∈ � and p ∈ R3. In the proofs one makes use of the
unique continuation principle for the equation in the background (cf. [58] and [59] for the
scalar case). For closely related uniqueness results for objects in a piecewise homogeneous
medium, see [89], [90].

The main goal here is to reformulate the LSM in terms of the near field data. To this
end we consider the near field operator F : L2

t (�) → L2
t (�) and the near field equation

(F ϕz)(x) :=
∫
�

ν(x)× Es(x , y,ϕz(y))ds(y) = ν(x)×G(x , z)q (6.14)
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for all x ∈� and z ∈R
3, where q ∈R3 and G(x , z) is the Green’s tensor for the background

medium. The LSM is based on finding a tangential field ϕz ∈ L2
t (�) that satisfies (6.14).

We remind the reader that Es is the scattered field due to the incident wave being Ei (x) =
Ee(x , x0, p,ks)+Es

b(x) by a perfect conductor or an anisotropic medium. By superposition,
F ϕ is the rotated tangential component on � of the scattered electric field corresponding
to the potential

(Sϕ)(x) :=
∫
�

ϕ(y)G(x , y)ds(y) (6.15)

as the incident wave. The analysis of the LSM with far field data done in Section 3.2 for
the scattering problem (6.5)–(6.7), and in Sections 4.3 and 4.5 for the scattering problem
(6.9)–(6.13), can be carried through by merely replacing the electric Herglotz function with
the potential given by (6.15). To avoid repetition we state in the following the main theorem
that provides the theoretical basis of the LSM for buried objects with near field data. The
approximation properties of the potentials (6.15) that are needed for this analysis will be
proved in the next section in the context of the reciprocity gap function.

In order to formulate our main result we need to consider the interior problem corre-
sponding to (6.5)–(6.7),

curl curl Ez − k2n(x)Ez = 0 in D, (6.16)

ν× Ez = ν×G(·, z)q on ∂D, (6.17)

which for z ∈ D has a solution Ez ∈ H (curl, D) provided that k is not a Maxwell’s eigen-
value [27]. We call k > 0 a Maxwell eigenvalue for D if the homogeneous problem
(6.16)–(6.17) (i.e., with G(·, z) = 0) has a nontrivial solution. We also consider the interior
transmission problem corresponding to (6.9)–(6.13),

curl curl Ez
0 − k2n(x)Ez

0 = 0 in D, (6.18)

curl curl Ez − k2 N(x)Ez = 0 in D, (6.19)

ν× Ez − ν× Ez
0 = ν×G(·, z)q on ∂D, (6.20)

ν× curl Ez − ν× curl Ez
0 = ν× curl G(·, z)q on ∂D, (6.21)

which for z ∈ D and appropriate assumptions (see the next section and [35]) has a unique
solution Ez ∈ L2(D) and Ez

0 ∈ L2(D). We call k > 0 a transmission eigenvalue for D if
the homogeneous problem (6.18)–(6.21) (i.e., with G(·, z) = 0) has a nontrivial solution.

Theorem 6.1. Assume that either

(a) F is the near field operator corresponding to (6.5)–(6.7), and k is not a Maxwell
eigenvalue, or

(b) F is the near field operator corresponding to (6.9)–(6.13), and k is not a transmission
eigenvalue.

Then we have the following:

1. For z ∈ D and a given ε > 0, there exists a ϕεz ∈ L2
t (�) such that

‖F ϕεz − ν×G(· , z)q‖L2
t (�) < ε,
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112 Chapter 6. The Inverse Scattering Problem for Buried Objects

and the corresponding potential Sϕεz converges to the solution Ez of (6.16)–(6.17)
in H (curl, D) in case (a), or to Ez

0 where Ez
0, Ez is the solution of (6.18)–(6.21) in

L2(D) in case (b) as ε→ 0.

2. For a fixed ε > 0, we have that

lim
z→∂D

‖Sϕεz ‖X =∞ and lim
z→∂D

‖ϕεz ‖L2
t (�) =∞,

where X := H (curl, D) in case (a) and X := L2(D) in case (b).

3. For z ∈ R
3 \� and a given ε > 0, every ϕεz ∈ L2

t (�) that satisfies

‖F ϕεz − ν×G(· , z)q‖L2
t (�) < ε

is such that
lim
ε→0

‖Sϕεz ‖X =∞ and lim
ε→0

‖ϕεz ‖L2
t (�) =∞,

where X := H (curl, D) in case (a) and X := L2(D) in case (b).

The solution provided by Theorem 6.1 can be used to determine the shape D of
the buried target independently of its physical properties (see Section 6.4 for numerical
examples) provided that an analytic expression of the Green’s function for the background
media is available.

6.3 The Reciprocity Gap Functional Method
The LSM for buried objects works for any background medium for which the Green’s
function is available. However, since the expression of the background Green’s function is
part of the far field equation, it is crucial for the LSM that it be accurately computed. Often
this task is difficult and computationally expensive especially for complicated geometries.
A new version of the LSM based on the reciprocity gap function, referred to in the following
as the reciprocity gap functional method, avoids this problem at the expense of needing
more data. In particular, if the tangential component of both the electric and magnetic field
is measured on ∂G (see Figure 6.2) only the Green’s tensor for G is needed. In order to
clearly present the main ideas of the method, throughout this section we assume that the
medium inside G is homogeneous, and in this case we can choose the Green’s tensor to be
an electric dipole.

More precisely, let G be a bounded region in R3 with piecewise smooth boundary
∂G containing the scatterer D, and suppose that the medium inside G is homogeneous
with constant index of refraction nb and wave number k2

b = k2nb. We assume that the open
surface �, which is the location of the sources, is part of a closed analytic surface situated
in a homogeneous layer of R3 \G with constant index of refraction ns and wave number
k2

s = k2ns (see Figure 6.2). In order to formulate the inverse problem we assume that the
tangential components of both the total electric field E := E(· , x0, p) and total magnetic
field H = 1

ik curl E are known on ∂G. Furthermore, without loss of generality, for the
following analysis we assume that � is the entire closed analytic surface surrounding G
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x0

Boundary of G
G

Λ

D

Figure 6.2. Example of a geometry for the reciprocity gap functional method.

situated in the layer with index of refraction ns . By an analyticity argument our analysis
remains valid if � is only a portion of this surface.

The inverse scattering problem we are interested in is to determine the support D of
the scattering object from knowledge of the tangential components ν× E and ν× curl E
measured on ∂G for all points x0 ∈� and p ∈ R3. For later use, we define

U :=
{

E(· , x0, p), x0 ∈�, p ∈ R
3
}

, (6.22)

which represents the set of electric fields corresponding to these measurements.
The reciprocity gap functional method is based on an integral equation of the first

kind constructed from the reciprocity gap operator. To this end, define

H(G) :=
{

W ∈ H (curl, G), such that curlcurlW − k2
bW = 0 in G

}
.

The reciprocity gap operator is obtained from the reciprocity gap functional R defined on
U×H(G) by

R(E , W ) :=
∫
∂G

{(ν× E) · curl W − (ν×W ) · curl E }ds, (6.23)

where the integrals are interpreted in the sense of the duality between H−1/2(Div,∂G) and
H−1/2(Curl,∂G). Notice that in the absence of a scattering object D, the right-hand side
of (6.23) is zero for all point sources, whereas if D is present, this right-hand side defines
a nonzero function of the source location x0 and of the source polarization p. This obser-
vation motivates using (6.23) to set up an integral equation whose solution is an indicator
function for D. To this end, we define the reciprocity gap operator R : H(G) → L2

t (�) by

R(W )(x0) · p = R(E(·, x0, p), W ) (6.24)

for all x0 ∈� and p ∈R3. Notice that this definition makes sense since E depends linearly
on the polarization p and so does R.
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114 Chapter 6. The Inverse Scattering Problem for Buried Objects

Our inversion scheme is based on the construction of an integral equation using the
reciprocity gap operator and a family of solutions in H(G), which satisfy certain properties
to be made precise later. To fix our ideas we consider the single layer potential Aϕ defined
by

(Aϕ)(x) := curl curl
∫
�̃

ϕ(y)
(x , y,kb)ds, ϕ ∈ L2
t (�̃), (6.25)

where �̃ is the boundary of a ball containing G and� in its interior, and
(x , y,kb) is given
by (2.9) with k = kb. The sampling operator S : L2

t (�̃) → L2
t (�) is defined by

Sϕ := R Aϕ (6.26)

for ϕ ∈ L2
t (�̃). Using the definition of R and interchanging the order of integration, it is

readily seen that S is an integral operator whose (matrix) kernel s(x0, y) is defined by

(s(x0, y) ·q) · p = R(E(·, x0, p), curl curl (q
(·, y,kb)))

for (x0, y) ∈�× �̃ and p,q ∈ R3.
The key ingredients of the reciprocity gap functional method are the properties of

the reciprocity gap operator and the fact that set
{

Aϕ : ϕ ∈ L2
t (�̃)

}
is dense in appropriate

solution spaces.

Lemma 6.2. Let BR be a ball containing D and contained in the domain bounded by �̃.
Then the set

{
Aϕ, ϕ ∈ L2

t (�̃)
}

is dense in L2
t (∂BR).

Proof. Without loss of generality we assume that kb is not a Maxwell eigenvalue for BR
(which is not a restriction since we can always find such a ball). Noting that

curl x curl x

∫
�̃

ϕ(y)
(x , y,kb)ds(y) =−ikb

∫
�̃

G(x , y)�ϕ(y)ds(y),

where G is given by

G(x , y) =
(x , y,kb)I + 1

k2
b

gradx divx 
(x , y,kb)I (6.27)

and � denotes the transposed matrix, assume there exists a ∈ L2
t (∂BR) such that∫

∂BR

a(x) ·
∫
�̃

G(x , y)�ϕ(y)ds(y)ds(x)= 0 (6.28)

for every ϕ ∈ L2
t (�̃). We want to show that a = 0. By interchanging the order of integration

we arrive at ∫
�̃

ϕ(y) ·
∫
∂BR

G(x , y)a(x)ds(x)ds(y)= 0
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for every ϕ ∈ L2
t (�̃). This implies that

ν×
∫
∂BR

G(x , y)a(x)ds(x) = 0 on �̃.

Hence, using the uniqueness of the exterior Maxwell problem and analytic continuation
[93], we have that the surface potential

(V a)(y) :=
∫
∂BR

G(x , y)a(x)ds(x), y ∈ R
3 \ ∂BR , a ∈ L2

t (∂BR),

is zero outside ∂BR . By continuity of the tangential component of V a across ∂BR and the
fact that kb is not a Maxwell eigenvalue for BR , we conclude that V a = 0 in BR as well.
Finally, by applying the jump relation for ν×∇ × (V a) across ∂BR [50], we obtain that
a ≡ 0. This ends the proof.

Remark 6.2. Alternatively one can use, instead of the single layer potential, the electric
Herglotz wave function Eg defined by (2.24). Then the sampling operator is given by

S̃ : L2
t (�) → L2

t (�) such that S̃g = REg,

where� is the unit sphere. Thus the analysis that follows also holds, with S replaced by S̃.

Now let z ∈ G be a sampling point, let q ∈ R3 \ {0} be an arbitrary vector, and let

Ee(x , z,q ,kb) := i

kb
curl x curl x q
(x , z,kb) (6.29)

be the electric field of the electric dipole corresponding to kb. We associate with this dipole
the function �z ∈ L2

t (�) defined by

�z(x0) · p = R(E(·, x0, p), Ee(·, z,q ,kb)) (6.30)

for x0 ∈� and p ∈R
3. The reciprocity gap functional method consists in seeking for each

sampling point z an approximate solution to the ill-posed integral equation

Sϕz = �z , ϕz ∈ L2
t (�), (6.31)

which can be equivalently written, using the definition of S and �z , in the form

R(E , Aϕz) = R(E , Ee(·, z,q ,kb)), ϕz ∈ L2
t (�̃), E ∈ U. (6.32)

We emphasize that, as opposed to the LSM, the background Green’s function G(· , x0)p
does not appear in the integral equation (6.31).

In the following we develop the analytical framework for studying (6.31) for both
scattering problems (6.5)–(6.7) and (6.9)–(6.13).

 



CCM boo
2010/11/2
page 116

�

�

�

�

�

�

�

�

116 Chapter 6. The Inverse Scattering Problem for Buried Objects

The reciprocity gap functional method for perfect conductors. Let E = E(· , x0, p)=
Es(· , x0, p)+G(· , x0)p and H = 1

ik curl E be the total electric and magnetic fields, respec-
tively, corresponding to the scattering problem (6.5)–(6.7).

Lemma 6.3. Assume that k is not a Maxwell eigenvalue. Then the operator R : H(G) →
L2

t (�) defined by (6.24) is injective.

Proof. RW = 0 means R(E(·, x0, p), W ) = 0 for all x0 ∈� and p ∈R3. Since both E and
W satisfy Maxwell’s equations in G \ D, we have, using the boundary condition for E on
∂D, that

0 =
∫
∂D

(ν× E) · curl W − (ν×W ) · curl E ds =−
∫
∂D

(ν×W ) · curl E ds,

where the first integral is interpreted in the sense of duality between H−1/2(Div,∂D) and
H−1/2(Curl,∂D). Now let Ẽ be the unique solution to (see [27])

curl curl Ẽ − k2n(x)Ẽ = 0 in R
3 \ D, (6.33)

ν× (Ẽ −W ) = 0 on ∂D, (6.34)

lim
r→∞

(
curl Ẽ × x − ikr Ẽ

)= 0. (6.35)

Then from the above problem, the boundary conditions for the total field E = Es +G(·, x0)p,
and (6.34), (6.35), we have that

0 =−
∫
∂Du

(ν× Ẽ) · curl E ds =
∫
∂D

(ν× E) · curl Ẽ − (ν× Ẽ) · curl E ds

=
∫
∂D

[ν× (Es +G(·, x0)p)] · curl Ẽ − (ν× Ẽ) · curl (Es +G(·, x0)p)ds.

Since Es and Ẽ are both radiating solutions to the same equation, the above equation
simplifies to

0 =
∫
∂D

(ν×G(·, x0)p) · curl Ẽ − (ν× Ẽ) · curl G(·, x0)p ds

=−p · Ẽ(x0). (6.36)

Since p is an arbitrary polarization, we obtain ν × Ẽ(x0) = 0 for x0 ∈ �. Furthermore,
since Ẽ is a radiating solution to Maxwell’s equations outside the domain bounded by �,
we conclude by the uniqueness of the scattering problem for a perfect conductor (cf. [50],
[93]) that Ẽ = 0 outside the domain bounded by�. Then the unique continuation principle
[93] implies that Ẽ = 0 outside D, whence ν× W = 0 on ∂D. Finally, since k is not a
Maxwell eigenvalue, from the uniqueness of the interior boundary value problem for W we
conclude that W = 0, which proves the lemma.

Lemma 6.4. Assume that k is not a Maxwell eigenvalue. Then the operator R : H(G) →
L2

t (�) defined by (6.24) has dense range.
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Proof. Consider β ∈ L2
t (�) and assume that

(RW ,β)L2
t (�) = 0 ∀W ∈H(G).

From (6.24) and the bilinearity of R, one has that

(RW ,β)L2
t (�) =

∫
�

R(E(·, x0,α(x0)), W ) ds(x0) = R(E , W ),

where

E (x) =
∫
�

E(x , x0,α(x0))ds(x0) (6.37)

and α = (β · p) p. Using the second vector Green’s formula and the boundary conditions
for E , one concludes that

0 = R(E , W ) =−
∫
∂D

(ν×W ) · curl E ds (6.38)

for all W ∈H(G), where again the first integral is interpreted in the sense of duality between
H−1/2(Div,∂D) and H−1/2(Curl,∂D). Since H(G) contains the electric Herglotz wave
functions given by (2.24), from Theorem 2.8 in [27] and the well-posedness of the interior
boundary value problem for a perfect conductor, one has that the set

{ν×W |∂D for all W ∈H}
is dense in H−1/2(Curl,∂D). Therefore

ν× curl E = 0 on ∂D.

The boundary conditions for E imply that both ν×E = 0 and ν× curl E = 0 on ∂D. This
means that the extension of E by zero inside D satisfies Maxwell’s equations inside the
domain bounded by� with the index n set equal to nb inside D. From the unique continu-
ation principle [93] one has that E is zero inside the domain bounded by � and outside D.
Noting that

E (x) =
∫
�

(Es(x , x0,α(x0))+G(x , x0)α(x0))ds(x0)

one concludes that E × ν is continuous across �. The uniqueness theorem for the exterior
problem for Maxwell’s equations with boundary data ν×E = 0 on � implies that E = 0
outside the domain bounded by �. Finally, from the jump relations of the vector potential
across� [50], we have that

0 = curl E |�+ − curl E |�− = −α on �.

Hence (β · p) p = 0 for all p ∈R3, which implies that β = 0. This ends the proof.

Remark 6.3. It is easy to prove (cf. Theorem 4.8 in [22]) that the operator R : H(G) →
L2

t (�) is compact.
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From Lemma 6.2, Theorem 7.9 in [50], and the fact that the electric Herglotz func-
tions are dense in H (curl, D), we have the following lemma.

Lemma 6.5. The set
{

Aϕ, ϕ ∈ L2
t (�̃)

}
is dense in H (curl, D).

Combining the above results, we have the following theorem.

Theorem 6.6. The sampling operator S : L2
t (�̃) → L2

t (�) defined by (6.26) is compact
and injective and has dense range provided that k is not a Maxwell eigenvalue.

Our main goal now is to study the solvability of (6.31) (or equivalently (6.32)). An
important observation is that for z ∈ D it is easy to see from (6.32) that (6.31) has a solution
ϕz ∈ L2

t (�̃) if and only if Ez := Aϕz is a solution of

curlcurl Ez − k2
b Ez = 0 in D, (6.39)

ν× [Ez − Ee(·, z,q ,kb)] = 0 on ∂D. (6.40)

This is generally not possible. The best we can hope for is to find an approximate solution
to (6.31) by approximating the unique solution to (6.39)–(6.40) by Aϕz .

The following theorem is the basis of the reciprocity gap functional method for per-
fectly conducting scatterers.

Theorem 6.7. Assume that k is not a Maxwell eigenvalue for D. Then the following hold:

1. For z ∈ D and a given ε > 0, there exists a ϕεz ∈ L2
t (�̃) such that

‖Sϕεz − �z‖L2
t (�) < ε,

and the corresponding single layer potential Aϕεz converges to Ez in H (curl, D) as
ε→ 0, where Ez is the unique solution of (6.39)–(6.40).

2. For a fixed ε > 0, we have that

lim
z→∂D

‖Aϕεz ‖H (curl ,D) =∞ and lim
z→∂D

‖ϕεz ‖L2
t (�̃) =∞.

3. For z ∈ G \ D and a given ε > 0, every ϕεz ∈ L2
t (�̃) that satisfies

‖Sϕεz − �z‖L2
t (�) < ε

is such that

lim
ε→0

‖Aϕεz ‖H (curl ,D) =∞ and ‖ϕεz ‖L2
t (�̃) =∞.

Proof. Let z ∈ D. Since W ∈ H(G) and Ee(·, z,q ,kb) satisfy curl curl W − kbW = 0 in
G \ D, by integrating by parts and using the boundary condition for the total field, we have
that

Sϕεz − �z : = R(E , W )−R(E , Ee(·, z,q ,kb))

=−
∫
∂D

(ν×W − ν× Ee(·, z,q ,kb)) · curl E ds.
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From the proof of Lemma 6.3 we see that R(E , W ) = R(E , Ee(·, z,q ,kb)) has a unique
solution W if and only if there exists a W ∈ H(G) satisfying (6.39)–(6.40), which is
generally not true. However, from Lemma 6.5, for every ε > 0 there exists a single
layer potential Aϕεz that approximates the unique solution of (6.39)–(6.40) with discrep-
ancy ε. In particular, ϕεz is an approximate solution to (6.31), and Aϕεz converges to the
solution of (6.39)–(6.40) in H (curl, D) as ε → 0. Next, since ν × Ee(·, z,q) → ∞ in
H−1/2(Curl,∂D) as z approaches the boundary, we obtain from the well-posedness of the
interior boundary value problem that, for a fixed ε > 0, limz→∂D ‖Aϕεz ‖H (curl ,D) =∞ and
limz→∂D ‖ϕεz ‖L2

t (S2) =∞.

Now consider z ∈ G \ D, and let ϕεz and Aϕεz be such that

‖Sϕεz − �z‖L2
t (�) := ‖R(E , Aϕεz )−R(E , Ee(·, z,q ,kb))‖L2

t (�) < ε. (6.41)

Note that from Theorem 6.6 we can always find such an Aϕεz . Assume, contrary to the the-
orem, that ‖Aϕεz ‖H (curl ,D) < C , where the positive constant C is independent of ε. From
the trace theorems, we have that the mixed trace of Aϕεz is also bounded in the correspond-
ing norms. Noting that the total field can be written as E(·, x0, p) = Es (·, x0, p)+G(·, x0)p
and integrating by parts, we obtain that

R(E , Ee(x , z,q ,kb)) =
∫
∂G

(ν× Es(x , x0, p)) · curl Ee(x , z,q ,kb)ds(x)

−
∫
∂G

(ν× Ee(x , z,q ,kb)) · curl Es(x , x0, p)ds(x)

+
∫
∂G

(ν×G(x , x0)p) · curl Ee(x , z,q ,kb)ds(x)

−
∫
∂G

(ν× Ee(x , z,q ,kb)) · curl G(x , x0)p ds(x).

Due to the symmetry of the background Green’s function, Es (x , x0, p) as a function of x0
satisfies curl x0 curl x0 Es (x , x0, p)− k2n(x0)Es(x , x0, p) = 0 in the domain bounded by �
and ∂D. Hence the first two integrals in the above equation give a solution W (x0) to the
same equation as the one satisfied by Es(·, x0, p), whereas the last two integrals add up to
−G(z, x0)p by the Stratton–Chu formula and the fact that Ee(x , z,q ,kb) is the fundamental
solution of curl curl E − k2

b E = 0. On the other hand, we have that

R(E , Aϕεz ) =−
∫
∂D

(ν× Aϕεz ) · curl E ds. (6.42)

Combining the above equalities, we obtain that

R(E , Aϕεz )−R(E , Ee(·, z,q ,kb)) =−
∫
∂D

(ν× Aϕεz ) · curl E ds (6.43)

−W (x0)+G(z, x0)p.

 



CCM boo
2010/11/2
page 120

�

�

�

�

�

�

�

�

120 Chapter 6. The Inverse Scattering Problem for Buried Objects

Now since ‖Aϕεz ‖H (curl ,D) < C there exists a subset, still denoted by Aϕεz , that converges
weakly to a V ∈ H (curl, D) as ε→ 0, and therefore ν× Aϕεz converges weakly to ν×V
in the duality pairing H−1/2(Div,∂D), H−1/2(Curl,∂D). Now set

W̃ (x0) = lim
ε→0

R(E , Aϕεz ) =−
∫
∂D

(ν×V ) · curl E(·, x0, p)ds.

From (6.41) we have that

W̃ (x0) = W (x0)+G(z, x0)p, x0 ∈�. (6.44)

Since W̃ (x0) and W (x0) can be continued as radiating solutions to

curl x0 curl x0 Es(x , x0, p)− k2n(x0)Es(x , x0, p) = 0

outside the domain bounded by �, we deduce by uniqueness and the unique continuation
principle [93] that (6.44) holds true for x0 in R3 \ (D∪{z0}). We now arrive at a contradic-
tion by letting x0 → z. Hence Aϕεz is unbounded in the H (curl, D) norm as ε→ 0, which
proves the theorem.

The support D can now be determined by the behavior of the solution to (6.31) ac-
cording to Theorem 6.6.

It is possible to develop the reciprocity gap functional method for obstacles with
mixed boundary conditions such as those considered in Chapter 3. In this case the support
of the scattering object can be determined by the solution of the same equation as above.
Furthermore this solution can be used to obtain information about the surface impedance.
For more details see [23].

The reciprocity gap functional method for anisotropic media. Now, let E =
E(· , x0, p) = Es (· , x0, p)+G(· , x0)p and H = 1

ik curl E be the total electric and magnetic
fields, respectively, corresponding to the scattering problem (6.9)–(6.13). In our analysis,
the following interior transmission problem will play the role of (6.39)–(6.40):

curl curl Ez
0 − k2nb Ez

0 = 0
curl curl Ez − k2 N(x)Ez = 0

}
in D, (6.45)

ν× Ez
0 − ν× Ez = ν× Ee(·, z,q ,kb)

ν× curl Ez
0 − ν× curl Ez = ν× curl Ee(·, z,q ,kb)

}
on ∂D, (6.46)

where Ez ∈ L2(D), Ez
0 ∈ L2(D) such that Ez −Ez

0 ∈ H (curl, D), curl (Ez−Ez
0)∈ H (curl, D).

It is easy to see in [35] that Es := Ee(·, z,q ,kb) in R3 \D and that Es := Ez − Ez
0 in D is the

scattered field corresponding to Ez
0 in Hinc(D) := {u ∈ L2(D) : curlcurlu − k2nbu = 0

}
as

the incident wave, satisfying

curl curl Es − k2nb Es = 0 in R3 \ D,
curl curl Es − k2N Es = k2(N −nb I )Ez

0 in D,
ν× Es+− ν× Es− = 0 on ∂D,

ν× curl Es+− ν× curl Es− = 0 on ∂D,
lim

r→∞(curl Es × x − ikbr Es) = 0,

(6.47)
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where Es+ and Es− denote the limit of Es approaching ∂D from R3 \D and D, respectively.
Modifying the approach in Section 4.2 to account for nb [35] one can show that the

Fredholm alternative applies to (6.45)–(6.46) under either of the following three conditions:
Condition 1:

M := (nb I − N)−1 is a bounded matrix, (6.48)

Condition 2:
�(M) is nonnegative on D, and (6.49)

�(M)−{�(nbM)}2{�(M)}−1 is nonnegative on D. (6.50)

Condition 3: Letting M̃ := nb N M , either

�(M) and �(M̃) are nonnegative on D (6.51)

and both matrices

�(M̃)−{�(N M)}2{�(M)}−1 and �(M)−{�(N M)}2{�(M̃)}−1 (6.52)

are uniformly positive definite on D, or

−�(M) and −�(M̃) are nonnegative on D (6.53)

and both matrices

{�(nb M)}2{�(M)}−1 −�(M̃) and {�(nb M)}2{�(M̃)}−1 −�(M) (6.54)

are uniformly positive definite on D.
We remark that these conditions also apply to a more general case, where nb is a

matrix valued function that commutes with N . When nb and N are real scalars, one can
easily verify that the first condition is equivalent to 0 < N < nb and that the third set of
conditions is equivalent to 0 < nb < N . If nb is a real scalar, the first set of conditions
is equivalent to �(N) > 0 on D. One can also show that if the second matrix in (6.49) is
uniformly positive definite on D, then the uniqueness of solutions holds true. In general,
we need to exclude the corresponding transmission eigenvalues, which are known to be at
most discrete [36].

Lemma 6.8. Assume that k is not a transmission eigenvalue for D as defined in Section 6.2
(note that n(x) = nb in (6.18)). Then the operator R : H(G) → L2

t (�) defined by (6.24) is
injective.

Proof. From (6.24), RW = 0 means R(E(·, x0, p), W )= 0 for all x0 ∈� and p ∈R3. Using
the second vector Green’s formula and the transmission conditions (6.11)–(6.12), we have
that

0 =
∫
∂D

(ν× E) · curl W − (ν×W ) · curl E ds (6.55)

=
∫
∂D

(ν× E) · curl W − (ν×W ) · curl E ds

=
∫
∂D

(ν× Eint ) · curl W − (ν×W ) · curl Eint ds.

 



CCM boo
2010/11/2
page 122

�

�

�

�

�

�

�

�

122 Chapter 6. The Inverse Scattering Problem for Buried Objects

Now (see [20]) let Ẽ int ∈ H (curl, D) and Ẽ ∈ Hloc(curl ,R3 \ D) be the unique solution to

curl curl Ẽ int − k2 N(x)Ẽ int = 0 in D, (6.56)

curl curl Ẽ − k2n(x)Ẽ = 0 in R
3 \ D, (6.57)

ν× (Ẽ +W )− ν× Ẽ int = 0
ν× curl (Ẽ +W )− ν× curl Ẽ int = 0

}
on ∂D, (6.58)

lim
r→∞

(
curl Ẽ × x − ikr Ẽ

)= 0. (6.59)

Expressing W in the last equation of (6.55) in terms of Ẽ and Ẽ int using (6.58) and the fact
that Eint and Ẽ int satisfy the same equation in D, we obtain that

0 =
∫
∂D

(ν× Ẽ) · curl Eint − (ν× Eint ) · curl Ẽ ds − ikη
∫
∂Dc

(ν× Ẽ) · (ν× Eint )ds. (6.60)

Next, expressing Eint in terms of the total exterior field E = Es +G(·, x0)p using the
transmission conditions (6.11), (6.12), the fact that Es and Ẽ are radiating solutions to the
same equation outside D and, finally, the Stratton–Chu representation formula outside D
[50], [93], we can rewrite (6.60) as

0 =
∫
∂D

(ν× Ẽ) · curl (Es +G(·, x0)p)− [ν× (Es +G(·, x0)p)] · curl Ẽ ds

=
∫
∂D

(ν× Ẽ) · curl G(·, x0)p− (ν×G(·, x0)p) · curl Ẽ ds =−p · Ẽ(x0).

Since p is an arbitrary polarization, we obtain that ν × Ẽ(x0) = 0 for all x0 ∈ �. Fur-
thermore, since Ẽ is a radiating solution to curl curl Ẽ − k2n(x)Ẽ = 0 outside the domain
bounded by � and satisfies ν× Ẽ = 0 on �, we can conclude by the uniqueness theorem
for scattering by a perfect conductor that Ẽ = 0 outside the domain bounded by�. Finally,
from the unique continuation principle [93], we have that Ẽ = 0 outside D as well. There-
fore, E0 := W and Eint := Ẽ int satisfy the homogeneous interior transmission problem
(6.45)–(6.46) (i.e., with Ee = 0), hence from the assumption that k is not a transmission
eigenvalue we finally obtain that W = 0 in D. This proves the lemma.

Lemma 6.9. Assume that k is not a transmission eigenvalue for D. Then the operator
R : H(G) → L2

t (�) defined by (6.24) has dense range.

Proof. Consider β ∈ L2
t (�) and assume that

(RW ,β)L2
t (�) = 0 ∀W ∈H(G).

From (6.24) and the bilinearity of R one has that

(RW ,β)L2
t (�) =

∫
�

R(E(·, x0,α(x0)), W ) ds(x0) = R(E , W ),
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where

E (x) =
∫
�

E(x , x0,α(x0))ds(x0) (6.61)

and α = (β · p) p. Letting

E int (x) =
∫
�

E(x , x0,α(x0))ds(x0), (6.62)

by linearity we have that E and E int satisfy the scattering problem (6.9)–(6.13). Using
the second vector Green’s formula and the transmission conditions for E and E int , one
concludes that

0 = R(E , W ) = k2
∫
D

(N −nb I )E int ·W dx (6.63)

for all W ∈H(G). Since H(G) contains the space H of Lemma 4.23, we conclude from this
lemma and (6.63) that E int = 0 in D and that ν×E |∂Dc = 0. The transmission conditions
now imply that both ν×E = 0 and ν×curl E = 0 on ∂D. This means that the extension of
E by 0 inside D satisfies Maxwell’s equations inside the domain bounded by �, with the
index n set equal to nb inside D. From the unique continuation principle [93] one has that
E is zero inside the domain bounded by � and outside D. Noting that

E (x) =
∫
�

(Es(x , x0,α(x0))+G(x , x0)α(x0))ds(x0),

one concludes that E × ν is continuous across �. The uniqueness theorem for the exterior
problem for Maxwell’s equations with boundary data ν×E = 0 on � implies that E = 0
outside the domain bounded by � as well. Finally, from the jump relations of the vector
potential across � [50], we have that

0 = curl E |�+ − curl E |�− = −α on �.

Hence (β · p) p = 0 for all p ∈R
3, which implies that β = 0. This ends the proof.

Using Lemmas 4.23 and 6.2 we can prove the following.

Lemma 6.10. The set
{

Aϕ, ϕ ∈ L2
t (�̃)

}
is dense in Hinc(D).

Consequently we also have the next lemma.

Lemma 6.11. The sampling operator S : L2
t (�̃) → L2

t (�) is compact. It is also injective
with dense range provided that k is not a transmission eigenvalue for D.

Now we are ready to prove the main theorem for the reciprocity gap functional
method for buried (partially) coated anisotropic media.

Theorem 6.12. Assume that k, N, and nb are such that the interior transmission problem
(6.45)–(6.46) is well posed (see conditions (6.48)–(6.49)). Then the following hold:
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124 Chapter 6. The Inverse Scattering Problem for Buried Objects

1. For z ∈ D and a given ε > 0, there exists a ϕεz ∈ L2
t (�̃) such that

‖Sϕεz − �z‖L2
t (�) < ε,

and the corresponding single layer potential Aϕεz converges to Ez
0 in L2(D) as ε→ 0,

where (Ez
0, Ez) is the solution of (6.45)–(6.46).

Moreover, for a fixed ε > 0, we have that

lim
z→∂D

‖Aϕεz ‖L2(D) =∞ and lim
z→∂D

‖ϕεz ‖L2
t (�̃) =∞.

2. For z ∈ G \ D and a given ε > 0, every ϕεz ∈ L2
t (�̃) that satisfies

‖Sϕεz − �z‖L2
t (�) < ε

is such that
lim
ε→0

‖Aϕεz ‖L2(D) =∞ and ‖ϕεz ‖L2
t (�̃) =∞.

Proof. Consider z ∈ D and let Ez
0 and Ez be the solution to the interior transmission

problem (6.45)–(6.46). Since both W ∈H(G) and Ee(·, z,q ,kb) satisfy curl curl U −kbU =
0 in G\D, by integrating by parts and using the equations satisfied by the total electric field,
we have that for W ∈H(G)

R(E , W ) = k2
∫
D

(N −nb I )EW dx . (6.64)

From Lemma 6.3 we see that R(E , W ) = R(E , Ee(·, z,q ,kb)) has a unique solution W if
and only if W coincides with Ez

0 in D. But this is generally not possible. However, from
Lemma 6.2, for every ε > 0 we can find a ϕεz ∈ L2

t (�̃) such that

‖Ez
0 − Aϕεz ‖Hinc (D,∂Dc) < ε,

which implies that ∥∥R(E , Aϕεz )−R(E , Ez
0)
∥∥

L2
t (�) < Cε

for some positive constant C > 0, whence

‖R(E , Aϕεz )−R(E , Ee(·, z,q ,kb))‖L2
t (�) < Cε.

By construction, Aϕεz converges to Ez
0 in the L2(D) norm as ε→ 0. We now observe that

Es := −Ee(·, z,q ,kb) in R3 \� and Es := Ez − Ez
0 in D satisfy the scattering problem

(6.47). From the well-posedness of (6.47) we have

‖Ee(·, z,q ,kb)‖X (BR\D) ≤ C‖E0
z ‖L2(D).

Hence, due to the singularity of the electric dipole, we have that ‖E0
z ‖L2(D) →∞ as z →

∂D and hence so does ‖Aϕεz ‖L2(D) and ‖ϕεz ‖L2
t (�̃).
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Now we consider z ∈ G \ D and let ϕεz and its corresponding single layer potential
Aϕεz be such that

‖R(E , Aϕεz )−R(E , Ee(·, z,q ,kb))‖L2
t (�) < ε. (6.65)

Note that from Lemma 6.4 we can always find such an Aϕεz . Assume to the contrary that
‖Aϕεz ‖Hinc (D,∂Dc) < C , where the positive constant C is independent of ε. Noting that the
total field can be written as E(·, x0, p)Es(·, x0, p)+G(·, x0)p and integrating by parts, we
obtain that

R(E , Ee(x , z,q ,kb)) =
∫
∂G

(ν× Es(x , x0, p)) · curl Ee(x , z,q ,kb)ds(x)

−
∫
∂G

(ν× Ee(x , z,q ,kb)) · curl Es(x , x0, p)ds(x)

+
∫
∂G

(ν×G(x , x0)p) · curl Ee(x , z,q ,kb)ds(x)

−
∫
∂G

(ν× Ee(x , z,q ,kb)) · curl G(x , x0)p ds(x).

Due to the symmetry of the background Green’s function, Es (x , x0, p) as a function of x0
satisfies curl x0 curl x0 Es (x , x0, p)− k2n(x0)Es(x , x0, p) = 0 in the domain bounded by �
and ∂D. Hence the first two integrals in the above equation give a solution W (x0) to the
same equation satisfied by Es(·, x0, p), whereas the last two integrals add up to −G(z, x0)p
by the Stratton–Chu formula and the fact that Ee(x , z,q ,kb) is the fundamental solution of
curl curl E − k2

b E = 0. On the other hand, we have that

R(E , Aϕεz ) = k2
∫
D

(N −nb I ) Eint · Aϕεz dx .

Combining the above equalities we obtain that

R(E , Aϕεz )−R(E , Ee(·, z,q ,kb)) =−W (x0)+G(z, x0)p (6.66)

+ k2
∫
D

(N −nb I ) Eint · Aϕεz dx .

Now, since ‖Aϕεz ‖L2(D) < C there exists a subsequence, still denoted by Aϕεz , that con-
verges weakly to a V ∈ L2(D) as ε→ 0. For x0 ∈� we set

W̃ (x0) = lim
ε→0

R(E , Aϕεz ) = k2
∫
D

(N −nb I ) Eint ·V dx .

Then from (6.41) we have that

W̃ (x0) = W (x0)+G(z, x0)p, x0 ∈�. (6.67)
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Since W̃ (x0) and W (x0) can be continued as radiating solutions to

curl x0 curl x0 Es(x , x0, p)− k2n(x0)Es(x , x0, p) = 0

outside the domain bounded by �, we deduce by uniqueness and the unique continuation
principle that (6.67) holds true in R3\(D∪{z0}). We now arrive at a contradiction by letting
x0 → z. Hence Aϕεz is unbounded in L2(D) as ε→ 0, which proves the theorem.

We refer the reader to [36] for discussion of the reciprocity gap functional method
for an anisotropic medium partially coated with a thin layer of highly conducting material.
There it is also shown how to obtain information on the surface conductivity from the
approximate regularized solution provided by Theorem 6.12.

6.4 Numerical Reconstruction of Buried Objects
Despite the rather gloomy conclusion of subsection 3.5.4 that limited aperture causes dif-
ficulties, it is possible to image objects using limited aperture data even in a nonconstant
background, provided the measurement patches are large enough. In particular, we show
results from a model problem intended to simulate buried objects [32]. The known back-
ground medium is assumed to consist of two regions. For x3 > 0 the region models air with
N(x) = 1, whereas for x3 < 0 the domain is conducting with N(x) = nb I for some com-
plex constant nb. Some of the geometry for this problem, together with the particular target
used in this study, is shown in Figure 6.3. In this figure the lower parallelepiped is the re-
gion below ground used to search for the scatterer (i.e., where sampling points z are placed).
The upper rectangle marks the air-earth interface.

Figure 6.3. The exact scatter for the
buried torus. This figure is reproduced from
[32] with permission.

Near field point sources are used in
the air region x3 > 0. In particular the inci-
dent field is due to a dipole point source
and can be computed using Sommerfeld
integrals [93]. Let us temporarily denote
by λ the wavelength of the radiation (not
to be confused with λ, the impedance). Re-
calling that λ= 2π/k is the wavelength in
the air, the authors of [32] choose sources
on a 3λ× 3λ domain at x3 = λ/2. In
this grid 25 × 25 sources are used, each
with two horizontal polarizations resulting
in 1,250 data measurements. Data is com-
puted by an integral equation code. For the
LSM the same points are used for measure-
ments, and the results are shown in Figure
6.4.

For the reciprocity gap scheme, it
is argued that the field in the earth drops
rapidly to zero due to the conductivity of the earth, and hence contributions to the reci-
procity gap functional from reciprocity gap measurement surfaces in the earth can be
ignored if these are far enough from the scatterer. Hence for the reciprocity gap, mea-
surements are taken on a series of 40 × 40 grids on the surface of the earth (i.e., at z3 = 0)
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Figure 6.4. Reconstruction of the buried torus using the LSM. The upper pair
of panels and the bottom left panel show the isosurface G(z) = C for various choices of
C. The bottom right panel shows a contour plot of G(z) at z3 =−1.2 and shows that the
hole in the torus is quite evident. The exact figure is shown in Figure 6.3. This figure is
reproduced from [32] with permission.

in the square [si,z −2λ,si,x +2λ]× [siy −2λ,siy +2λ], where (six ,siy ) is the (xi , xy) posi-
tion of the i th source, and the field is assumed to vanish away from the measurement grid.
The surface �̃ = [−λ,λ]× [−λ,λ] at x3 = λ/2 is used to parameterize the single layer
potential appearing in the reciprocity gap scheme, again using a 25 × 25 grid. The recon-
structions for the reciprocity gap method are shown in Figure 6.5 using data with noise
added according to (1.13) with ε = 0.01. Provided the cutoff C for the isosurface is chosen
appropriately, a good reconstruction can be observed.

The results of both the LSM and the reciprocity gap method results show that, with
a suitable choice of the isosurface constant, these methods can accurately reconstruct an
object in a nontrivial background medium (the layered medium). In addition, the data is
limited aperture even if the collection area is quite large.
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128 Chapter 6. The Inverse Scattering Problem for Buried Objects

Figure 6.5. Reconstruction of the buried torus using the reciprocity gap method.
The upper pair of panels and the bottom left panel show the isosurface G(z)=C for various
choices of C. The bottom right panel shows a contour plot of G(z) at z3 =−1.2 and shows
that the hole in the torus is quite evident. The exact figure is shown in Figure 6.3. This
figure is reproduced from [32] with permission.
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electromagnetic plane wave, 24
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Falkland Island penguins, 1
far field equation

electromagnetic, 39
scalar, 7
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electromagnetic, 38
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frequency, 2

Helmholtz equation, 2, 22
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Kirchoff approximation, 6
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linear sampling method (LSM)

obstacle problem, 38
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scalar, 7
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implementation, 104

magnetic dipole, 22
Maxwell eigenvalue, 39, 111
Maxwell’s equations, 19
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mixed boundary value problem, 29
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Morozov principle, 10

near field
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equation, 110
operator, 110

radiation condition
Silver–Müller, 20
Sommerfeld, 3, 22

reciprocity gap
functional, 113
operator, 113

reciprocity gap functional method, 112
for anisotropic media, 120
for perfect conductors, 116

reciprocity relation, 25
mixed, 30

refractive index, 21
Rellich’s lemma, 23

sampling operator, 114
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spherical vector wave functions, 26
Stratton–Chu formula

first, 21
second, 22

surface conductivity, 89
surface differential operator

curl, 33
divergence, 32

surface impedance, 29

temporal frequency, 2
Tikhonov regularization, 10
transmission eigenvalues, 70, 83, 111
transmission problem

interior, 55, 69
interior, buried object, 111
Maxwell, 54
modified interior, 55

uniqueness theorem
partially coated obstacle, 30
refractive index, 68
screen, 96
support of a penetrable obstacle, 59

vector addition theorem, 26
vector spherical harmonics, 25

wave number, 2
wavelength, 2
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