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Abstract

We consider the inverse scattering problem of determining the support of an anisotropic inhomogeneous
medium from a knowledge of the incident and scattered time harmonic acoustic wave at fixed frequency. To
this end, we extend the linear sampling method from the isotropic case to the case of anisotropic medium. In
the case when the coefficients are real we also show that the set of transmission eigenvalues forms a discrete
set. (© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, there has been considerable interest in the inverse scattering problem for anisotropic
medium, particularly in the case of acoustic waves and electromagnetic waves in an orthotropic
medium [3,5,7-9,11,12]. This interest is motivated by the fact that all real materials are anisotropic,
at least slightly, and some quite a bit. At the same time it has been shown that it is not possible
to uniquely determine the constitutive parameters of an anisotropic medium from far-field data but
only the support of the medium in a homogeneous background [9,12]. Further complications arise
in the behavior of the anisotropic material near the boundary where radically different mathematical
techniques are needed depending on whether or not the constitutive parameters vary smoothly across
the boundary [5,9].

Due to the lack of uniqueness in determining the constitutive parameters, traditional methods
for solving the inverse scattering problem based on the use of weak scattering approximations or
nonlinear optimization techniques are problematic. On the other hand, since the support is uniquely
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determined, the recently developed linear sampling method for determining the support of an isotropic
medium from far-field data [1,11] seems ideally suited to solving the inverse scattering problem for
anisotropic medium. In the case when the matrix A4 that describes the physical properties of the
medium is real and constant (and hence does not vary continuously across the boundary) this ex-
tension was done in [3] whereas the case of complex valued inhomogeneities that vary smoothly
across the boundary (i.e. 4 =1 on the boundary) were treated in [5,7]. The purpose of this paper
is to extend the results of [3] to the case of (possibly) complex valued inhomogeneous anisotropic
medium that does not vary smoothly across the boundary (i.e. 4 #17 on the boundary), a situation
which is almost always the case in any realistic physical situation. For the sake of simplicity we
will carry out our analysis in R® although our results remain valid in R” for any integer n > 2.

The linear sampling method for anisotropic medium that we will present in this paper for solving
the inverse scattering problem is based on an analysis of a boundary value problem called the
interior transmission problem (ITP). Due to a lack of uniqueness of a solution to this boundary
value problem when 4 and n are real valued, particular problems occur in this case which leads to
the problem of transmission eigenvalues [3,4]. In particular, if the wave number & is a transmission
eigenvalue the linear sampling method for solving the inverse scattering problem fails. On the other
hand, if it can be shown that the transmission eigenvalues form a discrete set, then one can at
least assert that the linear sampling method is generically valid when 4 and n are real valued. The
case when 4 =1/ on the boundary was considered in [4] and in this paper we will give appropriate
conditions on A4 and » that ensure the set of transmission eigenvalue is discrete when 4 #/ on the
boundary.

2. The direct and inverse scattering problems for an anisotropic medium

Let D C R3 be a nonempty, open and bounded set having a C?-boundary D with unit out-
ward normal v. Moreover, we assume that the exterior domain R*\D is connected. Let 4 be a
3 x 3 matrix-valued function whose entries ay, j = 1,2,3, k = 1,2,3 are continuously differen-
tiable complex-valued functions in D such that 4 is symmetric and satisfies f_-f m(A4)¢ <0 and E
Re(A)E = y|E|? for all £ € C? and x € D where y is a positive constant. Note that due to the symmetry
of A, Im(E-AE)=E- Im(4)¢ and Re(E-AE)=E - Re(A)E. For a function u € C'(D) we define the
conormal derivative by

u (x):=v(x) - A(x)Vu(x), xeadD.
6vA

We can now formulate the direct scattering problem for an anisotropic medium. In particular, let
k >0 be the wave number and n € C(D) such that Ym(n) = 0. Then letting H* denote the usual
Sobolev space we want to find functions we H'(D), u € H. (R*\D) such that

(i) divAVw + k*nw=0 in D,
(i) Au+Kku=0 in R\D,
(iliy w—u=f on oD,
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ow  Ou

(IV) m—azh on 6D,
v lim r (g’: _ iku> o, (1)

where f:=¢e*® and h:=(3/0v)e*, d € Q:={x: |x| = 1}, r = |x|, the boundary conditions are
assumed in the sense of the trace operator, and the radiation condition (1)(v) holds uniformly with
respect to X = x/|x|.

More generally, we consider (1) with f € H'?(0D) and h € H~'?(0D) arbitrary and in the sequel
will refer to this more general problem as the transmission problem (TP). The existence of a unique
solution to (TP) has been established by Hahner in [9]. Moreover, he has proved that this solution
depends continuously on the boundary data in the sense that the following estimate holds

Wl (py + HuHHl(B\D) < CUf iegapy + 12l =1120m))s ()

where B is a ball containing D and C = C(B) is a positive constant.
Since u satisfies the radiation condition (1) (v) we can conclude (see [2]) that u has the asymptotic
behavior
ikr

uxy=- 2

1
uoo(f,d)+0< ) r— 00,

where u.(X,d) is the far-field pattern of the scattered field u. The inverse scattering problem we
are concerned with is to determine D from a knowledge of u . (X,d) for X, d € Q. The fact that D
is uniquely determined from u., has been established in [9,12] (we remind the reader that A4 is not
uniquely determined by u., [8]). Our approach for solving this inverse scattering problem is the
linear sampling method as described in [1] for the case of isotropic medium. In particular, we will
look for a (regularized) solution g € L*(Q) of the far-field equation

(Fg)(f)iz/guoo(f,d)g(d)dS(d)=eik’e'y, (3)

where y € R? is an artificially introduced parameter point, and F:L*(Q) — L*(Q) is called the
Jar-field operator. 1t is easily verified (c.f. [2]) that (3) is solvable if and only if y€D and
v,w € CHD)N CY(D) is a solution of the interior transmission problem

(i) divAVw + k*nw=0 in D,
(ii) Av+k*v=0 in D,
(iii) w—v=®(-,y) on D,
.. O0w  Ov 09(,y)
ovy Ov T oy

n oD, 4)

where @(x, y):=e“2/|x — y|, such that v is a Herglotz wave function, i.e., a solution v, of the
Helmholtz equation in R* of the form

vy(x) = /Q e dg(dyds(d), xeR.
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Values of & for which a nontrivial solution to the homogeneous interior transmission problem (®=0)
exists are called transmission eigenvalues.

Our analysis of the interior transmission problem in the next section will lead to showing in
Section 4 that, roughly speaking, D can be characterized as the set of points y € R® where an
(arbitrarily good) approximation of (3) remains bounded. This approach for solving the inverse
scattering problem is called the linear sampling method and the rest of the paper is devoted to the
analysis and justification of this method.

3. The interior transmission problem

Let the domain D C R?, the matrix-valued function 4 and the function 7 satisfy the assumptions
of the TP stated in the previous section.

The interior transmission problem associated with TP, which in the sequel will be referred to
as ITP, is given f € H'?(0D) and h€ H~"?(0D), find two functions we€ H'(D) and ve H'(D)
satisfying

(i) divAVw + k*nw=0 in D,

(ii) Av+k*v=0 in D, (5)
ii)yw—v=f on 0D,
(iv) o,w — 0, v=nh on dD.

Note that for simplicity we use the notations 0,,:= d/0v4 and 0, := 0/0v.
We begin by establishing the uniqueness of a solution to (ITP).

Theorem 3.1. If either Im(n) > 0 or Im(E-AE) < 0 in a neighborhood B, of a point xo € D, then
ITP has at most one solution.

Proof. Let us consider the homogeneous problem (i.e., f=h=0). Applying the divergence theorem
to w and AVw, making use of the boundary condition and applying Green’s theorem for ¢ and v
we obtain

/VVT/-Adey/kzn|w|2dy:/ w-avAwdy:/|VU]2dy/k2|v]2dy.
D D D D D

Hence

Im </ vw-Adey) =0 and Im (/ n|w|2dy) =0. (6)
D D

If #m(n) > 0 in By,, then the second equality of (6) and the unique continuation principle (c.f. [10,
Theorem 17.26]) imply that w = 0 in D. In the case of #m(&-A4¢) < 0 in B,,, from the first equality
of (6) we obtain that Vw =0 in B,, and from (5)(i) w = 0 in B,,, and hence w = 0 in D. From
the boundary conditions and the integral representation formula v also vanishes in D. [

Next we study the solvability of ITP. To this end, we formulate the modified interior transmission
problem (MITP) which later will be seen as a compact perturbation of our original ITP: given D,
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A as above, a continuous positive real-valued function m € C(D), functions ¢/, € L*(D), ¢, € L*(D),
f €HV*(0D), and h€ H~V2(0D), find w € H'(D) and v€ H'(D) satisfying

(i) divAVw —mw =/, in D,

(i) Av—v=1, in D, %
ii)yw—v=f on 0D,
(iv) o,w — 0o, v=nh on 0D.

Definition 3.2. A strong solution to the interior transmission problem (7) is a pair (w,v) € H'(D) x
H'(D) satisfying (7)(i) and (7)(ii) and in the sense of distributions and satisfying (7)(iii) and (7)(iv)
in the sense of the trace operator.

We will now reformulate (7) as a variational problem. Let
W(D) = {veL*(D)*: divveL*D) and curlv =0} (8)
equipped with the natural norm
I¥llw = CUIvIZ: + Ildiv v]7)"

and denote by (-,-) the duality pairing between H'/2(0D) and H~'2(0D). Then the duality identity
(09) = [ pdivpdst [ Vo pax 9)
D D

for (o,y) € H'(D) x W(D) will be of particular interest in the sequel.
We now introduce the sesquilinear form .o/ defined on {H'(D) x W(D)}* by

JZ{(U,V)—/AVW'V(/_)dX-f—/MW(ﬁdX—i—/diVVdiVl/;dx—i-/V-l/;dx
D D D D

—<W,lp'V>—<(/_),V'V>, (10)
where U = (w,v) and V = (@, ) are in H'(D) x W(D). We also introduce for V = (¢, y) € H'(D) x
W (D) the antilinear form
L) = [+ adividxt (3~ (., (an
D
The variational formulation of the problem (7) is

Seek U € H'(D) x W(D) such that
AU VY=LV, YVeHYD)x W(D). (12)

The following theorem proves the equivalence between the two problems (7) and (12).

Theorem 3.3. Problem (7) has a unique strong solution (w,v) if and only if problem (12) has a
unique solution U € H'(D) x W (D). Moreover, if (w,v) is the unique strong solution to (7) then
U = (w,Vv) is the unique strong solution to (12). Conversely, if U is the unique solution to (12)
then the unique strong solution (w,v) to (7) is such that U = (w, Vv).
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Proof. Let us first prove the equivalence between the existence of a strong solution (w,v) to (7)
and the existence of a solution U to (12).

(a) I(w,v) = JU: Let (w,v) be a strong solution to (7). We set v = Vov. From (7)(ii) we see
that if divv = v + [, € L*(D) then v € W (D). Taking the L? scalar product of (7)(ii) with div y for
some Yy <€ W(D) and using (9) shows that

/Ddivvdivx/;dx + /DV “pdx — (0,9 v) —/D /> div §dx.
Hence, by (7)(iii)

/divvdivn/;dx—i-/v-l/;dx—<w,(/;-v>
D D

:_UJ49+A/NW¢M. (13)

We now take the L? scalar product of (7)(i) with ¢ in H'(D) and integrate by parts. Using the
boundary condition (7)(iv), this shows that

/AVW-Vgde+/mW(Z>dx—<<Z>,v‘v):<q5,h>+//1g5dx. (14)
D D D

Adding (13) and (14) together shows that U = (w,v) is a solution to (12).

(b) AU = I(w,v): We set U=(w,v)€ H' x W(D). Since curl v=0 and D is simply connected, we
deduce the existence of a function v € H'(D) such that v=Vv where v is determined up to an additive
constant. As we shall see later, this constant can be adjusted so that (w,v) is a strong solution to
(7). Obviously, if U satisfies (12) then (w,v) satisfies (13) and (14) for all (¢, y) € H'(D) x W(D).
One can easily see from (14) that the pair (w,v) satisfies

divAdVw —mw=/¢; in D,

15
Oy, w—0,0=nh on 0D. (15)

V4

On the other hand, substituting for v in (13) and using the duality identity (9) in the second integral
shows that

/(Av—v)divlﬁdx+<v—w,1ﬁ-v>:—<f,xﬁ~v>+//2divd}dx (16)
D D

for all ¢ in W(D).
Now consider a function ¢ € L§(D) = {¢ € L*(D): [, ¢pdx =0} and let y € H'(D) be a solution
to

Ay=¢ inD,
dyy=0 on dD. (17)
Taking = Vy in (16) (= divy=¢ in D and - v=0 on 0D) shows that

/fAu—u—/g¢dx:0 Y € L(D)
D



F. Cakoni et al. | Journal of Computational and Applied Mathematics 146 (2002) 285-299 291

which implies the existence of a constant ¢; such that

Av—v—4{,=c in D. (18)
We now take ¢ € L3(0D) and let y € H'(D) be the solution to

Ay=0 1in D,

dx=¢ onaD. (19)
Taking = Vy in (13) (= divyy=0 in D and - v= ¢ on 0D) shows that

[D(v —w+ f)pdy=0 VéecLi(oD)
which implies the existence of a constant ¢, such that

v—w+ f=c, on dD. (20)
Substituting (18) and (20) into (16) and using (9) now shows that

(c1 —cz)/divxpdx:O Yy e W(D)
D

which implies ¢; = ¢; = ¢ (take ¥ = Vy where y € Hj(D) and Ay =1 in D). Egs. (15), (18) and
(20) show that (w,v — ¢) is a strong solution to (7).

We now consider the uniqueness equivalence.

(¢) Uniqueness of (w,v) = Uniqueness of U: Assume that problem (7) has a unique strong
solution and consider two solutions U; =(wy,v;) and U, =(w,,V,) to (12). From step (b) we deduce
the existence of vy and v, in H'(D) such that v; = Vuv; and v, = Vv, and (w;,v;) and (w,,v,) are
strong solutions to (7). Hence, (wy,v1) = (W, 1) and (wy,vy) = (wy,V2).

(d) Uniqueness of U = Uniqueness of (w, v): Assume that problem (12) has a unique solution and
consider two strong solutions (wy,v;) and (w,,v2) to (7). We deduce from step (a) that (wy, Vuy)
and (w,, Vu,) are two solutions to (12). Hence w; =w, and v=1v; — v, is a function in H'(D) that
satisfies

Av—v=0 in D,
v=0,0=0 on dD
which implies v=10. O

Theorem 3.4. Assume that there exists a constant y > 1 such that for x € D,
Re(E - A(x)E) = y|¢? VEeC and m(x) =1. (21)

Then problem (12) has a unique solution U = (w,v) € H' (D) x W(D). This solution satisfies the a
priori estimate

y+1
y—1
where the constant c¢ is independent of £y, (>, [, h and 7.

Wz oy + IVIlw < 2¢ 1 ll2oy + 1220 2oy + L arvzcopy + VAl -12¢ap))s (22)



292 F. Cakoni et al. | Journal of Computational and Applied Mathematics 146 (2002) 285-299

Proof. Classical trace theorems and Schwarz’s inequality ensure the continuity of the antilinear form
L on H'(D) x W(D) and the existence of a constant ¢ independent of 7, /,, f and & such that

LI < clliZillee + 122llze + LA e + allz-12)- (23)
On the other hand, if U = (u,v) € H'(D) x W(D) then, by assumption (21),
/(U U)| 2= 7wz + VI — 22e((w,v)). (24)

According to the duality identity (9), one has by Schwarz’s inequality that
[, V)] < (Wl (V]

and therefore
|/ (U, U] = pllwllz + VI = 201wl V]

Using the identity

2

2 2 7+ 1 2 y—1, =1,
— Dyy = _

yXT+y Xy > (x y+1y>+ > x+y+1y,

we conclude that
(U, U)| = <||vH2 +[wliZn)

and thus .7 is coercive. The continuity of .o/ follows easily from Schwarz’s inequality and classical
trace theorems. Theorem 3.4 is therefore a direct consequence of Lax—Milgram theorem applied to
(12). O

Theorem 3.5. Under the assumptions of Theorem 3.4, problem (7) has a unique strong solution
(w,v) that satisfies

r 1

+1
Wl oy + 0]y < € - (||/1||L2(D) + 142l 2oy + Lf lzepy + 1Al -12¢0p))s (25)

where the constant c is independent of £, (>, [, h and 7.

Proof. The existence and uniqueness of a strong solution follows from Theorems 3.3 and 3.4. The a
priori estimate (25) can be obtained directly from (7) but can be also deduced from (22) as follows.
Theorem 3.3 tells us that (w, Vv) is the unique solution to (12). Hence, according to (22)

Wiz + [IVolle < e

2 + 12222 + [ F 1z + 1Bl 17-12)-

But from the Poincaré¢ inequality,
[ollmoy < 2(IVll 2y + ([0l 2ep)),

and using the boundary condition (7)(iii) and the trace theorem one deduces that
Ivlloy < c2(IVoll2py + Wl + L 2@p))

for some positive constant c¢,. The constants ¢; and ¢, can then be adjusted so that (25) holds. O
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Theorem 3.6. Assume that either Im(n) > 0 or Im(E-AE) <0 in a neighborhood By, of a point
X0 €D and that there exists a constant y > 1 such that for almost every x € D,

Re(E- A(x)E) = 9|¢ veel (26)

Then (ITP) has a unique solution (w,v)€ HY(D) x H'(D). This solution satisfies the a priori
estimate

Wiz oy + [[0llmoy < CULS Nl ave@py + 1Alla-1200))s (27)
where the constant C is independent of f and h.

Proof. Let us set
A(D) = {(w,v) € H'(D) x H(D): divAVw € L*(D) and Ave L*(D)}

and consider the operator 4 from %'(D) into L?>(D) x L*(D) x H'?(0D) x H~'2(8D) defined by
G(w,v) = (divAVw — mw, Av — v,(w — v)|ap, (0y,w — 0,0)|ap), (28)

where m € C(D) and m > 1. Theorem 3.5 shows that the inverse of % exists and is continuous.
Since ¥ is continuous, we deduce that ¢ is a bijective operator. Now consider the operator 7 from
Z (D) into L*(D) x L*(D) x H'>(dD) x H~'?(0D) defined by

T (w,v) = ((k*n 4+ m)w, (k* + 1)1,0,0).

By the compact embedding of H'(D) into L*(D), the operator .7 is compact. Hence 4 + .7 is a
Fredholm operator of index one. Theorem 3.1 shows that ¥+.7 is injective and therefore we deduce
the existence and the continuity of (% + .7 )~!, which means in particular the existence of a unique
solution to ITP satisfying the a priori estimate (27). [

In general we cannot conclude the solvability of the ITP if 4 and n do not satisfy the assumptions
of the previous theorem. However, we can assert that the set of transmission eigenvalues is discrete.

Theorem 3.7. Assume that $m(n)=0 and Im(A)=0 in D and that there exists a constant y > 1
such that for almost every x € D,
(E-A(x)E) = 9[¢ VEeR and n(x) = 7. (29)

Then the set of the values of k € C for which 1TP does not have a unique solution is discrete.

Proof. Consider the operator 4 defined by (28) with m = n and the operator . from Z(D) into
L*(D) x L*(D) x H'?(6D) x H~'2(8D) defined by

I (w,v) = (nw,1,0,0).

We want to prove that the operator 4 + (k* + 1).7 is invertible for all k€ C\S where S is a
discrete subset of C. Since ¥ is bijective (Theorem 3.5), this is equivalent to showing that (/ +
(k> + 1)%7'7)7! exists, where I is the identity operator from 2'(D) into 2'(D). The fact that this
operator exists except for a discrete set of & values follows immediately from the theory of compact
operators. [
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4. The linear sampling method

Now we turn our attention to the scattering problem (1). The inverse problem we are interested
in is, given the far-field pattern u,, of the scattered field u corresponding to the incident plane
wave u'(x) = e with incident direction d € Q and a single wave number k, to determine the
shape of the anisotropic inhomogeneous penetrable scatterer D. The linear sampling method for
solving this inverse problem looks for a solution g = g(-, y) € L>(Q) of the linear far-field equation
(3) for various sampling points y € R®. Note that e ¥V := @ (X, y) is the far-field pattern of the
fundamental solution ®(x, y) to the Helmholtz equation.

We denote by # the bounded linear operator from H'Y?(6D) x H~'?(0D) onto L*(Q) which
maps (f,h)€ H'Y>(0D) x H~'?(dD) into the far field u., € L?>(Q) of the solution (w,u) of TP
corresponding to the boundary data (f,#4).

Theorem 4.1. The set #(H'*(0D) x H~'?(dD)) is dense in L*(Q).

Proof. We consider the dual (or transpose) operator # ' : L2(Q) — H~"2(0D) x H"*(0D) mapping
a function ¢ into (f,4) such that

(Bf, 1), 9) 2yxiz@) = (s P mrapysa-12@py + (B B) -12@pyxiee)

and let (W, 1) be the unique solution of (TP) with (f,4):= (vy|ap, %!50), where v, is the Herglotz
wave function with kernel g. Then from [2, Theorem 2.5] we have

0
(B(foh).g) = /Q oo ($)9(£) ds(F) = / (( D)y () P )) ds(y).

oD
Since u and # are solutions of the Helmholtz equation in R3\D satisfying the Sommerfeld radiation
condition then

0 0
[ [ 52 a0y M2 s =0

and using the transmission conditions on the boundary we can write

(B(f,h), g>L2(Q)xL2(Q)
a dii
- [D [( )( tly)  ouy )> () + ~(y)>(y)] ds()

ov
[ (509 52 i) M2 ) i)
oD
0
- / [(w(y)—f(y))w(y) iy )(WW) —h(y)ﬂ ds(»).

Finally, an application of the divergence theorem for w and W yields

ow
(B R),G)oreri = / [f( >< (j )> +fv(y)h(y)] ds(y).
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and hence the dual operator Z' can be characterized as

ow .
o= (2] o).
oD

6\),4
In the following, we want to show that the operator %' is injective. To this end let #'g = 0 and
g € L*(Q). This implies that w = 0 and 0Ww/0v, = 0 on the boundary dD. Therefore, @i satisfies the
Helmholtz equation in R3\D, the Sommerfeld radiation condition and & = —v, and dii/dv = —dv,/dv
on the boundary. Thus, setting & = —v, in D we have that & can be extended to an entire solution of
the Helmholtz equation satisfying the radiation condition. This is only possible if # vanishes which
implies that v, vanishes also, and thus g = 0. Now the range of # can be characterized as

(range #)* :={g € L*(Q): (g,y) =0 for all y € range #} =kern A",

where (-)* denotes the annihilator set. Injectivity of #' implies that the range of % is dense in
L*(Q). This ends the proof. [I

Since % is bounded, we also have that

(kem@):(range@T)a::{fo,ho) / < fo+h0w>ds:0},

where W is as in the proof of Theorem 4.1. Hence, using Green’s formulas we see that the pairs
(W|ap, OW/0v4|op), where w e H'(D) is a solution of V- AVw + k*nw =0 in D, are in the kernel of
A. So # is not injective.

Letting A denote the closure in H'(D) of all Herglotz wave functions with kernel g € L*(Q), we
define the subset H(0D) of H'/2(0D) x H~'2(6D) by

g >:UGH}.
oD

H(&D) = { <U’ij, %

Note that 7 ={v € H'(D): Av+k*v=0} since Herglotz wave functions approximate any H' solution
to the Helmholtz equation in D [6].

Lemma 4.2. H(0D) is a closed subset of H'?(0D) x H~'2(D).

Proof Consider (f, /)€ H(0D). There exists a sequence (v,, 0,0, ) converging to (f,4) in HY2(dD)x
H~'2(0D) where v, € H. Since the sequence (v,, d,0,) is bounded in H'/2(dD)x H~'2(éD), by con-
sidering v, to be the solution of an impedance boundary value problem as in [6] we can deduce that
(v,) is bounded in H'(D). From this it follows that a subsequence (still denoted by (v,)) converges
weakly in H'(D) to a function v which is clearly in H. From the weak continuity of the trace
operator we deduce that (v,,d,v,) converges weakly in H'/2(0D) x H~'2(8D) to (v,d,v) and by the
uniqueness of the limit (f,4) = (v, 0,v). Hence (f,h) € H(0D). This completes the proof. [

From the above lemma, H(0D) equipped with the induced norm from H'2(6D) x H~'?(dD) is
a Banach space. Let %, denote the restriction of the above operator % to H(0D).
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Theorem 4.3. Assume that k is not an eigenvalue of the interior transmission problem (ITP). Then
the operator By:H(0D) — L*(Q) is injective, compact and has dense range.

Proof. Let %o(f,h) =0 for (f,h)€ H(OD) and let (w,u) be the solution to TP corresponding to
this boundary data. Then the radiating solution to the Helmholtz equation in the exterior of D has
zero far-field pattern, whence u = 0 for x € R3\D. This implies that w satisfies

V -AVw+knw=0 inD, w=/f and g—v::h on 0D.
From the definition of H(0D), f,h are traces on 0D of an H'(D) solution v to the Helmholtz
equation and its normal derivative, respectively. Therefore (w,v) solves the homogeneous (ITP) and
from our assumption w =0 and v =0 in D, whence f=h = 0.

Compactness is a simple consequence of the fact that %, can be seen as a composition of the
continuous solution operator of TP with the compact operator which maps a radiating solution to its
far field (see [2]).

It remains to show that the set %,(H(0D)) is dense in L*(Q). To this end, it is sufficient to show
that the range of % is contained in the range of %, since the range of 4 is dense in L*(2) (Theorem
4.1). Let uso be in range of 4, that is u is the far field of the radiating part u of a solution (wg, u)
to TP. Let (w,v) be the unique solution to ITP with the boundary data (u|yp,0u/dv|sp). Hence
(w,u) is the solution of TP with boundary data (v|ap,0v/dv|ap) € H(0D) and has a far field that
coincides with u.,, whence %By(v|sp,dv/0v|sp) = . Note that we have showed that any (f,4) €
H'?(0D)xH~"2(dD) can be written as ( f,h)=(v|ap, 0v/0v|sp)+(fo. ho) where ( fo,ho) € kern # and
veH. O

Corollary 4.4. Assume that us, € L*(Q) is in the range of By. Then for every ¢ > 0 there exists a
g: € L*(Q) such that # g, = (v,,|op, 0v,,/0v|ap) satisfies

| Bo(H g:) — usoli20) < & (30)

where v, is the Herglotz wave function with kernel g,.

Proof. The proof is a straight forward application of the definition of the space H(0D) and the
continuity of the trace operator and the operator %,. [

Turning to our main goal, that is the study of the solvability of the far-field equation (3), we
rewrite (3) in terms of the operator %4, as

where g denotes the traces (v,|sp, 0vy/0v|sp) for v,, a Herglotz wave function with kernel g. As
we remarked in Section 2, (31) has a solution ¢ if and only if the solution (w,v) of the interior
transmission problem (4) is such that v is a Herglotz wave function with kernel g and @, is in
the range of %,. In general this is not true. However, we can construct an approximate solution as
follows.

We first assume that y € D. Let (w, ®@(:,y)) be the solution of the transmission problem (TP)
satisfying the boundary condition (v|sp, 0v/0v|sp) and having the far field @oo(-, y), where (w,v) is
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the solution of ITP with (f,%):=(®@(-, y)|ap, 0P(-, ¥)/0v|sp). Hence, Poo(-, v) is in the range of %,.
From Corollary 4.4 we can find a g,(+, y) such that

[Bo(HG:(+, ¥)) + Poo (s V) 20y S & (32)

for an arbitrary small ¢&. We now want to show that if y approaches the boundary from the interior of
D then the kernel g.(-, y) and the corresponding Herglotz wave function blow up in the appropriate
norms. To this end, assume that k is not a transmission eigenvalue (which implies that there exists
a unique solution to ITP) and choose a sequence of points y; € D such that

Yi=y —jv(y ), j=12,...

with sufficiently small R, where y* € 0D and v(y™*) is the outwards normal vector at y*. We denote
by w;,v; the solution of ITP corresponding to (f, %) :=(P(-, y;)|op, 0P(-, ¥;)/0v|op). As j — oo the
points y; approach the boundary point y* and therefore |D(-,y;)|;120py — oc. From the trace
theorem and by using the boundary conditions we can write

Wil oy + vl oy = W) = villeepy = 19C, y)leop.- (33)

In particular we show that relation (33) implies that lim; .. ||vj||;1py = 00. Assume on the contrary
that

lillpy <C, j=12,...
for some positive constant C. From the trace theorem we have

% <C, j=12,....
v H2(0D)

We recall that for every j the pair (w;, @(-, y;)) is the solution of TP with (f,g):= (v|sp, Ovj/dv
The estimate (2) for a solution of (TP) implies

ooy < € and \

aD)-

an

ov

Wil oy + ||¢(',)’j)HH1(B\D) <C (‘UjHH‘/Z(éD) + ’ ) <2CC,

H~12(3D)

which contradicts the fact that ||P(-, y;)| ;15\ 5, does not remain bounded as y; — y* € dD. So we
have that

,lggo HUjHHl(D) = o0.

Now, since for every j=1,2,... the corresponding Herglotz wave functions v, (-, y;) satisfying (32)
approximates the solution v; of ITP in the H'(D) norm, we conclude that

Jim [106.C+2)llr o) = 00
and hence
jli‘{}o 19:(-»2) | 2(0) = 00

Next we again assume that k is not a transmission eigenvalue and consider y € R*\D. For these
points ®..(-,y) does not belong to the range of the operator %, because @(-,y) is not an H'
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solution to the Helmholtz equation in the exterior of D. But, from Theorem 4.3, using Tikhonov
regularization, we can construct a regularized solution of the equation

Bo(fh) = —Poo(-5 ¥) (34)

In particular, if (f%,45) = (0*(-, ¥)|ap, 0v*(-, ¥)/0v]op) € H(OD) with v*(-, y) € H is a regularized
solution of (34) corresponding to the regularization parameter « chosen by a regular regularization
strategy (e.g., the Morozov discrepancy principle [2]), we have

[B0(f5:15) + Poo (-, V)| 120) < 6 (35)
for an arbitrary small but fixed § > 0, and
olciil})(||f;‘|ﬁl/2(al)) + ”h;”H—‘/z(aD)) = o0. (36)

Note that in this case we have that « — 0 as 6 — 0. Using Corollary 4.4, for every o and ¢ > 0 we
can find a Herglotz wave function v, (-, y) with kernel g, (-, y) € L*(Q) such that

| Bo(H g, ) — @o(f;,h/yj)HLZ(Q) <eé (37)
and thus
||'@O(%Qu,s('3y)) + (Doo('ay)HLZ(Q) <o +e (38)

Moreover, we know that the Herglotz wave function vy, (-, ) approximates v*(-, y) in H'(D). Hence,
the continuity of the trace operator yields

1# 4, ») = (f 5 ) epy < Cllvg, (1) = G )y < & (39)
Finally, (36) and (39) imply

lim | g,.(s Y)w@py = oo and lim 10g,..C> W1y = 00
and hence
olcii’% ||go<,e”L2(Q) = Q.

We summarize these results in the following main theorem.

Theorem 4.5. Let the symmetric matrix-valued function A = (a;x)3x3, a;x €C I(D_), satisfy E .
Im(A)¢ <0 and &- Re(A)¢ = y|EP for all ¢ € C and x € D with the constant y > 1, and n € C(D)
such that Sm(n) = 0, where D is a connected and bounded set having a C*-boundary 0D. Assume
that k is not a transmission eigenvalue. Then, if F is the far field operator (3) corresponding to
the transmission problem (1), we have that

(1) If y €D then for every ¢ > 0 there exists a solution g*(-, y) € L*(Q) satisfying the inequality

1Fgs(- ) — Poo (5 ¥ 120) < &
Moreover, this solution satisfies

ylingDHgs(‘»y)HLz(Q):oo and ylirgDHUya('sy)HHl(D):OOa

where v,, is the Herglotz wave function with kernel g,, and
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(2) If y €R*\D then for every ¢ >0 and 5 > 0 there exists a solution g,s(-, y) € L*(Q) of the
inequality

1Fge.5(-, ¥) — Poo(-s ¥ 1200) < &40

such that

gig}) 19:.5C W)l 20) = 00 and gli% [9g,.5Cs W) 10y = 00,

where vy, ; is the Herglotz wave function with kernel g, .

The importance of Theorem 4.5 in solving the inverse scattering problem of determining the
support D of the inhomogeneity from the far-field pattern is now clear from our discussion in Section
2. In particular, by using regularization methods to solve the far-field equation Fg = @ (-, y) for y
on an appropriate grid containing D, an approximation to g(-, y) can be obtained and hence 0D can
be determined by those points where ||g(-, y)|/;2(q) becomes unbounded (c.f. [1]).
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