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Abstract We introduce the concept of transmission eigenvalues in scattering theory for automorphic

forms on fundamental domains generated by discrete groups acting on the hyperbolic upper half complex

plane. In particular, we consider Fuchsian groups of type I. Transmission eigenvalues are related to

those eigen-parameters for which one can send an incident wave that produces no scattering. The notion

of transmission eigenvalues, or non-scattering energies, is well studied in the Euclidean geometry, where

in some cases these eigenvalues appear as zeros of the scattering matrix. As opposed to scattering poles,

in hyperbolic geometry such a connection between zeros of the scattering matrix and non-scattering

energies is not studied, and the goal of this paper is to do just this for particular arithmetic groups.

For such groups, using existing deep results from analytic number theory, we reveal that the zeros of

the scattering matrix, consequently non-scattering energies, are directly expressed in terms of the zeros

of the Riemann zeta function. Weyl’s asymptotic laws are provided for the eigenvalues in those cases

along with estimates on their location in the complex plane.
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1 Introduction

Spectral properties of operators associated with scattering phenomena carry essential informa-

tion about the scattering media. The theory of scattering resonances is a rich and beautiful

part of scattering theory, and although the notion of resonances is intrinsically dynamical, an

elegant mathematical formulation comes from considering them as the poles of meromorphic

extension of the scattering operator [24, 27] (we refer the reader to the upcoming monograph [9]

for an account on the vast literature on the subject). These scattering poles capture physical

information by identifying the rate of oscillations with the real part of a pole and the rate of

decay with its imaginary part. The transmission eigenvalue problem is also inherent to the

scattering for inhomogeneous media, and hence it plays an important role in understanding the

corresponding inverse problem. Transmission eigenvalues are related to those wave numbers

for which one is able to construct an incident field that does not scatter by a given media. For
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non-absorbing media, real transmission eigenvalues exist [4], and can be determined from the

scattering data [3, 22] thus providing estimates on the constitutive material properties of the

scattering object. For the past 20 years, transmission eigenvalues corresponding to compactly

supported potentials in Euclidean geometry have been the subject of extensive research, and

we refer the reader to [3] for a comprehensive survey of the theory of transmission eigenval-

ues. At the partial differential equations level, transmission eigenvalues form the spectrum of a

non-selfadjoint compact operator, which under some appropriate assumptions is proven to have

infinitely many real and complex eigenvalues, whereas at the scattering theory level, there is a

profound relationship between transmission eigenvalues and the scattering operator.

1.1 Non-scattering Frequencies, Transmission Eigenvalues and the Scattering Operator in R
n

Here we introduce the concept of transmission eigenvalues for the scattering by an inhomogene-

ity supported in a bounded Euclidean region in R
n. Consider the scattering of an incident wave

v of monochromatic radiation with frequency ω, which satisfies the Helmholtz equation

Δv + k2v = 0 in R
n (1.1)

by an inhomogeneity supported in the bounded region D having piece wise smooth boundary

∂D with refractive index 1+m, where m is a complex valued L∞ function supported in D such

that �(1+m) > 0 and �(m) > 0 (the refractive index of the background is normalized to one).

Here k = ω/c0 is the wave number, c0 is the constant background sound speed. The total field

u ∈ H2
loc(R

n) which is decomposed as

u = us + v (1.2)

satisfies

Δu+ k2(1 +m(x))u = 0 in R
n (1.3)

with the scattered field us satisfying the outgoing Sommerfeld radiation condition

lim
r→∞ r

n−1
2

(
∂us

∂r
− ikus

)
= 0 (1.4)

which holds uniformly with respect to x̂ := x/|x|, r = |x| [5, 27]. In the sequel we will refer to

the incident field v in the decomposition (1.3) as the v part. The scattered field us ∈ H2
loc(R

n)

satisfies

Δus + k2(1 +m)us = −k2mv in R
n (1.5)

and it is known [5, 27] to have the asymptotic behavior

us(x) = γ(n, k)
eikr

r
n−1
2

u∞(x̂) +O

(
1

r
n+1
2

)
, r → ∞, (1.6)

where the constant γ(n, k) =
(
2π
ik

)n−1
2 . The function u∞(x̂) defined on the unit sphere Sn−1

is called the far field pattern. In particular, we consider free waves as incident field v := vg,

otherwise known as Herglotz wave functions of the form

vg(x) =

∫
Sn−1

g(ŷ)eikx·ŷ ds (1.7)
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where ŷ = y/|y| and g ∈ L2(Sn−1) is referred to as the kernel. It is known that such a

representation of vg is equivalent to satisfying in addition to (1.1)

‖vg‖B∗ := sup
R>0

1√
R
‖vg‖L2(BR) <∞

where BR is the ball of radius R centered at the origin. Hence the Herglotz wave functions can

be characterized as the free space solution to the Helmholtz equation whose Fourier transform

belongs to the Besov space B
−1/2
2,∞ . Every vg in the space of Herglotz wave functions (closed

space in the B∗ topology) can be uniquely decompose as vg := ug − usg where the total field

ug is solution of (1.3) and the outgoing scattered field usg which solves (1.5) and (1.4). The

scattering operator (matrix) as defined by Lax and Phillips in [24] maps vg 	→ ug and for k such

that �(k) ≥ 0 is an isomorphism in the above respective spaces equipped with the B∗ topology.

A heuristic argument for the latter can be given using the Lipmann–Schwinger equation for the

solution of (1.5) in terms of the compact k-analytic integral operator T (k) : L2(BR) → L2(BR)

(below given explicitly only in R
3 to fix the idea)

(I − T (k))u = vg, T (k)u :=

∫
R3

eik|x−y|

4π|x− y|m(y)u(y) dy. (1.8)

A fix point theorem argument implies that for |k| small enough I−T (k) is invertible, and hence

by the Analytic Fredholm Theory [5] we have that ug := (I − T (k))−1vg is meromorphic on

k ∈ C. Furthermore, for k such that �(k) ≥ 0 uniqueness of the scattering problem implies

that ug is analytic thus its poles are on the lower-half complex plane.

In the sequel, of particular interest to us will be the “incoming-to-outgoing” mapping vg 	→
usg := ug − vg. We shall characterize this in terms of the far field asymptotic behavior. To this

end let u∞g denote the far field pattern of the scattered field usg corresponding to the incident

field vg. The compact linear operator S+(k) : L2(Sn−1) → L2(Sn−1) defined by

S+(k) : g 	→ u∞g (1.9)

is called the relative scattering operator [27], or otherwise referred to as the far field operator

[3, 5]. Clearly from (1.7)

u∞g (x̂) = (S+(k)g)(x̂) =

∫
Sn−1

u∞(x̂; ŷ, k)g(ŷ) ds

where u∞(x̂; ŷ, k) is the far field pattern of the scattered field due to an incident plane wave

v := eikx·ŷ in the ŷ direction. The scattering operator can also have a characterization in terms

of the asymptotic behavior of fields as S(k) : L2(Sn−1) → L2(Sn−1)

S(k) := I + S+(k).

If �(n) = 0 then S+(k) is normal and S(k) is unitary for real k > 0, which is not the case when

�(n) > 0 is a subset of D of non-zero measure. Both are analytic operator valued functions

of k in the upper half complex plane. The scattering poles are the poles of the meromorphic

extension of S(k) in the lower half complex plane. In general S(k,m) = [S∗(k,m)]−1 holds true

for the scattering operator.

Now we are ready to introduce the transmission eigenvalue problem. An application of

Rellich’s lemma implies that the incident field vg with g ∈ Kernel S+(k) does not scatterer
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by the medium with contrast m. Straightforward calculation reveals that the kernel of S+(k)

contains g ∈ L2(Sn−1) such that, if vg is the corresponding Herglotz function, v := vg|D and u

satisfy the transmission eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δu+ k2(1 +m(x))u = 0 in D,

Δv + k2v = 0 in D,

u = v on ∂D,
∂u

∂ν
=
∂v

∂ν
on ∂D.

(1.10)

A value of k ∈ C is said to be a transmission eigenvalue if (1.10) has non-trivial solutions

u ∈ L2(D), v ∈ L2(D), such that u − v ∈ H2
0 (D). We call the pair (u, v) the corresponding

eigenfunction. In general at a transmission eigenvalue, the part v of the corresponding eigen-

function does not take the form of a Herglotz function, thus the kernel of the relative scattering

(or far field) operator is in general empty (hence the operator is injective see [3, 5]). In fact, in

[1] it is proven that if D contains a corner, then this v can not be extended as a solution of the

Helmholtz equation outside D. Thus the set of non-scattering wave numbers k ∈ C for which

the Kern S+(k) �= ∅ is a subset (possibly empty) of the transmission eigenvalues.

Obviously (1.5) (or equivalently (1.8) will define an outgoing scattered field in us ∈ H2
loc(R)

and its far field pattern is u∞ ∈ L2(Sn−1) for incident field

v ∈ Hinc(D) := {v ∈ L2(D) : Δv + k2v = 0, in the distributional sense}.
Hinc(D) is a Hilbert space and densely contains the Herglotz wave functions vg [3]. Thus G(k) :
Hinc(D) → L2(Sn−1) mapping v 	→ u∞ is a compact linear operator, and k is a transmission

eigenvalue if and only if the Kern G(k) is nontrivial (in fact the part v of the corresponding

eigenfunction belongs to Kern(G)). Evidently the following relation holds

S+(k)g = G(k)Hg, where H : g 	→ vg|D, H(L2(Sn−1)) = Hinc(D).

Hence at a transmission eigenvalue one can construct a vg that produces arbitrarily small

scattered field usg.

In the Euclidean geometry R
n, however, there is a special configuration for which the trans-

mission eigenvalues and non-scattering frequencies coincide, and this is exactly the counterpart

of what the case is in our scattering problem in hyperbolic geometry. When D is a ball of radius

a centered at the origin and m := m(r), r = |x|, is radial function, the part v of a transmission

eigenfunction is indeed a Herglotz function and hence transmission eigenvalues coincide with

the values of k ∈ C for which Kern S+(k) �= ∅. To see explicitly what the transmission eigen-

values are in this case, we consider D := B1 ∈ R
3, and use as incident field the Herglotz wave

function

v = j�(k|x|)Y�(x̂),
where j� is the spherical Bessel function (i.e., solution of the Bessel ODE regular at r = 0)

and Y� is a spherical harmonic of order � ∈ N. Straightforward calculations by separation of

variables [5] lead to the following expression for the scattered field

us(x) :=
C(k;m, �)

W (k;m, �)
h
(1)
� (k|x|)Yn�(x̂), with u∞(x) :=

C(k;m, �)

W (k;m, �)

1

k
Y�(x̂),
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where h
(1)
� (r) is the Hankel function of the first kind of order � and

C(k;m, �) = Det

⎛
⎝ y�(1) −j�(k)

y′�(1) −kj′�(k)

⎞
⎠ , W (k;m, �) = Det

⎛
⎝ y�(1) −h(1)� (k)

y′�(1) −kh(1)′� (k)

⎞
⎠ (1.11)

with y� (which depends on k and m) the solution to

y′′ +
2

r
+

(
k2(1 +m(r))− �(�+ 1)

r2

)
y = 0

which as r → 0 behaves like j�(kr), i.e.,

lim
r→0

r−�y�(r) =

√
πk�

2�+1Γ(�+ 3/2)
.

Thus transmission eigenvalues are those values of k ∈ C such that C(k;m, �) = 0. Note

that C(k;m, �) are entire functions of k. Also we remark that scattering poles are k ∈ C

for which W (k;m, �) = 0. If k is a zero of C(k;m, �) (i.e., a transmission eigenvalue) then

the part v of the corresponding eigenfunction is v = j�(k|x|)Y�(x̂). Furthermore note that all

transmission eigenvalues for this spherically stratified media are obtained this away by moving

� ∈ N. Note that C(k;m, �) are entire functions of k and, except for exceptional cases, have

infinitely many real zeros and infinitely many complex zeros [6, 7]. As for the location of

transmission eigenvalues, for smooth m(r) such that m(1) �= 0 they all lie in strip around the

real axis [34] whereas if m(1) = 0 they lie in a parabolic region and do not approach the real

axis [8, 33]. If only spherical symmetric incident fields are considered, i.e., v = j0(k|x|), then
the meromorphic function

S+(s) =
C(k;m, 0)

kW (k;m, 0)
(1.12)

is the counterpart of the scattering matrix for the non-Euclidean geometry we shall consid-

er in this paper. Thus in this spherically stratified case there is direct connection between

transmission eigenvalues, non-scattering frequencies and the zeros of the scattering operator.

There is a vast of literature on the study of the (non-selfadjoint) transmission eigenvalue

problem (1.10) at the PDE level. Under the assumption that m(x) does not change sign in a

neighborhood of the boundary and for smooth enough m the completeness of the eigenfunctions

is proven in [29] and Weyl laws are proven in [23, 34]. The existence of real transmission

eigenvalues with monotonicity properties are proven in [4] for L∞ non-changing sign real valued

m. We remark that when the scattering objectD is non-penetrable, then the role of transmission

eigenvalues is played by the corresponding interior eigenvalues. For instance if the Dirichlet

condition is assumed on the boundary ∂D of the scatterer D then non-scattering frequencies

are related to the Dirichlet eigenvalues for −Δ inD and exactly the same discussion as above can

be carried out. This interplay between the outgoing scattering field and the interior eigenvalue

problem is referred to as inside-outside duality.

In [10] a connection was made between the harmonic analysis of automorphic functions with

respect to the group SL2(R) of real matrices of determinant one and the scattering theory for

non-Euclidean wave equations and Selberg’s pioneering work on spectral theory for compact

and finite-area Riemann surfaces. This work was redone and further developed for non-compact

hyperbolic domains of finite area in [25] (see also [26]), leading to more recent development of the
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scattering theory for hyperbolic surfaces of infinite area (for the latter we refer the reader to the

comprehensive monograph by Borthwick [2]). On the other hand, limited to automorphic forms

with respect to Fuchsian groups of the first kind that have only cusps at infinity, the spectral

theory and the study of the corresponding scattering matrix has a profound connection to

fundamental results from analytic number theory (see the book by Iwaniec [19]). The concern

has always been with the poles of the scattering matrix in this scattering theory of automorphic

forms. No attempt as far as we are aware has been made to understand the counterpart of

transmission eigenvalues in this framework. This paper tries to remedy this in the particular

case of Fuchsian groups of the first kind.

In the next section we introduce Fuchsian groups and the scattering matrix associated with

the Laplace–Beltrami operator for the Riemannian metric of the upper half plane on the fun-

damental domains generated by discrete groups. An important part of our analysis relies on

the availability of explicit expressions for the scattering matrix, hence here we provide two ex-

amples of such calculations. Section 3 introduces transmission eigenvalues in this configuration

connecting them to the zeros of the scattering matrix, which in turn, for particular discrete

groups, relate to the zeros of the Riemann zeta function. Such a connection allows us to de-

rive Weyl’s asymptotic laws and describe the location of transmission eigenvalues. In the last

section we make a connection between our analysis of transmission eigenvalues with the non-

scattering energies in the Euclidean case discussed above. We furthermore discuss some related

open questions in analytic number theory and arithmetic groups as well as possible research

prospects in this direction.

2 Fuchsian Groups of the First Kind and the Scattering Matrix

Let us start by recalling some basics concepts on the hyperbolic plane and the groups acting

discontinuously on the hyperbolic plane. In general, on a Riemannian manifold with metric

given by the tensor (gij), the Laplace operator, often referred to as the Laplace–Beltrami

operator, takes the form

Δgu =
1√
g

∂

∂xi

(
gij

√
g
∂u

∂xj

)
,

where g := det(gij) and gij are the components of the inverse of the metric tensor such that

gijg
ij = δij , with δij being the Kronecker delta. A model of the hyperbolic plane is H :=

{(x, y) : y > 0}, z = x+iy, the upper half complex plane or Poincaré plane. It is a Riemannian

manifold with the complete metric

ds2 = y−2(dx2 + dy2), gij =
δij
y2
, gij = y2δij .

Hence the Laplace–Beltrami operator in this case is

ΔHu := y2
(
∂2u

∂x2
+
∂2u

∂y2

)
.

Our governing equation of wave propagation on the hyperbolic plane that replaces the Helmholtz

equation (1.1) on the Euclidean plane is

ΔHu+ s(1− s)u = 0 or y2Δu+ s(1− s)u = 0. (2.1)
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Obviously the functions ys and y1−s, s ∈ C satisfy (2.1) (for our purpose we refer to them here

as wave packets). They are invariant solutions under z 	→ z + 1 and play the same role as the

plane waves e±ikx·d with respect to the Helmholtz equation in the Euclidean case. We may

view ys as an outgoing solution using an appropriate Sommerfeld condition. The H gradient is

given by

∇Hu =

(
gij

∂u

∂xj

)
i

= y2∇u.

Thus the unit upward at (x, y) is y(0, 1) = y	j := ν, since 〈ν, ν〉H = y2

y2
	j ·	j = 1 and hence

∂u

∂ν

∣∣∣∣
H

= 〈ν,∇Hu〉H =
1

y2
· y2 · y ∂u

∂y
= y

∂u

∂y
.

Similarly to the Sommerfeld radiation condition in the Euclidean case (1.4) we have that u := ys

satisfies
∂u

∂ν

∣∣∣∣
H

− su = y
∂u

∂y
− su = 0.

So if �(s) > 0, �(1 − s) < 0 thus ys is outgoing (away from the cusp) and y1−s is incoming

(toward the cusp). Note that the terminology used in the Euclidean geometry is in reference to

the scattering medium, accordingly ys will be called incoming (traveling toward the scattering

medium like eikx·d in R
n) whereas y1−s outgoing (traveling away from the scattering medium

like e−ikx·d in R
n). Similar to the Euclidean case, it is possible to develop a scattering theory

on hyperbolic surfaces and define the relative scattering operator in terms of outgoing ys and

incoming y1−s asymptotic behavior of solutions to (2.1) at the cusps of fundamental domains

with respect to an isometry group. For a comprehensive discussion on the scattering theory for

hyperbolic surfaces we refer the reader to [2].

Given the large isometry group of H, a natural way to obtain a hyperbolic surface is by a

quotient Γ \H, for some discrete subgroup Γ of the group of real 2× 2 matrices of determinant

one SL2(R). In particular here we are concerned with Fuchsian groups. To precisely define

Fuchsian groups, we recall Möbius transformations which are fractional linear functions

gz =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1, (2.2)

and the group PSL2(R) := SL2(R) \ (±1) (±1 stands for ± identity 2× 2 matrix since g deter-

mines the matrix up to sign) of all Möbius transformations acting on the whole compactified

complex plane Ĉ. A Fuchsian group Γ is a discrete subgroup of PSL2(R) that acts discontinuous-

ly on H (i.e., the orbit Γz := {γz : γ ∈ Γ} of any z ∈ H has no limit point in H). In fact Poincaré

has proved that for a subgroup of SL2(R) to be discrete is equivalent to acting discontinuously

on H, if considered as a subgroup of PSL2(R). The stability group Γz = {γ ∈ Γ : γz = z} of

a Fuchsian group is cyclic. For the purpose of this study, we assume that the Fuchsian group

Γ is of the first kind, i.e., every point (x0, 0) on the x-axis is a limit of the orbit Γz for some

z ∈ H. A Fuchsian group can be visualized by its fundamental domain F := Γ/H, that is F is

a domain in H, whose distinct points of are not equivalent (different modulo Γ) and such that

any orbit of Γ contains points in the closure of F in the Ĉ topology. A Fuchsian group is of the

first kind if and only if it has a fundamental domain of finite volume [19, Sec. 2.2]. Thus, we

further restrict ourselves to first kind Fuchsian groups that are non co-compact, which means
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that the closure in Ĉ of the fundamental domain is not compact. The fundamental domain

Γ/H = F of finite volume has only cusps at infinity if it is non-compact. The cusps are formed

by the two sides of F meeting at a vertex in R̂ (extended reals) orthogonally to R̂ (see also [2,

Sec. 2.4]). To summarize our assumptions, the groups Γ we are dealing with here are Fuchsian

of the first kind and non co-compact. There are many ways to describe the fundamental domain

F := Γ/H. Most useful to us is the Ford fundamental domain, where the fundamental domain

is given by boundaries that are geodesics on the Riemann surface Γ/H. The polygon bounded

by geodesics in this case is referred to as the standard polygon. More specifically, set

F∞ = {z ∈ H : β < x < β + 1} , z = x+ iy,

where we have arranged that ∞ is a cusp. Then define

F = {z ∈ F∞ : �(z) > �(γz), for all γ ∈ Γ, γ ∈ Γ∞}
where Γ∞ is generated by ( 1 n

0 1 ), n ∈ N the stabilizer group of the cusp at ∞. F is called the

Ford fundamental domain. Recall that the stabilizer group of the cusp a is

Γa = {γ ∈ Γ, γa = a} .
We provide as an example the classical case of the modular group SL2(Z), which will play a

special role in the sequel. The modular group SL2(Z) is the group of 2×2 matrices with integer

entries of determinant one with its fundamental domain F = {z = x+iy : |x| < 1/2, |z| > 1} (see
Fig. 1 left panel). For this fundamental domain i is an elliptic vertex of order 2, ξ = (1+i

√
3)/2

is an elliptic vertex of order 3, and ∞ is the only cusp up to equivalence (see [2, Chap. 2] or [19,

Sec. 1.5]). Now consider for example γ1 =
(

0 1−1 0

) ∈ SL2(Z), which acts according to z → − 1
z .

Applying γ1 to F we get an equivalent fundamental domain to F by periodicity, F1 = γ1F (see

Figure 1 right panel). Thus the images of F under the modular group Γ tesselate H. Hence

when we consider functions f on fundamental domains F we need them to be automorphic, i.e.,

f(γz) = f(z), for all γ ∈ Γ and z ∈ F . (2.3)

Fonly one cusp ∞

1/2−1/2 1−1

F1 = γ1F

cusp at (0, 0)

1/2−1/2 1−1

Figure 1 Left panel: Shaded region depicts Ford fundamental domain F for Γ = SL2(Z). Black dots

indicate 3 elliptic points. Right panel: Shaded region depicts an equivalent fundamental domain F1 to

F after applying γ1.

Definition 2.1 Given a cusp a, the scaling matrix σa ∈ SL2(R) is defined such that

σa∞ = a.
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Note that σa need not to belong to Γ and σa need not be unique, as σa ( 1 n
0 1 ) = a.

To do analysis of (2.1) in F we need to periodify ys on F . For the subgroup Γ∞ and

functions p invariant under Γ∞, like ys and y1−s are (under z → z + n) one can form the

Poincaré series (which here plays the same role of Fourier series in the Euclidean case)

Ea(z \ p) =
∑

γ∈Γa\Γ
p
(
σ−1
a γz

)
,

where we note that p(z) is periodic in x with period 1 thanks to the invariance property. As

shown in [19, Sec. 3.4], the periodification of ys is performed on any Γ, thus taking p(z) = ys

in the Poincaré series leads to the Eisenstein series. Hence, for the given fundamental domain

Γ \H and �(s) > 1, at each cusp a there is a solution Ea(σbz, s) of (2.1), the Eisenstein series,

such that as y → ∞ within the cusp a

Ea(σbz, s) = δaby
s + ϕab(s)y

1−s +O((1 + y−�(s))e−2πy) (2.4)

uniformly in z ∈ H, where σb∞ = b and δab is the Kronecker delta, vanishing when a,b

are inequivalent cusps. In a similar manner as for the relative scattering operator S+ in the

Euclidean geometry, we define here the scattering matrix by

Φ(s) := (ϕab(s)) , where a and b run over all cusps (2.5)

(this is a rare situation when the “incoming-to-outgoing” relative scattering operator is a ma-

trix). The scattering matrix has a meromorphic continuation to s ∈ C. As we will see later,

Φ(s) in our framework plays the same role as C(k;m, �)/W (k;m, �) given by (1.11) in the spher-

ically stratified Euclidean geometry, and its zeros will correspond to non-scattering waves sent

from and observed at the same cusp.

2.1 The Scattering Matrix

In this section we provide explicit calculations of the scattering matrix Φ(s) for general discrete

subgroups of SL2(R), which will be used in the next section to characterize transmission eigen-

values in this framework. To this end, we must make (2.4) more specific. An application of the

Poisson summation formula and computation of Fourier transformations ensuing from Poisson

summation leads one to the formula below for the solutions of the wave equation in Γ \H (see

[19, Theorem 3.4] for the proof).

Theorem 2.2 Let Ea(σbz, s) for the given cusp a solve (2.1) in Γ \H as above. Then

Ea(σbz, s) = δaby
s + ϕab(s)y

1−s +
∑
n�=0

ϕab(n, s)Ws(nz),

where σb∞ = b and δab is the Kronecker delta vanishing when a,b are inequivalent cusps.

Furthermore

ϕab(s) = π1/2Γ(s− 1
2 )

Γ(s)

∑
c>0

c−2sSab(0, 0, c). (2.6)

Here Γ(s) :=
∫∞
0

e−xxs−1 is the Euler gamma function, Sab(0, 0, c) are the completely degen-

erate Kloosterman sums, and Ws(z) are the Whittaker functions that vanish as z tends to the

cusp a (given by [19, (1.26)]).
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From (2.6) we can see easily that the scattering matrix is symmetric, i.e.

ϕab(s) = ϕba(s), for �(s) > 1

and by analytic continuation for all s ∈ C.

When a = b, the leading term of the wave packet or Eisenstein series is given by

ys + ϕaa(s)y
1−s.

Thus the absence of back scattering at cusps a is completely determined by understanding the

zeros of ϕaa(s), i.e., the zeros of the diagonal terms of the scattering matrix Φ(s) = (ϕab(s))p×p

where p is the number of inequivalent cusps. Note that by symmetry we have that ϕba(s) =

ϕba(s). By using the Maass–Selberg relations one obtains that the scattering matrix (ϕab(s))

can be continued to the entire complex plane and the following theorem can be proven (see [19,

Theorem 6.9] where the exposition has additional technical innovations).

Theorem 2.3 The functions ϕab(s) are holomorphic in �(s) ≥ 1/2 except for a finite number

of simple poles in the segment (1/2, 1]. If s = sj is a pole of ϕab(s), then it is also a pole of

ϕaa(s). The residue of ϕaa(s) at s = sj > 1/2 is real and positive.

In addition, one has the functional relation

Φ(s)Φ(1− s) = Ip×p

where Φ(s) := (ϕab(s)) is the scattering matrix and p the number of inequivalent cusps. For s

with �(s) = 1/2 the scattering matrix is unitary, i.e., Φ(s)Φ(s)	 = I. For s real the scattering

matrix is Hermitian.

To calculate explicitly the scattering matrix Φ(s) we use (2.6), hence we need the notion of

Kloosterman sums.

We start with the simple case of the modular group Γ = SL2(Z). In this classical case

Kloosterman in [21] introduced the sums, that now carry his name, in connection with an

improvement of the Hardy–Littlewood–Ramanujan circle method (see [17, Chap. 20]).

Definition 2.4 The Kloosterman sums for Γ = SL2(Z), denoted by S(m,n,N), N ∈ N,

N > 0, m,n ∈ Z are defined by

S(m,n,N) =
∑

hh∗≡1(modN)

e2πi(
mh
N +nh∗

N ). (2.7)

In the particular case when n = 0, we get the Ramanujan sum

S(m, 0, N) = cN (m) =
∑

h:(h,N)=1

e2πi
mh
N .

We refer the reader to [13, p. 308] for various properties of Ramanujan sums. The completely

degenerate Kloosterman sums S(0, 0, N) is what plays a role in the formula for the scattering

matrix. As explained above, since the fundamental domain F := SL2(Z) \ H has only one

cusp at infinity (see Figure 1(a)), the scattering matrix is a scalar. In particular, one has via

equation [19, (3.21), p. 60] the formula for the scattering matrix for F

ϕ∞∞(s) = π1/2Γ(s− 1
2 )

Γ(s)

∞∑
N=1

S(0, 0, N)

N2s
. (2.8)
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Proposition 2.5 For F := SL2(Z) \H

ϕ∞∞ = π1/2Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)
,

where ζ(s) is the Riemann zeta function.

Proof It suffices to show that

∞∑
N=1

S(0, 0, N)

N2s
=
ζ(2s− 1)

ζ(2s)
. (2.9)

To this end from Definition 2.4 we have that

S(0, 0, N) = ϕϕϕ(N) = # {m |m < N, (m,N) = 1} ,
i.e., ϕϕϕ(N) is Euler’s totient function giving the number of positive integers less than N that are

co-prime to N . Thus the left hand side of (2.9) becomes

S(0, 0, N) =
∞∑

N=1

ϕϕϕ(N)

N2s
. (2.10)

But by a standard fact stated in [13, Theorem271]

ϕϕϕ(N) =
∑
d/N

μμμ

(
N

d

)
d, (2.11)

where μμμ(·) is the number-theoretic Möbius function. We also have that for �(s) > 1/2 [18,

(1.7), p. 4]

1

ζ(2s)
=

∞∑
m=1

μμμ(m)

m2s
.

Thus for �(s) > 1/2 we can write

ζ(2s− 1)

ζ(2s)
=

∑
m≥1

∑
k≥1

μμμ(m)

m2s

1

k2s−1
. (2.12)

Setting N = mk (2.12) becomes

ζ(2s− 1)

ζ(2s)
=

∑
N≥1

1

N2s

(∑
d/N

dμμμ

(
N

d

))

and so by (2.11)

ζ(2s− 1)

ζ(2s)
=

∞∑
N=1

ϕϕϕ(N)

N2s
. (2.13)

Hence comparing (2.10) and (2.13) establishes (2.9) for �(s) > 1/2. For s ∈ C the result follows

by analytic continuation and the functional relation for the Riemann zeta function. This ends

the proof. �
Before we proceed to derive formulae for other tractable classes of discrete subgroups Γ, we

need to describe how to define Kloosterman sums associated with general discrete groups of

SL2(R). This construction is carried out in [19, Chap. 2]. All we do here is just list the salient

points of that construction, referring the reader to the excellent exposition in [19]. As described

at the beginning of this section, our discrete subgroup Γ of SL2(R) consists of unimodular 2×2
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matrices. But for general Γ the entry “c” is a real number. Thus, the various “Dirichlet series”

that arise (if one can even call them that) will no longer have the property that multiplying

any two of them will lead to a series whose terms come from the entries of the matrices of the

discrete subgroups Γ. This makes the analysis of determining scattering matrices associated to

general discrete groups difficult. Given any discrete subgroup Γ of SL2(R) one has a double

coset decomposition stated in the theorem below.

Theorem 2.6 Let a and b be cusps for Γ/H. We then have a disjoint union

σ−1
a Γσb = δabΩ∞ ∪

⋃
c>0

⋃
d (mod c)

Ωd/c

where Ω∞ = Bω∞B,

B =

⎛
⎝ 1 n

0 1

⎞
⎠ , n ∈ Z, ω∞ =

⎛
⎝ 1 ∗

0 1

⎞
⎠

and

Ωd/c = B

⎛
⎝ ∗ ∗

c d

⎞
⎠B,

δab is the Kronecker delta, i.e., δab = 0 for inequivalent cusps and δaa = 1.

For the proof we refer the reader to [19, Theorem 2.7]. The key point here is that coset

classes are fixed by c, d, the elements of the bottom row of the matrix
(
a b
c d

)
, and for fixed c

there is a further break up determined by elements d associated to the fixed c. In the modular

case, the Kloosterman sums were defined by taking c = N and letting d run over precisely the

coset representatives associated with c = N . Thus we may define for general Γ [19, (2.23)] in

analogy,

S(m,n, c) =
∑

( a ∗
c d )∈B\σ−1

a Γσb/B

e2πi
(
md

c
+
na

c

)
, (2.14)

where the summation is taken over the representatives of the double coset for fixed c, that is

a, d are changing for fixed c.

In general the following bounds for completely degenerate Kloosterman sums are proven in

[19, Prop. 2.8]

S(0, 0, c) ≤ cabc
2, (2.15)

and the superior bound on average
∑

c≤X
S(0,0,c)

c ≤ c−1
abX, where cab = min {ca, ca} and

ca = min

⎧⎨
⎩c > 0

∣∣∣∣∣∣
⎛
⎝ ∗ ∗

c ∗

⎞
⎠ ∈ σ−1

a Γσb

⎫⎬
⎭ .

However these bounds are not enough to get refined asymptotics for the zeros of ϕab.

We can tackle the aforementioned complication with Kloosterman sums in the particular

case of congruence subgroups.

Definition 2.7 The principal congruence subgroup Γ(N) of level N is defined by

Γ(N) =

⎧⎨
⎩γ =

⎛
⎝ a b

c d

⎞
⎠

∣∣∣∣∣∣
a, b, c, d ∈ Z, ad− bc = 1

a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

⎫⎬
⎭ .
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The Hecke congruence subgroups Γ0(N) and Γ1(N) of level N are defined as

Γ0(N) =

⎧⎨
⎩γ ∈ SL2(Z), γ ≡

⎛
⎝ ∗ ∗

0 ∗

⎞
⎠ (mod N)

⎫⎬
⎭

and

Γ1(N) =

⎧⎨
⎩γ ∈ SL2(Z), γ ≡

⎛
⎝ 1 ∗

0 1

⎞
⎠ (mod N)

⎫⎬
⎭ ,

respectively.

One has the following inclusions as subgroups

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z),

and each is a finite index subgroup of the succeeding one. The index of Γ(N) is given by the

formula

[SL2(Z) : Γ(N)] = N3
∏
p/N

(
1− 1

p2

)

and Γ(N) is normal in SL2(Z). All these facts are proved in [32]. Note that γ ∈ Γ(N) for

N > 3 satisfies |Trace(γ)| ≥ 2, so Γ(N) \H has no elliptic points and hence, viewing Γ(N) \H
as a manifold in R

3, it is a smooth manifold. We caution the reader that Γ(N) \ H does not

embed isometrically in R
3 as the Gauss curvature of Γ(N) \ H is −1 and thus the Efimov–

Hilbert theorem precludes such an isometric embedding into R
3 as Γ(N) \ H is also complete.

We already introduced the concept of fundamental domains and their description for Fuchsian

groups at the beginning of this section. A picture of the Ford fundamental domain F for Γ(2)

is displayed in Figure 2.

F

AB

1/2−1/2 1−1

Figure 2 Ford fundamental domain F for Γ(2). The circles |1± 2z| = 1 seen here are isometric

circles, and Γ(2) \H is seen to have 4 cusps at z = 0, z = ±1 and z = ∞, but z = ±1 are equivalent.

A, B are elliptic points of order 2.

Since there are three non-equivalent cusps in the fundamental domain for Γ(2), the correspond-

ing scattering matrix (ϕab(s)) is 3×3. For more on fundamental domains the reader can consult

[20] or [19, Chapter 2]. We have the following formula for the scattering matrix for congruence

subgroups Γ(N) due to [14, 16] and [19, Chapter 2].
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Theorem 2.8 For the cusp a = ∞ and Γ = Γ(N) we have that

ϕ∞∞(s) = π1/2Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)

ϕϕϕ(N)

N4s

∏
p/N

(
1− 1

p2s

)−1

, (2.16)

where ϕϕϕ(N) is Euler’s totient function. Furthermore the scattering matrix for Γ0(p), p prime

is

Φ(s) =

⎛
⎝ ϕ∞∞ ϕ∞0

ϕ0∞ ϕ00

⎞
⎠ = ψ(s)Np(s),

where

ψ(s) = π1/2Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)

and

Np(s) =
(
p2s − 1

)−1

⎛
⎝ p− 1 ps − p1−s

ps − p1−s p− 1

⎞
⎠ .

For N square free, the scattering matrix for Γ0(N) becomes

ϕab = ψ(s)
⊗
p/N

Np(s).

We shall be content to establish (2.16) when N is a prime power and thus establish yet

another link between transmission eigenvalues (to be defined in the next section) and the zeros

of the Riemann zeta function. Recall that this link for the modular group SL2(Z) has been

established earlier. Thus, we now derive (2.16) when N = pa, p prime and a > 0.

Proof (Proof of (2.16) in Theorem 2.8 for N = pa, p prime, a > 0) We wish to show that, for

Γ = Γ(pa), a > 0, p prime, one has

∑
c>0

S(0, 0, c)

c2s
=
ζ(2s− 1)

ζ(2s)

ϕϕϕ(N)

N4s

∏
p/N

(
1− 1

p2s

)−1

. (2.17)

This will yield the formula for ϕ∞∞. Note we can take σa = I since a = ∞. We also have

c ≡ 0 (mod N), and since

γ =

⎛
⎝ a b

c d

⎞
⎠ ∈ Γ(N), a, b, c, d ∈ Z, c > 0,

ad− bc = 1, b ≡ 0 ≡ c (mod N), we obtain

ad ≡ 1 (mod N2). (2.18)

Next since γ ∈ Γ(N) we also have

a ≡ d ≡ 1 (mod N). (2.19)

Now since a = b = ∞ and σa = I, then

S(0, 0, c) = #

⎧⎨
⎩d

∣∣∣∣∣∣
⎛
⎝ ∗ ∗

c d

⎞
⎠ is a representative of the double coset B \ Γ/B

⎫⎬
⎭ .
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Next set c = kN2. Then by (2.18) and (2.19) we have that

S(0, 0, c) =
ϕϕϕ(kN2)

N
.

Inserting this in the left-hand side of (2.17) yields

∑
c>0

S(0, 0, c)

c2s
=

1

N4s+1

∞∑
k=1

ϕϕϕ(kN2)

k2s
. (2.20)

We rewrite the left-hand side of (2.20) as

1

N4s+1

( ∞∑
(k,N)=1

ϕϕϕ(kN2)

k2s
+

∞∑
(k,N)>1

ϕϕϕ(kN2)

k2s

)
. (2.21)

For the first sum in (2.21), using the basic fact about Euler’s totient function (see [13, Theorem

60])

ϕϕϕ(mn) = ϕϕϕ(m)ϕϕϕ(n) if (m,n) = 1, (2.22)

we obtain that the first sum in (2.21) becomes

1

N4s+1
ϕϕϕ(kN2)

∞∑
(k,N)=1

ϕϕϕ(k)

k2s
.

For the second sum in (2.21), we notice that if N = pa and k = pa1
1 · · · paj

j p
b by straight forward

calculation, writing kN2 = pa1
1 · · · paj

j p
b+2a, using property (2.22) of the Euler totient function

and the fact that

ϕϕϕ(pb) = pb − pb−1 = pb(1− 1/p) (2.23)

(since pb − pb−1 is the number of numbers m co-prime to pb such that 1 ≤ m < pb), one has

ϕϕϕ(kN2) = ϕϕϕ(k)p2a.

Thus (2.21) for N = pa (which we now assume for the rest of calculations) takes the form

∑
c>0

S(0, 0, c)

c2s
=

1

p(4s+1)a

[
ϕϕϕ(p2a)

∞∑
(k,pa)=1

ϕϕϕ(k)

k2s
+ p2a

∞∑
(k,pa)>1

ϕϕϕ(k)

k2s

]

=
1

p(4s+1)a

[
(ϕϕϕ(p2a)− p2a)

∞∑
(k,pa)=1

ϕϕϕ(k)

k2s
+ p2a

ζ(2s− 1)

ζ(2s)

]
(2.24)

where in the second equality we have used (2.13). Now we note that, as already mentioned

above,

ϕϕϕ(p2a)− p2a = p2a
(
1− 1

p
− 1

)
= −p

2a

p
.

Thus (2.24) on factoring p2a yields

∑
c>0

S(0, 0, c)

c2s
=

pa

p4sa

[
− 1

p

∞∑
(k,pa)=1

ϕϕϕ(k)

k2s
+
ζ(2s− 1)

ζ(2s)

]
. (2.25)

Next we multiply and divide the first sum in the right-hand side of (2.25) by

1 +
∑
k≥1

ϕϕϕ(pk)

p2ks
= 1 +

(
1− 1

p

)
1

p(2s−1)

(
1− 1

p2s−1

)−1

,
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where we have used (2.23) and the sum of a geometric series. Thus (2.25) becomes

∑
c>0

S(0, 0, c)

c2s
=

pa

p4sa
ζ(2s− 1)

ζ(2s)

[
1− 1

p

(
1 +

(
1− 1

p

)
1

p2s−1

(
1− 1

p2s−1

)−1)−1]
. (2.26)

Since the expression in the square brackets simplifies in a routine manner to (1−1/p)/(1−1/p2s)

we obtain ∑
c>0

S(0, 0, c)

c2s
=

pa

p4sa

(
1− 1

p

)
ζ(2s− 1)

ζ(2s)

(
1− 1

p2s

)−1

Using again (2.23) for ϕϕϕ(pa) finally yields (2.16) for N = pa, p prime and a > 0, and the proof

is finished. �

3 Transmission Eigenvalues, Zeros of the Scattering Matrix and the Zeros of Rie-

mann ζ Function

We now have all the ingredients to define and study the non-scattering waves in connection to

the zeros of the scattering matrix Φ(s) := (ϕab). As already mentioned in the previous section,

in [19, Chap. 6] using Maass–Selberg relations Ea(σbz, s) is continued to all s ∈ C and the

asymptotic relation (2.4) holds where the last contribution comes from the Whittaker functions∑
ϕab(n, s)Ws(nz).

Each ϕab(s) is a meromorphic function and so is Ea(σbz, s) as a function of s. Moreover,

in general from the Fredholm theory (see [19, Appendix] and its use in [19, Chap. 6]) we can

conclude that

ϕab(s) =
f(s)

g(s)

where f(s) and g(s) are entire functions of order ≤ 2. The Fourier inversion formula

f(z) =
∑
j

〈f, uj〉uj +
∑
a

1

4π

∫ ∞

−∞

〈
f, Ea

(
· , 1

2
+ ir

)〉
Ea

(
z,

1

2
+ ir

)
dr,

proven in [19, Theorem 7.3], shows that Ea(·, s) for s = 1
2 + ir are the wave packets in our

framework, the analog of eikx, k ↔ 1
2 + ir. However here there is also a discrete contribution

from cusps form ∑
j

〈f, uj〉uj .

3.1 The Transmission Eigenvalue Problem and Non-scattering Waves

We are given the Riemannian manifold H, the subgroup Γ and the fundamental domain F =

Γ \H. The non-identically zero total field u satisfies the equation

y2Δu+ s(1− s)u = 0, z = (x, y) ∈ F.

On the boundary of F we impose periodic boundary conditions

u(γz) = u(z), z ∈ ∂F, γ ∈ Γ,

∂u

∂ν
(γz) =

∂u

∂ν
(z), z ∈ ∂F, γ ∈ Γ.

For an example see Figure 3 where γA = B and γ = ( 1 1
0 1 ) ∈ SL2(Z).
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Note that the scattering in this structure results from the interaction of the incident wave

ys with the boundary of Γ/H which in turn results from the discrete group Γ. This should be

compared with the scattering problem in R
n where, under smoothness assumptions on m in R

n,

(1.3) can be written as the Helmholtz equation for the Laplace–Beltrami operator associated

with an appropriate metric gm determined by m(x). Hence the scattering in this case occurs

due to the interaction of the incident plane wave eikx·d with the perturbation of the Euclidean

metric given by gm.

F

νν BA

1/2−1/2 1−1

Figure 3 Values of u and its normal derivative at A,B coincide.

Definition 3.1 A transmission parameter for the cusp a is s ∈ C such that

ϕaa(s) = 0.

Such s is said to be a transmission parameter for the transmission eigenvalue

s(1− s).

Note that we do not define transmission eigenvalues for inequivalent cusps a,b. An observer

shining a light beam and sitting at cusp a will observe “far-field” back-scattering determined

by ϕaby
1−s (note that

∑
ϕab(n, s)Ws(nz) → 0 as y → ∞). Thus for ys, the light shining at

frequency s from the cusp a, the back-scattered wave y1−s is absent. Thus the light is completely

transmitted and fails to see the periodic boundary condition imposed by Γ that leads to the

scattering term ϕab. However, note that for such s an observer sitting at an inequivalent cusp

a may or may not see any scattered wave, since it is not known if ϕaa and ϕab have common

zeros, (see Section 4).

The rest of the paper is dedicated to locating the zeros of ϕ∞∞(s) that correspond to trans-

mission parameters associated with the cusp ∞ and consequently the corresponding transmis-

sion eigenvalues s(1−s). We will consider the two special cases of Γ, namely the modular groups

SL2(Z) and congruence groups Γ(N), for which we have explicit calculations of the scattering

matrix in Section 2.1.

Our goal is to obtain a Weyl law for transmission eigenvalues. To accomplish this we recall

Theorem 3.2 (Riemann and Von Mangoldt) Let BT be the box

BT := {s = x+ iy : 0 < x < 1, −T < y < T}, T ≥ 2,
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and let N(T ) denotes the number of zeros of the Riemann zeta function ζ(s) in B. Then

N(T ) =
T

2π
log

T

2πe
+O (log T ) . (3.1)

For a sketch of the proof see [18, Chap. 9].

Proposition 3.3 Let λ denote a transmission eigenvalue for Γ \H, where Γ = SL2(Z) or any

of the discrete groups considered in Theorem 2.8. Let

Nλ(A) = |{λ : |λ| < A}|.
Then we have the Weyl law,

Nλ(A) ∼
√
A

2π
log

A

π2e2
+O(logA), A→ ∞.

Moreover, the entire scattering matrix vanishes at such λ.

Proof The scattering matrices for the groups Γ considered in Theorem 2.8 all have the form

Φ(s) = ψ(s)M(s)

where M is some matrix and where ψ(s) is the same for all Γ and given by

ψ(s) = π1/2Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)
.

The matrix entries for M(s) vanish at finitely many points s. Furthermore, Γ(s)ζ(2s) have

poles only at s = 0, 12 . Thus ψ(s) and hence the entire scattering matrix vanishes exactly at

the zeros of ζ(2s− 1). Let s0 be a zero of ζ(u). Then, setting 2s− 1 = s0, we see that

λ = s(1− s) =
1− s20

4
.

Thus

|s0| = |4λ− 1|1/2.
It follows, if |λ| < A as A→ ∞, |s0| ∼ 2

√
A. Applying Theorem 3.2, we conclude

Nλ(A) ∼
√
A

2π
log

A

π2e2
+O(logA), A→ ∞. �

Unfortunately, such a precise asymptotic expression is not available for general groups Γ, as we

have a poor knowledge of the Kloosterman sums defined by (2.14) that appear in the formula

for the scattering matrix. For example diagonal entries have terms

∑
c>0

S(0, 0, c)

c2s

(here c may not even be a natural number for general Γ). The bound in (2.15) is too crude

to say much. However, we can use the Poisson–Jensen formula to estimate the number of the

zeros of the scattering matrix inside a circle. To this end, we recall a standard result concerning

the zeros of an entire function which is a consequence of Poisson–Jensen formula (for the proof

see e.g. [30])

Lemma 3.4 If f(s) is an entire function of order 2, i.e., for any ε > 0, |f(s)| ≤ CeM |s|2+ε

for some constant C > 0, then

# {s : such that f(s) = 0 and |s| < R} ≤ CR2+ε
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and, if sn is such that f(sn) = 0,

∑
n∈N

1

|sn|2+η
< +∞ for any η > 0.

Proposition 3.5 Let λn denote the transmission eigenvalues for a diagonal entry ϕaa(s) of

the scattering matrix. That is λn = sn(1 − sn) and ϕaa(sn) = 0. Then, since ϕaa(s) has at

most order 2 we have

# {λn such that |λn| < R} ≤ CR1+ε for any ε > 0.

and ∑
n∈N

1

|λn|1+η
< +∞ for any η > 0.

Proof We know from [19, Chaps. 6, 10] that ϕaa(s) is a meromorphic function of order at

most 2. That is

ϕaa(s) =
f(s)

g(s)

with f(s), g(s) entire and |f(s)| ≤ c1e
c2|s|2+ε

. Since λn = sn(1 − sn), |λn| ∼ |sn|2 < R2 for

|sn| < R, as R → ∞. Thus

# {λn such that |λn| < R} ∼ #{sn such that f(sn) = 0, |sn| < R1/2}.
Applying Lemma 3.4, we easily get the desired conclusion of this proposition. �

Remark 3.6 Let us define a density for transmission eigenvalues. For λ a transmission

eigenvalue, define

ρ = lim sup
R→∞

log |{λ : |λ| < R}|
logR

.

From Proposition 3.3, for Γ an arithmetic group as in Theorem 2.8, via the Riemann and Von

Mangoldt Theorem, we see that ρ = 1
2 + ε for any ε > 0. For general Γ, from Proposition 3.5,

ρ ≤ 1 + ε for any ε > 0. This difference arises due to the growth order of the entries of the

scattering matrix which is meromorphic of order 1 for Γ as in Theorem 2.8 and of order 2 in

general. Thus the value of ρ is also tied in with the existence of cusp forms which relies on the

growth order of ϕaa(s).

Let λj denote the eigenvalue of a cusp form. That is

λj =
1

4
+ t2j .

Define

NΓ(T ) =

∣∣∣∣
{
j : |tj | < T, λj =

1

4
+ t2j

}∣∣∣∣.
We now wish to make a link between the density of transmission eigenvalues as defined in

Remark 3.6 and the work of Phillips and Sarnak [28] on the existence of cusp forms. Essentially

we want to show that if cusp forms are absent or are sparse, then the density of transmission

eigenvalues is much more than for those discrete groups which have an abundance of cusp

forms. The work of Phillips and Sarnak seems to suggest that cusp forms are rather rare for

generic discrete groups Γ and so for generic discrete groups there should be more transmission

eigenvalues than the arithmetic groups considered in Theorem 2.8.
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Proposition 3.7 Assume for some ε > 0, we have NΓ(T ) = O(T 2−ε), T → ∞. Then the

growth order of the entries of the scattering matrix Φ(s) is 2.

Proof We proceed by contradiction and assume the growth order of the scattering matrix is

ρ = 2 − δ, δ > 0. Next, we note that the scattering matrix Φ(s) is unitary when s = 1
2 + it.

For the sequel we restrict our attention to s = 1
2 + it. Set,

φ(s) = detΦ(s).

We need to consider for s = 1
2 + it, the integral

MΓ(T ) =

∫ T

−T

φ′(s)
φ(s)

dt.

Since Φ(s) is unitary, | detΦ(s)| = 1 and so the denominator of the integrand in MΓ(T ) does

not vanish. Next since Φ(s) is unitary for s = 1
2 + it, we have

φ(s) = eif(t) (3.2)

with f(t) real. Now assume by contradiction that the entries of the scattering matrix, have

order ρ. This means that

|f(t)| ≤ c|t|ρ. (3.3)

Hence using (3.2)–(3.3) we have immediately,

MΓ(T ) =

∣∣∣∣
∫ T

T

φ′(s)
φ(s)

dt

∣∣∣∣ = | log φ(T )− log φ(−T )| = |f(T )− f(−T )| ≤ cT ρ.

Now, by [19, Corollary 11.2], as a consequence of Selberg’s trace formula we have

NΓ(T ) +MΓ(T ) ∼ T 2, as T → ∞.

Thus, under the hypothesis that the order of the entries of the scattering matrix is at most ρ,

and the hypothesis NΓ(T ) = O(T 2−ε),

cT 2−ε + T ρ ∼ T 2, as T → ∞.

If ρ < 2 we have a contradiction, which proves the proposition. �
Thus if Selberg’s conjecture is not true for generic discrete groups Γ, that is such groups

have no cusp forms, or cusp forms exist but their number NΓ(T ) grow no faster that T 2−ε, then

we expect to have ρ = 1 in Remark 3.6, that is we expect to have more transmission eigenvalues

for such discrete groups with sparse cusp forms.

3.2 Transmission Eigenvalues and the Riemann Hypothesis

We only focus on the modular groups Γ = SL2(Z) (the same situation occurs for congruent

groups Γ = Γ(N)) where transmission parameters s are the zeros of

ψ(s) = π1/2Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)
.

The trivial zeros appear at the poles of the denominator, i.e., s = 0 and s = 1/2. These trivial

zeros yield λ = 0 and λ = 1/4 as the only real transmission eigenvalues.

The non-trivial zeros are the zeros of ζ(2s − 1) such that �(2s − 1) �= 0. The Riemann

hypothesis states that complex zeros of the Riemann zeta function have real part equal to 1/2,
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i.e., if ζ(u) = 0 then u = 1
2 ± it. This implies that the transmission parameters s have the form

s = 3
4 ± it, giving for the transmission eigenvalues λ = 3

16 + t2 − i t2 . Setting x = 3
16 + t2 and

y = − t
2 , it yields that the real part x and the imaginary part y of the transmission eigenvalues

satisfy

x =
3

16
+ 4y2.

Remark 3.8 The Riemann Hypothesis is equivalent to the statement that all transmission

eigenvalues lie on the parabola x = 3
16 + 4y2 except the finitely many trivial ones.

It is a known fact that all zeros of ζ(u) lie in the strip 0 < �(u) < 1. Thus if u = 1 + it we

obtain for s = 1+u
2 that s = 3

2 ± i t2 implying that the real part x and the imaginary part y of

s(1− s) satisfy

x = −3

4
+
y2

4
.

Thus all transmission eigenvalues lie inside this parabola (see Figure 4). In fact from Hardy’s

theorem, which states that infinitely many zeros of the Riemann zeta function lie on �(u) = 1/2,

to be precise 40% of the zeros (see e.g. [18, Part 2] for the proof), we have that infinitely many

transmission eigenvalues lie on the parabola x = 3
16 +4y2. More refined estimates can be made

using zero free regions of the Riemann zeta function based on the deep work of Vinogradov.

Remark 3.9 The transmission eigenvalues for the case of congruence groups Γ(N) are located

precisely at the same position as the transmission eigenvalues for the case of modular groups

SL2(Z). Theorem 2.8 shows that, although the scattering matrix Φ(s) in the case of Γ(N) is

now a 2× 2 matrix, its zeros are solely determined by the function ψ(s) which has exactly the

same expression as the (scalar) scattering matrix ϕ∞∞(s) in the case of SL2(Z) studied in this

subsection.

x

y x = − 3
4
+ y2

4

x = 3
16

+ 4y2 by Riemann Hypothesis

01
4

Figure 4 Black dots indicate possible location of transmission eigenvalues. There are infinitely many

transmission eigenvalues on the inner parabola and all lie inside the outer parabola. If the Riemann

Hypothesis is true, all transmission eigenvalues lie on the inner parabola. There are no real

transmission eigenvalues except for the trivial ones, 0 and 1/4.

4 Remarks and Prospects

For a fundamental domain F := Γ/H, we define transmission eigenvalues associated with a

cusp a as the values λ ∈ C for which the transmission parameter s, λ = s(1 − s), is such that

the incident wave ys sent from the cusps a does not produce any back-scattering as seen by
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an observer at the same cusp a. The wave packet ys, with s being a transmission parameter,

propagates through without seeing any boundaries of the fundamental domain generated by the

group Γ (which are Riemannian geodesics). In this sense, transmission eigenvalues correspond

to non-scattering energies for the wave equation on the Riemannian manifold on H generated

by a given discrete group Γ. In inverse scattering, such a situation is referred to as invisibility

[11]. Thus the notion of transmission eigenvalues in our framework is similar to the notion of

transmission eigenvalues in the Euclidean space R
n for a spherically stratified scattering media

with contrast m supported on the closed unit ball B1, as is described in the Introduction. The

former turns out to be the zeros of the diagonal terms of the (meromorphic in s) scattering

matrix (2.5)

Φ(s) = (ϕab(s))

(which for Γ = SL2(Z) becomes exactly the scalar function ϕaa(s)), whereas the latter are the

zeros of the meromorphic function (1.12)

S+(s) =
C(s;m, 0)

sW (s;m, 0)

(the relative scattering operator or the far field operator). As for a comparison of the location

of transmission eigenvalues in both cases, it is shown here that the former lies inside a parabolic

region for modular groups Γ = SL2(Z) and congruent groups Γ = Γ(N), whereas the latter also

lies inside a parabolic region if the refractive index 1 +m(r) is continuous in R
n [33] (see also

[15]), and in a strip around the real axis if m(1) �= 0 (i.e., 1 +m(r) has jump across r = 1).

The fascinating fact in our configuration is that for modular groups Γ = SL2(Z) and congruent

groups Γ = Γ(N), these transmission eigenvalues are explicitly expressed in terms of the zeros

of the Riemann zeta function. This leads to a precise location of transmission eigenvalues if the

Riemann Hypothesis is true.

In the case of multiple inequivalent cusps, the question arises if at a transmission parameter

s, the incident wave ys sent away from the cusp a produces no scattering waves if observed

at an inequivalent cusp b, in other words, whether the Riemannian geodesics given by the

boundaries of the fundamental domain are invisible at every inequivalent cusps. Mathematically

this question amounts to whether the off-diagonal terms ϕab(s) in the scattering matrix share

the same zeros with the diagonal terms ϕaa(s). This is indeed the case for our explicit example

of congruence groups Γ(N) where there are two inequivalent cusps. Theorem 2.8 states that

the zeros of the scattering matrix all arise from the scalar function ψ(s) and the matrix N(s)

contributes nothing. Here the entire scattering matrix vanishes at a transmission parameter s,

hence one has complete invisibility from/at each cusp. In fact, as pointed out in Remark 3.9, the

zeros of the entire scattering matrix for these arithmetic groups coincide exactly with the zeros

of the scalar scattering matrix for the standard case of modular groups SL2(Z). The question

now is: what is the situation for general Fuchsian groups of Type I? For general Type I Fuchsian

groups as consequence of the Maass–Selberg relation in [19, Theorem 6.9], it is shown that the

set of poles of the off-diagonal terms are contained in the set of the poles of the diagonal terms

of the scattering matrix, but unfortunately the proof does not work for the zeros. Thus, is it

just a property of special arithmetic groups that off diagonal zeros coincide with the diagonal

zeros? We believe these are interesting open questions in analytic number theory. Another
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question is if the density ρ defined in Remark 3.6 is continuous or upper semi-continuous when

Γ is deformed in Teichmüller space in the sense of Phillips–Sarnak [28]. It is also unclear if ρ is

a discrete subset of
[
1
2 , 1

]
or all of it.

For Fuchsian groups of Type II, the scattering theory is developed in a comprehensive

manner in the monograph by Borthwick [2]. Again the concerns there are only with poles of

the scattering matrix. Hence, it is desirable to introduce the notion of non-scattering energies

and transmission eigenvalues in this framework and connect them to the zeros of the scattering

matrix. Fundamental domains generated by Fuchsian groups of Type II exhibit both cusps

and funnels. Thus the scattering matrix is no longer literally a matrix. The contribution from

funnels gives rise to pseudo-differential operators instead, very much like the scattering operator

in the general Euclidean case.
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