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Abstract
We investigate two imaging methods to detect buried scatterers from
electromagnetic measurements at a fixed frequency. The first one is the classical
linear sampling method that requires the computation of Green’s tensor for the
background medium. This job can be numerically very costly for complex
background geometries. The second one is an alternative approach based on
the reciprocity gap functional that avoids the computation of Green’s tensor
but requires knowledge of both the electric and magnetic fields. Numerical
examples are given showing the performance of both methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inverse scattering problem of interest to us in this paper is that of determining the shape
of a scattering object embedded in a known inhomogeneous medium from knowledge of
the scattered electromagnetic field due to a point source incident field at a fixed frequency.
We assume that the wavelength of the incident field has the same order of magnitude as the
scatterer dimensions. The particular application we have in mind is the detection of objects
buried in the earth from measurements of the total electromagnetic field on a given surface
above the earth. The literature on this subject is particularly rich (e.g., [4, 19, 21] and the
references therein), and for a scholarly review of some aspects of its history we refer the reader
to [3]. Other potential applications may arise in medical imaging, nondestructive testing, etc.

Typically, in such applications, the physical properties of the scattering object are not
known a priori. This is why the recently introduced imagining method, the so-called linear
sampling method (LSM), known as being well adapted to this lack of information, can be of
particular interest for these applications. For a scholarly review of this method we direct the
reader to [9, 14, 18], while for applications of the linear sampling method to some basic inverse
electromagnetic scattering problems we refer to [13, 24, 11]. This method is also known to
be simple and relatively quick. However, when applied to inverse scattering problems for
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buried objects its rapidity can be penalized by the cost of evaluating Green’s function for the
background medium [19, 21]. For a complex background medium, for instance, non-layered
media, this evaluation can even be prohibitive. In a recent paper [12] by Colton and Haddar, a
new version of the linear sampling method based on the reciprocity gap functional (RG-LSM)
has been introduced which, in certain cases, avoids the need to compute Green’s function
for the background medium. To do so, it requires the existence of a bounded homogeneous
region containing the scattering object and knowledge of the tangential components of both
the total electric and magnetic fields on the boundary of this region. The RG-LSM also
has the advantage of offering a more flexible mathematical framework than the classical
linear sampling method: if the background medium is homogeneous, LSM is mathematically
equivalent to a special case of RG-LSM [12]. It is also worth mentioning that the use of
reciprocity gap functional here is different from what is classically done in solving other
inverse problems (see [1, 4] for a review).

The aim of this paper is to validate theoretically and numerically the RG-LSM for solving
the inverse electromagnetic scattering problems for buried objects in R

3 and compare the
performance of both the classical LSM and the RG-LSM. We remark that in our analysis of
RG-LSM we remove the restrictive assumption in [12] on the location of the sources. To show
the independence of this imaging method from the physical properties of the scatterer, we carry
out the mathematical justification for two basic types of scatterers, namely perfect conductors
and anisotropic penetrable objects. However, the numerical examples are restricted to the
case of perfect conducting scatterers. The reason is only technical, since at the present time
we do not have available a reliable forward code to produce synthetic data for a penetrable
scatterer in an inhomogeneous background (see [24] for numerical examples in the case of
inhomogeneous inclusions in a homogeneous background).

The plan of our paper is as follows. In the next section, we formulate the mathematical
problems corresponding to the scattering of an electric dipole by a perfectly conducting
obstacle as well as by an anisotropic inhomogeneity, both embedded in a known piecewise
homogeneous background medium. We then proceed with an extended review of the linear
sampling method for solving the inverse problem of determining the shape of the scattering
object from knowledge of the tangential component of the electric field measured on a surface
enclosing the scatterer. In section 4 we investigate the theory behind RG-LSM where only
partial results are obtained. In particular, an open question remains whether the behaviour
of the regularized numerical solution coincides with the behaviour of the predicted nearby
solutions. We remark that substantial progress in this direction is made by Arens [2] for the
LSM in the case of the Helmholtz equation. Having developed the analysis for the case of
a perfect conductor, we prove the same results for the case of anisotropic inhomogeneities,
where the analysis is more complex and relies on different mathematical tools. We also
mention that the proof of lemma 4.6 given in this paper simplifies the arguments in the proof
of the same result in [12]. We end the paper with a numerical validation of both sampling
methods. In particular, we present numerical examples showing the viability of both imaging
methods in the context of imaging buried perfect conductors in a two-layered medium. These
first results are not representative of all the potentials of RG-LSM but only aim at validating
this method in a simplified configuration. A more detailed numerical work, including, for
instance, anisotropic inclusions and complex backgrounds is under preparation.

2. Formulation of the direct and inverse scattering problem

We consider the scattering of a time-harmonic electromagnetic field of frequency ω by a
scattering object embedded in a piecewise homogeneous background in R

3. We assume that
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the magnetic permeability µ0 > 0 of the background medium is a positive constant whereas
the electric permittivity ε(x) and conductivity σ(x) are piecewise constant. Moreover, we
assume that for |x| = r > R, for R sufficiently large, σ = 0 and ε(x) = ε0. Then the electric
field Ẽ and magnetic field H̃ in the background medium satisfy the time-harmonic Maxwell’s
equations

∇ × Ẽ − iωµ0H̃ = 0, ∇ × H̃ + (iωε(x) − σ(x))Ẽ = 0.

After an appropriate scaling [15] and elimination of the magnetic field, we now obtain the
following equation for the electric field E in the background medium

curl curl E − k2n(x)E = 0,

where Ẽ = 1√
ε0
E, k = ε0µ0ω

2 and n(x) = 1
ε0

(
ε(x) + i σ(x)

ω

)
. Note that the piecewise constant

function n(x) satisfies n(x) = 1 for r > R, Re(n) > 0 and Im(n) � 0. The surfaces across
which n(x) is discontinuous are assumed to be piecewise smooth and closed.

Now let D be a scattering object embedded in the above piecewise homogeneous
background such that R

3\D is connected. We suppose that the boundary ∂D of D is piecewise
smooth and denote by ν the outward unit normal. In this paper, we consider the cases when D
is a perfect conductor or an inhomogeneous anisotropic penetrable object. Furthermore, we
suppose that the incident field is an electric dipole located at x0 ∈ � with polarization p ∈ R

3,
where � is a smooth open surface situated in a layer with the constant index of refraction ns ,
given by

Ee(x, x0, p, ks) := i

ks

curlx curlxp
eiks |x−x0|

4π |x − x0| (1)

where k2
s = k2ns . We denote by G(x, x0) the free space Green’s tensor of the background

medium and define Ei(x) := Ei(x, x0, p) = G(x, x0)p which satisfies

curl curl Ei(x) − k2n(x)Ei(x) = pδ(x − x0) in R
3, (2)

where δ denotes the Dirac distribution. Note that Ei can be written as

Ei(x) = Ee(x, x0, p, ks) + Es
b(x) (3)

where Es
b = Es

b(·, x0, p) is the electric scattered field due to the background medium.
In order to formulate precisely the scattering problem we recall the following Sobolev

spaces. For a generic domain O with piecewise smooth boundary ∂O we define

H(curl,O) := {u ∈ (L2(O))3 : ∇ × u ∈ (L2(O))3}
L2

t (∂O) := {u ∈ (L2(∂O)3 : ν · u = 0 on ∂O}
L2

div(∂O) := {u ∈ L2
t (∂O) : div∂Ou ∈ L2(∂O)}.

where ν denotes the exterior normal to ∂O and div∂O denotes the surface divergence. If O is
unbounded we denote by Hloc(curl,O) the space of functions u ∈ H(curl,K) for all compact
sets K ⊂ O. The traces ν ×u|∂O and ν × (u× ν)|∂O of u ∈ H(curl,O) (or u ∈ Hloc(curl,O))
are in the following Hilbert spaces,

H
− 1

2
div (∂O) := {

u ∈ (
H− 1

2 (∂O)
)3

, ν · u = 0, div∂Ou ∈ H− 1
2 (∂O)

}
H

− 1
2

curl (∂O) := {
u ∈ (

H− 1
2 (∂O)

)3
, ν · u = 0, curl∂Ou ∈ H− 1

2 (∂O)
}

respectively, with curl∂O denoting the surface curl. Note that by an integration by parts we

can define a duality relation between H
− 1

2
div (∂O) and H

− 1
2

curl (∂O) (see [29] in the case when the
boundary is smooth, and [5, 6] in the case when the boundary is piecewise smooth).
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We first assume that the scattering object is a perfect conductor. In this case the scattering
problems is as follows:

Scattering by a perfect conductor. Given Ei = Ei(·, x0, p) = G(·, x0)p, find a solution
E ∈ Hloc(curl, R

3\D ∪ {x0}) of

curl curl E − k2n(x)E = 0 in R
3\D ∪ {x0}, (4)

ν × E = 0 on ∂D, (5)

Es := (E − Ei) ∈ Hloc(curl, R
3\D), (6)

lim
r→∞(curl Es × x − ikrEs) = 0. (7)

We refer to (4)–(7) as the problem (SPC). We remark that (4) is satisfied in the sense of
distributions which implies the continuity of tangential components of E and curl E across the
piecewise continuous interface where the index of refraction n(x) changes [28].

Next we assume that D is an anisotropic penetrable scatterer having the same magnetic
permeability µ0 as the background medium. Again, after an appropriate scaling [15], the index
of refraction of the scatterer is represented by a symmetric matrix-valued function denoted by
N(x), x ∈ D, whose entries are bounded complex-valued functions such that ξ̄ · Im(N)ξ � 0
and ξ̄ · Re(N)ξ � γ |ξ |2 for all ξ ∈ C

3 and all x ∈ D where γ is a positive constant. We
extend N to a 3 × 3 matrix defined in R

3, denoted again by N, such that N(x) = n(x)I

for x ∈ R
3\D, where n(x) is the piecewise constant index of refraction of the background

medium as described above. Then the scattering problem for an anisotropic medium is as
follows:

Scattering by an anisotropic medium. Given Ei = Ei(·, x0, p) = G(·, x0)p satisfying
(3), find a solution E ∈ Hloc(curl, R

3\{x0}) of

curl curl E − k2N(x)E = 0 in R
3\{x0}, (8)

Es := (E − Ei) ∈ Hloc(curl, R
3), (9)

lim
r→∞(curl Es × x − ikrEs) = 0. (10)

We refer to (8)–(10) as the problem (SIM). Here again (8) is satisfied in the sense of distributions
which implies the continuity of tangential components of E and curl E across the interface
where N(x) has jumps [28].

The well-posedness of both problems (SPC) and (SIM) is well known (see, e.g., [25, 28]).

Remark 2.1. It is also possible to consider the problem of objects buried in an unbounded
multilayer medium. In this case, the radiation condition and mathematical analysis of the
forward become more complicated (see [20] for the case of a two-layered medium). However,
the following analysis of the inverse scattering problems remains the same.

We now consider a bounded domain � such that D is contained in � and the open surface
� is contained in R

3\�. Let � denote the piecewise smooth boundary of �. Note that �

may be a subset of �. The inverse scattering problem we are interested in is to determine
D from knowledge of the tangential components ν × E and ν × H of the total electric field
E = E(·, x0, p) and magnetic field H = 1

ik curl E measured on � for all point sources x0 ∈ �

and two linearly independent polarizations p tangent to � at x0. Here ν denotes the outward
unit normal to �. We remark that in what follows ν is always the outward unit normal to the
surface under consideration unless otherwise stated.

Adapting the proofs in [8, 26] to the case of near field data, one can prove that D is in fact
uniquely determined from knowledge of the tangential components of the total electric and
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Figure 1. Example of a geometry for LSM.

magnetic field on � corresponding to all x0 ∈ � and two linearly independent polarizations
p tangent to � at x0. The main goal of this paper is the reconstruction of the shape of the
scattering object D from the above-measured data by using the standard linear sampling method
and a new version of the linear sampling method based on the reciprocity gap functional.

3. The linear sampling method: a review

In this section, we show how to use the linear sampling method to determine D from knowledge
of the tangential component ν × E(·, x0, p)|� of the electric field only, for all x0 ∈ � and two
linearly independent polarizations p tangent to � at x0 (see figure 1). Note that for the linear
sampling method the medium inside � does not need to be homogeneous.

Here we only sketch the main ideas of the method. For a scholarly review of the method,
we refer the reader to [14, 18] and the references therein. The linear sampling method is based
on finding a tangential field ϕz ∈ L2

t (�) that satisfies the following integral equation of the
first kind referred to as the near field equation,

(Fϕz)(x) :=
∫

�

ν(x) × Es(x, y, ϕz(y)) ds(y) = ν(x) × G(x, z)q (11)

for all x ∈ �, where z ∈ � and q ∈ R
3 is an artificial polarization. Note that since Es

depends linearly on the polarization p, the near field operator F : L2
t (�) → L2

t (�) is linear.
We remind the reader that in our formulation of (SPC) and (SIM), Es is the scattered field
due to the incident wave being Ei(x) = Ee(x, x0, p, ks) + Es

b(x). Alternatively, one could
replace Es in the near field equation by the difference of the scattered field due to the point
source Ee(x, x0, p, ks) (which is in fact what we can physically measure) and the scattered
field Es

b(x) due to the background medium.
By superposition Fϕ is the rotated tangential component on � of the scattered electric

field corresponding to the potential

(Sϕ)(x) :=
∫

�

ϕ(y)G(x, y) ds(y) (12)

as incident wave.
We first consider the case when the near field operator F corresponds to the scattering

problem (SPC). From the uniqueness of the exterior boundary value problem with perfectly
conducting boundary condition on � and the unique continuation principle, it is easy to show
that for z ∈ D,ϕz is a solution to the near field equation (11) if and only if Sϕz solves the
interior Maxwell problem

curl curl E − k2n(x)E = 0 in D (13)

ν × E = −ν × G(·, z)q on ∂D. (14)
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Unfortunately, in general the solution to this problem is not a single layer potential. However,
by similar arguments used in section 2 in [7] making use of approximation properties of
potentials of the form (12), the unique continuation principle for the solutions to Maxwell’s
equations and the theory of ill-posed problems we can prove the following result (we remark
that lemma 4.4 of this paper provides a proof for the approximation property of single layer
potentials of a form slightly different from (12)). This proof can be easily carried out for
potentials given by (12).

The values of k for which the homogeneous boundary value problem (13) and (14) with
G = 0 has a nontrivial solution are called Maxwell eigenvalues for D.

Theorem 3.1. Assume that k is not a Maxwell eigenvalue for D and let F be the near field
operator corresponding to (SPC). Then we have the following:

(i) For z ∈ D and a given ε > 0, there exists a ϕε
z ∈ L2

t (�) such that∥∥Fϕε
z − ν × G(·, z)q∥∥

L2
t (�)

< ε

and the corresponding potential Sϕε
z converges to the solution of (13) and (14) in

H(curl, D) as ε → 0.
(ii) For a fixed ε > 0, we have that

lim
z→∂D

∥∥Sϕε
z

∥∥
H(curl,D)

= ∞ and lim
z→∂D

∥∥ϕε
z

∥∥
L2

t (�)
= ∞.

(iii) For z ∈ R
3\D and a given ε > 0, every ϕε

z ∈ L2
t (�) that satisfies∥∥Fϕε

z − ν × G(·, z)q∥∥
L2

t (�)
< ε

is such that

lim
ε→0

∥∥Sϕε
z

∥∥
H(curl,D)

= ∞ and lim
ε→0

∥∥ϕε
z

∥∥
L2

t (�)
= ∞.

We next consider the case when the near field operator F corresponds to the scattering problem
(SIM). Again, from the uniqueness of the exterior boundary value problem with the perfectly
conducting boundary condition on � and the unique continuation principle, one can easily
show that for z ∈ D, (11) has a solution if and only if the interior transmission problem

curl curl E0 − k2n(x)E0 = 0 in D (15)

curl curl Eint − k2N(x)Eint = 0 in D (16)

ν × Eint − ν × E0 = ν × G(·, z)q on ∂D (17)

ν × curl Eint − ν × curl E0 = ν × curl G(·, z)q on ∂D (18)

has a solution with E0 = Sϕz|D . The values of k for which the homogeneous problem (15)–
(18) with G = 0 has a nontrivial solution are called transmission eigenvalues. The solvability
of the interior transmission problem (15)–(18) in the case when n(x) = 1 is studied in detail
in [23]. The analysis in [23] can be carried out in the case where n(x) �= 1. Note that in the
particular case when the domain � surrounding the scatterer D is homogeneous, we obtain
exactly the problem studied in [23]. Based on the solvability result of the interior transmission
problem, approximation properties of the potential (12), the unique continuation principle for
the solutions to Maxwell’s equations and the theory of ill-posed problems, by modifying the
argument used in [10, 23] (see also [21] in the case of linear elasticity) we can prove the
following result:

Theorem 3.2. Assume that k is not a transmission eigenvalue and (N − nI) is invertible. Let
F be the near field operator corresponding to (SIM). Then
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Figure 2. Example of a geometry for RG-LSM.

(i) For z ∈ D and a given ε > 0, there exists a ϕε
z ∈ L2

t (�) such that∥∥Fϕε
z − ν × G(·, z)q∥∥

L2
t (�)

< ε

and the corresponding potential Sϕε
z converges to a function E0 in H(curl, D) as ε → 0,

where (E0, E) is the solution of the interior transmission problem (15)–(18).

Parts (ii) and (iii) of theorem 3.1 are also valid in this case.

Theorems 3.1 and 3.2 provide a characterization of the boundary ∂D of the scattering
object D. Unfortunately, since the behaviour of Sϕε

z is described in terms of a norm depending
on the unknown region D,Sϕε

z cannot be used to characterize D. Instead the linear sampling
method characterizes the obstacle by the behaviour of ϕε

z . In particular, given a discrepancy
ε > 0 and ϕε

z the ε-approximate solution of the near field equation, the boundary of the
scatterer is reconstructed as the set of points z where the L2

t (�) norm of ϕε
z becomes large.

The numerical implementation of the linear sampling method is discussed in section 4.
In practice, since the near field equation is severely ill-posed due to the compactness

of the operator F , one uses regularization methods to obtain a solution to (11). Obviously,
an important question is whether this regularized solution will exhibit the properties of the
ε-approximate solution provided by theorems 3.1 and 3.2. In general, this question is still
open. Progress towards the answer of the above question is recently made by Arens in [2] in
the case of the scalar problem for a perfect conductor in a homogeneous background using
far field data. In particular, it is shown that the regularized solution obtained by standard
regularization strategies behaves as the theoretical analysis predicts. Numerical examples also
confirm that this is indeed the case [11, 13, 22, 24].

Even though the linear sampling method, in principle, can be used in the case of a quite
general inhomogeneous background, the main drawback of the method in this case is the need
to compute the background Green’s function. In the next section we show how, at the expense
of additional data and restrictions, one can avoid the need to compute the background Green’s
function.

4. The reciprocity gap functional

We need to make two additional assumptions. First, we assume that the medium inside
the domain � containing the scattering object D is homogeneous with the constant index of
refraction nb and define k2

b = k2nb (see figure 2).
Second, we assume that both the tangential components ν × E and ν × H of the total

electric field E = E(·, x0, p) and magnetic field H = 1
ik curl E, respectively, are known on �

for all point sources x0 ∈ �. In other words, we assume that we know ν×E|� and ν×curl E|�
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for all x0 ∈ �. Furthermore, without loss of generality, we assume that � is a closed surface
surrounding � situated in a layer with the index of refraction ns . By an analyticity argument,
the following analysis also holds true if the point sources are located on an open analytic
surface provided it can be extended to a closed (analytic) surface as above.

Hence, for any function W ∈ H(curl,�), we can define the gap reciprocity functional by

R(E,W) =
∫

�

(ν × E) · curl W − (ν × W) · curl E ds. (19)

Since E ∈ H(curl,�), the integral is interpreted in the sense of the duality between H
− 1

2
div (�)

and H
− 1

2
curl (�). Note that E depends on x0 and hence so does R. Next we define the subspace

H(�) ⊂ H(curl,�) by

H(�) := {
W ∈ H(curl,�) : curl curl W − k2

bW = 0
}
.

The reciprocity gap functional restricted to H(�) can be seen as an operator R : H(�) →
L2

t (�) defined by

R(W)(x0) · p(x0) = R(E(·, x0, p(x0)),W) (20)

for all x0 ∈ � and p(x0) a tangent vector to � at x0.
In order to set up a solvable equation in terms of R, we need to use a parametric family

of solutions in H(�) which satisfies certain properties to be made precise later. In particular,
we define the electric Herglotz function Hg by

Hg(x) :=
∫

S2
g(d) eikbd·x ds(d), g ∈ L2

t (S
2) (21)

where S2 is the unit sphere and the single layer potential Aϕ is given by

(Aϕ)(x) := curl curl
∫

�̃

ϕ(y)�(x, y, kb) ds, ϕ ∈ L2
div(�̃) (22)

where

�(x, y, kb) := 1

4π

eikb |x−y|

|x − y| , x �= y,

and �̃ is a regular part of the boundary of some simply connected domain containing � in its
interior. Now, letting

Ee(x, z, q, kb) = i

k
curlx curlxq�(x, z, kb), q ∈ R

3 (23)

denote the electric dipole corresponding to kb, we look for a solution g ∈ L2
t (S

2) to

R(E,Hg) = R(E,Ee(·, z, q, kb)) (24)

or a solution ϕ ∈ L2
div(�̃) of

R(E,Aϕ) = R(E,Ee(·, z, q, kb)). (25)

Note that both
{
Hg, g ∈ L2

t (S
2)

}
and

{
Aϕ, ϕ ∈ L2

div(�̃)
}

are subsets of H(�). The reciprocity
gap functional method is based on the characterization of D from the behaviour of g or ϕ for
different sampling points z ∈ �. This method is in fact a new version of the linear sampling
method since it provides an indicator function whose behaviour depends on the location of the
sampling point z with respect to D and this indicator function is a solution to a linear integral
equation. In particular, by similar calculations as in [12], we can show that if the background
medium is homogeneous, the incident field is a plane wave and the far field pattern is used as
the given data, then (24) becomes the far field equation which is used in the linear sampling
method.
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4.1. The reciprocity gap functional for a perfect conductor

Let E = E(·, x0, p) = Es(·, x0, p) + G(·, x0)p and H = 1/ikcurl E be the total electric and
magnetic fields, respectively, corresponding to the scattering problem (SPC). Note that we
suppress the dependence of the total field on the wave number ks of the medium where the
point source is located.

Lemma 4.1. Assume that kb is not a Maxwell eigenvalue for D. Then the operator
R : H(�) → L2

t (�) defined by (20) is injective.

Proof. RW = 0 means R(E(·, x0, p(x0)),W) = 0 for all (x0, p(x0)) as in (20). Since both
E and W satisfy Maxwell’s equation in �\D, we have, using the boundary condition on ∂D,

0 =
∫

�

(ν × E) · curl W − (ν × W) · curl E ds = −
∫

∂D

(ν × W) · curl E ds.

It suffices to show that the set L := {(curl E(·, x0, p(x0)))	 : x0 ∈ �} is dense in H
− 1

2
curl (∂D).

Indeed, this fact implies that ν ×W = 0 on ∂D and from the uniqueness of the solution to (13)
and (14) we have that W = 0 in D, whence by the unique continuation principle we obtain
W = 0 in �.

To prove the denseness property, let f ∈ H
− 1

2
div (∂D) and assume that∫

∂D

f · (ν × curl E) ds = 0

for all total fields E such that (curl E)	 ∈ L. Let Ẽ be the unique solution to

curl curl Ẽ − k2n(x)Ẽ = 0 in R
3\D

ν × Ẽ = f on ∂D

lim
r→∞(curlẼ × x − ikrẼ) = 0.

By a duality argument, we have that

0 =
∫

∂D

f · (ν × curl E) ds =
∫

∂D

Ẽ · [ν × curl(Es + G(·, x0)p)] ds

=
∫

∂D

Ẽ · (ν × curl Es) ds +
∫

∂D

Ẽ · (ν × curl G(·, x0)p) ds. (26)

Since both Es and Ẽ are radiating solutions to curl curl E − k2n(x)E = 0 outside D, by
applying the vector Green’s formula we have that∫

∂D

Ẽ · (ν × curl Es) ds =
∫

∂D

Es · (ν × curl Ẽ) ds. (27)

Substituting (27) into (26) and using the boundary condition ν ×Es = −ν ×G(·, x0)p on ∂D

we have that

0 =
∫

∂D

Ẽ · (ν × curl G(·, x0)p) ds +
∫

∂D

Es · (ν × curl Ẽ) ds = p · Ẽ(x0).

Since p is an arbitrary polarization in the tangent plane to � at x0, we obtain ν × Ẽ(x0) = 0
for x0 ∈ �. Furthermore, since Ẽ is a radiating solution to Maxwell’s equations outside the
domain bounded by �, we conclude by the uniqueness theorem for the scattering problem for
a perfect conductor (cf [15]) that Ẽ = 0 outside the domain bounded by �. Then the unique
continuation principle implies that Ẽ = 0 outside D, whence f = 0, which proves the lemma.

�
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Lemma 4.2. Assume that kb is not a Maxwell eigenvalue for D. Then the operator
R : H(�) → L2

t (�) defined by (20) has a dense range.

Proof. Consider α ∈ L2
t (�) and assume that

(RW, α)L2
t (�) = 0 for all W ∈ H(�).

From (20) and the bilinearity of R one has

(RW, α)L2
t (�) =

∫
�

R(E(·, x0, α(x0)),W) ds(x0) = R(E,W),

where

E(x) =
∫

�

E(x, x0, α(x0)) ds(x0). (28)

Using Green’s vector formulae and the boundary condition on ∂D one concludes that

0 = R(E,W) = −
∫

∂D

curl E · (ν × W) ds (29)

for all W ∈ H(�). Since H(�) contains the Herglotz wavefunctions given by (21), from [16]

one has that the set of (ν × W)|∂D is dense in H
− 1

2
div (∂D). Therefore

curl E × ν = 0 on ∂D.

Since E × ν = 0 on ∂D as well, the extension of E by 0 inside D satisfies Maxwell’s equations
inside the domain bounded by � with the index n set equal to nb inside D. From the unique
continuation principle, one has that E is 0 inside the domain bounded by � and outside D.
Noting that

E(x) =
∫

�

(Es(x, x0, α(x0)) + G(x, x0)α(x0)) ds(x0)

one concludes that E × ν is continuous across �. The uniqueness theorem of the exterior
problem for Maxwell’s equations with boundary data ν × E = 0 on � implies that E = 0
outside the domain bounded by � as well. Finally, from the jump relations of the vector
potential across � [15] we have that

0 = curl E|�+ − curl E|�− = −α on �

which ends the proof. �

We first investigate the solvability of

R(E,Hg) = R(E,Ee(·, z, q, kb)) (30)

with respect to g where Ee(·, z, q, kb) is given by (23) and Hg is the electric Herglotz function
with kernel g given by (21). To this end, we consider the interior boundary value problem

curl curl W − k2nb W = 0 in D (31)

ν × W = Ee(·, z, q, kb) on ∂D (32)

which has a solution provided that k is not a Maxwell eigenvalue for D (i.e., k is not such
that the homogeneous problem corresponding to (31) and (32) has nontrivial solution). The
following result holds:

Theorem 4.3. Assume that k is not a Maxwell eigenvalue for D and let E = E(·, x0, p) and
H = 1/ik curl E be the total electric and magnetic fields, respectively, corresponding to the
scattering problem (SPC). Then we have the following:
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(i) For z ∈ D and a given ε > 0, there exists a gε
z ∈ L2

t (S
2) such that∥∥R(

E,Hgε
z

) − R(E,Ee(·, z, q, kb))
∥∥

L2
t (�)

< ε

and the corresponding electric Herglotz wavefunction Hgε
z converges to the solution of

(31) and (32) in H(curl, D) as ε → 0.
(ii) For a fixed ε > 0, we have that

lim
z→∂D

∥∥Hgε
z

∥∥
H(curl,D)

= ∞ and lim
z→∂D

∥∥gε
z

∥∥
L2

t (S
2)

= ∞.

(iii) For z ∈ R
3\D and a given ε > 0, every gε

z ∈ L2
t (S

2) that satisfies∥∥R(
E,Hgε

z

) − R(E,Ee(·, z, q, kb))
∥∥

L2
t (�)

< ε

is such that

lim
ε→0

∥∥Hgε
z

∥∥
H(curl,D)

= ∞ and lim
ε→0

∥∥gε
z

∥∥
L2

t (S
2)

= ∞.

Proof. Let z ∈ D. Since W ∈ H(�) and Ee(·, z, q, kb) satisfy curl curl W − kbW = 0 in
�\D, integrating by parts and using the boundary condition for the total field we have that

R(E,W) − R(E,Ee(·, z, q, kb)) = −
∫

∂D

(ν × W − ν × Ee(·, z, q, kb)) · curl E ds.

From the proof of lemma 4.1 we see that R(E,W) = R(E,Ee(·, z, q, kb)) has a unique
solution W if and only if there exists a W ∈ H(�) such that ν×W = ν×Ee(·, z, q, kb) = 0 on
∂D which is in general not true. However, in [16] it is proved that the family

{
Hg, g ∈ L2

t (S
2)

}
is dense in H(curl,�). Hence, from the trace theorem, for every ε > 0 there exists a
Herglotz function Hgε

z such that ν × Hgε
z approximates ν × Ee(·, z, q) with respect to

the H
− 1

2
div (∂D) norm. In particular, gε

z is an approximate solution to (30) and ν × Hgε
z

converges to the solution of (31) and (32) in the H(curl,D) norm as ε → 0. Next, since
‖ν × Ee(·, z, q)‖

H
− 1

2
div (∂D)

blows up as z approaches the boundary, we obtain that, for a fixed

ε > 0, limz→∂D

∥∥ν ×Hgε
z

∥∥
H

− 1
2

div (∂D)
= ∞ and consequently limz→∂D

∥∥Hgε
z

∥∥
H(curl,D)

= ∞ and

limz→∂D

∥∥gε
z

∥∥
L2

t (S
2)

= ∞.

Now we consider z ∈ �\D and let gε
z and its corresponding Herglotz function Hgε

z be
such that ∥∥R(

E,Hgε
z

) − R(E,Ee(·, z, q, kb))
∥∥

L2(�)
< ε. (33)

Note that from lemma 4.2 we can always find such a Hgε
z . Assume to the contrary that∥∥Hgε

z

∥∥
H(curl,D)

< C where the positive constant C is independent of ε. From the trace

theorem we have that ν × Hgε
z is also bounded in the H

− 1
2

div (∂D) norm. Noting that the total
field can be written as E(·, x0, p) = Es(·, x0, p) + G(·, x0)p and integrating by parts, we
obtain that

R(E,Ee(x, z, q, kb)) =
∫

�

(ν × Es(x, x0, p)) · curl Ee(x, z, q, kb) dsx

−
∫

�

(ν × Ee(x, z, q, kb)) · curl Es(x, x0, p) dsx

+
∫

�

(ν × G(x, x0)p) · curl Ee(x, z, q, kb) dsx

−
∫

�

(ν × Ee(x, z, q, kb)) · curl G(x, x0)p dsx.
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Due to the symmetry of the background Green’s function, Es(x, x0, p) as a function of x0

solves curlx0 curlx0E
s(x, x0, p) − k2n(x0)E

s(x, x0, p) = 0 in the domain bounded by � and
∂D. Hence the first two integrals in the above equation give a solution W(x0) to the same
equation as Es(·, x0, p), while the last two integrals add up to −G(z, x0)p by the Stratton–Chu
formula and the fact that Ee(x, z, q, kb) is the fundamental solution of curl curl E − k2

bE = 0.
On the other hand, it is easy to see that

R
(
E,Hgε

z

) = −
∫

∂D

(
ν × Hgε

z

) · curl E ds.

Combining the above results, we finally have that

R
(
E,Hgε

z

) − R(E,Ee(·, z, q, kb)) = −
∫

∂D

(
ν × Hgε

z

) · curl E ds − W(x0) + G(z, x0)p.

(34)

Now since
∥∥Hgε

z

∥∥
H

− 1
2

div (∂D)
< C there exists a subfamily, still denoted by Hgε

z , that converges

weakly to a V ∈ H
− 1

2
div (∂D) in the duality pairing between H

− 1
2

div (∂D) and H
− 1

2
curl (∂D) as ε → 0.

Let us set

W̃ (x0) = lim
ε→0

R
(
E,Hgε

z

) = −
∫

∂D

(ν × V ) · curl E(·, x0, p) ds, x0 ∈ �.

From (33) we now have that

W̃ (x0) = W(x0) + G(z, x0)p x0 ∈ �. (35)

Since W̃ (x0) and W(x0) can be continued as radiating solutions to

curlx0 curlx0E
s(x, x0, p) − k2n(x0)E

s(x, x0, p) = 0

outside the domain bounded by � we deduce by uniqueness and the unique continuation
principle that (35) holds true in R

3\(D ∪ {z0}). We now arrive at a contradiction by letting
x0 → z. Hence Hgε

z is unbounded in the H(D, curl) norm as ε → 0, which proves the
theorem. �

Next, we turn to the investigation of the solvability of

R(E,Aϕ) = R(E,Ee(·, z, q, kb)) (36)

with respect to ϕ where Ee(·, z, q, kb) is given by (23) and Aϕ is the single layer potential
with density ϕ ∈ L2

div(�̃) given by (22). In order to carry out the analysis of (30) to the case
of (36) we need the following key lemma.

Lemma 4.4. Assume that k is not a Maxwell eigenvalue for D. Then the set {Aϕ, ϕ ∈ H
− 1

2
div (�̃)

is dense in H(curl,D).

Proof. Making use of the well-posedness of

curl curl W − k2nbW = 0 in D (37)

ν × W = f on ∂D (38)

with f ∈ H
− 1

2
div (∂D), it suffices to show that ν × Aϕ|∂D for all ϕ ∈ H

− 1
2

div (�̃) is dense in

H
− 1

2
div (∂D). To this end, let ψ ∈ H

− 1
2

curl (∂D) and look at the dual operator A∗ : H
− 1

2
curl (∂D) →

H
− 1

2
div (�) such that

〈ν × Aϕ,ψ〉∂D = 〈ϕ,A∗ψ〉�̃
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where 〈·, ·〉 denotes the H
− 1

2
div ,H

− 1
2

curl duality pairing. By changing the order of integration one

can show that for ψ ∈ H
− 1

2
div (∂D)

(A∗ψ)(y) = ν(y) ×
(

curlycurly

∫
∂D

ψ(x)�(x, y) ds(x)

)
× ν(y), y ∈ �̃

where ν is the unit outward normal to �̃. Now, since kb is not a Maxwell eigenvalue

for D, we conclude that A∗ is injective, whence
{
ν × Aϕ|∂D : ϕ ∈ H

− 1
2

div (�̃)
}

is dense

in H
− 1

2
div (∂D). �

Now in exactly the same way as in theorem 4.3 we can prove the following result
concerning a (approximate) solution to (36).

Theorem 4.5. The results of theorem 4.3 remain valid if we replace the operator H by A and

the space L2
t (S

2) by H
− 1

2
div (�̃).

Remark 4.1. As noted in the proof of theorem 4.3, there are many choices of the
parametrization of the gap reciprocity functional R(E,W) in terms of W := Fψ where
Fψ ∈ H(�) with density function ψ in a Hilbert space H. The only requirement is that
{Fψ,ψ ∈ H } form a dense subset of H(�).

The behaviour of the approximate solutions to (30) and (36) provided by theorems 4.3
and 4.5, respectively, can be used in the same way as in the standard linear sampling method
to characterize the scattering object D.

4.2. The reciprocity gap functional for an inhomogeneous medium

Let now E = E(·, x0, p) = Es(·, x0, p) + G(·, x0)p for x0 ∈ � be the total electric field
corresponding to the scattering problem (SIM).

The interior transmission problem

curl curl E0 − k2nbE0 = 0 in D (39)

curl curl Eint − k2N(x)Eint = 0 in D (40)

ν × Eint − ν × E0 = f on ∂D (41)

ν × curl Eint − ν × curl E0 = h on ∂D. (42)

plays an important role in the study of the inverse problem. In [23] it is shown that provided
that Re(N − nbI)−1 is bounded below, for given f ∈ H

3
2 (D) and h ∈ H

1
2 (∂D) there exists

a solution E ∈ L2(D) and E0 ∈ L2(D) such that E − E0 ∈ H 2(D) provided that uniqueness
holds. Furthermore, the solution depends continuously in L2(D) on the boundary data f and
h in their respective norms. The values of k for which the homogeneous interior transmission
problem (f = h = 0) has a nontrivial solution are called transmission eigenvalues. In
particular, in [23] it is also shown that if Im(N − nbI)−1 < 0 then transmission eigenvalues
do not exist.

Lemma 4.6. Assume that k is not a transmission eigenvalue for D. Then the operator
R : H(�) → L2

t (�) defined by (20) is injective.
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Proof. From (20), RW = 0 means R(E(·, x0, p(x0)),W) = 0 for all (x0, p(x0)). Integrating
by parts, we have that

0 =
∫

�

(ν × E) · curl W − (ν × W) · curl E ds (43)

=
∫

∂D

(ν × E) · curl W − (ν × W) · curl E ds = k2
∫

D

(N − nbI)W · E dx.

Now let Ẽ ∈ Hloc(R
3) be the unique solution to (see [28])

curl curl Ẽ − k2N(x)Ẽ = k2(N(x) − nb(x)I )W in R
3

lim
r→∞(curl Ẽ × x − ikrẼ) = 0.

(44)

Here N(x) in R
3\D is equal to nb(x) and N(x) − nb(x) = N(x) − nb in D where nb is the

constant index of refraction inside �. Now (43) can be rewritten as∫
D

(curl curl Ẽ − k2NẼ) · (Es + G(·, x0)p) dx = 0. (45)

Using integration by parts, the equation satisfied by the scattered field Es and the fact that Es

and Ẽ are radiating solutions, we obtain∫
D

(curl curl Ẽ − k2NẼ) · Es dx =
∫

D

(curl curl Es − k2NEs) · Ẽ dx

+
∫

∂D

[(ν × Es) · curl Ẽ − (ν × Ẽ) · curl Es] ds

= k2
∫

D

(N − nbI)G(·, x0)p ds. (46)

On the other hand,∫
D

curl curl Ẽ · G(·, x0)p =
∫

D

curl curl G(·, x0)p · Ẽ dx

+
∫

∂D

[(ν × G(·, x0)p) · curl Ẽ − (ν × Ẽ) · curl G(·, x0)p] ds. (47)

Substituting (47) and (46) into (45) and using the Stratton–Chu representation formula outside
D [28] we obtain

0 =
∫

D

Ẽ(curl curl G(·, x0)p − k2nbG(·, x0)p) dx

+
∫

∂D

[(ν × G(·, x0)p) · curl Ẽ − (ν × Ẽ) · curl G(·, x0)p] = p · Ẽ(x0)

since

curl curl G(·, x0)p − k2nbG(·, x0)p = 0 in D.

Hence, since p is an arbitrary polarization in the tangent plane to � at x0, we obtain
that ν × Ẽ(x0) = 0 for x0 ∈ �. Furthermore, since Ẽ is a radiating solution to
curl curl Ẽ − k2n(x)Ẽ = 0 outside the domain bounded by � and satisfies ν × Ẽ = 0
on �, we can conclude by the uniqueness theorem for scattering by a perfect conductor that
Ẽ = 0 outside the domain bounded by �. Finally, from the unique continuation principle
we have that Ẽ = 0 outside D as well. Therefore, E0 := W and Eint := Ẽ + W satisfy
the homogeneous interior transmission problem, whence by the assumption that k is not a
transmission eigenvalue we finally obtain that W = 0 in D. This proves the lemma. �
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Remark 4.2. The proof of lemma 4.6 adapted to the case of the Helmholtz equation can
replace the proof of the same result in the scalar case in [12] where the Runge approximation
property for elliptic equations is used.

Lemma 4.7. Assume that k is not a transmission eigenvalue. Then the range of
R : H(�) → L2

t (�) defined by (20) is dense.

Proof. The proof follows the proof of lemma 4.2 with slight modifications. In particular, W

and E defined by (28) with E(·, x0, p) being the total field corresponding to (SIM) satisfy the
interior transmission problem (39)–(42) with E0 := W and E := E , and (29) needs to be
replaced by an equation of type (43) for W and E .

We are now ready to study the solvability of equations (30) and (36) in the case of the
scattering problem for an inhomogeneous anisotropic scatterer. To fix our ideas, we first
consider

R(E,Hg) = R(E,Ee(·, z, q, kb))

where Hg is the electric Herglotz function with g ∈ L2
t (S

2). �

Theorem 4.8. Assume that k is not a transmission eigenvalue for D and let E = E(·, x0, p)

and H = 1/ik curl E be the total electric and magnetic fields, respectively, corresponding to
the scattering problem (SIM). Then we have the following:

(i) For z ∈ D and a given ε > 0, there exists a gε
z ∈ L2

t (S
2) such that∥∥R(

E,Hgε
z

) − R(E,Ee(·, z, q, kb))
∥∥

L2
t (�)

< ε

and the corresponding electric Herglotz wavefunction Hgε
z converges in the L2(D) norm

to E0 as ε → 0 where (Eint, E0) is the solution of (39)–(42) with f := Ee(·, z, q, kb) and
h = ν × curlEe(·, z, q, kb).

Parts (ii) and (iii) of theorem 4.3 are also valid in this case.

Proof. Consider z ∈ D and let E0 and Eint be the solution to the interior transmission problem
(39)–(42) with f := Ee(·, z, q, kb) and h = ν × curl Ee(·, z, q, kb). Since W ∈ H(�) and
Ee(·, z, q, kb) satisfy curl curl W − kbW = 0 in �\D, integrating by parts and using the
equations satisfied by the total electric field we have that

R(E,W) = k2
∫

D

(N − n1I )W · E dx. (48)

If W coincides with E0 in D then since E and Eint satisfy the same equation in D we obtain
that

R(E,W) = R(E,Ee(·, z, q, kb)).

But it is, in general, impossible to find a function W ∈ H(�) such that W |D and
Eint satisfy the interior transmission problem (39)–(42) with f := Ee(·, z, q, kb) and
h = ν × curl Ee(·, z, q, kb). However, in lemma 4.3 in [23], it is shown that the set
{Hg, g ∈ L2

t (S
2)} ⊂ H(�) is a dense subset of

{U ∈ L2(D), curl curl U − k2nbU = 0 in the distributional sense}.
Hence for every ε > 0 we can find a gε

z ∈ L2
t (S

2) such that∥∥∥∥R(
E,Hgε

z

) − k2
∫

D

(N − n1I )E0 · E dx

∥∥∥∥
L2

t (�)

< ε,
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whence by the above discussion∥∥R(
E,Hgε

z

) − R(E,Ee(·, z, q, kb))
∥∥

L2
t (�)

< ε.

Furthermore, by construction, Hgε
z converges to E0 in the L2(D) norm as ε → 0. Next we

observe that Ẽ = Ee(·, z, q, kb) in R
3\D and Ẽ = (Eint − E0) in D satisfies

curl curl Ẽ − k2NẼ = k2(N − nbI)W in R
3 lim

r→∞(curl Ẽ × x − ikrẼ) = 0

where again N(x) in R
3\D is equal to nb(x) and N(x) − nb(x) = N(x) − nb in D. From the

well-posedness of the direct scattering problem for an inhomogeneous medium [28], we have
that

‖Ee(·, z, q, kb)‖H(curl,R3\D∩BR) < ‖E0‖L2(D).

Hence, due to the singularity of the electric dipole, we can conclude that ‖E0‖L2(D) → ∞ as
z → ∂D and so does

∥∥Hgε
z

∥∥
L(D)

and
∥∥gε

z

∥∥
L2

t (S
2)

.

The last part of the theorem for z ∈ R
3\D can be proved in exactly the same way as in

theorem 4.3. Note that now (34) becomes

R
(
E,Hgε

z

) − R(E,Ee(·, z, q, kb)) = k2
∫

D

(N − nbI)Hgε
z · curl E dx − W(x0) + G(z, x0)p

and a contradiction can be arrived at in the same way by using the weak convergence of Hgε
z

to a function V ∈ L2(D) as ε → 0. �

Finally, we can prove the same result for a solution to

R(E,Aϕ) = R(E,Ee(·, z, q, kb))

where the potential Aϕ is given by (22). In particular, we can prove the following theorem:

Theorem 4.9. The results of theorem 4.8 remain valid if we replace the operator H by A and
the space L2

t (S
2) by L2

div(�̃).

Proof. The proof is the same as the proof of theorem 4.8. The only piece missing is to show
that {Aϕ, ϕ ∈ L2

div(�̃)} ⊂ H(�) is dense in the set

{U ∈ L2(D), curl curl U − k2nbU = 0 in the distributional sense}
with respect to the L2(D) norm. But this can be done in the same way as in lemma 4.3 in
[23], where instead of the functions Mn one uses the radiating solutions Nn (see theorem 6.24
in [15]).

Finally, we note that the same remark stated at the end of section 3 is valid for the
regularized solution of (24) and (25). In particular, it is not known theoretically that this
regularized solution behaves similarly to the ε solution as described in theorems 4.8 and 4.9.

We end this section by remarking that the sampling method based on the reciprocity gap
functional can also be used if the medium inside � is heterogeneous. However, in this case
one needs to compute Green’s tensor for the medium inside � only. �

5. Numerical validation

We now discuss the performance of the classical linear sampling method (LSM) that has
been reviewed in section 3 and the sampling method based on the reciprocity rap functional
(RG-LSM), discussed in section 4, for which we shall restrict ourselves to the case of perfectly
conducting scatterers and will use simple layer potentials (22) as parametrization, that is, we
implement only (25). We refer to [12] for a comparison between the numerical performance
of (24) and (25). For instance, it is shown that the reconstructions using (25) are more stable
with respect to absorption.
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5.1. Numerical discretization

For both methods, and after numerical discretization, one ends up with a linear system to solve
of the form

Aφ(z, q) = F(z, q) (49)

where z denotes a sampling point in the probed region and q ∈ R
3 is an arbitrary polarization

vector. The expression and the size of the matrix A and the right-hand side F(z, q) depend
on the method used.

Let (si)i=1,Ns
denote the source locations on � and (xi)i=1,N0 denote the measurement

points on �. For y belonging to � or �, we denote by (τ1(y), τ2(y)) a pair of orthogonal unit
tangent vectors (to the surface) at y.

(1) For the LSM, the matrix A is then a 2N0 × 2Ns matrix whose entries are defined by

Ai,j = wjE
s(xi, sj , τ1(sj )), Ai,j+Ns

= wjE
s(xi, sj , τ2(sj )),

for 1 � i � N0 and 1 � j � Ns , and

Ai+N0,j = Ai,j ,

for 1 � i � N0 and 1 � j � 2Ns , where the weights (wi)i=1,Ns
correspond to a quadrature

rule associated with the nodes (si)i=1,Ns
. For instance, if the (si)i=1,Ns

are the vertices of
a triangular mesh T of � then the quadrature rule associated with a linear interpolation
corresponds to

wj = 1

3

∑
T ∈T ,T �sj

|T |. (50)

The right-hand side in this case is

Fi(z, q) = (G(xi, z)q) · τ1(xi) and Fi+N0(z, q) = (G(xi, z)q) · τ2(xi),

for 1 � i � N0.
(2) For the second method, RG-LSM, one also needs to mesh the surface �̃ of the simple

layer potential. Similarly as above, we denote by (s̃i)i=1,Ñ s
the vertices of a triangular mesh

T̃ of �̃ and by (w̃i)i=1,Ñ s
the corresponding weights (similarly as in (50)). Then the matrix A

is a 2Ns × 2Ñ s matrix whose entries are defined by

Ai,j = w̃jR(E(·, si, τ1(si)), Ee(·, s̃j , τ1(s̃j ), kb)),

Ai,j+Ñ s
= w̃jR(E(·, si, τ1(si)), Ee(·, s̃j , τ2(s̃j ), kb)),

for 1 � i � Ns and 1 � j � Ñ s , and

Ai+Ns,j = w̃jR(E(·, si, τ2(si)), Ee(·, s̃j , τ1(s̃j ), kb)),

Ai+Ns,j+Ñ s
= w̃jR(E(·, si, τ2(si)), Ee(·, s̃j , τ2(s̃j ), kb)),

for 1 � i � Ns and 1 � j � Ñ s . The right-hand side in this case is

Fi(z, q) = R(E(·, si, τ1(si)), Ee(·, z, q, kb))

Fi+Ns
(z, q) = R(E(·, si, τ2(si)), Ee(·, z, q, kb))

for 1 � i � Ns . The evaluation of R uses the data on � and is achieved by using a quadrature
rule associated with a linear interpolation as in (50).
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5.2. Inversion scheme

Since equation (49) corresponds to the discretization of an ill-posed linear equation, a
regularization is needed to compute an approximate solution. As in [13], we choose to
use Tikhonov regularization with a regularization parameter computed via the Morozov
discrepancy principle. To visualize the scatterer, we evaluate the criteria (similar to that in [13])

G(z) = ‖F(z, q1)‖
‖ϕ(z, q1)‖ +

‖F(z, q2)‖
‖ϕ(z, q2)‖ +

‖F(z, q3)‖
‖ϕ(z, q3)‖ (51)

where q1 = (1, 0, 0), q2 = (0, 1, 0) and q3 = (0, 0, 1) which corresponds to a special choice
of three independent polarizations and where a scaling with the norm of the right-hand side is
added [12]. We then plot the isosurface

G(z) = C max(G(z)) (52)

where C is a parameter. In order to get a good approximation of the probed geometry, the value
of this parameter should be chosen so that C max(G(z)) is in the transition region between
small and large values of G(z). One can imagine an automatic evaluation of the ‘best value’
based on the analysis of the gradient of these criteria, but this issue is beyond the scope of the
present work.

Our experience suggests that values of C between 0.4 and 0.5 usually give reasonable
reconstructions. We give in the following examples the reconstructions that correspond to
different values of this parameter (within the admissible region). We refer to [11, 17, 27] for a
related study on the choice of C. Let us finally mention the strategy for choosing C suggested
in [18] where the ‘best choice range’ for C is determined first by using a toy example, and then
this choice is used for other reconstructions. The best choice of C turns out to be consistent
for different obstacles, as our examples show.

5.3. Numerical examples

We shall conclude this work by giving some numerical examples using synthetic data that
illustrate the performance of the two sampling methods described above. We present here
numerical experiments for the case of a perfectly conducting obstacle buried in the earth. In
particular, we assume that the background is a two-layered medium, the upper one models the
air where the wave number is real and equal to k (n(x) = 1) and the lower one models the
earth with the constant index of refraction n (nb = n). The scatterer is a perfect conductor
buried in the earth.

We restrict ourselves to the cases where the interface is straight. In that case, one can
derive an integral representation for the Green tensor of the background medium in terms of
Bessel-like transforms [28]. Therefore one has access to a reasonably cheap evaluation of the
background Green tensor required by the classical LSM algorithm. We remind the reader that
this is not needed by the second method and therefore the examples presented here may not
be fully representative of the potential of this method.

Let λ = 2π/k denote the wavelength in air. The data correspond to sources uniformly
distributed on a squared horizontal plate of size 3λ × 3λ at z = λ/2. Using the previous
notation, this corresponds to

� = [−1.5λ, 1.5λ] × [−1.5λ, 1.5λ] × {λ/2}.
The number of source points is Ns = 25 × 25 and for each point source two horizontal
polarizations are used. Consequently, 1250 incident waves are used.

The measurement location depends on the method used. The measurements are
synthetically generated using CESC software: a solver for electromagnetic scattering problems
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Figure 3. Exact geometry of the perfect conductor in the first example. The interface earth–air is
at z3 = 0. The box indicates the boundary of the probed region.

developed at CERFACS. The perfectly conducting case is treated by solving the electric field
integral equation, whose unknown is the electric current on the surface of the scatterer. The
numerical discretization is based on a triangular meshing of the surface and the use of Raviart–
Thomas’s finite elements of the lowest degree.

Measurements for the LSM. In the case of the LSM, we take � = � and the number of
measurements is equal to the number of incident waves: for each incident wave we measure
the tangential components of the scattered field at the location of the 625 source points.

Measurements for the RG-LSM. In the case of the second method, the measurement surface
needs to be the boundary of a homogeneous domain containing the scatterer. Therefore �

cannot be the same as �. It is also not reasonable (at least for the above-mentioned application)
to measure all around the target. However, it is easy to show in the case of a layered medium
that one can also take � to be the interface between the two media. Now if one assumes that
there is enough absorption inside the earth, one can restrict the measurements (up to a small
error) to a bounded region of this interface where the wave is not sufficiently damped. In the
following experiments, this region is chosen to be

[si,x − 2λ, si,x + 2λ] × [si,y − 2λ, si,y + 2λ] × {0}
where si denotes the location of the point source. The tangential electric and magnetic fields
are evaluated on a uniformly distributed 40×40 grid of this region. It is noted that the number
of data used here is substantially higher than that for the LSM. However, an increase in the
number of data for the LSM (by increasing the aperture) did not substantially improve the
results. On the other hand, we did not optimize the number of data required to sufficiently
accurately evaluate the reciprocity gap functional. We used

�̃ = [−λ, λ] × [−λ, λ] × {λ/2}.
as the surface for the simple layer potential with a uniform 25 × 25 grid.

Using these data we get an execution time on an SGI ORIGIN 2000 computer for one
sampling point (that is roughly the same for the two methods) that is less than 4 s.

5.3.1. Example 1. The first example is depicted in figure 3 and corresponds to a perfectly
conducting cross.
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Figure 4. Reconstructed geometries for n = 2 + 0.1i and an added 1% random noise (see exact
geometry in figure 3). The wavelength in air is λ = 1. LSM: left four figures; RG-LSM: right
four figures. Each 3D plot corresponds to a different choice of the isosurface value. The 2D plot
corresponds to a horizontal cross section of G at z3 = −1.

Figure 5. Reconstructed geometries for n = 2 + 0.5i and an added 1% random noise (see exact
geometry in figure 3). The wavelength in air is λ = 1. LSM: left four figures; RG-LSM: right
four figures. Each 3D plot corresponds to a different choice of the isosurface value. The 2D plot
corresponds to a horizontal cross section of G at z3 = −1.

For the inversion, we used a wavelength in air of λ = 1 which is roughly the horizontal
size of the cross. The wavelength inside the earth is smaller since we took the real part of its
index equal to 2. We present in the following the results of three inversions where we varied
the absorption in the medium. We respectively used n = 2 + 0.1i, n = 2 + 0.5i and n = 2 + i
and the respective results are shown in figures 4, 5 and 6. In each figure the results given
by LSM are presented in the left box and those from RG-LSM in the right box. We observe
that the quality of the reconstruction is roughly the same when the absorption is sufficiently
high: n = 2 + 0.5i and n = 2 + i, which can be explained by the fact that in these cases the
measurements for RG-LSM satisfy the above-mentioned requirements. When n = 2 + 0.1i
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Figure 6. Reconstructed geometries for n = 2 + 1.0i and an added 1% random noise (see exact
geometry in figure 3). The wavelength in air is λ = 1. LSM: left four figures; RG-LSM: right
four figures. Each 3D plot corresponds to a different choice of the isosurface value. The 2D plot
corresponds to a horizontal cross section of G at z3 = −1.

Figure 7. Exact geometry of the perfect conductor in the second example. The interface earth–air
is at z3 = 0. The box indicates the boundary of the probed region.

these requirements are violated to some extent which may explain why the LSM works better
in this case. The 2D plots in these figures correspond to the values of G at a depth that coincides
with the mean cross section of the scatterer. These plots and also the projections on the x–y

plane of the reconstructed geometry constitute, in our opinion, what one can reasonably expect
to get from an imaging technique with data given as above. In this respect both methods give
satisfactory reconstruction.

5.3.2. Example 2. The second example is a perfectly conducting torus as shown in
figure 7.

For the inversion, we used a wavelength in air of λ = 1 which is roughly the exterior
diameter of the torus. We present in the following figures the results of two inversions where
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Figure 8. Reconstructed geometries for n = 2 + 0.5i and an added 1% random noise (see exact
geometry in figure 7). The wavelength in air is λ = 1. LSM: left four figures; RG-LSM: right
four figures. Each 3D plot corresponds to a different choice of the isosurface value. The 2D plot
corresponds to a horizontal cross section of G at z3 = −1.2.

Figure 9. Reconstructed geometries for n = 2 + 0.5i and an added 5% random noise (see exact
geometry in figure 7). The wavelength in air is λ = 1. LSM: left four figures; RG-LSM: right
four figures. Each 3D plot corresponds to a different choice of the isosurface value. The 2D plot
corresponds to a horizontal cross section of G at z3 = −1.2.

the index of the earth is n = 2 + 0.5i and where we varied the added noise: 1% for the first
example (figure 8) and 5% for the second example (figure 9). We observe a good stability of
the localization and the reconstruction of the shape in horizontal directions, as attested by the
2D plots and the projections shown in these figures.
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