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Abstract

We consider elastic scattering problems described by the Dirichlet or the Neumann
boundary value problem for the elastodynamic equation in the exterior of a 2D bounded
domain or in the exterior of a crack. The boundary of the domain is assumed to have
a finite set of corner points where the scattered wave may have singular behaviour. The
paper is concerned with the sensitivity of the far scattered field with respect to small
perturbations of the shape of the scatterer. Using a modification of the method of adjoint
problems (K. Dems, Z. Mróz, Internat. J. Solids Structures 20 (1984) 527–552) we obtain
a representation for the shape derivative which is well suited for a numerical realization
with boundary element methods and which shows in some cases directly the influence of
the singularities of the solution on the sensitivity of the far-field patterns.
 2002 Elsevier Science (USA). All rights reserved.
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1. Formulation of the problem

The mathematical modelling of the scattering of time-harmonic elastic waves
from an obstacleΩi , surrounded by a homogeneous elastic medium with density
ρ = 1 and Lamé parametersµ andλ satisfyingλ+ 2µ> 0, andµ > 0, leads to
an exterior boundary value problem for the Navier equations

∆∗u+ω2u := µ∆u+ (λ+µ)∇∇ · u+ω2u= 0 in Ω :=R
2\Ωi. (1)

Here, the total elastic waveu= ui+us is decomposed into a given time-harmonic
incident waveui with the frequencyω and the unknown scattered waveus .

Let us assume that the exterior domainΩ :=R
2\Ωi is of one of the following

two types:

(B) Ωi is a bounded domain with a piecewise smooth boundaryΓ . We denote
by S = {P1, . . . ,PQ} the finite set of boundary points, such thatΓ \S is
smooth. Furthermore, we assume thatΩ is locally diffeomorphic in the
neighbourhood of every corner pointPq to an infinite coneCq with the
opening angleϕ0

q /∈ {0,2π}. The unit normal vectorn = (n1, n2) on Γ is
directed towardsΩi .

(C) Ωi = Γ is a crack, i.e., a piecewise smooth curve with a finite setS =
{P1, . . . ,PQ} consisting of two crack tips and of several interior corner
points. The corner points must satisfy the angle conditionω0

q �= {0,2π}. The
direction of the unit normal vectorn on Γ is chosen arbitrarily but is fixed
along the crack.

The scattered waveus is requested to satisfy the Dirichlet boundary conditions

us(x)=−ui (x) for x ∈ Γ, (2)

or the Neumann boundary conditions

Tn(x)us(x)=−Tn(x)ui (x) for x ∈ Γ. (3)

HereTn denotes the matrix surface traction operator defined by

(Tn(x))i,j := λni (x)
∂

∂xj
+µnj (x)

∂

∂xi
+µδi,j∇x · n(x), i, j = 1,2. (4)

The Neumann boundary conditions can be given in terms of the elastic stress
tensor, namelyTnu= σ(u) · n, where

σi,j (u) := λδij∇ · u+µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
,

for i, j = 1,2.
For crack problems (C) the boundary conditions have to be posed on both sides

of the crack, i.e.,
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us±(x)=−ui (x) for x ∈ Γ, or

Tn(x)us±(x)=−Tn(x)ui (x) for x ∈ Γ, (5)

where

us±(x)= lim
h→0+us (x± hn), (6)

Tn(x)us±(x)= lim
h→0+σ

(
us (x± hn)

) · n. (7)

The boundary conditions describe the physical scattering properties of the ob-
stacle: the Dirichlet conditions model a rigid elastic unpenetrable scatterer while
the Neumann conditions model a cavity.

In addition, the scattered fieldus is required to satisfy the Kupradze radiation
condition [13]

lim
r→∞

√
r

(
∂us

p

∂r
− ikpus

p

)
= 0, lim

r→∞
√
r

(
∂us

s

∂r
− iksus

s

)
= 0,

r = |x|, (8)

uniformly in all directionŝx= x/|x|, whereus = us
p+us

s indicates the Helmholtz
decomposition ofus into longitudinal or P-waveus

p (∇×us
p ≡ 0) and transversal

or S-waveus
s (∇ · us

s ≡ 0) (see, e.g., [6]). Longitudinal and transversal waves are
solution to the vectorial Helmholtz equation with the wave numberkp andks ,
respectively, given by

k2
p =

ω2

λ+ 2µ
, k2

s =
ω2

µ
.

In the following, we will consider incident fields elastic plane wavesui := ui
p+ui

s

in the form of a linear combination of longitudinal plane waves

ui
p(x; d̂)= d̂e−ikpx·d̂

and transversal plane waves

ui
s (x; d̂)= b̂e−iksx·d̂,

where the unit vector̂d ∈ R
2 denotes the direction of propagation and the unit

vectorb̂ ∈R
2 is a polarization vector such thatb̂⊥ d̂.

Let BR be the open ball with radiusR centred at 0 andSR = ∂BR . It is known
[9,22] that there exists a unique solutionus (x) = us

p(x) + us
s (x) of the direct

problem (1)–(8), which belongs to(H 1(Ω ∩ BR))
3 and satisfies the following

identity for large enoughR:

us (x)=
∫
SR

{[
Tn(y)Φ(x,y)

]�us (y)−Φ(x,y)Tn(y)u
s (y)

}
dsy. (9)
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Here the normal vectorn is pointed outward, andΦ(x,y) is the fundamental
solution tensor to the Navier equations given by

Φ(x,y) := i

4µ
H

(1)
0

(
ks |x− y|)I

+ i

4ω2
∇x ⊗∇x

[
H

(1)
0

(
ks |x− y|)−H

(1)
0

(
kp|x− y|)]

in terms of the identity matrixI and the Hankel functionH(1)
0 of order zero of the

first kind.
Applying the radiation condition (8) and the asymptotic behaviour of the fun-

damental solutionΦ to the integral identity (9), we obtain the following behaviour
of the scattered waveus asr→∞ and uniformly inx̂= x/|x| (see [6,8,12]):

us
p(x)=

1

λ+ 2µ

eiπ/4√
8πkp

eikpr√
r
Fp(Γ )(x̂)+ o

(
1√
r

)
, (10)

us
s(x)=

1

µ

eiπ/4

√
8πks

eikpr√
r
Fs(Γ )(x̂)+ o

(
1√
r

)
. (11)

The vector functionsFp(Γ ), Fs(Γ ), defined on the unit circleS1, are known as
the far-field patterns or the scattering amplitudes of the longitudinal partus

p and
the transversal partus

s , respectively. From the existence and the uniqueness of
the solution of the direct scattering problem follows that the far-field patterns are
uniquely determined by the boundaryΓ . The far-field patterns are given by the
following integral formulae:

Fp(Γ )(x̂)=
∫
SR

{[
Tn(y)x̂⊗ x̂e−ikp x̂·y]�us (y)

− x̂⊗ x̂e−ikp x̂·yTn(y)u
s (y)

}
dsy (12)

and

Fs(Γ )(x̂)=
∫
SR

{[
Tn(y)[I− x̂⊗ x̂]e−iks x̂·y]�us (y)

− [I− x̂⊗ x̂]e−iks x̂·yTn(y)u
s (y)

}
dsy. (13)

We note that the longitudinal far-field patternFp is normal toS1 whereas the
transversal far-field patternFs is tangential toS1. Although the boundary of the
domain representing the scattering object is nonsmooth, the integral representa-
tions (11)–(12) show that the far-field patterns are analytic functions.

Our main concern in this work is to study how the perturbation of the do-
main influences the far-field operatorsΓ �→ Fp(Γ ) andΓ �→ Fs(Γ ). This is
performed using the material derivative approach, which is well known in the
form sensitivity analysis of bounded elastic bodies [4,5,20]. We derive formulae
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for the Gâteaux derivative of the elastic far-field pattern with respect to an
admissible class of domain perturbations and show that the derivative depends
in fact only on the perturbation of the boundary.

2. Exterior boundary value problems for the Navier equations

In this section we formulate the existence and regularity results for solutions
of the exterior boundary value problem

∆∗u(x)+ω2u(x)= f(x) in Ω, (14)

u(x)= g(x) onΓ, or (15)

Tn(x)u(x)= h(x) onΓ, (16)

which satisfy the Kupradze radiation condition (8) at infinity.
To this end we introduce weighted Sobolev spaces which take into account the

singular behaviour of the functions near the singular pointsPq ∈ S and at infinity.

Definition 2.1. Let Ω = R
2\Ωi with Ωi being of type (B) or (C) as defined in

Section 1. We choose for every singular pointPq ∈ S a cut-off functionηq ∈
C∞0 (R2) with support in a neighbourhood ofPq and setη0 = 1−∑Q

q=1ηq . For

d ∈ N0, �β = (β1, . . . , βQ) ∈ R
Q we define the spaceV d

�β,γ (Ω) of all generalized

functions which have the finite norm

‖u‖V d
�β,γ (Ω) :=

∥∥(
1+ |x|2)−γ /2

(η0u)
∥∥
Hd(Ω)

+
Ω∑

q=1

∑
|p|�d

∥∥rβq−d+|p|
q Dp(ηqu)

∥∥
L2(Ω)

, (17)

whererq = dist(x,Pq). For d = 1,2, . . . , we denote byV d−1/2
�β (Γ ) the space

of traces onΓ \S of functions in V d
�β,γ (Ω). Furthermore we setVd

�β,γ (Ω) =
[V d
�β,γ (Ω)]2 andVd

�β,γ (Γ )= [V d
�β,γ (Γ )]2.

The behaviour of the solutionu of the boundary value problem (14)–(16) in
a neighbourhood of the singular pointPq ∈ S can be described with the help of
solutions of a homogeneous boundary value problem for the Lamé operator∆∗ in
the infinite sector with opening angleϕ0

q . It can be shown [11,16] that the set of
all solutions of this homogeneous problem has a basis consisting of the so-called
“power solutions”

vl,k
j (rq, ϕq)= r

αj
q

l∑
s=0

1

s! (logrq)sω
l−s,k
j (ϕq), (18)
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where(rq, ϕq) are polar coordinates with origin inPq and{ωl,k
j : 1 � k � mg(αj ),

0 � l � κk,j − 1} is a canonical system of Jordan chains of some linear operator
pencil Aq corresponding to the eigenvalueαj . Heremg(αj ) is the geometric
multiplicity of αj andκk,j is the length of thekth Jordan chain. The spectrum
of Aq will be denoted byΣ(Aq ).

Let us defineaq := min{Rαj }, where the minimum is taken over all eigen-
valuesαj of Aq with a positive real part. Note that in both Dirichlet and Neumann
caseaq � 1/2. Then we denote bya0 the smallest ofaq for every singular point
Pq ∈ S.

Theorem 2.1 (Existence and regularity result).Let d ∈ N0, γ > 1 and �β = (β1,

. . . , βQ) ∈R
Q with

d + 1− βq ∈ (0, aq) for Pq ∈ S.

Suppose thatf ∈ V d
�β,−γ

(Ω), g ∈ V
d+3/2
�β (Γ ) andh ∈ V

d+1/2
�β (Γ ). Then there exist

a unique solutionu ∈ V d+2
�β,γ (Ω) of (14)–(16)and the following a priori estimate

is valid:

‖u‖
V d+2
�β,γ (Ω)

� c
{
‖f‖V d

�β,−γ
(Ω) + cD‖g‖V d+3/2

�β (Γ )
+ cN‖h‖V d+1/2

�β (Γ )

}
. (19)

Here,c is a positive constant,cD = 1, cN = 0 in the case of the Dirichlet problem
andcD = 0, cN = 1 in the case of the Neumann problem.

Proof. With the help of a priori estimates for solutions of boundary value
problems in the exterior of a smooth domain [21] and in bounded domains with
corners [10,11,16], we can prove by means of a partition of unity that

‖u‖
V d+2
�β,γ (Ω)

� c
{
‖f‖V d

�β,−γ
(Ω) + cD‖g‖V d+3/2

�β (Γ )
+ cN‖h‖V d+1/2

�β (Γ )

+ ‖u‖
V d+1
�β,γ (Ω∩BR)

}
(20)

with some real constantc and some positiveR. The last norm on the right-hand
side of (20) can be omitted as in [1, Lemma III, 3.10] because the kernel of the
problem is trivial. In case of a smooth domain Theorem 2.1 reduces to the result
proved in [21]. ✷
Theorem 2.2 (Asymptotic behaviour near singular points).Suppose thatu sat-
isfies the homogeneous elastic Navier equations and homogeneous boundary
conditions in the neighbourhood of the singular pointPq ∈ S. Letα1, . . . , αN be

all eigenvalues ofAq with 0< αj < 1 and letvl,k
j be the corresponding singular

functions defined by(18). Thenu behaves in the vicinity ofPq asymptotically as
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u(rq , ϕq)=
N∑

j=1

mg(αj )∑
k=1

κk,j−1∑
l=0

Kj,k,lv
l,k
j (rq, ϕq)+O(rq), (21)

with Kj,k,l ∈R.

Proof. The assertion is a simple application of the results from the theory of
general elliptic problems in domains with corners [10,11,16]. Explicit formulae
for the singular functionsSj are available in the literature [17].✷

3. Domain sensitivity of elastic fields

3.1. Description of the domain perturbation

In order to describe the shape sensitivity of exterior boundary value problems,
i.e., the influence of the shape of the domain on the solution, we introduce a family
of perturbed domainsΩε, ε ∈ [0, ε0], as the image of a fixed domainΩ under a
family of diffeomorphisms{

Ψε = I + εΨ ∈ [
Cd+2(Ω)

]2; ε ∈ [0, ε0]
}
, d ∈N0. (22)

Thus we have

Ωε :=Ψε(Ω), Γε := Ψε(Γ ), Sε := Ψε(S)

with Sε being the set of singular points ofΓε. Since we are interested in the
perturbation of the boundaryΓ we can assume that

∃R: Ψε(x)= x ∀|x|>R. (23)

We consider the following exterior Dirichlet or Neumann boundary value prob-
lem:

∆∗us
ε(xε)+ω2us

ε(xε)= 0 in Ωε,

us
ε(xε)=−ui onΓε, or

Tn(xε)u
s
ε(xε)=−Tn(xε)u

i onΓε, (24)

for the scattered waveus
ε satisfying the radiation condition (8).

3.2. Form sensitivity of the scattered field

Let Uε := us
ε+ηui , whereη is a cut-off function with support in the vicinity of

the boundaryΓ . We note thatUε satisfies the Navier equations with a right-hand
side having a compact support and vanishing in the neighbourhood ofΓε and
satisfies homogeneous boundary conditions (2) or (3). Furthermore,Uε coincides
with us

ε outside some neighbourhood ofΓε.
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The form sensitivity of the vector fieldUε can be described with the help of
the material derivative

U̇ := d(Uε ◦Ψε)

dε

∣∣∣∣
ε=0

(25)

and the shape derivative

U′ := U̇−∇U0 ·Ψ. (26)

In order to prove the existence of these derivatives we transform the problem (24)
into the reference configuration by means of a change of variablesxε = Ψε(x) and
obtain a boundary value problem for the transformed fieldUε ◦Ψε:

∆∗ε(Uε ◦Ψε)+ω2(Uε ◦Ψε)=∆∗ε(ηui ◦Ψε)+ω2(ηui ◦Ψε) in Ω,

(Uε ◦Ψε)= 0 onΓ, or

Tε
nε◦Ψε

(Uε ◦Ψε)= 0 onΓ.

Here, the operators∆∗ε andTε have variable coefficients which depend smoothly
on the perturbation parameterε. Therefore we can apply the theory of regularly
perturbed partial differential equations (see, e.g., [15, Section 5.5]) and show that
(Uε ◦Ψε)(x) depends smoothly onε:

(Uε ◦Ψε)(x)=U0(x)+ εU̇(x)+O(ε2). (27)

In fact, using the a priori estimate (19) one can prove the following theorem
(see [3] for a detailed proof in case of acoustic scattering).

Theorem 3.1. Let d ∈ N0 and �β ∈ R
Q be defined as in Theorem2.1. Then the

following estimate is valid:

‖Uε ◦Ψε −U0− εU̇‖Vd+2
�β,γ (Ω)

� cε2 (28)

with a positive real constantc.

The existence and the regularity of the shape derivativeU′ follows directly
from the definition (26) ofU′ and the preceding theorem.

Corollary 3.1. Let the assumptions of Theorem3.1 be satisfied. Then the shape
derivativeU′ exists inVd+1

�β,γ (Ω).

According to [14,18,19] the shape derivativeU′ satisfies the radiation condition
(8) at infinity and solves the following exterior boundary value problem:

∆∗U′ +ω2U′ = 0 in Ω,

U′ = −Ψ · n∂U0

∂n
onΓ, or

TnU′ = −Ψ · n ∂

∂n
σ(U0) · n+ σ(U0) · ∇Γ (Ψ · n) onΓ, (29)
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where∇Γ f is the tangential gradient given by∇Γ f = ∇f − (n · ∇f )n and
(∂/∂n)σ (u) is the matrix consisting of the normal derivatives of all components
of the stress tensor.

Remember that in case of cracks, the boundary condition must be imposed on
both sides of the crack as in (5).

3.3. Form sensitivity of the far field pattern

Let Ω be an exterior domain of type (B) or (C). The perturbed scattered
wave us

ε has at infinity the asymptotics (10), (11) with the far field pattern
F(Γε)= (Fp(Γε),Fs(Γε)) given by an analogue of formulae (11), (12) with only
the change ofus to us

ε . Let us calculate the Gâteaux derivative

dF(Γ,Ψ )= lim
ε→∞

F(Ψε(Γ ))−F(Γ )

ε
= dF(Γε)

dε

∣∣∣∣
ε=0

. (30)

For big enoughR = |x| we haveΨε|SR = I andus
ε|SR =Uε ◦Ψε|SR . Thus

Fp(Γε)(x̂)=
∫
SR

{[
Tn(y)x̂⊗ x̂e−ikp x̂·y]�(Uε ◦Ψε)(y)

− x̂⊗ x̂e−ikp x̂·yTn(y)(Uε ◦Ψε)(y)
}
dsy, (31)

with a similar formula forFs(Γε). Differentiating both sides of the above equation
by ε and takingε = 0 we obtain immediately

dFp(Γ )(x̂)=
∫
SR

{[
Tn(y)x̂⊗ x̂e−ikp x̂·y]�U̇(y)

− x̂⊗ x̂e−ikp x̂·yTn(y)U̇(y)
}
dsy. (32)

SinceU̇(x)=U′(x) for big enough|x|, we get

dFp(Γ )(x̂)=
∫
SR

{[
Tn(y)x̂⊗ x̂e−ikp x̂·y]�U′(y)

− x̂⊗ x̂e−ikp x̂·yTn(y)U
′(y)

}
dsy (33)

and

dFs(Γ )(x̂)=
∫
SR

{[
Tn(y)[I− x̂⊗ x̂]e−iks x̂·y]�U′(y)

− [I− x̂⊗ x̂]e−iks x̂·yTn(y)U
′(y)

}
dsy. (34)

The representations (32), (33) are not well suited for a numerical realization
becauseU′, in general, cannot be defined as a variational solution of the boundary
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value problem (29). The asymptotic analysis (Theorem 2.2) shows that the
solutionU0 behaves near the singular pointsPq ∈ S as|x−Pq |aq with aq � 1/2.
Therefore,U0 ∈H 1+a0(Ω), ∇U0 ∈Ha0(Ω) and consequentlyU′ ∈Ha0(Ω) due
to (26). If the domain is not convex then we havea0 < 1 and thusU′ /∈H 1(Ω).
ThereforeU′ cannot be computed in general by solving (29) numerically with the
help of standard boundary element or finite element methods. Furthermore, we
are interested in an expression for the derivative of the far field patterns depending
only on the perturbation of the boundary.

In order to overcome this difficulty, we derive in the next section from (32) and
(33) another representations for bothdFp(Γ,Ψ )(x̂), dFs(Γ,Ψ )(x̂), which are
better suited for a numerical realization. We use the method of adjoint problems
[2,3,7], which consists in applying the Betti’s formulae to the shape derivativeU′
and to the solutionw of an appropriately defined adjoint problem. This leads to
an expression in which onlyU0 and the adjoint fieldw appear.

4. The method of adjoint problems

4.1. Exterior of a bounded domain

Let us assume first thatΩ is the exterior of a bounded domain and consider the
longitudinal far-field patternFp. We definewp as the solution of the following
mixed boundary value problem:

∆∗wp(y)+ω2wp(y)= 0 in Ω,

wp(y)= x̂e−ikp x̂·y onΓ, or

Tn(y)wp(y)= Tn(y)x̂e
−ikp x̂·y onΓ,

which satisfies the Kupradze radiation condition (8) at infinity. We remark that the
adjoint field is the scattered field produced by a longitudinal incident plane wave
propagating in the observation directionx̂.

Using Betti’s formula forU′ andw in the domainBR′ ∩BR ∩Ω with R′ >R,
passing to the limit asR′ → +∞ and taking into account thatU′, w satisfy (8)
we obtain

0= x̂
∫
SR

[
wp(y)�Tn(y)U

′(y)−U′(y)�Tn(y)wp(y)
]
dsy. (35)

Summing up the expressions (35) and (33) we get

dFp(Γ,Ψ )(x̂)= x̂
∫
SR

[
Wp(y)�Tn(y)U

′(y)−U′(y)�Tn(y)Wp(y)
]
dsy,

(36)
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with Wp(y) :=wp(y)− x̂e−ikp x̂·y. Note that the normal vectorn onSR is directed
outwards.

Let Bδ(Pq) be a ball with centre inPq and radiusδ. Inserting againU′ andW
into Betti’s formula inΩ ∩BR ∩⋃Q

q=1Bδ(Pq), we obtain from (36)

dFp(Γ,Ψ )(x̂)

= x̂
∫

Γ \⋃Q
q=1Bδ(Pq)

[
U′(y)�Tn(y)Wp(y)−Wp(y)�Tn(y)U

′(y)
]
dsy

+ x̂
∫

⋃Q
q=1 ∂Bδ(Pq)∩Ω

[
U′(y)�Tn(y)Wp(y)−Wp(y)�Tn(y)U′(y)

]
dsy.

(37)

Let us pass to the limit asδ→ 0 on both sides of (37) and rewrite it as

dFp(Γ,Ψ )(x̂)= x̂
∫
Γ

[
U′(y)�Tn(y)Wp(y)−Wp(y)�Tn(y)U′(y)

]
dsy

+ x̂ lim
δ→0

∫
⋃Q

q=1 ∂Bδ(Pq)∩Ω

[
U′(y)�Tn(y)Wp(y)−Wp(y)�Tn(y)U

′(y)
]
dsy.

(38)

In the following, we denote byLq

Lq := lim
δ→0

∫
∂Bδ(Pq)∩Ω

[
U′(y)�Tn(y)Wp(y)−Wp(y)�Tn(y)U

′(y)
]
dsy. (39)

Substituting the boundary values ofU′ andW into the first integral in (38), we
obtain the following expression for the far-field derivative:

dFp(Γ,Ψ )(x̂)=−x̂
∫
Γ

Ψ (y) · n(y)∂U0(y)�

∂ny
Tn(y)Wp(y) dsy + x̂

Q∑
q=1

Lq

(40)

if the Dirichlet problem is considered, and

dFp(Γ,Ψ )(x̂)= x̂
Q∑

q=1

Lq

+ x̂
∫
Γ

Wp(y)�
[
Ψ (y) · n(y) ∂

∂ny
σ
(
U0(y)

) · n(y)
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− σ
(
U0(y)

) · ∇Γ

(
Ψ (y) · n(y))]dsy (41)

if the Neumann problem is considered.
In order to justify the passage to the limit in (37) we have to investigate the

behaviour of the integrand asδ→ 0 for every singular pointPq ∈ S.

Theorem 4.1. LetΩ be the exterior of a bounded domain. ThenLq = 0.

Proof. According to Theorem 2.2, the functionsU0 and Wp behave in the
neighbourhood ofPq as

U0(x)=O(raq ), Wp(x)=O(raq ). (42)

Consequently,U′(x)=O(raq−1) due to (26) and so the integrand of (39) behaves
asO(r2aq−2). Sinceaq > 1/2 for ϕ0

q < 2π , then 2aq − 2 > −1, which implies
thatLq = 0. ✷

Next we consider the far field of the transversal wave. We start with the
representation (33) fordFs(Γ ). Since I − x̂ ⊗ x̂ = ẑ ⊗ ẑ, where ẑ is a unit
vector perpendicular to the direction of observationx̂, we naturally define the
corresponding adjoint fieldws as the solution of the following exterior boundary
value problem:

∆∗ws (y)+ω2ws(y)= 0 in Ω,

ws(y)= ẑe−iks x̂·y onΓ, or

Tn(y)ws(y)= Tn(y)ẑe−iks x̂·y onΓ,

with ẑ⊥ x̂ and satisfying the Kupradze radiation condition (8) at infinity. Hence
in this case the adjoint field is the scattered field produced by a shear plane wave
propagating in the observation directionx̂ and polarized in the direction̂z.

Now, by repeating the above calculations fordFs(Γ ) given by (34),U′ and
Ws :=ws − ẑe−iks x̂·y, and noting that the Theorem 4.1 remains valid in this case,
we obtain the following formula for the shape derivative of the transversal far
field:

dFs(Γ,Ψ )(x̂)=−ẑ
∫
Γ

Ψ (y) · n(y)∂U0(y)�

∂ny
Tn(y)Ws(y) dsy (43)

if the Dirichlet problem is considered, and

dFs(Γ,Ψ )(x̂)= ẑ
∫
Γ

Ws(y)�
[
Ψ (y) · n(y) ∂

∂ny
σ
(
U0(y)

) · n(y)
− σ

(
U0(y)

) · ∇Γ

(
Ψ (y) · n(y))]dsy (44)

if the Neumann problem is considered.
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4.2. Exterior domains with cracks

The above considerations along with formula (37) can be repeated with some
obvious changes for problems in the exterior of a crack. The longitudinal adjoint
scattered wave is defined as the solution of the following boundary value problem
in the exterior of the curve:

∆∗wp(y)+ω2wp(y)= 0 in Ω,

wp±(y)= x̂e−ikp x̂·y onΓ, or

Tn(y)wp±(y)= Tn(y)x̂e−ikp x̂·y onΓ, (45)

satisfying the Kupradze radiation condition at infinity.
Formulae (40), (41) read now

dFp(Γ,Ψ )(x̂)=−x̂
∫
Γ

Ψ (y) · n(y)
�
∂U0(y)�

∂ny
Tn(y)Wp(y)

�
dsy

+ x̂
Q∑

q=1

Lq (46)

in case of Dirichlet conditions, and

dFp(Γ,Ψ )(x̂)= x̂
Q∑

q=1

Lq

+ x̂
∫
Γ

�
Wp(y)�

(
Ψ (y) · n(y) ∂

∂ny
σ
(
U0(y)

) · n(y)
− σ

(
U0(y)

) · ∇Γ

(
Ψ (y) · n(y)))

�
dsy (47)

if Neumann conditions are prescribed. Here,❏·❑ denotes the jump across the crack,
U0 :=Uε |ε=0, andWp :=wp − ẑe−iks x̂·y with wp the solution of (45).

The limits Lq can be calculated similar as for problems in the exterior of a
bounded domain. IfPq is an interior corner of the crack, we are exactly in the
situation of Theorem 4.1 and thereforeLq = 0. Once the tips of the crack are
considered, a more detailed asymptotic analysis has to be employed since the
elastic displacement field assumes higher singularity near the crack tips.

Let Pq , q = 1,2, be the tips of the crack. It is known (see, e.g., [16]) that

Σ(Aq ) :=
{
j/2: j ∈ Z\{0}}

for Dirichlet boundary conditions, and

Σ(Aq ) := {j/2: j ∈ Z}
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for Neumann boundary conditions. Therefore the singular decomposition (21) of
the solutionsU0 andWp near the tipPq takes the form

U0(rq , ϕq)=
[
K1

q (U0)Φ1(ϕq)+K2
q (U0)Φ2(ϕq)

]
r1/2+O(rq), (48)

Wp(rq, ϕq)=
[
K1

q (Wp)Φ1(ϕq)+K2
q (Wp)Φ2(ϕq)

]
r1/2+O(rq), (49)

whereΦ1, Φ2 have the following form:

Φ1(ϕq)=
[−(2κ − 1)cos

(3
2ϕq

)+ (2κ − 1)cos
(1

2ϕq

)
(2κ − 1)sin

(3
2ϕq

)− (2κ + 1)sin
(1

2ϕq

) ]
, (50)

Φ2(ϕq)=
[ −(2κ + 1)sin

(3
2ϕq

)+ (2κ − 1)sin
( 1

2ϕq

)
−(2κ + 1)cos

(3
2ϕq

)+ (2κ + 1)cos
(1

2ϕq

)]
(51)

for the Dirichlet crack, and

Φ1(ϕq)=
[

3 cos
(3

2ϕq

)+ (2κ − 1)cos
(1

2ϕq

)
−3 sin

( 3
2ϕq

)− (2κ + 1)sin
( 1

2ϕq

)]
, (52)

Φ2(ϕq)=
[

sin
( 3

2ϕq

)+ (2κ − 1)sin
( 1

2ϕq

)
cos

( 3
2ϕq

)+ (2κ + 1)cos
( 1

2ϕq

)]
(53)

for the Neumann crack. Hereκ is a material constant given byκ = (λ + 3µ)/
(λ+µ).

Let us denote byΨn(Pq) andΨt(Pq) the normal and the tangential component
of the perturbation at the crack tipPq , respectively.

Theorem 4.2. Letq = 1,2. Then we have

Lq =
(
K1

q (U0)K
1
q (Wp)+K2

q (U0)K
2
q (Wp)

)
× −16πµ(λ+ 3µ)(λ+ 2µ)

(λ+µ)2
Ψt (Pq)

+ (
K1

q (U0)K
2
q (Wp)+K2

q (U0)K
1
q (Wp)

)−16πµ(λ+ 2µ)

(λ+µ)
Ψn(Pq)

in case of Dirichlet conditions, and

Lq =
(
K1

q (U0)K
1
q (Wp)+K2

q (U0)K
2
q (Wp)

)16πµ(λ+ 2µ)

(λ+µ)
Ψt (Pq)

+ (
K1

q (U0)K
2
q (Wp)+K2

q (U0)K
1
q (Wp)

)−16πµ(λ+ 2µ)

(λ+µ)
Ψn(Pq)

for Neumann conditions.

Proof. We use (26) by means of (48) to expressU′ in terms of stress intensity
factors of the unperturbed fieldK1

q (U0), K2
q (U0) and the perturbation of the tip

Ψn(Pq), Ψt (Pq). Hence, we obtain the following asymptotics forU′:
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U′(rq , ϕq)= r
−1/2
q

[(
K1

q (U0)Φ̃1t (ϕq)+K2
q (U0)Φ̃2t (ϕq)

)
Ψt (Pq)

+ (
K1

q (U0)Φ̃1n(ϕq)+K2
q (U0)Φ̃2n(ϕq)

)
Ψt(Pq)

]
+O

(
r

1/2
q

)
, (54)

with

Φ̃1t (ϕq)= 1

2

[
(2κ + 1)cos

( 3
2ϕq

)− (2κ + 1)cos
( 1

2ϕq

)
−(2κ − 1)sin

(3
2ϕq

)+ (2κ + 1)sin
(1

2ϕq

)]
, (55)

Φ̃2t (ϕq)= 1

2

[
(2κ + 1)sin

(3
2ϕq

)− (2κ − 1)sin
(1

2ϕq

)
(2κ − 1)cos

(3
2ϕq

)− (2κ − 1)cos
(1

2ϕq

)]
, (56)

Φ̃1n(ϕq)= 1

2

[
(2κ + 1)sin

(3
2ϕq

)+ (2κ − 3)sin
( 1

2ϕq

)
(2κ − 1)cos

(3
2ϕq

)+ (2κ − 3)cos
(1

2ϕq

)]
, (57)

Φ̃2n(ϕq)= 1

2

[−(2κ + 1)cos
(3

2ϕq

)− (2κ + 3)cos
(1

2ϕq

)
(2κ − 1)sin

( 3
2ϕq

)+ (2κ + 3)sin
(1

2ϕq

) ]
(58)

for the Dirichlet crack, and

Φ̃1t (ϕq)= 1

2

[
(2κ + 1)cos

( 3
2ϕq

)+ cos
( 1

2ϕq

)
−(2κ − 1)sin

(3
2ϕq

)− sin
(1

2ϕq

)]
, (59)

Φ̃2t (ϕq)= 1

2

[
(2κ + 1)sin

(3
2ϕq

)+ 3 sin
(1

2ϕq

)
(2κ − 1)cos

(3
2ϕq

)+ 3 cos
(1

2ϕq

)]
, (60)

Φ̃1n(ϕq)= 1

2

[
(2κ + 1)sin

(3
2ϕq

)− 5 sin
( 1

2ϕq

)
(2κ − 1)cos

(3
2ϕq

)− 5 cos
(1

2ϕq

)]
, (61)

Φ̃2n(ϕq)= 1

2

[−(2κ + 1)cos
(3

2ϕq

)− cos
(1

2ϕq

)
(2κ − 1)sin

( 3
2ϕq

)+ sin
( 1

2ϕq

) ]
(62)

for the Neumann crack.
Finally, we insert the expressions (54), (49) for bothU′ andWp , respectively,

into the integral (39). Then, straightforward calculations give the assertions of the
theorem. ✷

Finally, the same considerations can be repeated for the shape derivative of the
shear far fielddFs(Γ ) if the adjoint field is defined by

∆∗ws(y)+ω2ws (y)= 0 in Ω,

ws±(y)= ẑe−ikp x̂·y onΓ, or

Tn(y)ws±(y)= Tn(y)ẑe−ikp x̂·y onΓ, (63)

satisfying the Kupradze radiation condition at infinity. In this case we have
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dFs(Γ,Ψ )(x̂)=−ẑ
∫
Γ

Ψ (y) · n(y)
�
∂U0(y)�

∂ny
Tn(y)Ws (y)

�
dsy

+ ẑ(L1+L2) (64)

in case of Dirichlet conditions, and

dFs(Γ,Ψ )(x̂)= ẑ(L1+L2)

+ ẑ
∫
Γ

�
Ws(y)�

(
Ψ (y) · n(y) ∂

∂ny
σ
(
U0(y)

) · n(y)
− σ

(
U0(y)

) · ∇Γ

(
Ψ (y) · n(y)))

�
dsy (65)

if Neumann conditions are prescribed, whereWs := ws − ẑe−iks x̂·y with w the
solution of (63). The value ofL1 andL2 at the tipsP1 andP2, respectively, are the
same as those of the Theorem 4.2 whereK

1(2)
q (Wp) are replaced byK1(2)

q (Ws).

5. Conclusions

The sensitivity analysis performed in this paper shows that in case of problems
in the exterior of a bounded domain the sensitivity of the far field pattern depends
only on the perturbation of the boundary in the normal direction. In case of
problems in the exterior of a curve, the sensitivity depends also on the tangential
perturbation of the end points of the curve. The formulae (40), (41), (46), and (47)
are well suited for a numerical realization by using boundary element methods
because they require only the knowledge of the solution of the original and of
the adjoint exterior Dirichlet or Neumann problem with boundary data given by
traces of plane waves.
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