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Abstract

We consider elastic scattering problems described by the Dirichlet or the Neumann
boundary value problem for the elastodynamic equation in the exterior of a 2D bounded
domain or in the exterior of a crack. The boundary of the domain is assumed to have
a finite set of corner points where the scattered wave may have singular behaviour. The
paper is concerned with the sensitivity of the far scattered field with respect to small
perturbations of the shape of the scatterer. Using a modification of the method of adjoint
problems (K. Dems, Z. Mr6z, Internat. J. Solids Structures 20 (1984) 527-552) we obtain
a representation for the shape derivative which is well suited for a numerical realization
with boundary element methods and which shows in some cases directly the influence of
the singularities of the solution on the sensitivity of the far-field patterns.
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1. Formulation of the problem

The mathematical modelling of the scattering of time-harmonic elastic waves
from an obstacle?;, surrounded by a homogeneous elastic medium with density
p =1 and Lamé parametersand satisfyingi + 2 > 0, andu > 0, leads to
an exterior boundary value problem for the Navier equations

AU+ 02U =pAuU+ A+ VV-U4+0’u=0 in2:=RAL;. (1)

Here, the total elastic wavwe= u’ +u’ is decomposed into a given time-harmonic
incident waveu’ with the frequency» and the unknown scattered wave

Let us assume that the exterior domain= R?\ 2; is of one of the following
two types:

(B) £2; is a bounded domain with a piecewise smooth boundarye denote
by S = {P1,..., Pg} the finite set of boundary points, such thays is
smooth. Furthermore, we assume thatis locally diffeomorphic in the
neighbourhood of every corner poi, to an infinite coneC, with the
opening anglepg ¢ {0, 2r}. The unit normal vecton = (n1,n2) on I' is
directed towards?;.

(C) 2; =TI is a crack, i.e., a piecewise smooth curve with a finite $et
{P1,..., Pg} consisting of two crack tips and of several interior corner
points. The corner points must satisfy the angle cond'tti@gé {0, 27}. The
direction of the unit normal vectar on I is chosen arbitrarily but is fixed
along the crack.

The scattered wave' is requested to satisfy the Dirichlet boundary conditions
u(x)=—u'(x) forxer, (2)
or the Neumann boundary conditions
ThpoW (X) = —ThpoU' (X) forxerI. 3
HereT, denotes the matrix surface traction operator defined by
(Th)i,j == kni(X)% + lmj(X)aixi +udi jVe-nx), i,j=12 (4)
The Neumann boundary conditions can be given in terms of the elastic stress
tensor, namelyf yu = o (U) - n, where

W) 1= 18,9 - u+ pf 2 4 W
0 (D) Ao NCTAY
a Y ” 0x; 0x;

fori, j=1,2.
For crack problems (C) the boundary conditions have to be posed on both sides
of the crack, i.e.,
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uL(x)=—u'(x) forxerl, or

ThaoUWL(X) = —TheoU' (x) forxer, (5)
where

¥ = lim u*(x+£hn), 6

ui (x) hLo+u (X ) (6)

ThpoUL(X) = hlin8+o(us(x + hn)) - n. )

The boundary conditions describe the physical scattering properties of the ob-
stacle: the Dirichlet conditions model a rigid elastic unpenetrable scatterer while
the Neumann conditions model a cavity.

In addition, the scattered fieldf is required to satisfy the Kupradze radiation
condition [13]

aus ) Jus
lim /r ——zk u’ ) =0, lim r| — —ik;u® ) =0,
r—00 p r—00 ar $
r=Ixl, 8

uniformly in all directionsk = x/|x|, whereu® = uj, + ug indicates the Helmholtz
decomposition ofi* into longitudinal or P-wave®, (V x u$, = 0) and transversal

or S-waveu; (V- u; = 0) (see, e.g., [6]). Longitudinal and transversal waves are
solution to the vectorial Helmholtz equation with the wave numbeandk;,

respectively, given by
2 ? 2 w?

K = , .
Poa42u "

In the following, we will consider incident fields elastic plane waunes= ui, +ul
in the form of a linear combination of longitudinal plane waves

i e Oy A ,—ikpx-d
u’, (x; d)=de
and transversal plane waves
ul(x; d) = beiksxd

where the unit vectod € R? denotes the direction of propagation and the unit
vectorb e R?is a polarization vector such thiatL d.

Let B be the open ball with radiuB centred at 0 andg = 9 Bg. It is known
[9,22] that there exists a unique solutiof(x) = u;(x) + uj(x) of the direct
problem (1)—(8), which belongs teH (2 N Bg))® and satisfies the following
identity for large enougi®:

u'(x) = / {[Tag @06 W] U () — B Y) Try U ()} dsy. 9)
Sr
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Here the normal vecton is pointed outward, an@(x,y) is the fundamental
solution tensor to the Navier equations given by

DX, Y) = Hé”(k X —yI)I

+ g Ve @ Vi [HEY (kx —y1) — H (kplx — )]
in terms of the identity matrix and the Hankel functmrﬁi(l) of order zero of the
first kind.

Applying the radiation condition (8) and the asymptotic behaviour of the fun-
damental solutio to the integral identity (9), we obtain the following behaviour
of the scattered wave’ asr — oo and uniformly ink = x/|x| (see [6,8,12]):

w0 = —L +0<i) (10)
P A+2u [Brk, Jr b Jr)

. 0 1 em/4 etkpr]: (F)(X) N 0( 1 ) (11)
s wBrks r Jr

The vector functionsF, (I"), F,(I"), defined on the unit circl§y, are known as

the far-field patterns or the scattering amplitudes of the IongitudinaL@aahd

the transversal pau;, respectively. From the existence and the uniqueness of
the solution of the direct scattering problem follows that the far-field patterns are
uniquely determined by the boundaFy. The far-field patterns are given by the
following integral formulae:

Fp(I)(X) = /{[Tn(y)f( b2 )A(efikpf('y]—rus y)
SR
— %@ ke KRIT 0 Ut (y) ) dsy (12)

and

FD)R) = / ([Tl — %@ Ke %] s )
Sr
— [l =% @Kl *EYT Ut ()} dsy. (13)

We note that the longitudinal far-field patte, is normal toS; whereas the
transversal far-field patterfi; is tangential taS;. Although the boundary of the
domain representing the scattering object is nonsmooth, the integral representa-
tions (11)—(12) show that the far-field patterns are analytic functions.

Our main concern in this work is to study how the perturbation of the do-
main influences the far-field operatofs— F,(I") and I" — F,(I"). This is
performed using the material derivative approach, which is well known in the
form sensitivity analysis of bounded elastic bodies [4,5,20]. We derive formulae



322 M. Bochniak, F. Cakoni / J. Math. Anal. Appl. 272 (2002) 318-334

for the Gateaux derivative of the elastic far-field pattern with respect to an
admissible class of domain perturbations and show that the derivative depends
in fact only on the perturbation of the boundary.

2. Exterior boundary value problemsfor the Navier equations

In this section we formulate the existence and regularity results for solutions
of the exterior boundary value problem

A*U(X) + 0?ux) =f(x) in £, (14)
ux)=g(xx) onI, or (15)
Thpou(X) =h(x) onr, (16)

which satisfy the Kupradze radiation condition (8) at infinity.
To this end we introduce weighted Sobolev spaces which take into account the
singular behaviour of the functions near the singular paijts S and at infinity.

Definition 2.1. Let £2 = R?\£2; with £2; being of type (B) or (C) as defined in
Section 1. We choose for every singular poifjte S a cut-off functionn,
CSO(RZ) with support in a neighbourhood &, and set)jo =1 — ZqQ:l ng. FOr
d € Np, ,5: (B1,...,Bpo) € R we define the spac@é{y(ﬁ) of all generalized
functions which have the finite norm

lellye gi=(1+ IXI2) 7" (0) | a2

I?)
+Z Z ||rqﬂqid+‘p|Dp(’lq”)HLZ(Q)’ 17
q=1|pl<d

wherer, = dist(x, P;). Ford =1,2,..., we denote byvg’l/z(l") the space
of traces onI"\S of functions in Vﬂf’y(fz). Furthermore we seV% ,(82) =

d 2 d _ryd 2
[VB,V(Q)] ande,y(F) _[VE,V(F)] .

The behaviour of the solution of the boundary value problem (14)—(16) in
a neighbourhood of the singular poiR} € S can be described with the help of
solutions of a homogeneous boundary value problem for the Lamé opgraior
the infinite sector with opening ang&tg. It can be shown [11,16] that the set of
all solutions of this homogeneous problem has a basis consisting of the so-called
“power solutions”

I
1
NG [—s.k
Vil o) =rq" ) —(logry)*e; g, (18)
s=0""
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where(r,, ¢,) are polar coordinates with origin if, and{e;": 1< k < mg(e)),

0 <! <« j — 1} is a canonical system of Jordan chains of some linear operator
pencil A, corresponding to the eigenvalug. Heremg(«;) is the geometric
multiplicity of o; and«y, ; is the length of thekth Jordan chain. The spectrum

of A, will be denoted byX' (A,).

Let us definez, := min{ffRa;}, where the minimum is taken over all eigen-
valuesx; of A, with a positive real part. Note that in both Dirichlet and Neumann
casea, > 1/2. Then we denote byg the smallest of, for every singular point
Py €S.

Theorem 2.1 (Existence and regularity resultjetd € Np, y > 1 andE = (B1,
..., Bo) e RZ with

d+1-p8,€(0,a,) forP,eS.

Suppose thdte Vg_y(Q), ge Vé”g/z(l") andh e Vg”/z(l"). Then there exist

a unique solutiou € v4¢+?

5y (£2) of (14)—(16)and the following a priori estimate
is valid:

sz < efiflys @)+ collghy 2, + cN||h||Vg+1/z(r)}. (19)

Here,c is a positive constant,, = 1, cxy = 0in the case of the Dirichlet problem
andcp =0, cy = 1in the case of the Neumann problem.

Proof. With the help of a priori estimates for solutions of boundary value
problems in the exterior of a smooth domain [21] and in bounded domains with
corners [10,11,16], we can prove by means of a partition of unity that

Wlyse2ca) < c{flvs )+ eplighysesnr +enlibllyamse,

+ ||“||vg+l<msk)} (20)
g

with some real constantand some positiv&k. The last norm on the right-hand
side of (20) can be omitted as in [1, Lemma lll, 3.10] because the kernel of the
problem is trivial. In case of a smooth domain Theorem 2.1 reduces to the result
provedin [21]. O

Theorem 2.2 (Asymptotic behaviour near singular pointSuppose thati sat-

isfies the homogeneous elastic Navier equations and homogeneous boundary
conditions in the neighbourhood of the singular pohjte S. Letay, ..., an be

all eigenvalues ofd, with 0 < fier; < 1and letv!:¥ be the corresponding singular
functions defined b{d8). Thenu behaves in the vicinity a?, asymptotically as
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mg(a;) ki, j—1
Kj,k,lvlj’k(rq, ®q) + O(rg), (21)

N
U(rg. ¢g) =
j=1

with KjrieR.

k=1 [=0

Proof. The assertion is a simple application of the results from the theory of
general elliptic problems in domains with corners [10,11,16]. Explicit formulae
for the singular function§; are available in the literature [17].0

3. Domain sensitivity of elastic fields
3.1. Description of the domain perturbation

In order to describe the shape sensitivity of exterior boundary value problems,
i.e., the influence of the shape of the domain on the solution, we introduce a family
of perturbed domaing;,, ¢ € [0, ¢o], as the image of a fixed domain under a
family of diffeomorphisms

(W =1 +ew e [CI2(@)]% e €l0,50]}, deNo. (22)
Thus we have
2 =W (82), I :==w(I), Se 1= We(S)

with S, being the set of singular points df,. Since we are interested in the
perturbation of the bounda®y we can assume that

dR: ¥, (X)=Xx V|X| > R. (23)
We consider the following exterior Dirichlet or Neumann boundary value prob-
lem:

AFUS (Xe) + 02U (%) =0 in &2,

wW(xe)=—u onl., or

Tn) U (Xe) = =TnU'  on Ty, (24)

for the scattered wave! satisfying the radiation condition (8).
3.2. Form sensitivity of the scattered field

LetU, :=ui + nu’, wherey is a cut-off function with support in the vicinity of
the boundary™. We note thatJ, satisfies the Navier equations with a right-hand
side having a compact support and vanishing in the neighbourhodd ehd
satisfies homogeneous boundary conditions (2) or (3). Furthertdpmincides
with u$ outside some neighbourhood Bf.
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The form sensitivity of the vector field, can be described with the help of
the material derivative
_d(Ug o ¥)

U: 25
el (25)

and the shape derivative
U:=U-VUp- . (26)

In order to prove the existence of these derivatives we transform the problem (24)
into the reference configuration by means of a change of variabtes?, (x) and
obtain a boundary value problem for the transformed figle ¥, :

A% (Up 0 W) + 02(U; 0 W) = A*¥ (nU o ¥,) + 0?(quf o ¥,)  in £2,

(Ugo¥,)=0 onI, or

TESO%(US o¥,)=0 onr.

Here, the operatora** andT¢ have variable coefficients which depend smoothly
on the perturbation parameterTherefore we can apply the theory of regularly
perturbed partial differential equations (see, e.g., [15, Section 5.5]) and show that
(Ug 0 &) (X) depends smoothly as

(U 0 ) (%) = Uo(x) + eU(X) + O (c?). (27)

In fact, using the a priori estimate (19) one can prove the following theorem
(see [3] for a detailed proof in case of acoustic scattering).

Theorem 3.1. Letd € Ny andE € R€ be defined as in Theorethl Then the
following estimate is valid
IUe 0 ¥ — Uo — eUllyarz ) < & (28)
By

with a positive real constarit

The existence and the regularity of the shape derivafivéllows directly
from the definition (26) of)’ and the preceding theorem.

Corallary 3.1. Let the assumptions of Theor&1l be satisfied. Then the shape
derivativeU’ exists inV%“;l(.Q).

According to[14,18,19] the shape derivatiyesatisfies the radiation condition
(8) at infinity and solves the following exterior boundary value problem:
AU +0?U =0 ing,
aUp

U/:—w-na—n onl, or

d
TV =—w. n%o(uo) -Nn+oUo)-Vr(¥-n) onrl, (29)
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where Vr f is the tangential gradient given by f =V f — (n- Vf)n and
(8/0n)o (u) is the matrix consisting of the normal derivatives of all components
of the stress tensor.

Remember that in case of cracks, the boundary condition must be imposed on
both sides of the crack as in (5).

3.3. Form sensitivity of the far field pattern

Let £2 be an exterior domain of type (B) or (C). The perturbed scattered
wave uf has at infinity the asymptotics (10), (11) with the far field pattern
F(I) = (Fp(Ie), Fs(Ie)) given by an analogue of formulae (11), (12) with only
the change ofi* to u$. Let us calculate the Gateaux derivative

FWe(IN) —FU) _dFTY)

dF(I,¥) = lim . (30)
£—>00 & de £=0
For big enougR = |x| we have¥;|s, = I anduf|s, = U o ¥|s,. Thus
Fp(Te)(X) = /{[Tn<y>f< ® ?e_ik”k'y]T(Ua o ¥ )(y)
SR
— %@ Re YT (Ug 0 W) ()} dsy. (31)

with a similar formula fotF (I;). Differentiating both sides of the above equation
by ¢ and takings = 0 we obtain immediately

dF,(I)(X) = / {[Tagk ®%e Y] TU(y)
Sr

— %@ ke *RYT L U(y) ) dsy. (32)

SinceU(x) = U'(x) for big enoughx|, we get

dF(M)R) = / ([Tog& ® ke~ %3] U )
SR
— X @Rk ¥ Ty U ()} dsy (33)
and
A1) () = / ([Toll - @ Kle 5] U (y)
SR
—[I =% @Kle " *XYT o U/ (y) )} dsy. (34)

The representations (32), (33) are not well suited for a numerical realization
becaus&)’, in general, cannot be defined as a variational solution of the boundary
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value problem (29). The asymptotic analysis (Theorem 2.2) shows that the
solutionUg behaves near the singular poifise S as|x — P, |% with a, > 1/2.
ThereforelUg € H119(£2), VU € H%(£2) and consequently’ € H%(£2) due

to (26). If the domain is not convex then we haxe< 1 and thud)’ ¢ H1(2).
Thereforel’ cannot be computed in general by solving (29) numerically with the
help of standard boundary element or finite element methods. Furthermore, we
are interested in an expression for the derivative of the far field patterns depending
only on the perturbation of the boundary.

In order to overcome this difficulty, we derive in the next section from (32) and
(33) another representations for batlf,(I", ¥)(X), dF(I", ¥)(X), which are
better suited for a numerical realization. We use the method of adjoint problems
[2,3,7], which consists in applying the Betti's formulae to the shape derivétive
and to the solutionv of an appropriately defined adjoint problem. This leads to
an expression in which onlyg and the adjoint fieldv appear.

4. Themethod of adjoint problems
4.1. Exterior of a bounded domain

Let us assume first tha? is the exterior of a bounded domain and consider the
longitudinal far-field patterr#,. We definew, as the solution of the following
mixed boundary value problem:

AWy (Y) + 0*W,(y) =0 in 2,
Wy(y) = ge k%Y onr, or
ThyyWp(y) = Tn(y)ﬁe_ik"*'y onT,

which satisfies the Kupradze radiation condition (8) at infinity. We remark that the
adjoint field is the scattered field produced by a longitudinal incident plane wave
propagating in the observation directikn

Using Betti's formula fol” andw in the domainBz N Bg N £2 with R’ > R,
passing to the limit a®’ — +oco and taking into account that’, w satisfy (8)
we obtain

0=xX / Wy ) T Ty U'(y) — U () T Ty Wy (y) ] dsy. (35)
SR

Summing up the expressions (35) and (33) we get

dF,(F, ¥)(X) =K / W, T TagyU' () = U ) " TryW ()] dsy,
Sr
(36)



328 M. Bochniak, F. Cakoni / J. Math. Anal. Appl. 272 (2002) 318-334

with W, (y) :==w,(y) — %e~ikr*Y Note that the normal vectoron Sy, is directed
outwards.

Let Bs(P,) be a ball with centre irP, and radiuss. Inserting agait” andwW
into Betti’s formula ins2 N Bg N UqQ:l Bs(P,), we obtain from (36)

dF, (I, ¥)(X)
—% / (U TryW () — W o) TryU' ()] dsy
F\ UqQ=1 B(S(Pq)
L% f [U' ) TryW () — W) Ty U' )] dsy.
Uqul 3Bs(P)NS
(37)
Let us pass to the limit as— 0 on both sides of (37) and rewrite it as
dF, ([, ¥)(X) =R / (VD) TagyW () =W, () " Tagy)U'(v)]dsy
r
#xlim [ U0 T W) = W) Tag U )] dsy.
U;*)=1335(Pq)ﬁ.f2

(38)
In the following, we denote by,

L= fim) / [U®)  TagWp ) =W, Tagy)U' ()] dsy. (39)
9Bs(Py)NS2

Substituting the boundary valuesdf andW into the first integral in (38), we
obtain the following expression for the far-field derivative:

. aUo(y)T L
d]-"p(F, ) (X) :—X/W(y) -n(y) an Tn(y)Wp(y)dsy—}-X E Lq
y _
r g=1

(40)
if the Dirichlet problem is considered, and

0
dF,(I )R =Y Ly
q=1

n 0
+X / Wp<y>T[W<y> )5 =0 (Vo) - n(y)
Yy
r
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—o(Uo(y)) - Vr (&) - n(y))} dsy (41)

if the Neumann problem is considered.
In order to justify the passage to the limit in (37) we have to investigate the
behaviour of the integrand @s— O for every singular poinP, € S.

Theorem 4.1. Let 2 be the exterior of a bounded domain. Thiep= 0.

Proof. According to Theorem 2.2, the functionidy and W, behave in the
neighbourhood oP, as

Uo(X) = O(r“), W, (X) = O(r). (42)
Consequently)’(x) = 0 (r%~1) due to (26) and so the integrand of (39) behaves
as O (r?4~2). Sincea, > 1/2 for ¢Q < 2r, then 2, — 2 > —1, which implies
thatL, =0. O

Next we consider the far field of the transversal wave. We start with the
representation (33) fod Fs(I"). Sincel — X ® X =2 ® 2, wherez is a unit
vector perpendicular to the direction of observatignwe naturally define the
corresponding adjoint field;; as the solution of the following exterior boundary
value problem:

AW, (Y) + oW (y) =0 in £,

Wi (y) =2 %*Y onr, or

Tn(y)Ws W)= Tn(y)ie‘”“f"y onrl,
with 2 | X and satisfying the Kupradze radiation condition (8) at infinity. Hence
in this case the adjoint field is the scattered field produced by a shear plane wave
propagating in the observation directi®mnd polarized in the directich

Now, by repeating the above calculations &F;(1") given by (34),U’ and

W :=w, — 2¢~*%*Y and noting that the Theorem 4.1 remains valid in this case,
we obtain the following formula for the shape derivative of the transversal far
field:
dUo(y) "

TTn(y)Ws (V) dsy (43)
Ny

A& =2 [ W) n)
r
if the Dirichlet problem is considered, and

N o d
dF(F, W) (%) =2 / ws<y>T[W<y> NY) 5= (Vo) - n(y)
Yy
r

—o(Uoy)) - Vr(¥(y) - n(y))} dsy (44)

if the Neumann problem is considered.
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4.2. Exterior domains with cracks

The above considerations along with formula (37) can be repeated with some
obvious changes for problems in the exterior of a crack. The longitudinal adjoint
scattered wave is defined as the solution of the following boundary value problem
in the exterior of the curve:

AW, (Y) + 0®W,(y) =0 ing2,
W, (y) =%e %Y onr, or
Tn(y)Wp:I: W) = Tn(y)f(e_ik”f('y onrl, (45)

satisfying the Kupradze radiation condition at infinity.
Formulae (40), (41) read now

. . Uo(y)T
dFp(I,¥)(X) = —X/ v (y) - n(y) H%Tn(y)wp(y)ﬂ dsy
y
r
0
+R) Ly (46)
q=1

in case of Dirichlet conditions, and

0
dF,(I )R =X)Ly
g=1
) . 3
+8 / W, (¥ 1) =—0 (Vo) -ny)
y
r

—o(Uoy)) - Vr(¥y) - n(y)))u dsy (47)

if Neumann conditions are prescribed. Hdrédenotes the jump across the crack,
Uo := Ucle=0, andW , := w,, — 2e~*4%¥ with w,, the solution of (45).

The limits L, can be calculated similar as for problems in the exterior of a
bounded domain. I, is an interior corner of the crack, we are exactly in the
situation of Theorem 4.1 and therefokg = 0. Once the tips of the crack are
considered, a more detailed asymptotic analysis has to be employed since the
elastic displacement field assumes higher singularity near the crack tips.

Let P;, g =1, 2, be the tips of the crack. It is known (see, e.g., [16]) that

Z(Ayp ={j/2: j e Z\{0}}
for Dirichlet boundary conditions, and
(A =1{j/2: j €2}
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for Neumann boundary conditions. Therefore the singular decomposition (21) of
the solutiondJg andW , near the tipP, takes the form

Uo(ry. ¢q) = [K7(Uo)P1(¢g) + K2 (U0)D2(py) [r/? + O(ry). (48)

W (rg. 0g) = [KJ(W ) P1(0g) + KZW ) P2(0)|r/2 + O(ry),  (49)
where®1, &, have the following form:

T —(2¢ — 1) coq3¢,) + (2 — 1) cog}

oripy=| 2T ngw") (e e szw")} (50)
L (2 —D)sin(3¢,) — (2 + D sin(5¢q)
M —(2¢ 4+ Dsin(3¢,) + (2 — 1) sin(3

D2(g) = (z2) e (51)
[ —(2¢ + 1) coq3¢4) + (2¢ + 1) cog59,)

for the Dirichlet crack, and

r 3co3¢,) + (2« — 1) coq 3

@Dl(@q) = .izépq) .izl(pq) :| ’ (52)
L —3sin(3¢,) — (2 + D sin(3¢4)
rsin(3g,) 4 (2 — 1) sin(3

gy = SN D) | 539
L cog(3¢4) + (2 + 1) cog(5¢,)

for the Neumann crack. Here is a material constant given by= (A + 3u)/

A+ ).
Let us denote by, (P,) and¥;(P,) the normal and the tangential component
of the perturbation at the crack ti,, respectively.

Theorem 4.2. Letg = 1, 2. Then we have

Ly =(Kj(Uo)Kj(W,) + KZ(Uo)KZ(W,))
y —16m (A + 3u) (A + 2u)
(A + )2

+ (K (Uo)KZ(W ) + KZ(Uo) K (W )

Vi (Py)

—16m (A + 2u)
—— Y (Py)
A+w

in case of Dirichlet conditions, and

167 (A + 21)

r+w
—16mu(r +2p)

A+

Ly = (K U)K IW ) + K2(Uo)KZW ) . (P,)

+ (KU KZW ) + K2 (U)K J(W ) W, (Py)

for Neumann conditions.

Proof. We use (26) by means of (48) to expra$sin terms of stress intensity
factors of the unperturbed fieIH[}(Uo), qu(Uo) and the perturbation of the tip
¥, (P,), ¥ (P,). Hence, we obtain the following asymptotics fdf:
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Uty 00) =rg [ (K HU0 B (9g) + K2U0) B2 (0)) ¥4 (Py)

+ (KLU0 Buu(py) + K2U0) 21 (0)) 91 (Py) |

+O0(r 1/2), (54)
with
1T (2 +1)co 2« + 1) cog 2
®1z(¢q)——[ (@ cod39,) = (26 + 1) e 30) } (55)
2| —(2c —1)sin( 2<pq) + (2 +1) sm(2<p )
~ 2 1 2« —1
o (0g) = 1_ [( k + 1) sin zgoq) (2« )sm 2g0 ):| (56)
2 (2 -1 Cos(zgoq) (2« = 1) Cos(zgoq)
2¢+1 2 —3
q>1n<<oq)—3[( +Dsinzyy) + (@ - 3ysin 2%)} (57)
2| (2 — 1y cog3g,) + (2 — 3)cog3g,)
—(2 1 3 2 3
¢>2n(g0q) 1[ (2¢ + )Cos(zgoq) (2¢ + )Cos(zgoq :| (58)
¢ — 1) sm(2<pq) + 2k +3) sm(§<pq)
for the Dirichlet crack, and
2« +1)co + co
Biy(p) = [ ( ) cog3¢,) {3%4) } (59)
(2 — 1) sm(2<pq) Sln(§¢q)
- 2 + 1) sin(3 3sin(3
Faop =5 o sled) + 3"1(2‘0")} (60)
(2c — 1) cog3,) +3cog3¢,)
2c+1 5 5
F1a(0g) = [( +Dsin(Ge,) ~Ssinz0,) } 61)
(2¢ — 1) cos(2<pq) 5cos(2<pq
2 1 E
T =3| o 2ot 300) - COS(Z‘”")} (62
(2 — D sin(3¢,) + sin(3¢,)

for the Neumann crack.

Finally, we insert the expressions (54), (49) for bothandW ,,, respectively,
into the integral (39). Then, straightforward calculations give the assertions of the
theorem. O

Finally, the same considerations can be repeated for the shape derivative of the
shear far field! F; (I') if the adjoint field is defined by

A*Ws(Y) + 0®Ws(y) =0 in 2,
Wi (y) = 2e %Y onr, or
Thy)Ws=(Y) = They) 2¢~Hkr%Y  on I, (63)

satisfying the Kupradze radiation condition at infinity. In this case we have
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aUo(y)

any ThyyWs (Y)ﬂ dsy

A, (IF W) () = 2 / v (y)-n(y) |[
I

+2(L1+ Lo) (64)

in case of Dirichlet conditions, and

dF (I, ¥)(X) =2(L1+ L)

) 9
+2 / [|Ws(y)T <W(y) )5 =0 (Vo) - ny)
Yy

r

—o(Uoy)) - Vr(¥y) - n(y)))u dsy (65)

if Neumann conditions are prescribed, whivg := w, — 7o~ k%Y with w the
solution of (63). The value df; andL» at the tipsP; and P», respectively, are the
same as those of the Theorem 4.2 whfé” (W ) are replaced b ;*? (W).

5. Conclusions

The sensitivity analysis performed in this paper shows that in case of problems
in the exterior of a bounded domain the sensitivity of the far field pattern depends
only on the perturbation of the boundary in the normal direction. In case of
problems in the exterior of a curve, the sensitivity depends also on the tangential
perturbation of the end points of the curve. The formulae (40), (41), (46), and (47)
are well suited for a numerical realization by using boundary element methods
because they require only the knowledge of the solution of the original and of
the adjoint exterior Dirichlet or Neumann problem with boundary data given by
traces of plane waves.
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