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Abstract
In this paper we develop a general mathematical framework to determine 
interior eigenvalues from a knowledge of the modified far field operator 
associated with an unknown (anisotropic) inhomogeneity. The modified far 
field operator is obtained by subtracting from the measured far field operator 
the computed far field operator corresponding to a well-posed scattering 
problem depending on one (possibly complex) parameter. Injectivity of this 
modified far field operator is related to an appropriate eigenvalue problem 
whose eigenvalues can be determined from the scattering data, and thus 
can be used to obtain information about material properties of the unknown 
inhomogeneity. We discuss here two examples of such modification leading to 
a Steklov eigenvalue problem, and a new type of the transmission eigenvalue 
problem. We present some numerical examples demonstrating the viability of 
our method for determining the interior eigenvalues form far field data.

Keywords: inverse scattering, inhomogenous media, generalized linear 
sampling method, Steklov eigenvalues, transmission eigenvalues
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1. Introduction

Spectral properties of operators associated with scattering problems provide essential infor-
mation about scattering objects. However, the main question is whether such spectral features 
can be seen in the scattering data. As an example, the resonances (or scattering poles) consti-
tute a fundamental part of scattering theory and their study has led to beautiful mathematics 
and has shed light into deeper understanding of direct and inverse scattering phenomena [21, 
23]. But because the resonances are complex, it is difficult to determine them from scatter-
ing data unless they are near the real axis, which limits their use in inverse scattering. Hence 
now the question becomes, whether there are other sets of eigenvalues associated with the 
scattering problem which can be determined from corresponding scattering data. To be more 
specific, let us first introduce the scattering problem we consider here.

Suppose D is a bounded domain in Rm, m = 2, 3, with a piecewise smooth boundary ∂D 
and having connected complement. The forward scattering problem we shall consider cor-
responds to the scattering by an anisotropic inhomogeneity supported in D for acoustic waves 
(m = 3) or specially polarized electromagnetic waves (m = 2). In this case, the total field u 
and the scattered field us satisfy

∇ · A∇u + k2nu = 0 in D

∆us + k2us = 0 in Rm \ D

u − us = ui on ∂D

∂u
∂νA

− ∂us

∂ν
=

∂ui

∂ν
on ∂D

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0

 

(1)

where ∂u
∂νA

:= ν · A∇u, the incident field ui := eikx·d  is a plane wave and the Sommerfeld 
radiation condition is satisfied uniformly with respect to x̂ := x/|x|, r = |x|. Here k > 0 is the 
wave number proportional to the interrogating frequency, A is a m × m symmetric matrix with 
L∞(D)-entries such that

ξ · �(A)ξ � γ|ξ|2 and ξ · �(A)ξ � 0 for all ξ ∈ Cm, a.e. x ∈ D,

and some constant γ > 0, and n ∈ L∞(D) such that �(n) � n0 > 0 and �(n) � 0. The far 
field pattern u∞ of the scattered field us is defined via the following asymptotic expansion of 
the scattered field

us(x) =
exp(ikr)

r
m−1

2

u∞(x̂, d) + O
(

1

r
m+1

2

)
, r → ∞

where x̂ = x/|x| (see [5, 12]). Letting S := {x : |x| = 1} denote the unit sphere, we assume 
that we know u∞(x̂, d), x̂ ∈ S, for all incident directions d ∈ S, and define the far field opera-
tor F : L2(S) → L2(S) by

(Fg)(x̂) :=
∫

S
u∞(x̂, d)g(d) ds(d). (2)

We recall that

Fg := u∞
g (3)

L Audibert et alInverse Problems 33 (2017) 125011
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where u∞
g  is the far field pattern of the scattered field us

g corresponding to (1) with ui := vg 
where vg is the Herglotz wave function defined by

vg(x) :=
∫

S
eikx·d g(d) ds(d). (4)

Note that the far field operator F is related to the scattering operator S  by S = I + ik
2πF  in R3 

and by S = I + ik√
2πk

F  in R2. It is well-known (see e.g. [5]) that the study of injectivity of F 
brings to discussion the transmission eigenvalues, i.e. the values of k ∈ C such that

∇ · A∇w + k2nw = 0 in D

∆v + k2v = 0 in D

w = v on ∂D
∂w
∂νA

=
∂u
∂ν

on ∂D,

 (5)

has a nontrivial solution. Under appropriate assumptions on A and n, infinitely many transmis-
sion eigenvalues exists, in the case when �(A) �= 0 or �(n) �= 0 in D all of them are complex 
(with nonzero imaginary part), and if both A and n are real (i.e. no absorption) there exist an 
infinite set of real eigenvalues (see [5]). The real transmission eigenvalues can be determined 
from the far field operator F [1, 7, 18, 20]. On the other hand the monotonicity results for real 
transmission eigenvalues proven in [8] open the possibility to use transmission eigenvalues to 
obtain information on the constitutive material properties A and/or n of the scattering medium 
[9, 13, 14, 22, 24]. Although real transmission eigenvalues are physical quantities and provide 
systematic quantitative information on the scattering media, their use in nondestructive testing 
has two major drawbacks. The first drawback is that in general only the first few transmission 
eigenvalues can be accurately determined from the measured data and the determination of 
these eigenvalue means that the frequency of the interrogating wave must be varied in a fre-
quency range around these eigenvalues. In particular, multifrequency data must be used in an 
a priori determined frequency range, and since the first few transmission eigenvalues (which 
can be determined accurately) are determined by the material properties of the scatterer, one 
cannot choose the range of interrogating frequencies. The second drawback is that only real 
transmission eigenvalues can be determined from the measured scattering data which means 
that transmission eigenvalues cannot be used for the nondestructive testing of inhomogeneous 
absorbing media.

To deal with the above shortcomings of the use of transmission eigenvalues in non-
destructive testing, in [6] the authors introduced the idea of modifying the far field opera-
tor by subtracting from the far field operator F (13) for a fixed wave number k, the far field 
operator corresponding to the scattering by an impedance obstacle containing D with con-
stant impedance λ ∈ C. Then the study of the injectivity of this modified far field operator 
yield a Steklov eigenvalue problem for λ instead of the transmission eigenvalue problem. 
In [6], it was then shown following [7] that these (possibly complex) Steklov eigenvalues 
can be determined from the scattering data. The modification of the far field operator is not 
limited to the aforementioned case. In general, one could consider a one parametric family 
(let λ denote this parameter) of appropriately defined scattering problems with Fλ

b  the corre-
sponding far field operator (which can be pre-computed). Then the modified far field operator 
F : L2(S) → L2(S) is defined by

Fg = Fg − Fλ
b g, g ∈ L2(S). (6)

L Audibert et alInverse Problems 33 (2017) 125011
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This modification process can be seen as (mathematically) changing the background where 
the unknown inhomogeneneity is embedded, since Fg is the far field pattern corresponding to 
the scattering field by the inhomogeneous media due to vg − us

λ,g as incident field, where us
λ,g 

is the scattered field of the introduced scattering problem due to vg as incident field. Injectivity 
of F  gives rise to an eigenvalue problem for λ. Note that the interrogating wave number k is 
fixed and the eigenvalue parameter λ is not physical, hence can be complex, which allows for 
applying these ideas to nondestructive testing of absorbing media. Also Fλ

b  has nothing to do 
with the physical scattering problem, and therefore can be pre-computed and stored. One of 
the goals of the current paper is to provide a general rigorous framework to determine these 
eigenvalues λ from a knowledge of the modified far field operator F . Our approach is devel-
oped within the framework of the generalized linear sampling method introduced in [1, 2], 
and as oppose to [7], provides a criterion independent of the (possibly unknown) support D 
and is mathematically justified for noisy data. We shall consider two different possibilities for 
the construction of Fλ

b , the one introduced in [6] in the isotropic case leading to the so-called 
Steklov eignevalue problem, and the another one based on the artificial scattering problem for 
inhomogeneous metamaterial media. The latter is related to the one discussed in [11], but here 
we use different sign combination for the parameters. Considering a metamaterial artificial 
background leads to an eigenvalue problem that has similar structure as the Steklov eignevalue 
problem.

The organization of the paper is as follows. In the next section we revisit the modifica-
tion used in [6] and provide some new theoretical results on the related Steklov eigenvalues 
which can be used in obtaining information on A and n. In section 3 we set up the mathemati-
cal framework to apply our approach for the determination of Steklov eigenvalues from the 
scattering data. The latter is based on a slightly modified version of the generalized linear 
sampling method that we present in appendix. Finally, in section 4 we introduce and study 
(following the lines of section 2) the new type of transmission eigenvalue problem related to 
metamaterial artificial background and show how our approach can be applied to determine 
the related eigenvalues. We finally provide some preliminary numerical examples for this new 
eigenvalue problem.

We end this section with a short discussion on the scattering problem (1), recalling some 
results from [5] for later use. It is convenient to rewrite (1) in terms of the scattered field since 
this way we can define the scattering problem for a larger class of incident waves. In par-
ticular, for ϕ ∈ L2(D)3 and ψ ∈ L2(D) we define the unique function ws ∈ H1

loc(R3) satisfying

∇ · A∇ws + k2nws = ∇ · (I − A)ϕ+ k2(1 − n)ψ in Rm,

limr→∞ r
m−1

2

(
∂ws

∂r − ikws
)
= 0. 

(7)

Hence if ψ(x) = eikx·d and ϕ(x) = ∇eikx·d, then ws = us(·, d) and the far field pattern w∞ of 
ws coincides with u∞(·, d), where us(·, d) and u∞(·, d) are the scattered field solving (1) and 
the corresponding, far field respectively. Furthermore, we have that Fg := w∞

g , with w∞
g  being 

the far field pattern of ws
g satisfying (7) with ψ := vg, ϕ := ∇vg, where vg is the wave Herglotz 

function (4). Now, let H : L2(S) → L2(D)× L2(D) be defined by

Hg = (∇vg|D, vg|D) (8)

and H∗ : L2(D)× L2(D) → L2(S) be its L2-adjoint which takes the form

H∗(ϕ,ψ) :=
∫

D
(−ikx̂ · ϕ(y) + ψ(y))e−ikx̂·y dy. (9)

L Audibert et alInverse Problems 33 (2017) 125011
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Then the far field operator F assumes the following factorization

Fg = H∗TH. (10)

Here T : L2(D)× L2(D) → L2(D)× L2(D) is defined by

T(ϕ,ψ) := −γ
(
(A − I)(ϕ+∇ws), k2(1 − n)(ψ + ws)

)
 (11)

where ws is the solution of (7) for the given (ϕ,ψ), and γ := k2/4π for m = 3 and 
γ := eiπ/4

√
8πk  for m = 2.

2. Steklov eigenvalues

In this section we give an example of the modified far field operator (6) which gives rise 
to Steklov eigenvalues instead of the transmission eigenvalues. This modification was first 
introduced in [6] for the case when A = I . More specifically, we consider the bounded region 
Db ⊂ Rm with a piece-wise smooth boundary ∂Db and connected complement such that 
D ⊆ Db and introduce the scattering problem of finding ub ∈ H1

loc(Rm \ Db) such that

∆ub + k2ub = 0 in Rm \ Db

ub = us
b + ui

∂ub
∂ν + λub = 0 on ∂Db

limr→∞ r
m−1

2

(
∂us

b
∂r − ikus

b

)
= 0,

 (12)

where the incident wave ui(x) := eikx·d  is a plane wave. This problem is well-posed as long as 
λ ∈ C and �(λ) � 0. Let u∞

b (x̂, d) denote the far field pattern corresponding to us
b. The corre-

sponding far field operator Fλ
b : L2(S) → L2(S) is given by

(Fλ
b g)(x̂) :=

∫

S
u∞

b (x̂, d)g(d) ds(d). (13)

Note that Fλ
b g = u∞

b,g is the far field pattern of the radiating solution us
b,g solving (12) with 

incident wave ui := vg, where vg is the wave Herglotz function (4).
Now we define the modified far field operator F : L2(S) → L2(S) by

Fg = Fg − Fλ
b g. (14)

To see how the Steklov eigenvalue problem appears, we investigate the injectivity of F . In 
particular, Fg = 0 means that u∞

g (x̂) = u∞b,g(x̂), x̂ ∈ S and by Rellich’s lemma and unique 
continuation principle, ug(x) = ub,g(x) for all x ∈ Rm \ Db. Hence using the boundary con-
dition for ub,g on ∂Db and continuity of the Cauchy data for ug across ∂Db, we obtain that 
w := ug|Db satisfies the boundary value problem

∇ · A∇w + k2nw = 0 in Db (15)

∂w
∂νA

+ λw = 0 on ∂Db. (16)

where A = I  and n = 1 in Db \ D. The solution of (15) and (16) will be identically zero 
unless λ is a Steklov eigenvalue λ ∈ C for (15) and (16), thus implying that ug = 0 and hence 
ws

g = vg which happens only if g = 0 (one field is radiating the other entire solution of the 
Helmholtz equation). Thus if λ is not a Steklov eigenvalues, the modified far field operator F  
is injective. Recall that in this context the Steklov eigenvalues λ in connection with F  appear 

L Audibert et alInverse Problems 33 (2017) 125011
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in the same way as transmission eigenvalues k in connection with F. Hence the question of 
interest in the next section is to determine these Steklov eigenvalues from a knowledge of (14), 
and we will do so using the framework of the generalized linear sampling method developed 
in [1, 2].

The above Steklov eigenvalues λ otherwise are the eigenvalues of the Dirichlet-to-Neuman 
operator corresponding to the equation (15). In the case when �(A) = 0 and �(n) = 0 the 
Steklov eigenvalue problem (15) and (16) is a selfadjoint eigenvalue problem for a compact 
operator. Obviously, if �(A) < 0 or/and �(n) > 0 it is not selfadjoint any longer and all the 
Steklov eigenvalues are complex (their existence is proven e.g. in [6] for A = I .) In the fol-
lowing we further explore the case when (15) and (16) is selfadjoint with the goal to obtain 
more explicit relations between Steklov eigenvalues and material properties A, n. To this end, 
we assume that �(A) = 0 and �(n) = 0 in Db and denote by

amin := inf
Db

inf
|ξ|=1

ξ · Aξ > 0 and amax := sup
Db

sup
|ξ|=1

ξ · Aξ

nmin := inf
Db

(n) > 0 and nmax := sup
Db

(n) < ∞.
 (17)

The eigenvalue problem (15) and (16) can be written as
∫

Db

∇w · A∇w′ dx − k2
∫

Db

n ww′ dx = −λ

∫

∂Db

ww′ ds for all w′ ∈ H1(Db).

 

(18)

If k2 is not a Robin eigenvalue, i.e. eigenvalue of

∇ · A∇w + k2nw = 0 in Db,
∂w
∂ν

+ αw = 0 on ∂Db, (19)

where 0 � α is fixed ((α = 0) corresponds to Neumann eigenvalue) we define the interior 
selfadjoint Robin-to-Dirichet operator R : L2(∂Db) → L2(∂Db) mapping

R : θ �→ wθ|∂Db

where wθ ∈ H1(D) is the unique solution to
∫

Db

A∇wθ · ∇w′ dx + α

∫

∂Db

wθw′ − k2
∫

Db

n wθw′ dx =

∫

∂Db

θw′ ds, for all w′ ∈ H1(Db).

The fact that wθ|∂Db ∈ H1/2(∂Db) implies that R : L2(∂Db) → L2(∂Db) is compact. Then λ is 
a Steklov eigenvalue if and only if

(−λ+ α)Rθ = θ.

Note that from the analytic Fredholm theory [12], a given k2 can not be Robin eigenvalue for 
all α � 0. Thus, choosing α appropriately we have proven that for any fixed wave number 
k > 0, there exists an infinite set of Steklov eigenvalues, all the eigenvalues λj are real with-
out finite accumulation point. In the following lemma we actually show that they accumulate 
only at −∞. To this end, let (·, ·) denote the L2(Db)-inner product and 〈·, ·〉 the L2(∂Db)-inner 
product.

Assumption 1. The wave number k > 0 is such that η := k2 is not a Dirichlet eigenvalue 
of the problem, w ∈ H1(Db),

∇ · A∇w + ηnw = 0 in Db, w = 0 on ∂Db. (20)

L Audibert et alInverse Problems 33 (2017) 125011
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Theorem 1. For real valued A and n and fixed k > 0 there exists at least one positive Stek-
lov eigenvalue. If in addition k > 0 satisfies assumption 1, then there are at most finitely many 
positive Steklov eigenvalues.

Proof. We assume to the contrary that all eigenvalues λj � 0. This means that
∫

Db

∇w · A∇w dx − k2
∫

Db

n |w|2 ds � 0

for all w ∈ H1(Db) since the Steklov eigenfunctions form a Riesz basis for H1(Db). Now tak-
ing w = 1 yields a contradiction which proves the first statement.

Next we assume by contradiction that there exists a sequence of positive Steklov eigenval-
ues λj > 0, j ∈ N converging to +∞ with eigenfunction wj normalized such that

‖wj‖H1(Db) + ‖wj‖L2(∂Db) = 1. (21)

Then from

(A∇wj,∇wj)− k2 (nwj, wj) = −λj 〈wj, wj〉 (22)

since the left hand side is bounded we obtain that wj → 0 in L2(∂Db). Next, up to a subse-
quence wj converges weakly in H1(Db) to some w ∈ H1(Db) and this weak limit satisfies 
∇ · A∇w + k2nw = 0 in Db and and from the above w = 0 on ∂Db. Therefore, using assump-
tion 1, w = 0 in Db. Hence, up to a subsequence, wj → 0 in L2(Db) (strongly). From (22)

(A∇wj,∇wj)− k2 (nwj, wj) < 0, for all j ∈ N

and since the left hand side is a bounded real sequence, we can conclude that up to a subse-
quence

(A∇wj,∇wj) → 0, as j → ∞

which implies that ‖∇wj‖L2(Db) → 0 in addition to ‖wj‖L2(∂Db) → 0. This contradicts (21). □ 

For the existence of Steklov eigenvalues for complex valued C∞ coefficient n(x) and 
A = I  see [6]. The approach there can be easily generalized to the case of A �= I  with C∞ 
coefficients (see also [25]).

We let τ0 := τ0(Db,α), for 0 < α < ∞ be the first Robin eigenvalue of

∆u + τu = 0 in Db,
∂u
∂ν

+ αu = 0 on ∂Db, (23)

τ0 = inf
u∈H1(Db),u �=0

(∇u,∇u) + α 〈u, u〉
(w, w)

. (24)

(Note that the ball B with the same volume as Db and a particular constant α minimizes 
τ0(Db,α), see [16].) Next we will try to choose a positive constant Λ > 0, such that
∫

Db

∇w · A∇w dx − k2
∫

Db

n |w|2 dx + Λ

∫

∂Db

|w|2 ds � c‖w‖2
H1(Db)

, c > 0.

 (25)
Indeed, using (24)

L Audibert et alInverse Problems 33 (2017) 125011
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∫

Db

∇w · A∇w dx − k2
∫

Db

n |w|2 dx + Λ

∫

∂Db

|w|2 ds

�

(
amin −

k2nmax

τ0

)∫

Db

|∇w|2dx +
(
Λ− k2nmax

τ0
α

)∫

∂Db

|w|2 ds

we can find such a Λ assuming that τ0amin − k2nmax > 0. Hence in this case our eigenvalue 
problem, which can be written as
∫

Db

∇w · A∇w′ dx − k2
∫

Db

n ww′ dx + Λ

∫

∂Db

ww′ ds = −(λ− Λ)

∫

∂Db

ww′ ds.

 

(26)

becomes a generalized eigenvalue problem for a positive selfadjoint compact operator and 
hence the eigenvalues Λ− λ > 0 satisfy the Courant-Fischer inf-sup principle (see e.g. 
chapter 4 in [5]). In particular, if τ0amin − k2nmax > 0 the largest positive Steklov eigenvalue 
λ1 = λ1(A, n, k) satisfies

λ1 = sup
w∈H1(Db),w �=0

k2
∫

Db
n |w|2 dx −

∫
Db

∇w · A∇w dx∫
∂Db

|w|2 ds
, (27)

whence it depends monotonically increasing with respect n and monotonically decreasing 
with respect to A. We obtain here a conditional monotonicity property for the largest positive 
Steklov eigenvalue. In the following theorem we give the optimal condition on A, n and k 
which ensure the coercivity property (25), whence the sup-condition (27).

Theorem 2. Assume that k2 < η0(A, n, Db), where η0(A, n, Db) is the first Dirichlet eigen-
value of (20). Then there is a Λ > 0 such that (25) holds. In particular, the largest positive 
Steklov eigenvalue satisfies (27).

Proof. Fix k2 < η0(A, n, Db) and assume to the contrary that there exists a sequence of 
positive constants Λj = j, j ∈ N, and a sequence of functions wj ∈ H1(Db) normalized as 
‖wj‖H1(Db) = 1 such that

∫

Db

∇wj · A∇wj dx − k2
∫

Db

n |wj|2 dx + j
∫

∂Db

|wj|2 ds � 0. (28)

From
∫

Db

∇wj · A∇wj dx + j
∫

∂Db

|wj|2 ds � k2
∫

Db

n |wj|2 dx

we see that j
∫
∂Db

|wj|2 ds is bounded which implies that wj → 0 strongly in L2(∂Db) as 
j → +∞. On the other hand the boundedness implies that wj ⇀ w weakly in H1(Db) and 
from the above w = 0 on ∂Db, whence w ∈ H1

0(Db). Next, we have that up to a subsequence 
wj → w strongly in L2(Db). Since the norm of the weak limit is smaller that the lim-inf of the 
norm

(A∇w,∇w) � lim inf
j→∞

∫

Db

∇wj · A∇wj dx � lim
j→∞

k2
∫

Db

n |wj|2 dx = k2(nw, w)

which contradicts the fact that
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k2 < inf
w∈H1

0(Db),w �=0

(A∇w, w)
(nw, w)

= η0(A, n, Db).

This ends the proof. □ 

In [6] for the case of A = I  it is shown by an example that Steklov eigenvalues λ := λ(k) 
as a function of k can blow up as k approaches a Dirichlet eigenvalue defined in assumption 1. 
We prove this in general for the largest positive Steklov eigenvalues and as k approaches the 
first Dirichlet eigenvalue η0(A, n, Db).

Theorem 3. Assume that k2 < η0(A, n, Db), where η0(A, n, Db) is the first Dirichlet eigen-
value of (20). Then the largest positive Steklov eigenvalue λ1 = λ1(k) as a function of k ap-
proaches +∞ as k2 → η0(A, n, Db).

Proof. Consider the first eigenvalue and eigenvector (ηδ , wδ), ‖wδ‖H1(Db) = 1, of the fol-
lowing Robin problem

∇ · A∇wδ + ηδnwδ = 0 in Db,
∂wδ

∂νA
+

1
δ

wδ = 0 on ∂Db. (29)

for δ > 0. If η0 := η0(A, n, Db) and w0 denote the first Dirichlet eigenvalue and eigenvector of 
(20), we notice that

ηδ =
(A∇wδ , wδ) +

1
δ 〈wδ , wδ〉

(nwδ , wδ)
= inf

w∈H1(Db),w�=0

(A∇w, w) + 1
δ 〈w, w〉

(nw, w)

< inf
w∈H1

0(Db),w �=0

(A∇w, w)
(nw, w)

= η0

i.e. ηδ < η0. Using the inf criterion, one also easily observe that δ �→ ηδ is decreasing, whence 

lim
δ→0

ηδ exits. On the other hand, (29) can be written as
∫

Db

A∇wδ · ∇w′ dx +
1
δ

∫

∂Db

wδw′ ds = ηδ

∫

Db

nwδw′ dx, (30)

and by taking w′ = wδ we see that wδ → 0 strongly in L2(∂Db) as δ → 0. The H1(Db)-weak 

limit of wδ, denoted w, satisfies ∇ · A∇w + (lim
δ→0

ηδ)nw = 0 in Dδ and w = 0 on ∂Db, which 

means lim
δ→0

ηδ = η0 (since ηδ < η0 and η0 is the first Dirichlet eigenvalue) and w = w0 the 

corresponding eigenfuction. From the compact embedding of H1(Db) into L2(Db) we have 
that (up to a subsequence) wδ → w0 strongly in L2(Db). Now we consider the sequence 
k2
δ := ηδ + ‖wδ‖2

L2(∂Db)
→ η0 as δ → 0. Then from (27)

λ1(kδ) �
k2
δ

∫
Db

n |wδ|2 dx −
∫

Db
∇wδ · A∇wδ dx∫

∂Db
|wδ|2 ds

=
(k2

δ − ηδ)
∫

Db
n |wδ|2 dx∫

∂Db
|wδ|2 ds

+
1
δ
=

∫

Db

n |wδ|2 dx +
1
δ

.
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Thus we have that

lim
δ→0

λ1(kδ) �
∫

Db

n |w0|2 dx + lim
δ→0

1
δ
= +∞

which ends the proof. □ 

In the next section  we show how to determine (possibly complex) Steklov eigenvalues 
from a knowledge of the modified far field operator. To this end, we need to recall some 
results from [10, 17, 19] on an appropriate factorization of Fλ

b . In particular, it is shown that 
Fλ

b : L2(S) → L2(S) can be factorized as

Fλ
b = H∗

b TbHb (31)

where Hb : L2(S) → H−1/2(∂Db) is given by

Hbg =
∂vg

∂ν
+ λvg

∣∣∣∣
∂Db

and its conjugate dual operator H∗
b : H1/2(∂Db) → L2(S) takes the form

H∗
bϕ :=

∫

∂Db

(
∂e−ikx̂·y

∂ν
+ λe−ikx̂·y

)
ϕ(y) dsy.

The middle operator Tb : H−1/2(∂Db) → H1/2(∂Db) is the inverse of the operator 
T−1

b : H1/2(∂Db) → H−1/2(∂Db) defined by

(T−1
b φ)(x) = i�(λ)φ(x) + ∂

∂νx

∫

∂Db

φ(y)
∂Φ(x, y)
∂νy

dsy + λλ

∫

∂Db

φ(y)Φ(x, y) dsy

+

∫

∂Db

φ(y)
[
λ
∂Φ(x, y)
∂νy

− λ
∂Φ(x, y)
∂νx

]
dsy

 

(32)

where the radiating fundamental solution Φ(·, ·) of the Helmholtz equation in Rm is

Φ(x, z) :=




eik|x−z|

4π|x−z| in R3

i
4 H(1)

0 (k|x − z|) in R2

 (33)

with H(1)
0  denoting the Hankel function of the first kind of order zero. Furthermore, we can 

factorize

F = GH. (34)

Here H : L2(S) → H1/2(∂Db)× H−1/2(∂Db) is defined by

H(g) :=
(

ub,g,
∂ub,g

∂ν

)

∂Db

= (ub,g,−λub,g)∂Db (35)

where ub,g solves (12) with incident wave ui := vg the Herglotz wave function defined by (4). 
The operator G : R(H) ⊂ H1/2(∂Db)× H−1/2(∂Db) → L2(S) is such that

G(ϕ,ψ) = w∞ (36)
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where w∞ is the far field of ws that solves

∆ws + k2ws = 0 in Rm \ Db

∇ · A∇w + k2nw = 0 in Db

w − ws = ϕ on ∂Db

∂w
∂νA

− ∂ws

∂ν
= ψ on ∂Db

lim
r→∞

r
m−1

2

(
∂ws

∂r
− ikws

)
= 0.

and R(H) is the closure of the range of H in H1/2(∂Db)× H−1/2(∂Db).

3. Determination of Steklov eigenvalues from far field data

In this section we discuss the determination of the Steklov eigenvalues from a knowledge 
of the (computable) family of operators Fλ

b  and the (measured) data operator F. The method 
relies on the abstract framework of the generalized linear sampling method given in theorem 
1 in appendix applied to the modified far field operator F = F − Fλ

b . To this end, let H and G  
be defined by (35) and (36), respectively and recall that F = GH. Referring to theorem 1 in 
appendix, here we have X = X∗ := L2(S) and Y := H1/2(∂Db)× H−1/2(∂Db). There are two 
main points we must specify: the choice of the test function φ ∈ L2(S) and the choice of the 
operator B (given in terms of F and Fλ

b ) that satisfies assumption 1 in appendix. We have two 
possibilities discussed in the lemma below.

Lemma 1. Recall Fλ
b  given by (13) and F given by (2). Then either one of the following 

choices for B satisfies assumption 1 with H := H given by (35):

 (i)  B(g) =
∣∣(Fλ

b g, g)
∣∣ if D ⊆ Db and λ is not an eigenvalue associated with the problem: 

w ∈ H1(Db),

∆w + k2w = 0 in Db and
∂w
∂ν

+ λw = 0 on ∂Db. (37)

 (ii)  B(g) = |(Fg, g)| if D = Db and the operator T given by (11) is coercive on R(H) where 
H is defined by (8).

Proof. Let us first consider the case B(g) =
∣∣(Fλ

b g, g)
∣∣. Consider a sequence {gn} such that 

the sequence B(gn) is bounded. We recall that the operator Tb given by (32) is coercive if λ is 
not an eigenvalue of (37) (see e.g. theorem 2.6 in [17]). From factorization (31) and the coerciv-

ity of Tb we have that B(gn) =
∣∣(Fλ

b gn, gn)
∣∣ = |(TbHbgn, Hbgn)| � µ ‖Hbgn‖H−1/2(∂Db)

. Since 
(12) is well-posed, we have that the sequence ub,gn  is bounded in H1(K \ Db) for any compact 
K containing Db. Hence the sequence Hgn is also bounded in H1/2(∂Db)× H−1/2(∂Db).

We now consider the converse implication. We first observe that since Tb is a bounded op-

erator, we have that B(g) =
∣∣(Fλ

b g, g)
∣∣ = |(TbHbg, Hbg)| � ‖Tb‖ ‖Hbg‖H−1/2(∂Db)

. Therefore, 
if a sequence Hbgn is bounded then the sequence B(gn) is also bounded. For g := gn, using the 
Green formula and the fact that vg is a solution of Helmholtz equation we have that

us
b,g(x) =

∫

∂Db

(
ub,g(y)

∂Φ(x, y)
∂ν

+ λub,g(y)Φ(x, y)
)

dsy.
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Therefore if Hgn is a bounded sequence then the scattered field us
b,gn

 is bounded in H1(K \ Db) 

for any compact set K containing Db. Therefore the sequence Hbgn =
∂vgn
∂ν + λvgn

∣∣∣
∂Db

 is 

bounded in H−1/2(∂Db) and so is the sequence B(gn) (using the arguments above).

Now we consider the case B(g) = |(Fg, g)| and assume that the sequence B(gn) is  
bounded. Factorization (10) and the coercivity of T give B(gn) = |(Fgn, gn)| =  
|(THgn, Hgn)| � µ ‖Hgn‖L2(D)×L2(D). The fact that (12) is well-posed implies that ub,gn  is bounded in  
H1

loc(Rm \ D) norm and hence Hgn is also bounded in H1/2(∂D)× H−1/2(∂D).  
On the other hand, since T is a bounded operator, we have that B(gn) = |(Fgn, gn)| = 
|(THgn, Hgn)| � ‖T‖ ‖Hgn‖L2(D)×L2(D), hence if Hgn is a bounded sequence, then the sequence 
B(gn) is also bounded. Similar arguments as in the second half of the proof of the first part 
show that if Hgn is a bounded sequence then the sequence Hgn is bounded and therefore the 
sequence B(gn) is bounded. The proof is completed. □ 

Remark 1. We observe that the operator T given by (11) is coercive if k is not an trans-
mission eigenvalue for (5) and a fixed sign assumption is made on the coefficients A − I  
and n − 1 in a neighborhood of the boundary of ∂D (see e.g. theorem 2.42 in [5]). We also 
indicate that for more complex configurations, e.g. Db �⊆ D, one could possibly consider 
B(g) = |(Fλ

b g, g)|+ |(Fg, g)|.

Lemma 1 provides us with practical choices for B(g) in order to apply the abstract framework 
in appendix. For sake of presentation let us restrict ourselves to the case of B(g) = |(Fλ

b g, g)|. 
The choice of B(g) = |(Fg, g)| can be handled in a similar way. The goal is to apply theorem 
1 in appendix to the cost functional

Jα(Φ∞
z , g) = α(Fλ

b g, g) + ‖Fg − Φ∞
z ‖2 ,

where Φ∞
z  is the far field of the fundamental solution of Helmholtz equation Φ(·, z) defined by 

(33). The choice of ϕ := Φ∞
z  is motivated by the following two lemmas.

Lemma 2. Assume that λ is not a Steklov eigenvalue of (15) and (16). Then Φ∞
z ∈ R(G) 

for z ∈ Db.

Proof. Fix a z ∈ Db and let wz ∈ H1(Db) be the unique solution of

∇ · A∇wz + k2nwz = 0 in Db (38)

∂wz

∂νA
+ λwz =

∂Φ(·, z)
∂νA

+ λΦ(·, z) on ∂Db. (39)

An application of the Green representation formula implies the following splitting of wz

wz = ws
z + vz (40)

where

vz(x) :=
∫

∂Db

(
∂wz(y)
∂νA

Φ(x, y)− wz(y)
∂Φ(x, y)

∂ν

)
dsy
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solves the Helmholtz equation ∆vz + k2vz = 0 in Db. Now let ub,z be the solution of (12) 
with incident wave ui := vz . Then by construction G(ϕz,ψz) = Φ∞

z  where ϕz := ub,z|∂Db  and 
ψz = λub,z|∂Db . □ 

Lemma 3. Assume that λ is a Steklov eigenvalue of (15) and (16) and λ is not an eigenvalue 
of (37). Then the set of points z such that Φ∞

z ∈ R(G) is nowhere dense in Db.

Proof. Assume to the contrary that Φ∞
z ∈ R(G) for z in a dense subset of a ball B included 

in Db. Thus there exists (ϕz,ψz) ∈ R(H)  such that G(ϕz,ψz) = Φ∞
z .

Following similar arguments as in the proof of lemma 2.1 of [5], one obtains that if λ is not 
an eigenvalue of (37) then a pair (ϕ,ψ) ∈ R(H)  is such that ϕ := ub|∂Db and ψ = −λub|∂Db 
where ub solves (12) with incident wave ui := v for v ∈ Hinc where

Hinc :=
{

v ∈ H1(Db) : ∆v + k2v = 0
}

.

We therefore infer that ϕz := ub,z|∂Db  and ψz = −λub,z|∂Db where ub,z is the solution of (12) 
with incident wave ui := vz  for some vz ∈ Hinc. From the definition of G  (36) and using Rel-
lich lemma we conclude that the corresponding wz satisfies

∇ · A∇wz + k2nwz = 0 in Db

∂wz

∂νA
+ λwz =

∂Φ(·, z)
∂ν

+ λΦ(·, z) on ∂Db.

From the Fredholm alternative, the above problem is solvable if and only if
∫

∂Db

(
∂Φ(·, z)

∂ν
+ λΦ(·, z)

)
w̄λ ds = 0, (41)

where wλ is in the kernel of the adjoint problem, i.e. satisfied

∇ · Ā∇wλ + k2n̄wλ = 0 in Db

∂wλ

∂νĀ
+ λ̄wλ = 0 on ∂Db.

Using the boundary conditions for wλ on ∂Db, the equation (41) then gives

vλ(z) :=
∫

∂Db

(
∂Φ(·, z)

∂ν
w̄λ − Φ(·, z)

∂w̄λ

∂νA

)
ds = 0

for z in B. Since vλ satisfies the Helmholtz equation in Db, then vλ = 0 in Db. Let us define

ws
λ := w̄λ − vλ in Db

and

vs
λ(x) :=

∫

∂Db

(
∂Φ(·, x)

∂ν
w̄λ − Φ(·, x)

∂w̄λ

∂νA

)
ds x ∈ Rm \ Db.
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Then ws
λ is a solution of (1) with D = Db and ui = 0. Therefore ws

λ = 0 and then wλ = 0 in 
Db. This gives a contradiction. □ 

We are now ready to apply theorem 1 in appendix to the operator F  based on the funda-
mental results of lemmas 2 and 3. To this end we need that F  has dense range which is obvi-
ously the case if λ is not a Steklov eigenvalue. Hence we add the following assumption.

Assumption 2. Assume that F  has still dense range at λ a Steklov eigenvalue of (15) and 
(16).

This assumption means that if λ a Steklov eigenvalue then the corresponding Steklov 
eigenvector should not be of the form vg + us

b,g, with vg being a Herglotz wave function. Since 
the latter is a special representation that would only hold in particular configurations of the 
domain Db (for instance spherically symmetric configurations), assumption 2 is then expected 
to be generically true.

Combining theorem 1, lemmas 2 and 3 we obtain the main result of this section.

Theorem 4. Assume that the modified far field operator F : L2(S) → L2(S) satisfies as-
sumption 2, D ⊂ Db and λ is not an eigenvalue of the problem (37). Consider the functional

Jα(Φ∞
z , g) := α|(Fλ

b g, g)|+ ‖Fg − Φ∞
z ‖2 and jα(Φ∞

z ) := inf
g

Jα(Φ∞
z , g.)

Let gz
α be a minimizing sequence defined by

Jα(Φ∞
z , gz

α) � jα(Φ∞
z ) + Cα

where C > 0 is a constant independent of α > 0. Then a complex number λ ∈ C is a Steklov 
eigenvalue of (15) and (16) if and only if the set of points z such that |(Fλ

b gz
α, gz

α)| is bounded 
as α → 0 is nowhere dense in Db.

Remark 2. The use of the indicator function |(Fλ
b gz

α, gz
α)| has the advantage of treating the 

case when D ⊂ Db but on the other had requires that the problem (37) is uniquely solvable. 
The latter can be avoided in the case of D = Db by choosing B(g) = |(Fg, g)|, whence us-
ing the indicator function |(Fgz

α, gz
α)|, but in this case k, which is fixed, cannot be an interior 

transmission eigenvalue for (5).

We end this section  by commenting that a similar rigorous characterization of Steklov 
eigenvalues as in theorem 4 can also be obtained for the noisy data. The modification of theo-
rem 1 in appendix for the case of noisy data is considered in details in [2] (see also [1] and [5]). 
All the results presented here can apply to the case of noisy operators Fδ, Fλ,δ

b  and Fδ, where 
δ denotes the noise level in the measurements of the far field data. In this case, one simply has 
to consider instead the modified (regularized) cost function

Jδα(Φ
∞
z , g) = α|(Fλ,δ

b g, g)|+ αδ ‖g‖2
+
∥∥Fδg − Φ∞

z

∥∥2
.

Then the criteria is in terms of the modified indicator function

lim
α→0

lim
δ→0

[
|(Fλ,δ

b gz
αδ , gz

αδ)|+ δ ‖gz
αδ‖

2
]

.

For a priori choice of α in terms to δ under some restrictive assumptions we refer the reader 
[2], while noting that in general such a choice remains still an open problem.
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Remark 3. If limited aperture data is available, i.e. u∞(x̂, d) is known for x̂ ∈ Sr and d ∈ St 
where (the transmitters location) St  and (the receivers location) Sr are open subsets of the unit 
sphere S , the above discussion is valid if F is replaced by

(Fg)(x̂) :=
∫

St

u∞(x̂, d)g(d)ds(d), x̂ ∈ Sr

(we refer the reader to [3] for the theoretical foundations of GLSM with limited aperture data). 
In this case the indicator function |(Fλ

b g, g)| may have advantage in practice because, thanks 
to the fact that Fλ

b  is computed, a symmetric factorization for it is always available. However 
numer ical experiments are needed to study the sensitivity of the determination of the eigen-
values λ in terms of the aperture of the data.

4. Artificial metamaterial background

Next we turn our attention to a alternative example of modifying the far field operator which 
leads to a new eigenvalue problem whose eigenvalues can also be determined using the ana-
lytical framework developed in appendix. This modification is closer to the one discussed 
in [11], and in general terms is based in embedding the unknown inhomogeneity inside an 
artificially introduced inhomogeneity. Here we choose the artificial inhomogeneity with con-
stitutive material properties of negative values which corresponds to metamaterials. We show 
that the resulting eigenvalue problem for this choice has a structure that resembles the Steklov 
eigenvalue problem discussed in section 2, but it provides richer spectral information.

In a similar way as in section 2, letting the bounded region Db ⊂ Rm with smooth bound-
ary ∂Db and a connected complement in Rm be such that D ⊆ Db, we introduce the scattering 
problem

∆us
b + k2us

b = 0 in Rm \ Db

(−a)∆ub + k2λub = 0 in Db

ub − us
b = ui on ∂Db

(−a)
∂ub

∂ν
− ∂us

b

∂ν
=

∂ui

∂ν
on ∂Db

lim
r→∞

r
m−1

2

(
∂us

b

∂r
− ikus

b

)
= 0

 

(42)

where ui := eikx·d  and a > 0 is a fixed parameter such that a �= 1 whereas λ ∈ C. The scatter-
ing problem (42) is well-posed as long as �(λ) � 0 [4] (this models the scattering problem 
for the inhomogeneity with support Db with negative material properties, i.e. the so-called 
metamaterial). If u∞

b (x̂, d) denotes the far field pattern of us
b, the corresponding far field opera-

tor is given by

(Fλ
b g)(x̂) :=

∫

S
u∞

b (x̂, d)g(d) ds(d). (43)

Note that Fλ
b g := u∞b,g is the far field pattern of the radiating solution us

b,g solving (42) with 
incident wave ui := vb being the Herglotz wave function with kernel g.
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Similarly to the far field operator F corresponding to the physical inhomogeneity discussed 
in Introduction, the far field operator Fλ

b  corresponding to the artificially induced background 
can be factorized as

Fλ
b g = H∗

b TbHb. (44)

Here Tb : L2(D)× L2(D) → L2(D)× L2(D) is defined by

Tb(ϕ,ψ) := γm
(
(1 + a)(ϕ+∇ws

b), k2(λ− 1)(ψ + ws
b)
)

 (45)

where ws
b ∈ H1

loc(R3) is the unique radiating solution of

ã∆ws
b + k2λ̃ws

b = ∇ · (1 − ã)∇ϕ+ k2(1 − λ̃)ψ in Rm

with (ã, λ̃) = (−a,λ) in Db and (ã, λ̃) = (1, 1) in Rm \ Db , whereas 
Hb : L2(S) → L2(Db)× L2(Db) and its L2-adjoint H∗

b : L2(Db)× L2(Db) → L2(S) are defined 
by (8) and (9), respectively, where D is replaced by Db.

We again define the corresponding modified far field operator F : L2(S) → L2(S)

Fg := Fg − Fλ
b g. (46)

The modified far field operator Fg can be seen as the far field pattern corresponding to the 

inhomogeneity (A, n, D) due to incident field ui := vg − us
b,g where us

b,g solves (42) with 
ui := vg. This is saying that F  corresponds to the scattering by the given inhomogeneity sit-
ting in a new background obtained by subtracting from the physical homogeneous background 
the artificial metamaterial (−a,λ, Db).

To see what is the eigenvalue problem that arises in connection to F , we again look at its 
injectivity. To this end, if Fg = 0 then from Rellich’s lemma and unique continuation argu-
ment we have that ug = ub,g in Rm \ Db (see (3) and (43)). Thus, extending A = I  and n = 1 in 
Db \ D, and using the continuity of the Cauchy data of both total fields ug and ub,g across ∂Db, 
we obtain that v := ub,g|Db and w := ug|Db satisfy the following set of homogenous equations

∇ · A∇w + k2nw = 0 in Db

(−a)∆v + k2λv = 0 in Db

w = v on ∂Db

∂w
∂νA

= −a
∂v
∂ν

on ∂Db.

 (47)

Thus, arguing in the same way as for the Steklov eigenvalues, the operator F  is injective 
if (47) has only trivial solution. The values of λ ∈ C for which (47) has nonzero solutions 
v ∈ H1(Db) and w ∈ H1(Db) are the eigenvalues associated with this modified operator (in 
[11] these eigenvalues are referred to as modified transmission eigenvalues). Note that here λ 
is the eigenvalue parameter and k is fixed).

4.1. Analysis of the new eigenvalue problem

To study the eigenvalue problem (47), we first write it in the following equivalent variational 
form,

∫

Db

A∇w · ∇w′ dx + a
∫

Db

∇v · ∇v′ dx − k2
∫

Db

nww′ dx = −k2λ

∫

Db

vv′ dx

 (48)
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for (w′, v′) ∈ H(Db) where

H(Db) =
{
(w, v) ∈ H1(Db)× H1(Db) such that w = v on ∂Db

}
.

Obviously, if �(A) = 0 and �(n) = 0, the eigenvalues λ are all real. In fact, for real valued 
coefficients A and n, this is an eigenvalue problem for a compact selfadjoint operator. To see 
this, one possibility is to fix a real β such that k is not a transmission eigenvalue of

∇ · A∇w + k2nw = 0 in Db

(−a)∆v + k2βv = 0 in Db

w = v on ∂Db

∂w
∂νA

= −a
∂v
∂ν

on ∂Db.

 

(49)

This means that the selfadjoint operator A : H(Db) → H(Db) defined by the Riesz representa-
tion as

(A(w, v), (w′, v′))H(Db)
=

∫

Db

(A∇w · ∇w′ + a∇v · ∇v′ dx − k2nww′ + k2βvv′) dx

fo all (w′, v′) ∈ H(Db) is invertible. We remark that the operator A  is of Fredholm type and 
depends analytically on β. Moreover, A  is coercive for k > 0 and β = iτ  with τ > 0. This 
proves, by the analytic Fredholm theory, that for any fixed k > 0 there exists β real such that 
A  is invertible. Now consider the operator T : L2(D) → L2(D) mapping

T : f ∈ L2(D) �→ vf ∈ H1(Db) where (wf , vf ) = A−1(0, f ),

which is compact and selfadjoint. Therefore our eigenvalue problem for λ becomes

Tv = −k2(λ− β)v

which is an eigenvalue problem for a selfadjoint compact operator. This implies in particular 
the existence of an infinite set of real eigenvalues λ which, as we show in the next theorem, 
accumulate only at −∞.

Remark 4. We note that our eigenvalue problem (48) has a similar structure with the 
Steklov eigenvalue problem (18). We remark that (47) with a positive parameter instead 
of (−a) has a different structure, and for the case of A = I  it is investigated in [11] where 
the existence of eigenvalues is also proven for complex valued n. In particular, provided 
that k > 0 satisfies assumption 1 we can define the interior Dirichlet-to-Neuman operator 
Nk,A,n : H1/2(∂Db) → H−1/2(∂Db) as Nk,A,n : ϕ �→ ∂wϕ

∂νA
, where wϕ satisfies

∇ · A∇wϕ + k2nwϕ = 0 in Db and wϕ = ϕ on ∂Db.

Then (47) with eigenvalue parameter λ becomes a Robin type eigenvalue problem for the −∆ 
with nonlocal boundary condition:

a∆v − k2λv = 0 in Db (50)

a
∂v
∂ν

−Nk,A,nv = 0 on ∂Db. (51)
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Theorem 5. For real valued A and n and a fixed k > 0 there exists at least one positive 
eigenvalue of (47). If in addition k > 0 satisfies assumption 1, then there are at most finitely 
many positive eigenvalues.

Proof. Assume to the contrary that all eigenvalues λj � 0. This means that
∫

Db

∇w · A∇w dx + a
∫

Db

∇v · ∇v dx − k2
∫

Db

n |w|2 ds � 0

for all (w, v) ∈ H(Db) since due to self-adjoiness all the eigenfunctions (w, v) form a Riesz 
basis for H(Db). Now taking w = 1 and v = 1 yields a contradiction which proves the first 
statement.

Next we assume by contradiction that there exists a sequence of positive eigenvalues 
λj > 0, j ∈ N converging to +∞ with eigenfunctions (wj, vj) ∈ H(Db) normalized such that

‖wj‖H1(Db) + ‖vj‖H1(Db) = 1. (52)

Then from

(A∇wj,∇wj) + a (∇vj,∇vj)− k2 (nwj, wj) = −k2λj (vj, vj) (53)

since the left hand side is bounded we obtain that vj → 0 in the L2(Db). Next, up to a subse-
quence, wj ⇀ w weakly in H1(Db) and this weak limit satisfies ∇ · A∇w + k2nw = 0 in Db 
and w = 0 on ∂Db. Our assumption on k implies that w = 0, i.e. wj ⇀ 0 weakly in H1(Db) 
and up to a subsequence wj → 0 strongly in L2(Db). From (53)

(A∇wj,∇wj) + a (∇vj,∇vj) � k2 (nwj, wj) , for all j ∈ N.

Since (nwj, wj) → 0, we conclude that

(A∇wj,∇wj) → 0, and a (∇vj,∇vj) → 0 as j → ∞,

which implies that ‖∇wj‖H1(Db) → 0, ‖∇vj‖H1(Db) → 0. This contradicts (52) and the proof of 
the theorem is completed. □ 

For (w, v) ∈ H(Db), since w − v ∈ H1
0(Db) the Poincaré inequality holds

‖w − v‖2 � Cp‖∇w −∇v‖2

with the optimal constant Cp > 0 being the first Dirichlet eigenvalue for −∆ in Db. Thus

(w, w) � Cp (∇w,∇w) + Cp (∇v,∇v) + (v, v) (54)

In a similar manner as for the Steklov eigenvalue problem discussed in section 2, we would 
like to find a Λ > 0 such that

∫

Db

A∇w · ∇w dx + a
∫

Db

∇v · ∇v dx − k2
∫

Db

n|w|2 dx + Λ

∫

Db

|v|2 dx

� C
(
‖w‖2

H1(Db)
+ ‖v‖2

H1(Db)

) (55)

Obviously from (54), the coercivity (55) holds if k2 < amin
Cpnmax

 and a is chosen large enough. In 
this case, our eigenvalue problem
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∫

Db

A∇w · ∇w′ dx + a
∫

Db

∇v · ∇v′ dx − k2
∫

Db

nww′ dx

+ Λ

∫

Db

vv′ dx = −k2(λ+ Λ)

∫

Db

vv′ dx

 

(56)

becomes a generalized eigenvalue problem for a positive compact selfadjoint operator and the 
eigenvalues −(λj + Λ) satisfies Courant-Fischer min-max principle. Consequently we obtain 
that our largest positive eigenvalue λ1 := λ1(A, n, k) satisfies

λ1 = inf
(w,v)∈H(Db),v �=0

k2
∫

Db
n |w|2 dx −

∫
Db

∇w · A∇w dx − a
∫

Db
|∇v|2 dx∫

Db
|v|2 dx

.

 (57)
Hence λ1 depends monotonically increasing with respect n and monotonically decreasing 
with respect to A. The above condition on k2 for which (55) is satisfied can be improved. In 
the following theorem we obtain the same condition on k as for the Steklov eigenvalues in 
theorem 2.

Theorem 6. Assume that k2 < η0(A, n, Db), where η0(A, n, Db) is the first Dirichlet eigen-
value of (20). Then there is a Λ > 0 such that (55) holds. In particular, in this case the largest 
positive eigenvalue satisfies (57).

Proof. Fix k2 < η0(A, n, Db) and assume to the contrary that there exists a sequence of 
positive constants Λj = j, j ∈ N, and a sequence of functions (wj, vj) ∈ H(Db) normalized as 
‖wj‖H1(Db) + ‖vj‖H1(Db) = 1 such that

∫

Db

∇wj · A∇wj dx + a
∫

Db

|∇vj|2 dx − k2
∫

Db

n |wj|2 dx + j
∫

Db

|vj|2 ds � 0.

 (58)

From
∫

Db

∇wj · A∇wj dx + a
∫

Db

|∇vj|2 d + j
∫

Db

|vj|2 ds � k2
∫

Db

n |wj|2 dx (59)

we see that j
∫

Db
|vj|2 ds is bounded which implies that vj → 0 strongly in L2(Db). On the 

other hand, the boundedness implies that, up to a subsequence, wj ⇀ w and vj ⇀ 0 weakly 
in H1(Db). Since (wj, vj) ∈ H(Db) we get in particular that w ∈ H1

0(Db). By going to a sub-
sequence, one can also assume that wj → w strongly in L2(Db). Since the norm of the weak 
limit is smaller that the lim-inf of the norm

(A∇w,∇w) � lim inf
j→∞

∫

Db

∇wj · A∇wj dx � lim
j→∞

k2
∫

Db

n |wj|2 dx = k2(nw, w)

which contradicts the fact that

k2 < inf
w∈H1

0(Db),w �=0

(A∇w, w)
(nw, w)

= η1(A, n, Db).

This ends the proof. □ 
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4.2. Determination of the new eigenvalues from far field data

We end this section by showing how to determine the eigenvalues λ of (47) from a knowledge 
of the modified far field operator (46) applying the generalized linear sampling method frame-
work developed in appendix. The approach follows the line of the one developed for the Steklov 
eigenvalues, and therefore we shall only give a sketch of the proofs. To this end, the modified 
far field operator can be factorized as F = GH where here H : L2(S) → L2(Db)

m × L2(Db) 
is defined by

Hg = (∇ub,g|Db , ub,g|Db) (60)

with ub,g being the solution of (42) with ui = vg, whereas G : R(H) ⊂ L2(Db)
m × L2(Db) → L2(S) 

is defined by

G(ϕ,ψ) = w∞ (61)

with w∞ being the far field of ws ∈ H1
loc(Rm) that solves

∇ · A∇ws + k2nws = ∇ · (−a − A)ϕ+ k2(λ− n)ψ in Rm (62)

together with the Sommerfeld radiation condition, and R(H) is the closure of the range of H 
in L2(Db)× L2(Db).

Similarly to section 3, we shall apply theorem 1 in appendix to F  with X = X∗ := L2(S) 
and Y := L2(Db)

m × L2(Db). We here discuss only the case B(g) =
∣∣(Fλ

b g, g)
∣∣.

Lemma 4. Let Fλ
b  be defined by (43). Then the operator B : L2(S) → R+ defined by 

B(g) :=
∣∣(Fλ

b g, g)
∣∣ satisfies assumption 1 in appendix with H := H if D ⊆ Db and k, λ and a 

are such that

∆w + k2w = 0 in Db

(−a)∆v + k2λv = 0 in Db

w = v on ∂Db

∂w
∂ν

= −a
∂v
∂ν

on ∂Db

 

(63)

has only the trivial solution in H(Db).

Proof. The assumption stated in the lemma guaranties that Tb defined by (45) is coercive 
(see e.g. theorem 2.42 in [5]). Then the proof follows exactly the lines of the proof of the first 
part of lemma 1 using factorization (44). □ 

Note that the assumption on the uniqueness of solutions of (63) is a natural assumption 
since it means in particular that λ should not be also an eigenvalue for the case A = I  and 
n = 1. It is indeed possible to play with the parameter a to enforce this assumption to be true 
for all eigenvalues λ. If this assumption fails for all eigenvalues λ then this simply means that 
the set of these eigenvalues does not differentiate the inhomogeneity from the vacuum: in 
other words the inhomogeneity is invisible to the considered spectrum. Studying this inverse 
spectral question has its own interest and can be an interesting future work.
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We now proceed with the following two lemmas which allow to derive a characterization 
of the eigenvalues λ form scattering data.

Lemma 5. Assume that λ is not an eigenvalue of (47). Then Φ∞
z ∈ R(G) for z ∈ Db.

Proof. Following the same argument as in the proof of lemma 2.38 in [5], we first observe 
that (ϕ,ψ) ∈ R(H)  if and only if ϕ := ∇ub and ψ = ub where ub ∈ H1(Db) and satisfies

(−a)∆ub + k2λub = 0 in Db.

Fix a z ∈ Db and let wz and vz in H1(Db) be the unique solution of

∇ · A∇wz + k2nwz = 0 in Db

(−a)∆vz + k2λvz = 0 in Db

wz − vz = Φ(·, z) on ∂Db

∂wz

∂νA
+ a

∂vz

∂ν
=

∂Φ(·, z)
∂ν

on ∂Db.

 (64)

We extend ws
z := wz − vz by Φ(·, z) outside Db. Then obviously, ws

z ∈ H1
loc(Rm) and satisfies 

(62) with ϕz := ∇vz and ψz = vz. We then conclude that (ϕz,ψz) ∈ R(H) and by construction 
G(ϕz,ψz) = Φ∞

z . □ 

Lemma 6. Assume that λ is an eigenvalue of (47) and λ is not an eigenvalue of (63). Then 
the set of points z such that Φ∞

z ∈ R(G) is nowhere dense in Db.

Proof. The proof is similar to theorem 3.3 in [7]. Assume to the contrary that G(ϕz,ψz) = Φz  
for z is a dense subset of a ball B ⊂ Db. By definition (61) we have that ∇vz|Db := ϕz  and 
vz|Db := ψz and (−a)∆vz + k2λvz = 0 in Db. Using Rellich lemma we conclude that these vz 
and wz in the definition (61) of G(ϕz,ψz) satisfy

∇ · A∇wz + k2nwz = 0 in Db

(−a)∆vz + k2λvz = 0 in Db

wz − vz = Φ(·, z) on ∂Db

∂wz

∂νA
+ a

∂vz

∂ν
=

∂Φ(·, z)
∂ν

on ∂Db.

Let (wλ, vλ) be an eigenpair associated with λ. Multiplying the equation for wz in by wλ and 
applying the Green formula twice implies that

∫

∂Db

(
∂wz

∂νA
wλ − wz

∂wλ

∂νA

)
ds = 0.

Similarly

−a
∫

∂Db

(
∂vz

∂ν
vλ − vz

∂vλ

∂ν

)
ds = 0.
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Adding the two equations and using the boundary conditions we obtain

0 =

∫

∂Db

(
∂Φ(·, z)

∂ν
w̄λ − Φ(·, z)

∂w̄λ

∂νA

)
ds

=

∫

∂Db

(
∂Φ(·, z)

∂ν
v̄λ − (−a)Φ(·, z)

∂v̄λ
∂ν

)
ds

This implies in particular that (the incident field)

vi
λ(z) :=

∫

∂Db

(
∂Φ(·, z)

∂ν
v̄λ − (−a)Φ(·, z)

∂v̄λ

∂ν

)
ds = 0

for z is a dense subset of a ball B ⊂ Db and, by analyticity in all of Db. Next, let us define

vs
λ := vλ − vi

λin Db

and

vs
λ(x) :=

∫

∂Db

(
∂Φ(·, x)

∂ν
vλ + aΦ(·, x)

∂vλ

∂ν

)
ds x ∈ Rm \ Db.

Then vs
λ is a solution of (42) with ui = 0. Therefore vs

λ = 0 and then vλ = 0 in Db. Similar 
arguments also show that wλ = 0, which gives a contradiction. □ 

Finally we are ready to apply theorem 1 in appendix to the operator F  using lemmas 5 and 6.

Theorem 7. Let λ ∈ C and assume that the modified far field operator F : L2(S) → L2(S) 
has dense range and that the assumptions of lemma 4 are verified. Consider the functional

Jα(Φ∞
z , g) := α|(Fλ

b g, g)|+ ‖Fg − Φ∞
z ‖2 and set jα(Φ∞

z ) := inf
g

Jα(Φ∞
z , g.)

Let gz
α be a minimizing sequence defined by

Jα(Φ∞
z , gz

α) � jα(Φ∞
z ) + Cα

where C > 0 is fixed. Then λ is an eigenvalue of (47) if and only if the set of points z for which 
|(Fλ

b gz
α, gz

α)| is bounded as α → 0 is nowhere dense in Db.

For the case of noisy data see the remarks at the end of section 3.

4.3. Numerical examples

To illustrate the viability of our method for determining the eigenvalues λ from the modified 
far field operator, we present first some simple numerical examples for the case of a two-
dimensional radially symmetric and isotropic inhomogeneity with real constant coefficients A 
and n. We shall consider only the case of the new set of eigenvalues introduced in section 4.1. 
To this end we assume that Db := BR is a ball of radius R and consider the case when D = Db. 
Then the fields that solve (47) for a fixed constant a > 0 and λ ∈ R  (note that in this case of 
eigenvalues λ are real in cylindrical coordinates (r, θ) for r � R can be written as:

w(r, θ) =
+∞∑

m=−∞
bmJm

(
k
√

n
A

r
)

eimθ, v(r, θ) =
+∞∑

m=−∞
cmJm

(
k

√
λ

−a
r

)
eimθ
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where Jm are the Bessel functions of order m and the coefficients bm and cm are real. Then λ is 
an eigenvalue of (47) if and only if for some m

det


 Jm(k

√
λ
−a R) −Jm(k

√ n
A R)

−ak
√

λ
−a J′m(k

√
λ
−a R) −Ak

√ n
A J′m(k

√ n
A R)


 = 0. (65)

The zeros of this determinant will provide us with the eigenvalues of interest which we will 
compare to the ones given using the characterization of theorem 7. Thanks to the symmetry of 
the problem, the far field pattern due to a Herglotz function with density

Figure 1. Plot of the analytic expression (67) of I(λ) against λ for (A, n,−a, k, R) =
(2, 8,−3, 1, 0.5) and m ∈ [−100, 100]. The red crosses indicate the eigenvalues using 
the zeros of the determinant (65).

Figure 2. Left: plot of log(I(λ)) in terms of λ in abscissa and A in ordiante varying 
from 1 to 10. Right: plot of log(I(λ)) in terms of λ in abscissa and n varying from 5 to 
50. The bright color indicates large values of I(λ). The non varying parameters are the 
same as in figure 1.
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g(θ) =
+∞∑
−∞

aneinθ

as incident field, takes the form

u∞(φ, θ) =
+∞∑

m=−∞

1
dm

[
−Ak

√
n
A

J′m

(
k
√

n
A

R
)

Jm(kR)

+ kJm

(
k
√

n
A

R
)

J′m(kR)
]

2πimameimφ

 

(66)

Figure 3. Plot of (λ, R0) �→ log(I(λ)) in terms of λ in abscissa and R0 in ordiante, 
varying from 2%R to 98%R. The bright color indicates large values of I(λ). 
(A0, n0) = (2, 15) and the other parameters are the same as in figure 1.

Figure 4. Plot of I(λ) using the GLSM algorithm for the case Db = BR and with 
(A, n,−a, k, R) = (2, 8,−3, 1, 0.5). Left: 1% added noise—Right 5% added noise. The 
red crosses indicate the eigenvalues using the zeros of the determinant (65).
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where dm is given by

dm = det

(
Jm(k

√ n
A R) −H(1)

m (kR)

Ak
√ n

A J′m(k
√ n

A R) −kH(1)′
m (kR)

)
.

This formula provide us now with an analytic expression of the far field operator F. A similar 
formula holds for Fλ

b  if we substitute n with λ and A with −a. In order to ease the analytic 
expressions involved, we modify the penalty term in the cost functional Jα by considering

Jα(Φ∞
z , g) = α

∥∥∥(Fλ∗
b Fλ

b )
1/4g

∥∥∥
2
+ ‖Fg − Φ∞

z ‖2

instead of the one in theorem 7. As explained in [1, 2] (see also [5, section 2.5]) the use of 
this penalty term for the general linear sampling method is possible as long as the operator 
is normal, which is the case when all the coefficients are real. It has the advantage of leading 
to a convex functional whose minimizer gλ

z  can be computed in terms of the singular value 
decomposition. We shall then use

I(λ) :=
∫

Db

∥∥∥(Fλ∗
b Fλ

b )
1/4gλ

z

∥∥∥
2

dz

as an indicator function for the eigenvalues λ. This quantity is supposed to blow up at these 
values.

Taking advantage of the above analytic expressions for the far field operators one can also 
derive an analytic expression for I(λ). To this end, one observes from (66) that φ �→ eimφ are 
the singular vectors of both F and Fλ

b  and the corresponding singular values for F are given by

µ∞
m :=

∣∣∣∣
1

dm

[
−Ak

√
n
A

J′m

(
k
√

n
A

R
)

Jm(kR) + kJm

(
k
√

n
A

R
)

J′m(kR)
]

2π
∣∣∣∣ .

The singular values µb,λ∞
m  of Fλ

b  have the same expression by substituting A with −a and n 
with λ. Using the fact that

Φ∞
z =

+∞∑
m=−∞

im(−1)mJm(k|z|)eimφ

Figure 5. Plot of I(λ) using the GLSM algorithm for Db being a kite depicted left 
and with (A, n,−a, k) = (2, 8,−3, 1). Middle: 1% added noise—Right 5% added noise. 
The red crosses indicate the eigenvalues computed using FreeFem++ for solving the 
eigenvalue problem (47).
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one can then get

∥∥∥(Fλ∗
b Fλ

b )
1/4gλz

∥∥∥
2
=

+∞∑
m=−∞

(µ∞
m − µb,λ∞

m )3

((µ∞
m − µb,λ∞

m )2 + αµb,λ∞
m )2

Jm(k|z|)24π2.

Integrating this quantity over BR then lead to (thanks to integral formula for Bessel functions)

I(λ) =
+∞∑

m=−∞

(µ∞
m − µb∞

m )3

((µ∞
m − µb∞

m )2 + αµb∞
m )2 4π3R2(Jm(kR)2 − Jm−1(kR)Jm+1(kR)).

 

(67)

In figure 1 we show the results obtained for I(λ) computed using the above analytic formula 
for the case when (A, n,−a, k, R) = (2, 8,−3, 1, 0.5) and m ∈ [−100, 100]. We indeed observe 
peaks in the plot of I(λ) in figure 1, which coincides with the exact eigenvalues obtained using 
(65) (marked with red cross in the figure). The analytic formula is fast to compute and there-
fore can be helpful in studying the dependence of the eigenvalues on the material properties 
of the inhomogeneity. Figure 2 shows the behavior of the indicator function with respect to 
n, A. This confirms in particular the monotonicity property indicated by the theory. One also 
observes that some eigenvalues may be much more sensitive than the others, making them a 
better candidate for obtaining information about the material properties.

In the spirit of using these eigenvalues for non destructive testing, we also derived an ana-
lytic formula for I(λ) for the case of two layered media formed by two concentric ball BR and 
BR0 with R0 < R, where the coefficients A0 and n0 inside BR0 may be different from the coef-
ficients A and n in BR \ BR0. Figure 3 shows the behavior of the eigenvalues in terms of R0. We 
also observe that different eigenvalues are not affected in the same way if we vary the radius 
of the inclusion. Of course more numerical investigation is needed to understand the relation-
ship of the eigenvalues λ with the material properties of the media. Furthermore, of interest is 
the understanding of the role of the artificial parameter a in the sensitivity of the eigenvalues 
on the material properties A and n. In the case of −a > 0 and A = 1 we refer the reader to the 
numerical examples presented in [11] for partial answer to these questions.

We now present some numerical results using numerical approximation of the modified far 
field operator F . The numerical scheme for implementing the indicator function based on the 
generalized linear sampling method (GLSM)is the same as in [2]. To validate our numerical 
method, we first consider the case of Db = BR as for the previous examples. Figure 4 shows 
the results for different percentage of additive noise levels. We observe in particular that some 
eigenvalues (especially the largest positive) are robust with respect to the noise. Finally we 
consider an example for more general domain Db depicted 5 (left) with the same parameters 
as above, namely (A, n,−a, k) = (2, 8,−3, 1). As explained in section 4.1 for real valued A, n 
the eigenvalue problem (47) is self ajoint, hence it is possible to solve it using classical finite 
element method. In particular we use Freefem++ [15] to obtain a numerical approximation 
of these eigenvalues and compare them against the eigenvalues identified using the indicator 
function from the GLSM for λ ∈ [−60, 20]. The results are presented in figure 5 which con-
firms that our method works here as well as for the disk.
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Appendix. Analytical framework for GLSM

We develop here the abstract framework used for determining the interior eigenvalues. The 
main theorem below is a slight modification of the generalized linear sampling method 
(GLSM) introduced in [1] and [2] in order to address weaker assumptions on the penalty term.

Let X and Y be two complex reflexive Banach spaces with duals X∗ and Y∗. We consider 
a bounded linear operator F : X → X∗ which assumes the factorization F = GH  where 
H : X → Y  and G : R(H) ⊂ Y → X∗ are bounded linear operators with R(H) being the clo-
sure of the range of H in Y. In addition let B : X → R+ be a continuous functional such that it 
satisfies the following fundamental assumption.

Assumption 1. Given a sequence {gn} ∈ X , the sequence {B(gn)} is bounded if and only 
if the sequence {‖Hgn‖Y} is bounded.

For a given parameter α > 0 and φ ∈ X∗ we consider the following cost functional

Jα(g,φ) = αB(g) + ‖Fg − φ‖2

This cost functional has no minimizer in general, however its positivity implies that we can 

define jα(φ) := inf
g∈X

Jα(g,φ).

The central theorem of the GLSM is the following characterization of the range of G in 
terms F and B. The proof of theorem 1 is almost identical to the proof of theorem 3 in [2] and 
we include here for readers convenience. A minor improvement in the proof below is the fact 
that B does not need to satisfy a coercivity condition but only assumption 1.

Theorem 1. In addition to assumption 1 we assume that F has dense range. Let C > 0 be 
a given constant independent of α and consider a minimizing sequence {gα} of Jα, such that:

Jα(φ, gα) � jα(φ) + Cα

Then φ ∈ R(G) if and only if the sequence B(gα) is bounded as α → 0.

Proof. Consider first the case φ ∈ R(G). Then by definition we can find ϕ ∈ R(H) such that 
Gϕ = φ. Next, for a given but fixed α > 0, there exists g̃α ∈ X  such that ‖Hg̃α − ϕ‖2

< α. 
Then by continuity of G, we can conclude that ‖Fg̃α − φ‖2

< α ‖G‖2. On the other hand, by 
assumption 1, the sequence B(g̃α) since bounded. Now the definition of jα(φ), gα and Jα 
yield

αB(gα) � Jα(φ, gα) � Jα(φ, g̃α) + Cα � C′α

where C′ is a constant independent of α. Therefore the sequence B(gα) is bounded as α → 0.

Now let us consider the case φ /∈ R(G) and assume to the contrary that lim
α→0

B(gα) < +∞. 
Assumption 1 implies that ‖Hgα‖ is bounded independently from α. Since Y is reflexive one 
can extract a subsequence Hgα that weakly converge to some ϕ in Y. We now observe that 
since F has dense range then jα(φ) → 0 as α → 0 (see for instance lemma 2 in [2]). Then, 
the definition of Jα(φ, gα) implies that Fgα converges to φ. On the other hand the fact that 
F = GH  and the uniqueness of the limit implies that Gϕ = φ, which is a contradiction. We 

then conclude that lim
α→0

B(gα) = +∞. □ 

L Audibert et alInverse Problems 33 (2017) 125011
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