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SUMMARY

We consider acoustic scattering problems described by the mixed boundary value problem for the scalar
Helmholtz equation in the exterior of a 2D bounded domain or in the exterior of a crack. The boundary
of the domain is assumed to have a �nite set of corner points where the scattered wave may have
singular behaviour. The paper is concerned with the sensitivity of the far-�eld pattern with respect to
small perturbations of the shape of the scatterer. Using a modi�cation of the method of adjoint problems,
we obtain an integral representation for the Gâteaux derivative which contains only boundary values
of functions easily computable by standard BEM and which depends explicitly on the perturbation of
the boundary. In some cases, we show the direct in�uence of the singularities of the solution on the
sensitivity of the far-�eld pattern. In this way, we generalize the domain sensitivity analysis developed
earlier for smooth domains by Hettlich, Kirsch, Kress, Potthast and others. Finally, we show that the
same approach can be applied to scattering from 3D domains with smooth edges. Copyright ? 2002
John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the inverse acoustic scattering problems is the problem of recovering the shape of
the scattering object from the knowledge of the far-�eld pattern u∞ of the scattered wave. In
practice, such inverse problems are often solved by some iterative Newton-type algorithms,
where the approximations of the unknown boundary are improved successively in such a
way that its far-�eld pattern �ts better the given far-�eld pattern u∞: This approach requires
precise knowledge about the Gâteaux derivative of the far-�eld pattern with respect to small
perturbations of the boundary. Such form sensitivity analysis is well known for scatterers with
a smooth boundary and for various kinds of boundary conditions (see References [1; 2] for
Dirichlet conditions, Reference [3] for Neumann conditions, Reference [4] for Robin condi-
tions). On the other hand, very little is known about scattering from non-smooth surfaces
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except the work of Kress [5] on acoustic scattering from smooth 2D cracks. If the boundary
is not smooth, or if the boundary conditions change along the boundary, then the derivatives
of the solution can be unbounded and the investigation of the form sensitivity requires a more
careful approach.
Form sensitivity problems appear quite often in engineering applications: form optimization

of bounded elastic structures, propagation of cracks in elastic materials, etc. In this case, the
sensitivity analysis is developed much better than for scattering problems in exterior domains.
Recently, the �rst author investigated together with A.-M. S�andig the form sensitivity of
elastic structures in general bounded piecewise smooth domains allowing mixed boundary
conditions and cracks of arbitrary smooth shape [6; 7]. This was performed using the material
derivative approach (see e.g. References [8; 9]) and a modi�cation of the method of adjoint
problems [10; 11].
In this paper, we use similar methods as in References [6; 7] to analyse the form sensitivity

for acoustic scattering from 2D domains with corners under mixed boundary conditions and
from 2D piecewise smooth cracks. Furthermore, we show similar results for scattering from
3D domains with smooth edges.
In Section 2, we give a short mathematical formulation of the problem and de�ne a class

of admissible perturbations of the boundary, whereas in Section 3, we provide some theorems
about the existence and the regularity of solutions to the exterior mixed boundary value
problems for the Helmholtz equation. Then we prove, in Section 4, the existence and the
regularity of the material and of the shape derivative of the perturbed acoustic �eld. The
analysis is performed directly for the exterior mixed boundary value problem in the di�erential
form, contrary to References [1–5], where a boundary integral or a variational formulation
is used. The existence results are formulated in weighted Sobolev spaces, which take into
account the behaviour of functions at in�nity and at corner points of the boundary. Based
on these results, we obtain a simple representation for the Gâteaux derivative of the far-�eld
pattern. In Section 5, we use a modi�cation of the method of adjoint problems to obtain
another representation for the Gâteaux derivative which is better suitable for a numerical
realization, and which shows in some cases directly the in�uence of the singularities of the
solution on the sensitivity of the far-�eld pattern. It turns out that, in case of scattering
from a bounded domain with pure Dirichlet or pure Neumann conditions imposed on the
boundary, the Gâteaux derivative of the far-�eld pattern depends only on the perturbation of
the boundary in the normal direction and the Cauchy data of the unperturbed scattered wave
u0 and the solution w of an appropriately de�ned adjoint exterior problem. This result holds,
when the boundary conditions change at corner points (the so-called collision points) with
opening angle smaller than �; too. If the boundary conditions change at a smooth boundary
point P (i.e. the opening angle is �), then the formula for the Gâteaux derivative contains
additional terms describing the perturbation of the collision point P in the tangential and in
the normal direction and on some constants describing the singular behaviour of u0 and w
near P: This knowledge can be used for the solution of the inverse problem for determining
the kind of boundary conditions. Similarly, we show that in case of acoustic scattering from
a crack, the Gâteaux derivative depends on the perturbation of the boundary in the normal
direction, on the perturbation of the crack tips in the tangential direction and on the constants
describing the singular behaviour of u0 and w at the crack tips. In this way, we generalize the
results from Reference [5], where severe restrictions were imposed on admissible perturbations
of the crack. We mention, that in case of smooth domains our formulas reduce to the ones
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DOMAIN SENSITIVITY ANALYSIS 597

proved in Reference [12]. Finally, we show in Section 6 that similar results are valid in case
of scattering from 3D domains with smooth edges.

2. FORMULATION OF THE PROBLEM

We consider exterior domains � :=R2\ ��i of two types:
• (B) �i is a bounded domain with a piecewise smooth boundary �=�D ∪�N ∪ S. Here
S= {P1; : : : ; PQ} is a �nite set of boundary points, such that �\S is smooth and �D ∩�N⊂ S.
It contains all corner points of the boundary and all points where the boundary conditions
change. Furthermore, we assume that � is locally di�eomorph in the neighbourhood of
every corner point Pq to an in�nite cone Cq with the opening angle !0q �∈ {0; 2�}. The unit
normal vector n=(n1; n2) on � is directed towards �i (see Figure 1).

• (C) �i=� is a crack, i.e. a piecewise smooth curve with a �nite set S= {P1; : : : ; PQ}
consisting of two crack tips and of interior corner points which satisfy the angle condition
!0q �= {0; 2�}. In this case, we assume that either �=�D or �=�N; i.e. the boundary
conditions do not change along the crack. The direction of the unit normal vector n on �
is chosen arbitrarily but is �xed along the crack (see Figure 2).

The mathematical modelling of the scattering of time-harmonic acoustic plane waves from
an obstacle �i, surrounded by a homogeneous isotropic medium �, leads to the exterior
boundary value problem for the Helmholtz equation with a positive wave number k (see
Reference [13] for a detailed description of the model)

�u(x) + k2u(x)=0 for x∈� (1)

Figure 1. The exterior of a bounded domain.
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Figure 2. The exterior of a crack.

The total wave u= us + ui is decomposed into a given incident plane wave ui(x)= eikd̂·x

with d̂∈R2 being a unit vector giving the direction of propagation, and the unknown scattered
wave us. The scattered wave us is requested to satisfy the following boundary conditions:

us(x) =−ui(x) for x∈�D

9us(x)
9n =−9u

i(x)
9n for x∈�N

(2)

and the Sommerfeld radiation condition

lim
r→∞

√
r
(
9us
9r − ikus

)
=0; r= |x| (3)

uniformly in all directions x̂=x=|x|. For crack problems (C) the boundary conditions have
to be posed on both sides of the crack, i.e.

us±(x) =−ui(x) for x∈�D or

9us±(x)
9n =−9u

i(x)
9n for x∈�N

(4)

Here is

us±(x) = lim
h→0+

us(x± hn) (5)

9us±(x)
9n = lim

h→0+
n · ∇us(x± hn) (6)

The boundary conditions describe the scattering properties of the obstacle. In case of Dirichlet
conditions the scatterer is sound-soft, while for Neumann conditions the scatterer is sound-
hard.
From now on, we denote by BR the open ball {x: |x|¡R} and by SR the corresponding

sphere {x: |x|=R}. It is known that there exists a unique solution of the direct problem
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(1)–(3), which belongs to H 1(�∩BR) and satis�es the following identity for big enough R
[14; 15]:

us(x)=
∫
SR

[
us(y)

9	(x; y)
9ny

−	(x; y)9u
s(y)
9ny

]
dsy (7)

Here 9=9nx denotes the outward normal derivative on the sphere SR at the point x and 	(x; y)
is the fundamental solution of the Helmholtz equation given by

	(x; y)=
i
4
H (1)
0 (k|x − y|)

with H (1)
0 being the Hankel function of the �rst kind.

Applying radiation condition (3) and the asymptotic behaviour of the fundamental solution
	 to integral identity (7), we obtain the following behaviour of the scattered wave us as
r→∞ and uniformly in x̂=x=|x| (see Reference [13])

us(x)=
ei�=4√
8�k

eik r√
r
F(�)(x̂) + o(1=

√
r) (8)

The function F(�), which depends on the angle variable x̂∈ S1; is called the far-�eld pattern
or the scattering amplitude of the scattered wave us. From the existence and the uniqueness
of the solution of the direct scattering problem follows that the far-�eld pattern is uniquely
determined by the boundary �: The far-�eld pattern is given by the following integral formula:

F(�)(x̂)=
∫
SR

[
us(y)

9e−ikx̂·y
9ny

− e−ikx̂·y 9u
s(y)
9ny

]
dsy (9)

Although the boundary of the domain representing the scattering object is non-smooth, integral
representation (9) shows that the far-�eld pattern is an analytic function on the unit sphere S1.
Our main concern in this work is to study how the perturbation of the domain in�uences

the far �eld F(�): The goal is to derive integral representations for the Gâteaux derivative
of the far-�eld pattern with respect to an admissible class of domain perturbations where the
integrand

• contains only boundary values of functions, which are easily computable by standard BEM
or FEM methods, and which

• depends explicitly on the perturbation of the boundary, but not on the perturbation of the
domain �.

3. EXTERIOR BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ
EQUATION

Let us formulate existence and regularity results for solutions of the mixed boundary value
problem

�u+ k2u=f in � (10)
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u= g on �D

9u
9n = h on �N


 (B) (11)

u± = g± on � or

9u±
9n = h± on �


 (C) (12)

which satisfy radiation condition (3) at in�nity.
To this end we introduce weighted Sobolev spaces which take into account the singular

behaviour of the functions near the singular points Pq ∈ S and at in�nity.
De�nition 3.1. Let �=R2\�i with �i being of type (B) as de�ned in Section 2 and let

0∈�i : We choose for every singular point Pq ∈ S a cut-o� function �q ∈C∞
0 (R2) with support

in a neighbourhood of Pq and set �0 = 1−
∑Q

q=1 �q: For d∈N0; �̃=(�1; : : : ; �Q)∈RQ we de�ne
the space Vd

�̃; �
(�) of all generalized functions which have the �nite norm

‖u‖Vd
�̃; �
(�) := ‖(1 + |x|2)−�=2(�0u)‖Hd(�) +

Q∑
q=1

∑
|p|6d

‖r�q−d+|p|q Dp(�qu)‖L2(�)

where rq=dist(x; Pq). For d=1; 2; : : : ; we denote by V
d−1=2
�̃

(�̃) the space of traces on �̃\S ⊂�
of functions in Vd

�̃; �
(�): For domains of the type (C) the weighted spaces Vd

�̃; �
(�); V d−1=2

�̃
(�̃)

are de�ned analogously.

Let us denote by !oq the opening angle of the cone CPq corresponding to the singular
boundary point Pq ∈ S: We decompose the set S= SD ∪ SN ∪ SM in such a way that u satis�es
in the vicinity of P ∈ SD; SN; SM the Dirichlet, the Neumann or the mixed boundary conditions,
respectively.

Theorem 3.2 (Existence and regularity result). Let d∈N0; �¿1 and �̃=(�1; : : : ; �Q)∈
RQ with

d+ 1− �q ∈ (0; �=!oq) for Pq ∈ SD ∪ SN
d+ 1− �q ∈ (0; �=(2!oq)) for Pq ∈ SM

Suppose that f∈Vd
�̃;−�(�); g∈V

d+3=2
�̃

(�D) and h∈Vd+1=2
�̃

(�N). Then there exist a unique solu-

tion u∈Vd+2
�̃; �

(�) and the following a priori estimate is valid

‖u‖Vd+2
�̃; �

(�) 6 c{‖f‖Vd
�̃;−�

(�) + ‖g‖Vd+3=2
�̃

(�D) + ‖h‖Vd+1=2
�̃

(�N)} (13)

Proof. With the a priori estimates for the solutions of boundary value problems in the
exterior of a smooth domain [16] and in bounded domains with corners [17–19], we can
prove by means of a partition of unity that

‖u‖Vd+2
�̃; �

(�) 6 c{‖f‖Vd
�̃;−�

(�) + ‖g‖Vd+3=2
�̃

(�D) + ‖h‖Vd+1=2
�̃

(�N) + ‖u‖Vd+1
�̃; �

(�∩BR)}
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with some real constant c and some positive R: The last norm on the right-hand side of
the above estimate can be omitted similar as in Reference [20, Lemma III 3:10] because the
kernel of the problem is trivial.

In case of a smooth domain Theorem 3.2 reduces to the result proved in Reference [16].

Remark 3.1. The assumptions of Theorem 3.2 put some restrictions on the behaviour of
the right-hand sides f; g; h: In fact, f=O(r�q−2); g=O(r�q); h=O(r�q−1) with some �q ∈ (0;
�=!0q) near the singular point Pq: In particular, g→ 0 as r→ 0; an assumption which is not
satis�ed for plane waves.

Theorem 3.3 (Asymptotic behaviour at corners). Let Pq ∈ S and let �1; �2 be cut-o� func-
tions with support in some neighbourhood of Pq and supp �2⊂ supp �1: Furthermore, let d∈N0

and �q ∈R satisfy
d+ 1− �q ∈ (�=!oq ; 2�=!oq) if Pq ∈ SD ∪ SN
d+ 1− �q ∈ (�=(2!oq); �=!oq) if Pq ∈ SM

Suppose that �1f∈Vd
�̃;−�(�); �1g∈V

d+3=2
�̃

(�D) and �1h∈Vd+1=2�̃
(�N). Then the solution u of

Equations (10–12) has in the vicinity of Pq the following asymptotic behaviour as r= |x −
Pq|→ 0:

�2u(x)=



k1r�=!

o
q sin( �!0q !) + w(x) if Pq ∈ SD

k2r�=!
o
q cos( �!0q !) + w(x) if Pq ∈ SN

k3r�=(2!
o
q ) sin( �

2!0q
!) + w(x) if Pq ∈ SM

(14)

with real constants k1; : : : ; k3 and �2w∈Vd+2
�̃; �

(�): Here, (r; !) are polar co-ordinates with
origin in Pq: The angle variable ! is oriented in such a way that the tangential vectors on the
boundary in Pq correspond to the angles 0 and !oq ; respectively. Moreover, if Pq ∈ SM then we
assume that !=0 corresponds to Dirichlet boundary conditions.

Proof. The assertion is a simple application of results from the theory of general elliptic
problems in domains with corners [17–19]. The singular terms of the asymptotic expansions
for the Helmholtz operator coincide with the singular terms for the Laplace operator which
are well known (see e.g. Reference [18, Section 6:1:8]).

4. DOMAIN SENSITIVITY OF ACOUSTIC FIELDS

4.1. Description of the domain perturbation

In order to describe the shape sensitivity of exterior boundary value problems, i.e. the in�uence
of the shape of the domain on the solution, we introduce a family of perturbed domains
��; �∈ [0; �0]; as the image of a �xed domain � under a family of di�eomorphism

{
�= I + �
∈ [Cd+2( ��)]2; �∈ [0; �0]}; d∈N0 (15)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:595–613
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Thus, we have

�� :=
�(�); �D� :=
�(�
D); �N� :=
�(�

N)

��=�D� ∪ �N� :=
�(�); S� :=
�(S)

Since we are interested in the perturbation of the boundary � we can assume that

∃R: 
�(x)=x ∀|x|¿R (16)

Remark 4.1. The regularity assumption 
� ∈ [C2( ��)]2 excludes perturbations which change
the number of singular points.

4.2. Form sensitivity of the solution

We consider the following exterior mixed boundary value problem:

�u�(x�) + k2u�(x�) =f�(x�) in ��

u�(x�) = g�(x�) on �D�

∇u�(x�) · n�(x�) = h�(x�) on �N�

(17)

for a scalar �eld u� satisfying radiation condition (3) and f� having a compact support.
Let us investigate the existence and the regularity of the material derivative

u̇ :=
d(u� ◦
�)

d�

∣∣∣∣
�=0

(18)

and the shape derivative

u′ := u̇−∇u0 ·
 (19)

of the perturbed function u�: To this end we transform problem (17) onto the reference
con�guration by means of a change of variables x�=
�(x) and obtain in this way a boundary
value problem for the transformed �eld u� ◦
�

��(u� ◦
�)(x) + k2(u� ◦
�)(x) = (f� ◦
�)(x) in �

(u� ◦
�)(x) = (g� ◦
�)(x) on �D

∇�(u� ◦
�)(x) · (n� ◦
�)(x) = (h� ◦
�)(x) on �N

(20)

where the operators �� and ∇� are given by

��u=
div(det(D
�)D
−1

� D
−�
� Du)

detD
�

∇�u · (n� ◦
�)= (D
−�
� ·Du) · D
−�

� n
‖D
−�

� n‖

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:595–613
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Since the coe�cients of �� and ∇� depend smoothly on �; they admit the Taylor expansions

�� =�+ ��̃ + �2�R(�)

∇� =∇+ �∇̃+ �2∇R(�)

with �̃ and ∇̃ given by

�̃u=div([div
 · I − (D
� +D
)] ·Du)− div
 ·�u
∇̃u=−D
�u

Let us assume that the transformed right-hand sides f� ◦ 
�; g� ◦ 
�; h� ◦ 
� depend smoothly
on �

f� ◦
� =f0 + �ḟ + �2fR (21)

g� ◦
� = g0 + �ġ+ �2gR (22)

h� ◦
� = h0 + �ḣ+ �2hR (23)

Inserting these expansions together with the formal ansatz

(u� ◦
�)(x)= u0(x) + �u̇(x) +O(�2) (24)

into Equation (20) and comparing the terms of the order O(�) we obtain an exterior boundary
value problem for the material derivative u̇

�u̇+ k2u̇= ḟ − �̃u0 in �

u̇= ġ on �D

∇u̇ · n= ḣ− ∇̃u0 · n −∇u0 · ṅ on �N
(25)

where u0 is the solution of Equation (17) with �=0 and

ṅ=(n ·D
�n)n −D
�n
Ansatz (24) has to be justi�ed, i.e. we have to show that the function u̇ in Equation (24) coin-
cides with the material derivative u̇ de�ned by Equation (18). The correctness of Equation (24)
can be easily proved with the help of the a priori estimate (13). Indeed, the following theorem
holds.

Theorem 4.1. Let d∈N0; �∈R and �̃∈RQ be de�ned as in Theorem 3:2. Suppose that the
Taylor expansions (21; 22) and (23) are valid with f� ◦
�; f0; ḟ; fR ∈Vd�̃;−�(�); g� ◦
�; g0; ġ; gR ∈
Vd+3=2
�̃;

(�) and h� ◦ 
�; h0; ḣ; hR ∈Vd+1=2�̃
(�). Furthermore; we assume that f� has a compact

support. Then the following estimate is valid:

‖u� ◦
� − u0 − �u̇‖Vd+2
�̃; �

(�) 6 c�2 (26)

with a positive real constant c.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:595–613
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Proof. It can be easily checked that the function v := u� ◦
�− u0− �u̇ solves the following
mixed boundary value problem:

��v+ k2v= �2
(
fR −�Ru0 − �̃u̇

)
+O(�3) in �

v= �2gR +O(�3) on �D

∇�v · (n� ◦
�) = �2(hR −∇u̇ · ṅ −∇u0 · nR

−∇̃u0 · ṅ − ∇̃u̇ · n −∇Ru0 · n) +O(�3) on �N

(27)

We note, that the operator of the above boundary value problem is a small perturbation
of the operator corresponding to problem (10–12) and that �� coincides with � for big
|x|: Therefore, Theorem 3.2 is applicable to Equation (27) for small enough �: Applying
Theorem 3.2 to the unperturbed problem (10–12) and to Equation (25) we conclude that
u0; u̇∈Vd+2�̃;�

(�): Since �R and �̃ are operators of second order, whose coe�cients have com-

pact support, so �Ru0 and �̃u̇ have support compact, too, and belong to Vd�̃;−�(�). Furthermore,

∇u̇;∇u0; ∇̃u0; ∇̃u̇;∇Ru0 ∈Vd+1=2�̃
(�). Applying a priori estimate (13) to the function v we ob-

tain the assertion.

The existence and the regularity of the shape derivative u′ follows directly from de�nition
(19) of u′ and the preceding theorem.

Corollary 4.2. Let the assumptions of Theorem 4:1 be satis�ed. Then the shape derivative
u′ exists in Vd+1

�̃; �
(�):

Remark 4.2. The domain sensitivity analysis performed above cannot be applied directly to
the perturbed scattered wave us�; which satis�es problem (17) with g�=−ui|�D� and h�=−9ui=9n
|�N� because in this case the right-hand sides g�; h� do not satisfy the assumptions of Theorem
4.1 (see Remark 3.1). Therefore, we perform the form sensitivity analysis for the acoustic
�eld

U� := us� + �u
i

where � is a cut-o� function with support in the vicinity of the boundary �: We note that
U� satis�es the Helmholtz equation with a right-hand side having a compact support and
vanishing in the neighbourhood of �� and satis�es homogeneous boundary conditions (2) or
(4). Furthermore, U�= us� outside some neighbourhood of ��.
A boundary value problem for the shape derivative U ′ of U� can be obtained by inserting

Equation (19) into Equation (25) [8; 21]. By long but straightforward calculations, we �nd
out that U ′ solves the following exterior mixed boundary value problem:

�U ′ + k2U ′ =0 in �

U ′ =−
 · n9U09nx
on �D

9U ′

9nx
=−
 · n9

2U0
9n2x

+∇�(
 · n) · ∇xU0 on �N

(28)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:595–613
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and the Sommerfeld’s radiation condition at in�nity. Here, 92=9n2x=
∑

i; j ninj92=9xi9xj, and
∇�f is the tangential gradient given by

∇�f=∇f − (n · ∇f)n

Remember that in case of cracks, the boundary condition must be imposed on both sides of
the crack as in Equation (4).

4.3. Form sensitivity of the far-�eld pattern

Let � be an exterior domain of type (B) or (C). The perturbed scattered wave us� has at
in�nity asymptotics (8) with the far-�eld pattern F(��) given by an analogue of formula (9)

F(��)(x̂)=
∫
SR

[
us�(y)

9e−ikx̂·y
9ny

− e−ikx̂·y 9u
s
�(y)
9ny

]
dsy (29)

Let us calculate the Gâteaux derivative

dF(�;
)= lim
�→0

F(
�(�))−F(�)
�

=
dF(��)
d�

∣∣∣∣
�= 0

(30)

For big enough R= |x| we have 
�|SR = I and us� |SR =U� ◦
�|SR . Thus,

F(��)(x̂)=
∫
SR

[
(U� ◦
�)(y)9e

−ikx̂·y

9ny
− e−ikx̂·y 9(U� ◦
�)(y)9ny

]
dsy (31)

Di�erentiating both sides of the above equation by � and taking �=0 we obtain immediately

dF(�;
)(x̂)=
∫
SR

[
U̇ (y)

9e−ikx̂·y
9ny

− e−ikx̂·y 9U̇ (y)9ny

]
dsy (32)

Since U̇ (x)=U ′(x) for big enough |x|; we get

dF(�;
)(x̂)=
∫
SR

[
U ′(y)

9e−ikx̂·y
9ny

− e−ikx̂·y 9U
′(y)
9ny

]
dsy (33)

Representation (33) is not suitable for numerical realization because U ′, in general, cannot
be de�ned as a variational solution of boundary value problem (28). The asymptotic analysis
shows that the solution U0 behaves near the singular points Pq ∈ S as |x−Pq|�q with �q¿1=4.
Therefore, U0 ∈H 1+�(�);∇U0 ∈H�(�) with

�= min
Pq ∈ S

�q

and consequently U ′ ∈H�(�) due to Equation (19). If the domain is not convex then we have
�¡1 and thus U ′ =∈H 1(�). Furthermore, U ′ is in general not uniquely de�ned by Equation
(28). For example, in case of a straight crack perturbed along a straight line, U ′ satis�es the
Helmholtz equation with homogeneous right-hand sides. Therefore, U ′ cannot be computed in
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general by solving Equation (28) numerically with the help of the standard boundary element
or �nite element methods.
In order to overcome this di�culty, we derive in the next section from Equation (33) a

representation for dF(�;
)(x̂); which is better suitable for a numerical realization. We use
the method of adjoint problems [10; 11], which consists in applying the second Green formula
to the shape derivative U ′ and to the solution w of an appropriately de�ned adjoint problem.
This leads to an expression in which only U0 and the adjoint �eld w appear.

5. THE METHOD OF ADJOINT PROBLEMS

5.1. Exterior of a bounded domain

Let us �rst assume that � is the exterior of bounded domain. We de�ne w as the solution of
the following mixed boundary value problem:

�w(y) + k2w(y) = 0 in �

w(y) = e−ikx̂·y on �D

9w(y)
9ny

=
9e−ikx̂·y
9ny

on �N
(34)

which satis�es Sommerfeld radiation condition (3) at in�nity.
Using second Green’s formula for the functions U ′ and w in the domain BR ∩ �; passing

to the limit as R→ +∞ and taking into account that U ′; w satisfy Equation (3) we obtain

0=
∫
SR

[
w(y)

9U ′(y)
9ny

−U ′(y)
9w(y)
9ny

]
dsy (35)

Summing up expressions (35) and (33) we get

dF(�;
)(x̂)=
∫
SR

[
W (y)

9U ′(y)
9ny

−U ′(y)
9W (y)
9ny

]
dsy (36)

with W :=w − e−ikx̂·y. We note that the normal vector n on SR is directed outwards.
Let B�(Pq) be a ball with centre in Pq and radius �. Inserting U ′ and W into second Green’s

formula in (� ∩ BR)\
⋃Q
q=1 B�(Pq), we obtain from (36)

dF(�;
)(x̂) =
∫
�\⋃ Q

q=1 B�(Pq)

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy

+
∫
⋃ Q

q=1 9B�(Pq)∩�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy (37)
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Let us formally pass to the limit as �→ 0 on both sides of Equation (37) and rewrite it as

dF(�;
)(x̂) =
∫
�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy

+ lim
�→0

∫
⋃ Q

q=1 9B�(Pq)∩�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy (38)

Finally, substituting the boundary values of U ′ in the �rst integral of Equation (38), we obtain
the following formal expression for the far-�eld derivative:

dF(�;
)(x̂) =−
∫
�D

 · n9U09ny

9W
9ny

dsy +
∫
�N

(

 · n9

2U0
9n2y

−∇�(
 · n) · ∇yU0
)
W dsy

+ lim
�→0

Q∑
q=1

∫
9B�(Pq)∩�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy (39)

In order to justify the limit passage in Equation (39) we have to investigate the behaviour of
the integrand as � → 0 for every singular point Pq ∈ S. The existence of the limit for every
Pq ∈ S depends on the corresponding opening angle and the kind of boundary conditions near
Pq. In the following, we denote by Lq:

Lq := lim
�→0

∫
9B�(Pq)∩�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy (40)

Theorem 5.1. (a) Let Pq ∈ SD ∪ SN. Then Lq=0.
(b) Let Pq ∈ SM. Then

Lq=



0 if !oq¡�

kq(U0)kq(W )( 14
t(Pq)− 1
2
n(Pq)) if !oq=�

∞ if !oq¿�

Here we denote by 
t(Pq);
n(Pq) the tangential and the normal components of 
 at Pq;
respectively.

Proof. (a) Let us assume �rst that Pq ∈ SD ∪ SN. According to Equation (14) the functions
U0 and W behave in the neighbourhood of Pq as

U0(x)=O(r�=!
o
q); W (x)=O(r�=!

o
q) (41)

Consequently, U ′(x)=O(r(�=!
o
q)−1) due to Equation (19) and so the integrand of Equation (40)

behaves as O(r(2�=!
o
q)−2). Since 0¡!oq¡2� then 2�=!

o
q − 2¿−1, which implies that Lq=0.

(b) Let us suppose now that Pq ∈ SM. Then according to Equation (14) the functions U0 and
W behave in the neighbourhood of Pq as O(r

�=2!oq
q ), and consequently, U ′(x)=O(r

(�=2!oq)−1
q ).

Therefore, the integrand of Equation (40) behaves as O(r
(�=!oq)−2
q ). Thus, Lq=0 if !oq¡� and

Lq=∞ if !oq¿�.
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Let us investigate the case !oq=�; i.e. the boundary � is smooth in the vicinity of Pq.
We can assume without loss of generality that the tangential vector at the singular point Pq
has the direction of the x1-axis.
From Equation (14) we know that

U0(x) = kq(U0)r1=2 sin( 12!) +O(r)

W (x) = kq(W )r1=2 sin( 12!) +O(r) (42)

near Pq.
Direct calculation shows that

9x1U0(x)=− 1
2kq(U0)r

−1=2 sin( 12!) +O(1)

9x2U0(x)= 1
2kq(U0)r

−1=2 cos( 12!) +O(1)

and thus

U ′(x)= 1
2kq(U0)r

−1=2(
t(Pq) sin( 12!)−
n(Pq) cos( 12!)) +O(1) (43)

because of Equation (19). Inserting Equations (43) and (42) into Equation (40) we can
calculate easily the limit and obtain

Lq= kq(U0)kq(W )( 14
t(Pq)− 1
2
n(Pq)) (44)

Remark 5.1. The method of adjoint problems used above fails if the boundary contains a
collision point Pq ∈ SM with an exterior opening angle !oq¿�, unless Pq is not perturbed, i.e.

(Pq)=0.

5.2. Exterior domains with cracks

The above considerations along with formula (37) can be repeated with some obvious changes
for problems in the exterior of a crack. Note, that for crack problems we assumed that the
boundary conditions do not change along the crack, i.e. S= SD or SN. The adjoint backscattered
wave is de�ned as the solution of the following boundary value problem in the exterior of
the curve:

�w(y) + k2w(y) = 0 in �

w±(y) = e−ikx̂·y on �D\S or
9w±(y)
9ny

=
9e−ikx̂·y
9ny

on �N\S

satisfying the Sommerfeld radiation condition (3) at in�nity.
Formula (39) reads now

dF(�;
)(x̂)= −
∫
�

 · n

[[
9U0
9ny

9W
9ny

]]
dsy +

Q∑
q=1
Lq (45)
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in case of Dirichlet conditions and

dF(�;
)(x̂)=
∫
�

[[(

 · n9

2U0
9n2y

−∇�(
 · n) · ∇yU0
)
W

]]
dsy +

Q∑
q=1
Lq (46)

if Neumann conditions are prescribed. Here, <·= denotes the jump across the crack and U0 is
de�ned as in Remark 5.1.
The limits Lq can be calculated similar as for problems in the exterior of a bounded domain.

Let us denote by 
t(Pq);
n(Pq) the tangential and the normal components of 
 at the crack
tip Pq; respectively.

Theorem 5.2. Let Pq be the tips of the crack. Then

Lq=(�=2)kq(U0)kq(W )
t(Pq) if Pq ∈ SD
Lq= − (�=2)kq(U0)kq(W )
t(Pq) if Pq ∈ SN

If Pq is an interior corner of the crack, then Lq=0.

Proof. For interior corner points the proof is the same as in Theorem 5.1 for Pq ∈ SD ∪ SN.
Let us therefore suppose that Pq is a crack tip. From Equation (14) we know that

U0(x)= kq(U0)r1=2 sin( 12!) +O(r)

W (x)= kq(W )r1=2 sin( 12!) +O(r)
(47)

near Pq for Pq ∈ SD and
U0(x)= kq(U0)r1=2 cos( 12!) +O(r)

W (x)= kq(W )r1=2 cos( 12!) +O(r)
(48)

for Pq ∈ SN.
Direct calculation shows that

9x1U0 =− 1
2kq(U0)r

−1=2 sin( 12!) +O(1) for Pq ∈ SD
9x2U0 = 1

2kq(U0)r
−1=2 cos( 12!) +O(1) for Pq ∈ SD

9x1U0 = 1
2kq(U0)r

−1=2 cos( 12!) +O(1) for Pq ∈ SN
9x2U0 = 1

2kq(U0)r
−1=2 sin( 12!) +O(1) for Pq ∈ SN

and thus

U ′= 1
2kq(U0)r

−1=2(
t(Pq) sin( 12!)−
n(Pq) cos( 12 )) +O(1) for Pq ∈ SD
U ′=− 1

2kq(U0)r
−1=2(
t(Pq) cos( 12!) + 
n(Pq) sin(

1
2 )) +O(1) for Pq ∈ SN

because of Equation (19). Inserting these asymptotics and Equations (47, 48) into
Equation (40) we can calculate easily the limit and obtain the assertion.
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6. 3D DOMAIN WITH SMOOTH EDGES

In the last section, we want to show that scattering from three-dimensional domains with
smooth edges can be treated in a similar manner as two-dimensional problems in domains
with corners. Since proofs are very similar as in the 2D case, we will state only the main
results. The interested reader can �nd the complete proofs in Reference [22]. Furthermore,
we will consider only two geometrical con�gurations where the harmonic �elds behave like
the square root of the distance from the edges, i.e. only those cases where we get an explicit
dependence of the shape derivative dF(�;
) on the singularities of the harmonic �elds.
Let us consider the mixed boundary value problem (1; 2; 3) in a three-dimensional domain

� := R3\ ��i which is of one of the following types:
• (B) �i is a bounded domain with a smooth boundary �=�D ∪�N ∪ S; where S is a smooth
non-intersecting curve. The unit normal vector n=(n1; n2; n3) on � is directed towards �i :

• (C) �i=� is a crack, i.e. a smooth bounded open surface bounded by a smooth edge M: In
this case, we assume that either �=�D or �N; i.e. the boundary conditions do not change
on the crack surface. The direction of the unit normal vector n on � is chosen arbitrarily
but is �xed on �:

It is well known (see e.g. Reference [13]), that the 3D scattered wave us has the following
behaviour as r→∞:

us(x)=
eikr

r
F(�)(x̂) + o(1=r) (49)

As in the two-dimensional case, the far-�eld pattern F(�) is given by

F(�)(x̂)=
∫
SR

[
us(y)

9e−ikx̂·y
9ny

− e−ikx̂·y 9u
s(y)
9ny

]
dsy

The asymptotic behaviour of harmonic waves in the vicinity of the edge M can be best
described in curvilinear coordinates (r; !; s) which are de�ned in a toroidal neighbourhood of
M (see Figure 3). Here, s∈ [0; LM ) denotes the arc length and (r; !) are the polar co-ordinates
in the plane perpendicular to M; i.e. r=dist(x; M):

Theorem 6.1 (Asymptotic behaviour at edges). Suppose that u satis�es the homogeneous
Helmholtz equation and homogeneous boundary conditions in the neighbourhood of the edge
M: Then u has in the vicinity of M the following asymptotic behaviour as r→ 0:

u(x)= k(s)r1=2 sin(!=2) +O(r)

in case of a crack with Dirichlet boundary conditions and a mixed boundary value problem
in the exterior of a bounded domain, and

u(x)= k(s)r1=2 cos(!=2) +O(r)

for a crack with Neumann boundary conditions. Furthermore, k ∈C∞(M):

The assertion is a simple application of results from the theory of general elliptic problems
in domains with edges [19]. We note that the only di�erence between the asymptotics of
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Figure 3. Curvilinear co-ordinates (r; !; s).

harmonic �elds for 2D domains with corners and for 3D domains considered here lies in the
dependence of the coe�cients k and the arc length s:
Let us assume �rst, that � is the exterior of a bounded smooth domain. The previous cal-

culations for two-dimensional domains with corners can be repeated here, taking into account
that U ′ has now a uniform r−1=2 singularity along the whole edge M: Therefore, we can show
that

dF(�;
)(x̂) =−
∫
�D

 · n9U09ny

9W
9ny

dsy +
∫
�N

(

 · n9

2U0
9n2y

−∇�(
 · n) · ∇yU0
)
W dsy

+ lim
�→ 0

Q∑
q= 1

∫
9T�(M)∩�

{
U ′(y)

9W (y)
9ny

− 9U ′(y)
9ny

W (y)
}
dsy (50)

Here W =w − e−ikx̂·y; w is the solution of the three-dimensional adjoint problem (34) and

T�(M) := {(r; !; s)∈R3: r ∈ [0; �]; !∈ [0; 2�]; s∈ [0; LM )}
is a toroidal neighbourhood of the edge M with the length LM :
Let us denote by L the limit in Equation (50) and introduce curvilinear coordinates (t; n; s)

near M; where s is de�ned as before and (t; n) are Cartesian coordinates in the plane perpen-
dicular to M related to the polar coordinates (r; !) by

t= r cos(!); n= r sin(!)

Thus, the vector (t; 0; 0) is tangential to �; whereas (0; n; 0) is normal to �.
Let us denote by 
t(M);
n(M);
s(M) the traces of the t; n and s component of the mapping


 on M: We remark that they are functions depending on the variable s:
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Similar as in the 2D case, we calculate the asymptotics of U ′ from the asymptotics of U0
using Equation (19) and obtain

U ′(x)= 1
2k(U0)(s)r

−1=2(
t(M)(s) sin( 12!)−
n(M)(s) cos( 12!)) +O(1) (51)

Inserting Equation (51) into Equation (50) and calculating the limit we obtain

L=
∫
M
k(U0)k(W )

(
1
4

t(M)− 1

2

n(M)

)
ds

Performing the same calculations for the exterior of a smooth crack we get

dF(�;
)(x̂)=−
∫
�

 · n

[[
9U0
9ny

9W
9ny

]]
dsy +

�
2

∫
M
k(U0)k(W )
t(M) ds

in case of Dirichlet conditions and

dF(�;
)(x̂) =
∫
�

[[(

 · n9

2U0
9n2y

−∇�(
 · n) · ∇yU0
)
W

]]
dsy

− �
2

∫
M
k(U0)k(W )
t(M) ds

if Neumann conditions are prescribed.
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