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Equations of linear elasticity:

Aσ = ε(u), div σ = f in Ω.

Stress σ takes values in S = Rn×n
sym .

Displacement u takes values in V = Rn.

f = body force, (ε(u))ij = (∂ui/∂xj + ∂uj/∂xi)/2,
divergence operator applied row-wise.

Compliance tensor A = A(x) : S → S bounded, symmetric,
uniformly positive definite operator reflecting material properties.

Isotropic case: Let λ(x), µ(x) positive scalar coefficients (Lamé
coefficients), tr = trace. Then

Aσ =
1

2µ

(
σ −

λ

2µ + nλ
tr(σ)I

)
.
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Boundary condition u = 0 on ∂Ω (clamped case). Modifications

needed for other B.C., e.g., traction boundary conditions σn = 0.

When A invertible, i.e., σ = A−1ε(u) = Cε(u), then for isotropic

elasticity,

Cτ = 2µ(τ + λ tr τI).

Then formulate elasticity system weakly as:

Find σ ∈ L2(Ω, S), u ∈ H̊1(Ω;V) such that∫
Ω

σ : τ dx−
∫
Ω

Cε(u) : τ dx = 0, τ ∈ L2(Ω, S),∫
Ω

σ : ε(v) dx =
∫
Ω

f · v dx, v ∈ H̊1(Ω;V),

where σ : τ =
∑n

i,j=1 σijτij.
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In this case, may eliminate σ completely to obtain pure
displacement formulation: Find u ∈ H̊1(Ω;V) such that∫

Ω
Cε(u) : ε(v) dx =

∫
Ω

f · v dx, v ∈ H̊1(Ω;V).

As material becomes incompressible, i.e., λ → ∞, not a good
formulation, since operator norm of C also approaching infinity.
Instead, consider formulation involving u and new variable
p = (λ/[2µ + nλ]) tr σ.

Taking trace of: Aσ = ε(u), get div u = λ−1p.
Then write σ = 2µε(u) + pI to obtain: Find u ∈ H̊1(Ω;V),
p ∈ L2

0(Ω) = {p ∈ L2(Ω) :
∫
Ω p = 0} such that∫

Ω
2µε(u) : ε(v) dx +

∫
Ω

pdiv v dx =
∫
Ω

f · v dx, v ∈ H̊1(Ω;V),∫
Ω

div uq dx =
∫
Ω

λ−1pq dx, q ∈ L2
0(Ω).
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This formulation makes sense even for limit λ →∞, giving

stationary Stokes equations (to be considered in other lectures).

Consider other weak formulations involving both σ and u.

Strongly imposed symmetry:

Find σ ∈ H(div,Ω; S) and u ∈ L2(Ω;V), satisfying∫
Ω
(Aσ : τ + div τ · u) dx = 0, τ ∈ H(div,Ω; S),∫
Ω

div σ · v dx =
∫
Ω

f · v dx, v ∈ L2(Ω;V).
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Weakly imposed symmetry: Find σ ∈ H(div,Ω;M), u ∈ L2(Ω;V),

and p ∈ L2(Ω;K) satisfying∫
Ω
(Aσ : τ + div τ · u + τ : p) dx = 0, τ ∈ H(div,Ω;M),∫

Ω
div σ · v dx =

∫
Ω

f · v dx, v ∈ L2(Ω;V),∫
Ω

σ : q dx = 0, q ∈ L2(Ω;K),

M = n× n matrices, K skew-symmetric matrices, compliance

tensor A(x) now symmetric and positive definite operator

mapping M into M.

First consider finite element methods based on variational

formulation with strongly imposed symmetry.
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Let Σh ⊂ H(div,Ω; S) and V h ⊂ L2(Ω;V) and seek σh ∈ Σh and

uh ∈ V h satisfying∫
Ω
(Aσh : τ + div τ · uh) dx = 0, τ ∈ Σh,∫
Ω

div σh · v dx =
∫
Ω

f · v dx, v ∈ V h.

Can apply standard analysis of mixed finite element theory (e.g.,

Brezzi, Brezzi-Fortin, Falk-Osborn, Douglas-Roberts). For

isotropic elasticity, if we write σ = σD + (1/n) tr σI, where

tr σD = 0, then ‖σ‖20 = ‖σD‖20 + (1/n)‖ tr σ‖20 and so∫
Ω

Aσ : σ dx =
∫
Ω

[
1

2µ
σD : σD +

1

2µ + nλ
(tr σ)2

]
dx.

This form not uniformly coercive as λ →∞ (only coerce σD).
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However, for all σ satisfying∫
Ω

tr σ dx = 0, div σ = 0, (1)

can show that ‖ tr σ‖0 ≤ C‖σD‖0, and hence (Aσ, σ) ≥ α‖σ‖2
H(div)

for all σ satisfying (1), with α independent of λ. Implies first
Brezzi condition with constant independent of λ. Then analyze
methods using following result.

Theorem: Suppose for every τ ∈ H1(Ω), there exists Πhτ ∈ Σh

satisfying∫
Ω

div(τ−Πhτ)·v dx = 0, v ∈ V h, ‖Πhτ‖H(div) ≤ C‖τ‖H(div).

Further suppose that for all τ ∈ Σh satisfying
∫
Ω div τ · v dx = 0,

v ∈ V h, that div τ = 0. Then for all vh ∈ V h,

‖σ−σh‖0 ≤ C‖σ−Πhσ‖0, ‖u−uh‖0 ≤ C(‖u−vh‖0+‖σ−σh‖0).
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Methods using Composite Elements

Let Pk(X, Y ) denote space of polynomial functions on X of
degree at most k and taking values in Y .

One of first methods based on symmetric formulation: method
of Watwood-Hartz analyzed in Johnson-Mercier. Describe
triangular element (also similar quadrilateral element).

Basic idea: approximate stress by composite finite element.
Starting from mesh Th of triangles, connect barycenter of each
triangle K to three vertices to form a composite element made
up of three triangles, i.e., K = T1 ∪ T2 ∪ T3. Define:

Σh = {τ ∈ H(div,Ω; S) : τ |Ti
∈ P1(Ti, S)},

V h = {v ∈ L2(Ω) : v|K ∈ P1(K, R2}.
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To construct Σh|K, start from space of 27 degrees of freedom.

Impose at most 12 constraints that require τn be continuous

across each of three internal edges of K (all independent). Then,

show on each K, τ uniquely determined by 15 degrees of freedom:

(i) the values of τ · n at two points on each edge of K and

(ii)
∫
K τij dx, i, j = 1,2.

Check that if
∫
K div τ · v dx = 0 for v ∈ P1(K, R2), then div τ = 0.

Defining Πh to correspond to degrees of freedom, easy to check∫
K div(τ −Πhτ) · v dx = 0 for v ∈ P1(K, R2).
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After establishing H(div,Ω) norm bound on Πhσ,

get error estimates:

‖σ − σh‖0 ≤ Ch2‖σ‖2, ‖u− uh‖0 ≤ Ch2(‖σ‖2 + ‖u‖2).

Use of composite finite elements extended to a family in

Arnold-Douglas-Gupta. For k ≥ 2,

Σh = {τ ∈ H(div,Ω; S) : τ |Ti
∈ Pk(Ti, S)},

V h = {v ∈ L2(Ω) : v|K ∈ Pk−1(K, R2)}.
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Non-composite Elements – Arnold-Winther approach

Based on use of discrete differential complexes and close relation
between construction of stable mixed finite element methods for
Laplace’s equation and discrete versions of de Rham complex,
with a commuting diagram, i.e.,

R ⊂−→ C∞(Ω)
curl−−−→ C∞(Ω, R2)

div−−→ C∞(Ω) → 0

id

y Ih

y Πh

y Ph

y
R ⊂−→ Qh

curl−−−→ Σh
div−−→ Vh → 0

.

Ih, Πh, Ph natural interpolation operators into finite element
spaces Qh, Σh, and Vh.

Simplest case: Qh ∼ C0P1, Σh ∼ RT 0, Vh ∼ P0. Right half of
diagram, involving Πh and Ph is key result in establishing second
Brezzi stability condition.
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If Ω simply connected, sequences are exact (range of each map

the kernel of following one).

Starting point of Arnold-Winther: elasticity differential complex

0 → P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω, S) div−−→ C∞(Ω, R2) → 0, (2)

where Airy stress function

Jw =

(
∂2w/∂y2 −∂2w/∂x∂y

−∂2w/∂x∂y ∂2w/∂x2

)
.

If Ω simply-connected, this sequence also exact.

Analogous results hold for functions with less smoothness, e.g.,

0 → P1(Ω)
⊂−→ H2(Ω)

J−→ H(div,Ω; S) div−−→ L2(Ω, R2) → 0 (3)

is also exact. Implies div H(div,Ω; S) = L2(Ω, R2).



Stable pairs of finite element spaces (Σh, V h) introduced by
Arnold-Winther satisfy divΣh = V h, i.e., short sequence

Σh
div−−→ V h → 0 (4)

is exact.

Moreover, if there are projections Ph : C∞(Ω, R2) 7→ V h and
Πh : C∞(Ω, S) 7→ Σh defined by degrees of freedom determining
finite element spaces, then following diagram commutes:

C∞(Ω, S) div−−→ C∞(Ω, R2)

Πh

y Ph

y
Σh

div−−→ V h

(5)

Stability of mixed method follows from exactness of (4), com-
mutativity of (5), and well-posedness of continuous problem.
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Information about construction of such finite element spaces

gained by completing sequence (4) to longer sequence,

Set Qh = {q ∈ H2(Ω) : Jq ∈ Σh}. There is interpolation operator

Ih : C∞(Ω) 7→ Qh so that following diagram commutes:

0 → P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω, S) div−−→ C∞(Ω, R2) → 0

id

y Ih

y Πh

y Ph

y
0 → P1(Ω)

⊂−→ Qh
J−→ Σh

div−−→ V h → 0

Existence of stable spaces (Σh, V h) approximating H(div,Ω; S)×
L2(Ω, R2), implies existence of finite element subspace Qh of

H2(Ω) related to Σh and V h through above diagram.
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Difficulty: Qh requires C1(Ω) finite elements. Simplest choice:

Argyris space of C1 piecewise quintic polynomials.

Since JQh ⊂ Σh, Σh must be piecewise cubic space. Since Argyris

space has second derivatie d.o.f. at vertices, d.o.f. of Σh with

include d.o.f. at vertices, not usually expected for subspaces of

H(div,Ω).

Simplest element defined locally by:

ΣT = P2(T, S) + {τ ∈ P3(T, S) : div τ = 0}
= {τ ∈ P3(T, S) : div τ ∈ P1(T, R2)}, VT = P1(T, R2).
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Family of elements developed in Arnold-Winther chooses for

k ≥ 1, locally defined by:

ΣT = Pk+1(T, S) + {τ ∈ Pk+2(T, S) : div τ = 0}
= {τ ∈ Pk+2(T, S) : div τ ∈ Pk(T, R2)}, VT = Pk(T, R2).

Unisolvent set of local degrees of freedom given by:

• values of 3 components of τ(x) at each vertex x of T (9 degrees

of freedom)

• values of moments of degree at most k of the two normal

components of τ on each edge e of T (6k+6 degrees of freedom)

• value of moments
∫
T τ : φ dx, φ ∈ Pk(T, R2)+airy(b2TPk−2(T, R)).
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For this family of elements, shown by Arnold-Winther that

‖σ − σh‖0 ≤ Chr‖σ‖r, 1 ≤ r ≤ k + 2,

‖div(σ − σh)‖0 ≤ Chr‖div σ‖r, 0 ≤ r ≤ k + 1,

‖u− uh‖0 ≤ Chr‖u‖r+1, 1 ≤ r ≤ k + 1.

Variant of lowest degree (k = 1) element involving fewer degrees
of freedom. Choose VT space of infinitesimal rigid motions on
T , i.e., vector functions of form (a− by, c + bx). Then
ΣT = {τ ∈ P3(T, S) : div τ ∈ VT}.

Element diagram for choice k = 1 and a simplified
element are depicted below.
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Nonconforming elements: fewer degrees of freedom; avoid vertex

degrees of freedom (Arnold-Winther)

Corresponding to choice VT = P1(T, R2), choose for stress shape

functions:

ΣT = {τ ∈ P2(T, S) : n · τn ∈ P1(e, R), for each edge e of T}.

Space ΣT has dimension 15, with degrees of freedom given by:

• values of moments of degree 0 and 1 of two normal compo-

nents of τ on each edge e of T (12 degrees of freedom),

• value of three components of moment of degree 0 of τ on T

(3 degrees of freedom).
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Nonconforming approximation of H(div,Ω; S), since although
t · τn may be quadratic on an edge, only its two lowest order
moments are determined on each edge. Hence, τn may not be
continuous across element boundaries.

Simplified nonconforming element:
Displacement space chosen to be piecewise rigid motions.

Stress space reduced by requiring that divergence be a rigid
motion on each triangle.

Local dimension is 12 and first two moments of normal traction
on each edge form unisolvent set of degrees of freedom.
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For k = 1, saw corresponding space Qh is Argyris space consisting

of C1 piecewise quintic polynomials.

Also an analogous relationship for composite elements discussed

earlier. For Johnson-Mercier element, Qh is Clough-Tocher com-

posite H2 element and for family of Arnold-Douglas-Gupta, Qh

spaces are higher order composite elements of Douglas-Dupont-

Percell-Scott.

Figure 3: Qh spaces for k = 1 conforming element, nonconform-

ing element, and composite element of Johnson-Mercier.
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Weakly Symmetric Finite Element Methods

Advantage: can approximate stress tensor by two copies of

standard finite element approximations of H(div,Ω) used to

discretize scalar second order elliptic problems.

Exploit many close connections between elasticity and

scalar elliptic problems.

Structure of these connections most clearly seen in language of

exterior calculus. Give only basic notation and connection to

language of vectors and differential operators in R2 and R3.
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Differential Forms

Suppose Ω an open subset of Rn. For 0 ≤ k ≤ n, let Λk(Ω)

denote space of smooth differential k-forms of Ω.

When n = 2, ω ∈ Λk(Ω) will have forms

w, w1dx1 + w2dx2, wdx1 ∧ dx2, k = 0,1,2.

Can identify w ∈ Λ0(Ω) or wdx1 ∧ dx2 ∈ Λ2(Ω) with function

w ∈ C∞(Ω) and w1dx1 + w2dx2 ∈ Λ1(Ω) with vector (w1, w2) or

vector (−w2, w1) ∈ C∞(Ω, R2).

22



When n = 3, ω ∈ Λk(Ω) will have forms (for k = 0,1,2,3)

w, w1dx1 + w2dx2 + w3dx3,

w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2, wdx1 ∧ dx2 ∧ dx3.

Can identify w ∈ Λ0(Ω) or wdx1 ∧ dx2 ∧ dx3 ∈ Λ3(Ω)

with function w ∈ C∞(Ω)

and

w1dx1 + w2dx2 + w3dx3 ∈ Λ1(Ω)

or

w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2 ∈ Λ2(Ω)

with vector (w1, w2, w3) ∈ C∞(Ω, R3).
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Key object: exterior derivative d = dk : Λk(Ω) → Λk+1(Ω)

defined by

d
∑

aσdxσ(1) ∧ · · · ∧ dxσ(k) =
∑
σ

n∑
i=1

∂aσ

∂xi
dxi ∧ dxσ(1) ∧ · · · ∧ dxσ(k).

Wedge product dxi ∧ dxj satisfies: dxi ∧ dxj = −dxj ∧ dxi.

So dxi ∧ dxi = 0.

d corresponds to differential operators grad, curl, div, and rot.
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n = 2: ω ∈ Λ0(Ω), d0ω = ∂w/∂x1dx1 + ∂w/∂x2dx2 ∈ Λ1(Ω).

Identifying ∂w/∂x1dx1 + ∂w/∂x2dx2 with (∂w/∂x1, ∂w/∂x2),

d0 ∼ grad.

Identifying ∂w/∂x1dx1 + ∂w/∂x2dx2 with (−∂w/∂x2, ∂w/∂x1),

d0 ∼ curl.

µ = w1dx1 + w2dx2 ∈ Λ1(Ω).

d1µ = (∂w2/∂x1 − ∂w1/∂x2)dx1 ∧ dx2 ∈ Λ2(Ω).

Identifying w1dx1 + w2dx2 with (w1, w2), d1 ∼ rot.

Identifying w1dx1 + w2dx2 with (−w2, w1), d1 ∼ −div.
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n = 3. ω ∈ Λ0(Ω),

d0ω = ∂w/∂x1dx1 + ∂w/∂x2dx2 + ∂w/∂x3dx3 ∈ Λ1(Ω).

Identifying ∂w/∂x1dx1 + ∂w/∂x2dx2 + ∂w/∂x3dx3

with (∂w/∂x1, ∂w/∂x2, ∂w/∂x3dx3), d0 ∼ grad.

µ = w1dx1 + w2dx2 + w3dx3 ∈ Λ1(Ω).

d1µ = (∂w3/∂x2− ∂w2/∂x3)dx2∧ dx3− (∂w1/∂x3− ∂w3/∂x1)dx1∧
dx3 + (∂w2/∂x1 − ∂w1/∂x2)dx1 ∧ dx2 ∈ Λ2(Ω).

Identifying w1dx1 + w2dx2 + w3dx3 with (w1, w2, w3), d1 ∼ curl.

µ = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2 ∈ Λ2(Ω).

d2µ = (∂w1/∂x1 + ∂w2/∂x2 + ∂w3/∂x3)dx1 ∧ dx2 ∧ dx3 ∈ Λ3(Ω).

Identifying µ with (w1, w2, w3), d2 ∼ div.
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Important role in our analysis played by de Rham sequence,

sequence of spaces and mappings given by:

0 → Λ0(Ω)
d0−→ Λ1(Ω)

d1−→ · · ·
dn−1−−−→ Λn(Ω) → 0.

or L2 version

0 → HΛ0(Ω)
d0−→ HΛ1(Ω)

d1−→ · · ·
dn−1−−−→ HΛn(Ω) → 0,

where HΛk(Ω) = {ω ∈ L2Λk(Ω) : dkω ∈ L2Λk+1(Ω)}.

27



In 3-D, we have the correspondences:

k Λk(Ω) HΛk(Ω) dω

0 C∞(Ω) H1(Ω) gradw

1 C∞(Ω;R3) H(curl,Ω;R3) curlw
2 C∞(Ω;R3) H(div,Ω;R3) div w

3 C∞(Ω) L2(Ω) 0
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For Ω ⊂ R3, de Rham complex becomes

0 → C∞(Ω)
grad−−−→ C∞(Ω;R3)

curl−−−→ C∞(Ω;R3)
div−−→ C∞(Ω) → 0,

L2 de Rham complex:

0 → H1(Ω)
grad−−−→ H(curl,Ω;R3)

curl−−−→ H(div,Ω;R3)
div−−→ L2(Ω) → 0.

For Ω ⊂ R2, de Rham complex becomes

0 → C∞(Ω)
grad−−−→ C∞(Ω;R2)

rot−−→ C∞(Ω) → 0,

or

0 → C∞(Ω)
curl−−−→ C∞(Ω;R2)

div−−→ C∞(Ω) → 0,

depending on whether we identify ω1dx1 + ω2dx2 ∈ Λ1(Ω) with
the vector (ω1, ω2) or the vector (−ω2, ω1).
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Basic Finite Element Spaces and Their Properties

Define Pr as space of polynomials in n variables of degree at

most r and PrΛk as space of differential k-forms with coefficients

belonging to Pr.

Define P−r Λk ⊂ PrΛk by

P−r Λk = Pr−1Λ
k + κPr−1Λ

k+1,

where for ω =
∑

σ aσdxσ(1)∧· · ·∧dxσ(k+1) ∈ Λk+1, Koszul operator

κ = κk+1 : Pr−1Λ
k+1 → PrΛk defined by:

κω =
∑
σ

k+1∑
i=1

(−1)i+1aσxσ(i)dxσ(1) ∧ · · · ∧ d̂xσ(i) ∧ · · · dxσ(k+1).

Term d̂xσ(i) is omitted.
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Note κ decreases degree of form and increases polynomial degree.

Can show Koszul complex

0 → Pr−nΛ
n(Ω)

κn−−→ Pr−n+1Λ
n−1(Ω)

κn−1−−−→ · · · κ1−−→ PrΛ
0(Ω) → 0

is exact. For Ω ⊂ R3, complex becomes

0 → Pr−3(Ω)
x−→ Pr−2(Ω;R3)

×x−−→ Pr−1(Ω;R3)
·x−→ Pr(Ω) → 0.

Let Th be a triangulation of Ω by n + 1 simplices T and set

PrΛ
k(Th) = {ω ∈ HΛk(Ω) : ω|T ∈ PrΛ

k(T ) ∀T ∈ Th}, r ≥ 0

P−r Λk(Th) = {ω ∈ HΛk(Ω) : ω|T ∈ P−r Λk(T ) ∀T ∈ Th}, r ≥ 1,

We note that

PrΛ
0(Th) = P−r Λ0(Th), r ≥ 1, PrΛ

n(Th) = P−r+1Λ
n(Th), r ≥ 0.
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k Λk
h(Ω) Classical finite element space

0 PrΛ0(Th) Lagrange elements of degree ≤ r

1 PrΛ1(Th) B-D-M H(div) elements of degree ≤ r

2 PrΛ2(Th) discontinuous elements of degree ≤ r

0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) R-T H(div) elements of order r − 1

2 P−r Λ2(Th) discontinuous elements of degree ≤ r − 1

Correspondences between finite element differential forms and

the classical finite element spaces for n = 2.
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k Λk
h(Ω) Classical finite element space

0 PrΛ0(Th) Lagrange elements of degree ≤ r

1 PrΛ1(Th) Nédélec 2nd-kind H(curl) elements degree ≤ r

2 PrΛ2(Th) Nédélec 2nd-kind H(div) elements degree ≤ r

3 PrΛ3(Th) discontinuous elements of degree ≤ r

0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) Nédélec 1st-kind H(curl) elements order r − 1

2 P−r Λ2(Th) Nédélec 1st-kind H(div) elements order r − 1

3 P−r Λ3(Th) discontinuous elements degree ≤ r − 1

Correspondences between finite element differential forms and

the classical finite element spaces for n = 3.
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Key property: spaces form discrete de Rham sequences. In n

dimensions, exactly 2n−1 distinct sequences. When n = 2 and
r ≥ 0, these are

0 → Pr+2Λ
0(Th)

d0−→ Pr+1Λ
1(Th)

d1−→ PrΛ
2(Th) → 0,

0 → Pr+1Λ
0(Th)

d0−→ P−r+1Λ
1(Th)

d1−→ PrΛ
2(Th) → 0.

When n = 3 and r ≥ 0, we have four sequences:

0 → Pr+3Λ
0(Th)

d−→ Pr+2Λ
1(Th)

d−→ Pr+1Λ
2(Th)

d−→ PrΛ
3(Th) → 0,

0 → Pr+2Λ
0(Th)

d−→ Pr+1Λ
1(Th)

d−→ P−r+1Λ
2(Th)

d−→ PrΛ
3(Th) → 0,

0 → Pr+2Λ
0(Th)

d−→ P−r+2Λ
1(Th)

d−→ Pr+1Λ
2(Th)

d−→ PrΛ
3(Th) → 0,

0 → Pr+1Λ
0(Th)

d−→ P−r+1Λ
1(Th)

d−→ P−r+1Λ
2(Th)

d−→ PrΛ
3(Th) → 0.

First and last involve only PrΛk(Th) or P−r Λk(Th) spaces alone;
middle two mix two spaces. Middle two used for elasticity.
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To each PrΛk(Th), associate canonical projection operator

Π(= ΠTh
) : C0Λk(Ω) → PrΛk(Th) defined by d.o.f:∫

f
Trf Πω ∧ ν =

∫
f
Trf ω ∧ ν, ν ∈ P−r−j+kΛ

j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r+k−1). (n = 3: j = 0,1,2,3. ∆j(T ) denote

vertices, edges, faces, tetrahedron).

To each P−r Λk(Th), associate canonical projection operator

Π(= ΠTh
) : C0Λk(Ω) → P−r Λk(Th) defined by d.o.f:∫

f
Trf Πω∧ν =

∫
f
Trf ω∧ν, ν ∈ Pr−j+k−1Λ

j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1).

Note: d.o.f of each space use forms from other space.
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Key property of these projection operators: they commute with

exterior derivative, i.e., following four diagrams commute.

Λk(Ω)
dk−→ Λk+1(Ω) Λk(Ω)

dk−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
PrΛk(T )

dk−→ Pr−1Λ
k+1(T ) PrΛk(T )

dk−→ P−r Λk+1(T )

Λk(Ω)
dk−→ Λk+1(Ω) Λk(Ω)

dk−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
P−r Λk(T )

dk−→ P−r Λk+1(T ) P−r Λk(T )
dk−→ Pr−1Λ

k+1(T ).

These properties play essential role in constructing stable mixed

finite element methods for equations of elasticity.

36



Differential forms with values in a vector space

Let V and W be finite dimensional vector spaces. Define space

Λk(V ;W ) of differential forms on V with values in W . Examples:

V = V = Rn and W = V or W = K, set of anti-symmetric

matrices.

When n = 2, ω ∈ Λk(V;V), k = 0,1,2, given by(
w1
w2

)
,

(
w11
w21

)
dx1 +

(
w12
w22

)
dx2,

(
w1
w2

)
dx1 ∧ dx2,

while ω ∈ Λk(V;K) given by

wχ, w1χdx1 + w2χdx2, wχdx1 ∧ dx2, where χ =

(
0 −1
1 0

)
.
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Recall: 1-form w1dx1+w2dx2 can be identified either with vector

(w1, w2) or vector (−w2, w1). Similar choices for vector or matrix-

valued forms.

Choosing second identification, identify

(
w11
w21

)
dx1+

(
w12
w22

)
dx2 ∈

Λ1(V;V) with matrix(
W11 W12
W21 W22

)
=

(
−w12 w11
−w22 w21

)
,

and w1χdx1 + w2χdx2 ∈ Λ1(V;K) with vector (−w2, w1).
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When n = 3, µk ∈ Λk(V;V) given by:

µ0 =

w1
w2
w3

 , µ1 =

w11
w21
w31

 dx1 +

w12
w22
w32

 dx2 +

w13
w23
w33

 dx3

µ2 =

w11
w21
w31

 dx2 ∧ dx3 −

w12
w22
w32

 dx1 ∧ dx3 +

w13
w23
w33

 dx1 ∧ dx2

µ3 =

w1
w2
w3

 dx1 ∧ dx2 ∧ dx3,

Identify µ0 and µ3 with vector (w1, w2, w3).

Identify µ1 and µ2 with 3× 3 matrix Wij = wij.
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To describe Λk(V;K), define operator Skw taking a 3-vector to

a skew-symmetric matrix. i.e.,

Skw(w1, w2, w3) =

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 .

Then µk ∈ Λk(V;K) will have the respective forms:

40



µ0 = Skw(w1, w2, w3),

µ1 = Skw(w11, w21, w31)dx1 + Skw(w12, w22, w32)dx2

+ Skw(w13, w23, w33)dx3,

µ2 = Skw(w11, w21, w31)dx2 ∧ dx3− Skw(w12, w22, w32)dx1 ∧ dx3

+ Skw(w13, w23, w33)dx1 ∧ dx2,

µ3 = Skw(w1, w2, w3)dx1 ∧ dx2 ∧ dx3.

Identify µ0 and µ3 with 3-dimensional vector (w1, w2, w3)

and µ1 and µ2 with 3× 3 matrix Wij = wij.
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In mixed formulation of elasticity, need for k = n−2 and k = n−1,
special operators Sk : Λk(V, V) → Λk+1(V, K) defined as follows:
First define Kk : Λk(Ω;V) → Λk(Ω;K) by

Kkω = XωT − ωXT ,

where X = (x1, · · · , xn)T . Then define
Sk = dkKk −Kk+1dk : Λk(Ω;V) → Λk+1(Ω;K).

When n = 2, we get for ω = (w1, w2)
T ,

K0ω = (w1x2 − w2x1)χ

and after a simple computation,

S0ω = (d0K0 −K1d0)ω = −w2χdx1 + w1χdx2.

Note that S0 is invertible with

S−1
0 [µ1χdx1 + µ2χdx2] = (µ2,−µ1)

T .
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If ω ∈ Λ1(V;V) is given by:

ω = w1dx1 + w2dx2, w1 = (w11, w21)
T , w2 = (w12, w22)

T ,

then

S1ω = −(w11 + w22)χdx1 ∧ dx2.

If we identity ω with a matrix W by(
W11 W12
W21 W22

)
=

(
−w12 w11
−w22 w21

)
,

then we can identify S1ω with the matrix(
0 W12 −W21

W21 −W12 0

)
= 2skw W.

In general, Sn−1 can be identified with (−1)n2 skw.
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When n = 3, we get for ω = w1dx1 + w2dx2 + w3dx3,

S1ω = Skw(−w33 − w22, w12, w13)dx2 ∧ dx3

− Skw(w21,−w11 − w33, w23)dx1 ∧ dx3

+ Skw(w31, w32,−w11 − w22)dx1 ∧ dx2.

Identify ω ∈ Λ1(V;V) with matrix W by Wij = wij, and identify

S1ω ∈ Λ2(V;K) with matrix U given by

U =

−w33 − w22 w21 w31
w12 −w11 − w33 w32
w13 w23 −w11 − w22

 .

Then, W and U related by equations

U = ΞW = WT − tr(W )I, W = Ξ−1U = UT −
1

2
tr(U)I.

Hence, S1 is invertible.
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Easily get from fact dk+1dk = 0 and definition

Sk = dkKk −Kk+1dk : Λk(Ω;V) → Λk+1(Ω;K),

dk+1Sk + Sk+1dk = 0 (6)

This identify, for k = n − 2, i.e., dn−1Sn−2 + Sn−1dn−2 = 0 is
key identity in establishing stability of continuous and discrete
variational formulations of elasticity with weak symmetry.

Formula more complicated stated in terms of proxy fields. When
n = 2 and k = 0, if we identify ω = (w1, w2)

T ∈ Λ0(Ω;V) with
vector W , then formula (d1S0 + S1d0)ω = 0 becomes

(div W )χ + 2skw curlW = 0, skw M = (M −MT )/2.

When n = 3 and k = 1, if we identify ω ∈ Λ1(Ω;V) with matrix
W , then formula (d2S1 + S2d1)ω = 0 becomes

Skwdiv(ΞW )− 2 skw curlW = 0.
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Mixed Formulation of Elasticity with Weak Symmetry

(in notation of exterior calculus)

Assume Ω contractible domain in Rn, V = Rn, and K skew-

symmetric matrices. Since S = Sn−1 : Λn−1(Ω;V) → Λn(Ω;K)

corresponds (up to factor ±2) to taking skew-symmetric part of

its argument, elasticity problem with weak symmetry becomes:

Find (σ, u, p) ∈ HΛn−1(Ω;V)×L2Λn(Ω;V)×L2Λn(Ω;K) such that

〈Aσ, τ〉+ 〈dτ, u〉 − 〈Sτ, p〉 = 0, τ ∈ HΛn−1(Ω;V),

〈dσ, v〉 = 〈f, v〉, v ∈ L2Λn(Ω;V),

〈Sσ, q〉 = 0, q ∈ L2Λn(Ω;K).

d ∼ div S ∼ skw
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Problem well-posed in sense that, for each f ∈ L2Λn(Ω;V), there

exists a unique solution (σ, u, p) ∈ HΛn−1(Ω;V) × L2Λn(Ω;V) ×
L2Λn(Ω;K), and solution operator is bounded from

L2Λn(Ω;V) → HΛn−1(Ω;V)× L2Λn(Ω;V)× L2Λn(Ω;K).

Follows from general theory of saddle point problems once we

establish two conditions: For some positive constants c1 and c2,

(W1) ‖τ‖2HΛ ≤ c1〈Aτ, τ〉 whenever τ ∈ HΛn−1(Ω;V) satisfies

〈dτ, v〉 = 0 ∀v ∈ L2Λn(Ω;V) and 〈Sτ, q〉 = 0 ∀q ∈ L2Λn(Ω;K),

(W2) for all nonzero (v, q) ∈ L2Λn(Ω;V) × L2Λn(Ω;K), there

exists nonzero τ ∈ HΛn−1(Ω;V) with

〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖).
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First condition is obvious (and does not even utilize orthogonality

of Sτ). Second condition more subtle.

Next consider finite element discretization. Choose families of

finite-dimensional subspaces Λn−1
h (V) ⊂ HΛn−1(Ω;V), Λn

h(V) ⊂
L2Λn(Ω;V), and Λn

h(K) ⊂ L2Λn(Ω;K), indexed by h, and seek

discrete solution (σh, uh, ph) ∈ Λn−1
h (V)×Λn

h(V)×Λn
h(K) such that

〈Aσh, τ〉+ 〈dτ, uh〉 − 〈Sτ, ph〉 = 0, τ ∈ Λn−1
h (V),

〈dσh, v〉 = 〈f, v〉, v ∈ Λn
h(V), 〈Sσh, q〉 = 0, q ∈ Λn

h(K).

In analogy with well-posedness of continuous problem, stability

of approximation scheme ensured by Brezzi stability conditions:
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(S1) ‖τ‖2HΛ ≤ c1(Aτ, τ) whenever τ ∈ Λn−1
h (V) satisfies

〈dτ, v〉 = 0 ∀v ∈ Λn
h(V) and 〈Sτ, q〉 = 0 ∀q ∈ Λn

h(K),

(S2) for all nonzero (v, q) ∈ Λn
h(V)× Λn

h(K), there exists nonzero

τ ∈ Λn−1
h (V) with

〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖),

where now constants c1 and c2 must be independent of h.

Difficulty: design finite element spaces satisfying these

conditions.
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To prove stability of discrete system, first consider proof of

stability of continuous system.

For this, use close, but non-obvious, connection between

elasticity complex and de Rham complex, described by Eastwood

and related to general construction given by Bernstein-Gelfand-

Gelfand, called BGG resolution.

Elasticity complex discussed previously related to strong

symmetry formulation of elasticity equations. Can also derive

elasticity complex related to weak symmetry formulation from

de Rham complex.

Omit details of derivation, but discuss key connections needed

for stability proof.
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Start with two vector-valued de Rham sequences, one with values

in V and one with values in K.

Λn−2(Ω;K)
dn−2−−−→ Λn−1(Ω;K)

dn−1−−−→ Λn(K) → 0,

Λn−3(Ω;V)
dn−3−−−→ Λn−2(Ω;V)

dn−2−−−→ Λn−1(Ω;V)
dn−1−−−→ Λn(V) → 0,

Can show if de Rham sequences exact, then sequence

Λn−3(W)
(dn−3,−Sn−3)−−−−−−−−−−→ Λn−2(Ω;K)

dn−2◦S−1
n−2◦dn−2

−−−−−−−−−−−→ Λn−1(Ω;V)

(−Sn−1,dn−1)
T

−−−−−−−−−−→ Λn(W) → 0

is exact, where W = K× V.

Call this: elasticity sequence with weak symmetry.

Key fact crucial to construction:

Sn−2 : H1Λn−2(Ω;V) → H1Λn−1(Ω;K) is an isomorphism.
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Interpret this sequence in language of differential operators in

two and three dimensions. When n = 2,

Λ0(Ω;K)
d0◦S−1

0 ◦d0−−−−−−−→ Λ1(Ω;V)
(−S1,d1)

T

−−−−−−−→ Λ2(W) → 0.

If we identify wχ ∈ Λ0(Ω;K) with scalar function w, then

d0S−1
0 d0(wχ) =

(
∂2w/∂x1∂x2
−∂2w/∂x2

1

)
dx1 +

(
∂2w/∂x2

2
−∂2w/∂x1∂x2

)
dx2.

We then identity this vector-valued 1-form with the matrix(
−∂2w/∂x2

2 ∂2w/∂x1∂x2
∂2w/∂x1∂x2 −∂2w/∂x2

1

)
≡ −Jw = − airy w.
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To translate second part of sequence, we identify

ω =

(
w11
w21

)
dx1 +

(
w12
w22

)
dx2 ∈ Λ1(V;V) with the matrix

W =

(
W11 W12
W21 W22

)
=

(
−w12 w11
−w22 w21

)
.

Saw that −S1ω corresponds to −2 skw W . Now

d1ω =

(
∂w12/∂x1 − ∂w11/∂x2
∂w22/∂x1 − ∂w21/∂x2

)
dx1 ∧ dx2 = −div Wdx1 ∧ dx2.

Hence, modulo some constants, get elasticity sequence:

C∞(Ω)
J−→ C∞(Ω;M)

(skw,div)T

−−−−−−−→ C∞(Ω, K× V) → 0.
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When n = 3, we have

Λ0(W)
(d0,−S0)−−−−−−→ Λ1(Ω;K)

d1◦S−1
1 ◦d1−−−−−−−→ Λ2(Ω;V)

(−S2,d2)
T

−−−−−−−→ Λ3(W) → 0.

Making the identifications discussed previously, obtain (modulo

some unimportant constants), elasticity sequence:

C∞(V×K)
(grad,I)−−−−−−→ C∞(M)

curlΞ−1 curl−−−−−−−−−→ C∞(M)

(skw,div)T

−−−−−−−→ C∞(K× V) → 0.

54



Well-posedness of Weak-Symmetry Formulation of Elasticity

To establish well-posedness of elasticity problem with weakly im-

posed symmetry, suffices to verify condition (W2). Deduced

from following theorem, which says map

HΛn−1(Ω;V)
(−Sn−1,dn−1)

T

−−−−−−−−−−→ HΛn(Ω;K)×HΛn(Ω;V)

is surjective. Proof uses following well-known result from PDEs.

Lemma: Let Ω be a bounded domain in Rn with a Lipschitz

boundary. Then, for all µ ∈ L2Λn(Ω), there exists η ∈ H1Λn−1(Ω)

satisfying dn−1η = µ. If, in addition,
∫
Ω µ = 0, then we can

choose η ∈ H̊1Λn−1(Ω).
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Theorem: Given (ω, µ) ∈ L2Λn(Ω;K) × L2Λn(Ω;V), there exists
σ ∈ HΛn−1(Ω;V) such that dn−1σ = µ, −Sn−1σ = ω. Moreover,
we may choose σ so that

‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖),

for a fixed constant c.

Proof: Second sentence follows from first by Banach’s theorem,
(i.e., if a continuous linear operator between two Banach spaces
has an inverse, then inverse operator continuous), so only prove
first sentence.

(1) By Lemma, can find η ∈ H1Λn−1(Ω;V) with dn−1η = µ.

(2) Since ω+Sn−1η ∈ HΛn(Ω;K), can apply Lemma second time
to find τ ∈ H1Λn−1(Ω;K) with dn−1τ = ω + Sn−1η.
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(3) Since Sn−2 an isomorphism from H1Λn−2(Ω;V) onto

H1Λn−1(Ω;K), ∃ρ ∈ H1Λn−2(Ω;V) with Sn−2ρ = τ .

(4) Define σ = dn−2ρ + η ∈ HΛn−1(Ω;V).

(5) From steps (1) and (4), dn−1σ = dn−1dn−2ρ + dn−1η = µ.

(6) From (4), −Sn−1σ = −Sn−1dn−2ρ− Sn−1η. But, since

dn−1Sn−2 = −Sn−1dn−2,

−Sn−1dn−2ρ = dn−1Sn−2ρ = dn−1τ = ω + Sn−1η.

Hence, −Sn−1σ = ω.
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Key Points.

(1) Although elasticity problem involves 3 spaces HΛn−1(Ω;V),
L2Λn(Ω;V), and L2Λn(Ω;K), proof uses 2 additional spaces from
the BGG construction: HΛn−2(Ω;V) and HΛn−1(Ω;K).

(2) Although only Sn−1 appears in method,
Sn−2 plays important role in proof.

(3) Do not need Sn−2 an isomorphism from
H1Λn−2(V;V) to H1Λn−1(V;K); only surjection.
Important in discrete version of proof.

(4) Other slightly weaker conditions can be used in some places
in proof (also exploit in discrete version for some choices of finite
element spaces).
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Abstract Conditions for Stable Approximation Schemes
Basic idea: Mimic structure of continuous problem.

To establish stability of continuous problem, only used last two
spaces in top sequence and last three spaces in bottom sequence.

Λn−1(K)
dn−1−−−→ Λn(K) → 0

↗ Sn−2 ↗ Sn−1

Λn−2(V)
dn−2−−−→ Λn−1(V)

dn−1−−−→ Λn(V) → 0.

Thus, look for five finite dimensional spaces connected by a
similar structure, i.e., in addition to spaces

Λn
h(K) ⊂ HΛn(K), Λn−1

h (V) ⊂ HΛn−1(V), Λn
h(V) ⊂ HΛn(V)

used in finite element method, also seek spaces

Λn−1
h (K) ⊂ HΛn−1(K), Λn−2

h (V) ⊂ HΛn−2(V).
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Require finite element spaces also connected by exact sequences,

but introduce additional flexibility by inserting L2 projection

operator Πn
h and using approximations of Sn−2 and Sn−1.

Λn−1
h (K)

Πn
hdn−1−−−−−→ Λn

h(K) → 0

↗ Sn−2,h ↗ Sn−1,h (7)

Λn−2
h (V)

dn−2−−−→ Λn−1
h (V)

dn−1−−−→ Λn
h(V) → 0.

Next step: Identify properties of interpolants into each finite

element space needed for stability proof.

Define Πn
h and Π̃n

h to be L2 projection operators into Λn
h(K) and

Λn
h(V), respectively.
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Define Πn−1
h and Π̃n−1

h to be interpolation operators mapping

H1Λn−1(K) to Λn−1
h (K) and H1Λn−1(V) to Λn−1

h (V), respectively,

and satisfying

Πn
hdn−1Π

n−1
h τ = Πn

hdn−1τ, τ ∈ (H̊1 + P1)Λn−1(K), (8)

dn−1Π̃
n−1
h τ = Π̃n

hdn−1τ, τ ∈ H1Λn−1(V). (9)

‖Πn−1
h τ‖ ≤ C‖τ‖1, τ ∈ (H̊1 + P1)Λn−1(K), (10)

‖Π̃n−1
h τ‖ ≤ C‖τ‖1, τ ∈ H1Λn−1(V). (11)

Define Π̃n−2
h mapping H1Λn−2(V) to Λn−2

h (V) satisfying

‖dn−2Π̃
n−2
h ρ‖ ≤ c‖ρ‖1, ρ ∈ H1Λn−2. (12)

In (12), dn−2 corresponds to curl. In some cases, must modify

canonical interpolation operator so defined on spaces of functions

will less smoothness than usually assumed.
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Next step: Define Sn−1,h : Λn−1
h (V) → Λ3

h(K) by Sn−1,h = Πn
hSn−1

as a discrete version of Sn−1 and Sn−2,h : Λn−2
h (V) → Λ2

h(K) by

Sn−2,h = Πn−1
h Sn−2 as a discrete version of Sn−2.

With these definitions, can establish discrete version of identity

dn−1Sn−2 = −Sn−1dn−2, i.e.,

Πn
hdn−1Sn−2,h = −Sn−1,hdn−2. (13)

Cannot expect invertibility of Sn−2,h, but require Sn−2,h maps

Λn−2
h (V) onto Λn−1

h (K). To ensure this, assume Λn−2
h (V) and

Λn−1
h (K) related by:

Sn−2,hΠ̃
n−2
h τ = Πn−1

h Sn−2τ, τ ∈ H1Λn−2(V). (14)
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Stability of Finite Element Approximation Schemes

Theorem: Assume finite element subspaces Λk
h(K) and Λk

h(V)

connected by exact sequences given in (7), that there are pro-

jection operators associated with these subspaces satisfying con-

ditions (8), (9) (10), (11), (12), and that condition (14) is sat-

isfied. Then, given (ω, µ) ∈ Λn
h(K) × Λn

h(V), there exists σ ∈
Λn−1

h (V) such that dn−1σ = µ, −Sn−1,hσ ≡ −Πn
hSn−1σ = ω, and

‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖), (15)

where constant c independent of ω, µ and h.

Proof: Set σ = dn−2Π̃
n−2
h ρ + Π̃n−1η and follow proof in

continuous case.
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Theorem: Suppose (σ, u, p) exact solution of elasticity system

and (σh, uh, ph) solution of discrete system, where finite element

spaces satisfy hypotheses of stability theorem. Then there is a

constant C, independent of h, such that

‖σ−σh‖HΛ+‖u−uh‖+‖p−ph‖ ≤ C inf(‖σ−τ‖HΛ+‖u−v‖+‖p−q‖),

where infimum over all τ ∈ Λn−1
h (V), v ∈ Λn

h(V), and q ∈ Λn
h(K).

Moreover,

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p−Πn
hp‖),

‖u− uh‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖p−Πn

hp‖+ ‖u− Π̃n
hu‖),

‖dn−1(σ − σh)‖ = ‖dn−1σ − Π̃n
hdn−1σ‖.

64



Examples of Stable Finite Element Methods for Elasticity
(1) Arnold, Falk, Winther families

For r ≥ 0, choose:

Λn−2
h (V) = P−r+2Λ

n−2(Th), Λn−1
h (V) = Pr+1Λ

n−1(Th;V),

Λn
h(V) = PrΛ

n(Th;V),

Λn−1
h (K) = P−r+1Λ

n−1(Th;K), Λn
h(K) = PrΛ

n(Th;K).

Sequences

P−r+1Λ
n−1(Th;K)

dn−1−−−→ PrΛ
n(Th;K) → 0

P−r+2Λ
n−2(Th;V)

dn−2−−−→ Pr+1Λ
n−1(Th;V)

dn−1−−−→ PrΛ
n(Th;V) → 0

are final parts of longer exact sequences involving Pr and P−r
spaces. Hence, (7) satisfied without additional projection at end
of first sequence.

65



For these spaces, canonical projection operators Πn−1
h , Πn

h, Π̃n−1
h ,

and Π̃n
h satisfy conditions (8)-(11).

Although canonical projection operator Π̃n−2
h does not satisfy

(12), (not defined on functions in H1Λn−2(V)), can define mod-

ified operator, P̃h : Λn−2(Ω;V) → P−r+2Λ
n−2(Th;V) that does

satisfy (12). P̃hω will have same moments as ω on faces of codi-

mension 0 and 1, but with moments of a smoothed approxima-

tion of ω on faces of codimension 2. (When n = 2, vertex values

not defined, but Clement interpolant may be used instead).

To satisfy hypotheses of abstract convergence theorem, remains

to show that

Πn−1
h Sn−2P̃h = Πn−1

h Sn−2.
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Consider simplest case: n = 2, r = 0. Equivalent to showing

Π1
hS0ω = 0, ∀ω = (I − P̃h)σ, σ ∈ Λ0(V),

where Π1
h interpolant into P−0 Λ1(Th;V) (RT 0), and P̃h interpolant

into P2Λ
0(Th;V), i.e., piecewise P2 vectors.

Let ω = (w1, w2)
T ∈ Λ0(V). Since P̃hω = 0,∫

f
Trf ω ∧ ζ = 0, ζ ∈ P0Λ

1(f ;V), f ∈ ∆1(Th).

which for ω = (w1, w2)
T is condition∫

e
wi de = 0, i = 1,2, e ∈ ∆1(Th).
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Must show this condition implies∫
f
Trf S0ω ∧ µ = 0, µ ∈ P0Λ

0(f ;K), f ∈ ∆1(Th),

i.e.,
∫
e
Tre(−w2χdx1 + w1χdx2) = 0, e ∈ ∆1(Th).

But if (t1, t2) is unit tangent to e, then∫
e
Tre(−w2χdx1 + w1χdx2) =

∫
e
(−w2t1 + w1t2)χ de

= χ
∫
e
(w · n) de = 0,

i.e., degrees of freedom for RT 0 are zero.

Analogous argument works for general r when n = 2, and basic
outline of proof same when n = 3, although operator S1 more
complicated.
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Using abstract convergence theorem, straightforward to derive

following error estimates, valid for 1 ≤ k ≤ r + 1, assuming σ, p,

and u sufficiently smooth.

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ Chk(‖σ‖k + ‖p‖k),

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k),

‖dn−1(σ − σh)‖ ≤ Chk‖dσ‖k.
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(2) Arnold, Falk, Winther Reduced Element

Spaces Λn
h(V), Λn−1

h (K), and Λn
h(K) remain as before, while

Λn−2
h (V) and Λn−1

h (V) are modified. Reduced element has
simpler stress space.

Basic idea: in verification of surjectivity condition, did not use all
degrees of freedom of space P−2 Λ0(Th), i.e., did not use vanishing
of edge integral of both components of ω, but only combination
−w2t1 + w1t2 (normal component).

Instead of P2Λ
0(Th, V), use reduced space obtained by imposing

constraint that tangential component on each edge varies only
linearly on that edge. Reduced space P2−Λ0(Th, V) used
previously to approximate velocity field in stationary Stokes
equations (together with piecewise constant pressure).
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Elements determined by vertex values and integral of normal

component on each edge. To complete construction, provide

vector-valued discrete de Rham sequence in which 0-forms are

P2−Λ0(Th;R2), i.e., sequence:

P2−Λ0(Th;V)
d0−→ P1−Λ1(Th;V)

d1−→ P0Λ
2(Th;V) → 0,

where

P1−Λ1(Th;V) = {τ ∈ P1Λ
1(Th;V) : Tre(τ) · t constant}.

Degrees of freedom:∫
e
Tre(τ) · n p1(s) ds,

∫
e
Tre(τ) · t ds.
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Identify ω ∈ Λ1(V;V) with matrix W . Then ω ∈ P−1 Λ1(Th;R2) if

on each edge e with tangent t and normal n, Wn · t constant on

e. Defines reduced stress space with 3 degrees of freedom per

edge. Together with piecewise constants for displacements and

multipliers, gives simple stable choice of elements.

3-D simplified element constructed using similar approach.

Starting from P−2 Λ1(Th;V), do not use all degrees of freedom to

satisfy surjectivity condition.

Define reduced space P−2−Λ(Th;V) and space P1−Λ2(Th;V) such

that these spaces, together with P0Λ
3(Th;V), form exact

sequence

P2−Λ1(Th;V)
d1−→ P1−Λ2(Th;V)

d2−→ P0Λ
3(Th;V) → 0.
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Then able to replace space P1Λ
1(Th;V), which has 36 degrees

of freedom (9 per face), by space P1−Λ2(Th;V), which has 24

degrees of freedom (6 per face). If we identify element in reduced

space with matrix W as before, get six degrees of freedom on

each face:∫
f

Wn df,
∫
f
(x · t)nTWn df,

∫
f
(x · s)nTWn df,∫

f
[(x · t)sT − (x · s)tT ]Wn df,

where s and t denote orthogonal unit tangent vectors on face f .
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(3) PEERS

In PEERS method, n = 2 and we choose

Λ1
h(V) = P−1 Λ1(Th;V) + dB3Λ

0(Th;V), Λ2
h(V) = P0Λ

2(Th;V),

Λ2
h(K) = P1Λ

2(Th;K) ∩H1Λ2(K) [denote by P0
1Λ2(Th;K)].

We then choose the two remaining spaces as

Λ0
h(V) = (P1 + B3)Λ

0(Th;V), Λ1
h(K) = S0Λ

0
h(V).

Easy to see that

Λ1
h(K) = (P1 + B3)Λ

1(Th;K) ∩H1Λ1(K) ≡ (P0
1 + B3)Λ

1(Th;K).

Since sequence

P1Λ
0(Th;V)

d0−→ P−1 Λ1(Th;V)
d1−→ P0Λ

2(Th;V) → 0
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is exact, so is sequence

(P1 + B3)Λ
0(Th;V)

d0−→ P−1 Λ1(Th;V) + d0B3Λ
0(Th;V)

d1−→ P0Λ
2(Th;V) → 0.

However, not true that d1Λ
1
h(K) = Λ2

h(K). Instead, use:

Π2
hd1Λ

1
h(K) = Λ2

h(K). Allows use of stable Stokes elements.

Proof that combination (P0
1 + B3)Λ

1(Th;K) and P0
1Λ2(Th;K) is

stable Stokes pair (Mini-element) involves construction of

interpolation operator Π1
h : H1Λ1(K) 7→ (P0

1 + B3)Λ
1(Th;K)

satisfying

〈d1(τ −Π1
hτ), qh〉 = 0, qh ∈ Λ2

h(K),

‖Π1
hτ‖1 ≤ C‖τ‖1, τ ∈ H1Λ1(K),

which gives properties (8) and (10).
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Properties (9) and (11) satisfied by RT interpolant

Π̃1
h : H1Λ1(V) 7→ P−1 Λ1(Th;V).

Easily check that (12) and (14) satisfied if we define

Π̃0
h : H1Λ0(V) 7→ (P1 + B3)Λ

0(Th;V)

by Π̃0
hτ = S−1

0 Π1
hS0τ.

Note that surjectivity trivial, since for τ ∈ H1Λ0(V),

S0,hΠ̃
0
hτ = Π1

hS0S−1
0 Π1

hS0τ = Π1
hS0τ.

Applying abstract convergence theorem, and standard
approximation and regularity results, obtain:

‖σ − σh‖0 + ‖p− ph‖0 + ‖u− uh‖0
≤ Ch(‖σ‖1 + ‖p‖1 + ‖u‖1) ≤ Ch‖f‖0.
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(4) A PEERS-like Method with Improved Stress Approximation

In this new method, we change one space used in PEERS

element and both auxiliary spaces used in analysis, i.e., choose

Λ1
h(V) = P1Λ

1(Th;V), Λ2
h(V) = P0Λ

2(Th;V),

Λ2
h(K) = P0

1Λ2(Th;K),

and two remaining spaces:

Λ0
h(V) = P2Λ

0(Th;V),

Λ1
h(K) = S0Λ

0
h(V) ≡ P2Λ

1(Th;K) ∩H1Λ1(K).

Change from PEERS’ analysis: now use combination of

P2Λ
1(Th;K) ∩ H1Λ1(K) and P0

1Λ2(Th;K) as stable Stokes pair

(Taylor-Hood element).
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Method also modification of lowest order A-F-W method: same
σh and uh spaces and lower sequence. Changed multiplier space.

Advantage of new method: higher order approximation to stress
variable. From convergence theorem: error estimate for ‖σ−σh‖0
depends both on ‖σ − Π̃n−1

h σ‖0 and ‖p−Πn
hp‖0.

In lowest order A-F-W method, ‖σ − Π̃n−1
h σ‖0 ≤ Ch2‖σ‖2 since

Π̃n−1
h σ ∈ P1. But ‖p−Πn

hp‖0 ≤ Ch‖p‖1 since Πn
hp ∈ P0.

Since Πn
hp ∈ P1 in new method, recover 2nd order convergence.

Since Π̃n
hu ∈ P0, only obtain ‖u−uh‖0 ≤ Ch. However, ‖uh−Π̃n

hu‖0
also O(h2), so post-processing might produce better result.

Remark: Similar ideas used to develop hybrid methods for
elasticity equations. E.g., see Farhloul-Fortin.
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(5) Methods of Stenberg

For r ≥ 2, n = 2 or n = 3, choose

Λn−1
h (V) = PrΛ

n−1(Th;V) + dBr+nΛ
n−2(Th;V),

Λn
h(V) = Pr−1Λ

n(Th;V), Λn
h(K) = PrΛ

n(Th;K),

where Br+n denotes functions which on each simplex T have form

bTPr−1, where bT (x) =
∏n+1

i=1 λi(x). To fit framework, choose two

remaining spaces as

Λn−2
h (V) = (Pr+1 + Br+n)Λ

n−2(Th;V),

Λn−1
h (K) = (Pr+1 + Br+n)Λ

n−1(Th;K) ∩H1Λ1(K).
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Using exactness of sequence

Pr+1Λ
n−2(Th;V)

dn−2−−−→ PrΛ
n−1(Th;V)

dn−1−−−→ Pr−1Λ
n(Th;V) → 0,

get exactness of sequence

(Pr+1 + Br+n)Λ
n−2(Th;V)

dn−2−−−→ PrΛ
n−1(Th;V)

+ dn−2Br+nΛ
n−2(Th;V)

dn−1−−−→ Pr−1Λ
n(Th;V) → 0.

Again not true that dn−1Λ
n−1
h (K) = Λn

h(K). Instead, use:

Πn
hdn−1Λ

n−1
h (K) = Λn

h(K)

and stable Stokes elements.
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From definition of Sn−2, easy to see when n = 2,

S0Λ
0
h(V) = (Pr+1 + Br+n)Λ

1(Th;K) ∩H1Λ1(K),

and when n = 3,

S1[Λ
1
h(V) ∩H1Λ1(V)] = (Pr+1 + Br+n)Λ

2(Th;K) ∩H1Λ2(K).

Proof that combination (Pr+1 + Br+n)Λ
n−1(Th;K)∩H1Λn−1(K)

and PrΛn(Th;K) is stable Stokes pair involves construction of

interpolation operator Πn−1
h : H1Λn−1(K) 7→

(Pr+1 + Br+n)Λ
n−1(Th;K) ∩H1Λn−1(K) satisfying

〈dn−1(τ −Πn−1
h τ), qh〉 = 0, qh ∈ Λn

h(K),

‖Πn−1
h τ‖1 ≤ C‖τ‖1, τ ∈ H1Λn−1(K),

which gives properties (8) and (10).
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Next observe that canonical interpolant Π̃n−1
h : H1Λn−1(V) 7→

PrΛn−1(Th;V) satisfies (9) and (11).

Easily check that (12) and (14) satisfied if we define

Π̃n−2
h : H1Λn−2(V) 7→ (Pr+1 + Br+n)Λ

n−2(Th;V) ∩H1Λn−2(V)

by Π̃n−2
h τ = S−1

n−2Π
n−1
h Sn−2τ.

When n = 2, same analysis carries over to r = 1, since combi-

nation (P2 + B3)Λ
1(Th;K) ∩ H1Λ1(K) and P1Λ

2(Th;K) is stable

Stokes pair. Situation more complicated in 3-d, since analogous

combination not stable Stokes pair.
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Using abstract convergence theorem, and assuming σ, p, and u

sufficiently smooth, can show:

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ Chk(‖σ‖k + ‖p‖k),

1 ≤ k ≤ r + 1,

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k), 1 ≤ k ≤ r,

‖dn−1(σ − σh)‖ ≤ Chk‖dn−1σ‖k, 1 ≤ k ≤ r.
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