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Equations of linear elasticity:

Ao = e(u), dive = f in Q.
Stress o takes values in S = Rgyy,.

Displacement u takes values in V = R".

f = body force, (€(u))w = (8uz/8x3 + 8’11,]/833@)/2,
divergence operator applied row-wise.

Compliance tensor A = A(xz) : S — S bounded, symmetric,
uniformly positive definite operator reflecting material properties.

Isotropic case: Let A(xz),u(x) positive scalar coefficients (Lamé
coefficients), tr = trace. Then

1 A
Ao = —|o — tr(o)I ).
21 2u + nA




Boundary condition v = 0 on 92 (clamped case). Modifications
needed for other B.C., e.g., traction boundary conditions ocn = 0.

When A invertible, i.e., 0 = A7 1e(v) = Ce(w), then for isotropic
elasticity,

Cr=2u(r+ \trrl).

Then formulate elasticity system weakly as:
Find o € L2(Q2,S), v € H1(Q;V) such that

/a:Td,:I:—/ Ce(u) :7dx =0, 7€ L?($,S),
Y Q2

/Qa ; s(v)da:I/Qf-fvd:B, ve HI(Q: V),

where o . 7 = ii=1%ijTij-



In this case, may eliminate ¢ completely to obtain pure
displacement formulation: Find v € H1(;V) such that

/QCe(u) e(v) dx:/Qf-vda:, ve HY (V).

As material becomes incompressible, i.e., A\ — oo, not a good
formulation, since operator norm of C' also approaching infinity.
Instead, consider formulation involving w and new variable

p = (\/[21+ nA]) tro.

Taking trace of: Ao = e(u), get divu = A~ 1p.
Then write 0 = 2ue(u) 4+ pI to obtain: Find u e HL(Q; V),
pe L3(2) = {pe L?(2) : [oqp = 0} such that

/QQ,LL€(’LL) e(v) da:—l—/deinda: = /Qf-'vd:c, ve HI(Q: V),

div d:/)\_ld, e L2(Q).
/Q ugdr = | A" pgdz, g 0(£2)



T his formulation makes sense even for limit A — oo, giving
stationary Stokes equations (to be considered in other lectures).

Consider other weak formulations involving both o and w.

Strongly imposed symmetry:
Find o € H(div,$2:S) and u € L2(Q;V), satisfying

/Q(Aa 74 divr-u)ds =0, e H(div,Q:S),

/diVJ-vdazzf f-vde, ve L2(Q:V).
Q Q



Weakly imposed symmetry: Find o € H(div,2; M), u € L2(2;V),
and p € L2(Q; K) satisfying

/Q(AUIT—I—diVT-u—I—T:p)da:ZO, r € H(div,Q: M),
/diVa-vdazz/ fovde, wve L2(2V),
Q Q

/QO‘ 1 qdr =0, gqe¢€ L?(2K),

M = n x n matrices, K skew-symmetric matrices, compliance

tensor A(x) now symmetric and positive definite operator
mapping M into M.

First consider finite element methods based on variational
formulation with strongly imposed symmetry.



Let 3, C H(div,2;S) and V;, C L?(2;V) and seek o;, € X, and
up, € V;, satisfying

/Q(Aah 74 divr-uy)de =0, 7€,

div -d=/ vdz, veE V.
/Q oy, - vdx va:cv h

Can apply standard analysis of mixed finite element theory (e.g.,
Brezzi, Brezzi-Fortin, Falk-Osborn, Douglas-Roberts). For
isotropic elasticity, if we write o = op + (1/n) trol, where

trop = 0, then ||0||% = ||aD||% + (1/n)|| tra||% and so

1 1
Ao i odr = / —O0p : tro)?| da.
/Q 7 o0 Q [2,LLGD oD+ 2u + n)\( °) B

This form not uniformly coercive as A — oo (only coerce op).



However, for all o satisfying
/Qtrad:czO, dive = 0, (1)

can show that || trollo < Cllopllg, and hence (Ao,o0) > oz||0||%{%div)

for all o satisfying (1), with « independent of A. Implies first
Brezzi condition with constant independent of A. Then analyze
methods using following result.

Theorem: Suppose for every 7 € H(Q), there exists M7 € &,
satisfying

/QdiV(T—”hT)°v dr =0, veVy, IR 2 (divy < ClITl E(div)-

Further suppose that for all 7 € 3 satisfying o divrT - -vdzx = O,
v € Vy, that divr = 0. Then for all v, € V,,

|lo—opllo < Cllo—MNyollo, |lu—upllo < C(Jlu—vi|lo+loc—onllo)-
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Methods using Composite Elements

Let PL(X,Y) denote space of polynomial functions on X of
degree at most k and taking values in Y.

One of first methods based on symmetric formulation: method
of Watwood-Hartz analyzed in Johnson-Mercier. Describe
triangular element (also similar quadrilateral element).

Basic idea: approximate stress by composite finite element.
Starting from mesh 7; of triangles, connect barycenter of each
triangle K to three vertices to form a composite element made
up of three triangles, i.e., K =1T7 U115 UT3. Define:

Y, =47 € H(div,$2;S) : Tlei c Pl(TZ‘,S)},
V, = {ve L?(Q) vk € P1(K,R?}.



Composite
Element

To construct Y|, start from space of 27 degrees of freedom.
Impose at most 12 constraints that require ™ be continuous
across each of three internal edges of K (all independent). Then,
show on each K, 7 uniquely determined by 15 degrees of freedom:

(i) the values of 7-n at two points on each edge of K and
(II) fKTZ] dl‘, i,j — 1,2.

Check that if [ divr-vde = 0 for v € P1(K,R?), then divr = 0.
Defining I, to correspond to degrees of freedom, easy to check

[re div(t = My7) -vdx = 0 for v € P1(K,R?).
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After establishing H(div,$2) norm bound on Mo,
get error estimates:

lo = anllo < ChZ|o]l2, lu —upllo < Ch2(||loll2 4 [lull2)-

Use of composite finite elements extended to a family in
Arnold-Douglas-Gupta. For k£ > 2,

Xp={7 € H{div,Q2;8) : 7|1, € Pr(T;,S)},
Vi, ={v € L*(Q) :v|x € Py_1(K,R?)}.
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Non-composite Elements — Arnold-Winther approach

Based on use of discrete differential complexes and close relation
between construction of stable mixed finite element methods for
Laplace’'s equation and discrete versions of de Rham complex,
with a commuting diagram, i.e.,

R S o) 2L oo r2) Y, coo() -0

o w0 el 7|

R C Qs curl >, div V, — 0
I, My, P, natural interpolation operators into finite element
spaces @y, 24, and Vj,.

Simplest case: Qj, ~ C9Py, =¥, ~ RTy, V), ~ Po. Right half of
diagram, involving I1;, and Py, is key result in establishing second
Brezzi stability condition.
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If 2 simply connected, sequences are exact (range of each map
the kernel of following one).

Starting point of Arnold-Winther: elasticity differential complex
0— P(Q) S ) L c*,s) I, c®°(Q,R2) -0, (2)
where Airy stress function
02w/0y?  —0%w/Oxdy
J’U} == 2 2 2 .
—0“w/0xdy O“w/0x
If €2 simply-connected, this sequence also exact.

Analogous results hold for functions with less smoothness, e.g.,
0 — P(Q) S H2(Q) L H(div,2:S) UY 12(Q,R2) -0 (3)

is also exact. Implies div H(div,$2;S) = L2(Q2,R?).



Stable pairs of finite element spaces (X;,V}y) introduced by
Arnold-Winther satisfy div 3; = V', i.e., short sequence

>, ™y, o0 (4)
IS exact.
Moreover, if there are projections P, : C®°(2,R?) — V, and

My, : C°(€2,S) — X defined by degrees of freedom determining
finite element spaces, then following diagram commutes:

c>(2,8) Y, coo(Q, R2)
”hl Phl (5)
I Vi

Stability of mixed method follows from exactness of (4), com-
mutativity of (5), and well-posedness of continuous problem.
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Information about construction of such finite element spaces
gained by completing sequence (4) to longer sequence,

Set Qy = {q € HQ(Q) : Jq € ¥p}. There is interpolation operator
I, : C°(£2) — @y so that following diagram commutes:

0 P(R) S co@) L co@,s) I ox(Q,R2) -0

NI RN N

0P S ¢, L x4y V, =0

Existence of stable spaces (X, V) approximating H(div, €2;S) x
L2(2,R?), implies existence of finite element subspace Q; of
H?(Q) related to ¥, and V, through above diagram.
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Difficulty: @y, requires C1(Q2) finite elements. Simplest choice:
Argyris space of C'1 piecewise quintic polynomials.

Since JQy;, C X, 21 must be piecewise cubic space. Since Argyris
space has second derivatie d.o.f. at vertices, d.o.f. of X, with
include d.o.f. at vertices, not usually expected for subspaces of

H (div, Q).

Simplest element defined locally by:

> = Po(T,S) + {r € P3(T,S) : divr = 0}
= {r € P3(T,S) : divr € P1(T,R?)}, Vi = P1(T,R?).
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Family of elements developed in Arnold-Winther chooses for
k > 1, locally defined by:

2= Pk—l—l(Ta S) + {1 € Pk—I—Q(Ta S) . divr = 0}
= {7 € Pr1»(T,S) : divr € P,(T,R?)}, Vip = P(T,R?).

Unisolvent set of local degrees of freedom given by:
e values of 3 components of v(x) at each vertex x of T' (9 degrees

of freedom)
e Vvalues of moments of degree at most k of the two normal

components of r on each edge e of T' (6k-+6 degrees of freedom)
e value of moments [;7: ¢dx, ¢ € Pr(T,R2)+airy(b2Py_>(T,R)).
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For this family of elements, shown by Arnold-Winther that

lo—opllo < Ch'|lollr, 1<r<k+2,
| div(c —op)llo < Ch"||divellr, 0<r<k+41,
Ju—wpllo < Chllullp1, 1<r<k+1

Variant of lowest degree (k = 1) element involving fewer degrees
of freedom. Choose Vi space of infinitesimal rigid motions on
T, i.e., vector functions of form (a — by,c+ bx). Then
>r={re€P3(T,S):divr € V}.

Element diagram for choice £k = 1 and a simplified
element are depicted below.

ARSNEPAJWAN
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Nonconforming elements: fewer degrees of freedom; avoid vertex
degrees of freedom (Arnold-Winther)

Corresponding to choice Vi = P1(T,R?), choose for stress shape
functions:

> ={r€P(T,S) :n-m™m € P1(e,R), for each edge e of T}.

Space 27 has dimension 15, with degrees of freedom given by:

e values of moments of degree O and 1 of two normal compo-
nents of 7 on each edge e of T' (12 degrees of freedom),

e value of three components of moment of degree O of m on T’
(3 degrees of freedom).
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Nonconforming approximation of H(div,<2;S), since although

t - ™ may be quadratic on an edge, only its two lowest order
moments are determined on each edge. Hence, ™ may not be
continuous across element boundaries.

Simplified nonconforming element:
Displacement space chosen to be piecewise rigid motions.

Stress space reduced by requiring that divergence be a rigid
motion on each triangle.

Local dimension is 12 and first two moments of normal traction
on each edge form unisolvent set of degrees of freedom.

2A 2% A
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For k = 1, saw corresponding space @y, is Argyris space consisting
of C1 piecewise quintic polynomials.

Also an analogous relationship for composite elements discussed
earlier. For Johnson-Mercier element, Q) is Clough-Tocher com-
posite H? element and for family of Arnold-Douglas-Gupta, Qj,
spaces are higher order composite elements of Douglas-Dupont-

Percell-Scott.

Figure 3: @y, spaces for k = 1 conforming element, nonconform-
ing element, and composite element of Johnson-Mercier.
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Weakly Symmetric Finite Element Methods

Advantage: can approximate stress tensor by two copies of
standard finite element approximations of H(div,2) used to
discretize scalar second order elliptic problems.

Exploit many close connections between elasticity and
scalar elliptic problems.

Structure of these connections most clearly seen in language of
exterior calculus. Give only basic notation and connection to
language of vectors and differential operators in R? and R3.

21



Differential Forms

Suppose 2 an open subset of R*. For 0 < k < n, let A*(Q)
denote space of smooth differential k-forms of €2.

When n = 2, w € AF(Q) will have forms

w, widx1 + wodxo, wdxq1 N dxo, k=0,1,2.

Can identify w € A9() or wdxi A dzo € A2(2) with function
w € C®() and wydr1 + wodzs € AL(Q) with vector (w1, ws) or
vector (—wo,w1) € C®(£2,R?).
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When n = 3, w € AF(Q) will have forms (for k =0, 1,2,3)

w, widx1 + wodro + widxs,
widxo N\ drz — wodxrq A dxrz + widxy A dxo, wdxq1 N\ dxo N dx3.

Can identify w € A%(Q) or wdz1 A dxo A dzg € N3(QQ)
with function w € C°°(Q2)

and

widr1 + wodro + wadxs € A1(Q)

or

widxo A drz — wodxy N drz + widxry A dxo € /\Q(Q)
with vector (wq,wo,w3) € C°(Q,R3).
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Key object: exterior derivative d = d;. : A*(QQ) — AFT1(Q)
defined by

dZagdaza(l) JANKIEIEIVAN d:va(k) = Z Z

Wedge product dz; A dz; satisfies: dx; A dx; = —dz; N\ dz;.

So dx; Ndx; = 0.

d corresponds to differential operators grad, curl, div, and rot.

24



n=2: weAN(Q), dow = Ow/dzx1dri + Ow/dxodxs € NL1().
Identifying dw/0x1dx1 + Ow/Oxrdxy with (Ow/0x1,0w/0x5),
do ~ grad.

Identifying dw/0x1dx1 + Ow/Oxrdxy with (—0w/0xo, 0w /0x1),
dg ~ curl.

= widr] 4+ wodzrs € NH(Q).

dip = (Bws/0x1 — Owy/0xo)dxy A dzo € N2(R).
Identifying widxq1 + wodxo with (wl,wg), dq ~ rot.
Identifying widx1 + wodxo with (—wg,wl), dq ~ —div.

25



n=3. weA(Q),

dow = Ow/Ox1dx1 + Ow/Oxodrs + Ow/dx3drs € N1(Q).
Identifying Ow/0x1dx1 + Ow/0xo>dxry + Ow/O0xrzdxs
with (Ow/0x1,0w/0xo, 0w/dxr3dx3), do ~ grad.

p = widri] + wodrs + wadrs € AN1(Q).

dip = (321)3/(9:132 — aw2/8$3)daj‘2 ANdxrz — ((9?1)1/(9333 — 8w3/8x1)dac1 N
dx3 + (Owy/0x1 — Qw1 /0xp)dx1 A dxp € /\Q(Q).

Identifying widz1 4+ wodxs + widxrs with (w1, ws,w3), di ~ curl.

1= widxo A drz — wodry A drg + wadzy A dzo € N2(Q).
dop = (OQwq/0x1 + Qwp/0xo + Qwz/0x3)dr1 N dro Adrs € /\S(Q).
Identifying p with (wq, wo,w3), do ~ div.

26



Important role in our analysis played by de Rham sequence,
sequence of spaces and mappings given by:

d

0= A%(Q) 29 AL(Q) A, .. D1 AnQ) s 0.
or L2 version
d,_
0 — HAO(Q) 29 HAL(Q) A, ... &1 HAM(Q) - 0,

where HAF(Q) = {w € L2N*(Q) : dpw € L2AMT1(Q)Y.

27



In 3-D, we have the correspondences:

k AF(Q) HANR(Q) dw
0 C*®(Q) HY(Q) grad w
1| C®(Q2:R3) H(curl,2;R3) curlw
2| C®°(Q;R3) H(div,2;R3) divw
3| C®(N) L2(D) 0

28



For Q c R3 de Rham complex becomes

AV, c*(Q) — 0,

0 — () 229, oo R3) WL, oo g3 IV,
L2 de Rham complex:

grad H(curl, Q; R3)

curl prcdiv, @: R3) 4V,

00— Hl(Q)

div L?(2) — 0.

For  c R2, de Rham complex becomes

0 — Cc™(Q) 229, oo R?) L Q) 0,

or

0 — C®(Q) L, oo R2) IV, coo(Q) — 0,

depending on whether we identify widr{ + wodzs € AL(Q) with
the vector (wi,ws) or the vector (—wo,w1).
29



Basic Finite Element Spaces and Their Properties

Define P, as space of polynomials in n variables of degree at
most r and Pr/\k as space of differential k-forms with coefficients

belonging to Pr.

Define P-A* C P.AF by

PN =P, AP+ kP, AFTL
where for w = ¥, apdz,(1)A- - -Adzy 41y € AR, Koszul operator
k= ka1 Pr_1AFTT — PLAF defined by:

k+1 | .
Kw = Z Z (—1)7’+1agwa(i)dwa(1) A Ndxpy N dTo 1)

o =1
Term dz, ;) is omitted.
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Note k decreases degree of form and increases polynomial degree.
Can show Koszul complex

0 — PronA™(2) 2% Pyt AVH(Q) 25 L P AO(Q) - 0
iIs exact. For 2 C IR{?’, complex becomes

0 — Pr_3() L Pr_2(2R3) 25 P 1 (2, R3) L Pr(R2) — 0.

Let 7;, be a triangulation of €2 by n + 1 simplices T" and set

PrAR(T) = {w e HA¥(Q) 1 wlp € PrAR(T) VT € T}, r>0
PAMT) = {w e HANQ) 1 w|p e PTARN(T) VT € T3}, r>1,

We note that
PrN(Tp) = Py AY(Ty), 1> 1, PeN'(Tp) =P N'(Tp), m > 0.
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AT () Classical finite element space
PAY(73,) | Lagrange elements of degree < r

P-AL(T) | B-D-M H(div) elements of degree < r

P-NA2(T;,) | discontinuous elements of degree < r
P.-AY(7;,) | Lagrange elements of degree < r

P-AL(T,) | R-T H(div) elements of order r — 1

N B OIN B O F

P;AQ(Th) discontinuous elements of degree <r —1

Correspondences between finite element differential forms and
the classical finite element spaces for n = 2.
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/\;‘“L(Q) Classical finite element space
PAY(7;,) | Lagrange elements of degree < r

P-AL(T;) | Nédélec 2nd-kind H(curl) elements degree < r
P-N2(T;) | Nédélec 2nd-kind H(div) elements degree < r

P-A3(T;,) | discontinuous elements of degree < r
P-AY(7;,) | Lagrange elements of degree < r

P-AL(T;,) | Nédélec 1st-kind H(curl) elements order r — 1
P-A2(T;) | Nédélec 1st-kind H(div) elements order r — 1

w N B O W N B OF

P-A3(T;,) | discontinuous elements degree <r — 1

Correspondences between finite element differential forms and
the classical finite element spaces for n = 3.
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Key property: spaces form discrete de Rham sequences. In n
dimensions, exactly on—1 distinct sequences. When n = 2 and
r > 0, these are

0 — Ppy2hO(T) <2 P 1AL (T) 5 PrAZ(T,) — O,

0 — P 1A(Th) <% P AN(T) 5 PrAX(T;) — 0.
When n = 3 and r > 0, we have four sequences:
0 — Pr3N\O(T) S PryoAN(T) S Pry1A(Ty) S PeA3(Ty) — 0,
0 — P aA(Ty) L Py 1A (T) L P A2(T) L PeAS(T;) — O,
0 — ProN\(T) S Pr AN T S Py 1 A(T,) S PeA3(Ty) — 0,
0 — Prp1A(T) L P AN (T L P AT L PeA3(T) — .

First and last involve only P.A%(T;) or P-Ak(T;) spaces alone;
middle two mix two spaces. Middle two used for elasticity.
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To each Pr/\k(Th), associate canonical projection operator
N(=Ng) : CONY(Q) — PrAK(T},) defined by d.o.f:

/fTrf |_|w/\l/=/f_|_l’fw/\y, VEPT__J-_H{/\j_k(f), fEAj(T),

for k <j<min(n,r+k—-1). (n=3: j=0,1,2,3. A;(7) denote
vertices, edges, faces, tetrahedron).

To each P;/\k(Th), associate canonical projection operator
N(=Ng) : CONY(Q) — P-AR(T},) defined by d.o.f:

/fTrf NwAv = /fTI’fw/\V, I Pr_j_H{;_]_/\j_k(f), f € AJ(T),

for k<j<min(n,r+k—1).

Note: d.o.f of each space use forms from other space.
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Key property of these projection operators: they commute with
exterior derivative, i.e., following four diagrams commute.

ARQ) M ARFL(Q)

| |

PART) 25 P, AT

AR K ARL(Q)

| |

PrAR(T) 2 P Ak+L(T)

AR(Q) Ry ARHL(Q)
| n|
PTA"C(T) PN
ARQ) % ARHL(Q)

| |

P-NR(T) R P, 1AL,

These properties play essential role in constructing stable mixed
finite element methods for equations of elasticity.
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Differential forms with values in a vector space

Let V and W be finite dimensional vector spaces. Define space
/\k(V; W) of differential forms on V with values in W. Examples:
V ==V =R*and W =V or W = K, set of anti-symmetric
matrices.

When n =2, w e AK(V;V), k=0,1,2, given by
Ak Y1) Gy 4+ [ 12) dao, Y1) daq A dao,
wo w21 w22 w2
while w € A%(V; K) given by
0O —1
wx, wixdri + woxdxo, wydri ANdro, where x = 1 0 /-
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Recall: 1-form widx1+wodxzo can be identified either with vector
(w1, wo) or vector (—wo,w1). Similar choices for vector or matrix-

valued forms.

Choosing second identification, identify (w“) dr1+ <w12> dzo €
w1 W2

AL(V; V) with matrix

Wii Wi2) _ (—wi2 w11
Wo1 Woo —wpo w21/’

and wyxdz1 + woxdzo € ALN(V; K) with vector (—wo, wq).
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When n = 3, ;. € A¥(V;V) given by:

w1 wi1 w12 w13
po = |w2 |, p1 = | w1 [ dzy + w22 [ dzo + w23 | dx3
w3 w31 w32 w33
w11 w12 w13
uo> = | woq | deo Ndxz — | woo | dey Ndx3z + | woz | dxy A dxo
w31 w32 w33
w1
pu3 = | wo | dr1 Adxo A dxs,
w3

Identify ug and psz with vector (wq, wo, w3).
Identify p1 and pp with 3 X 3 matrix Wi, = w;;.
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To describe /\k(V;K), define operator Skw taking a 3-vector to
a skew-symmetric matrix. i.e.,

O —w3z wo
Skw(wi,wp,w3) = | w3z 0 —w;
—wo W1 O

Then p; € A¥(V:K) will have the respective forms:
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po = Skw(wi, wo, w3z),

p1 = Skw(wiy1,wo1,ws1)dry + Skw(wio, woo, w3n)dzs
+ Skw(w13, w23, w33)drs,

po = Skw (w11, wo1,w31)dro A drz — Skw (w2, woo, w3n)dry A drs
+ Skw(w13s, w2z, w3z)dry A dxo,

n3 = Skw(wq, wo, wz)dxrq A dxro A dr3s.

Identify pug and psz with 3-dimensional vector (wq, wo, w3)
and py and pp with 3 X 3 matrix W;; = w;;.
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In mixed formulation of elasticity, need for k =n—2 and k =n—1,
special operators S;. : AR(V,V) — AFFT1(V,K) defined as follows:
First define K5 : A¥(2; V) — AR(2; K) by

Krw = Xw! —wx?,

where X = (21, - ,zn)Y. Then define
Sk: = dkKk; — Kk:—|—1dk: : /\k(Q,V) — /\k+1(§2, K)

When n = 2, we get for w = (wl,wz)T,

Kow = (w12 — wox1)X
and after a simple computation,

Sow — (dOKO — Kldo)w — —ngdxl + wlxdazg.
Note that Sy is invertible with

Sy Hrixdry + poxdza] = (po, —p1)t.
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If w e AL(V;V) is given by:

w = widxi + wardry, wi = (wit,w21)?,  wo = (w12, w)’,

then
Slw = —(wll -+ wgg)xdxl AN d:CQ.
If we identity w with a matrix W by

Wii Wi2) _ (—wi2 w11
Wo1 Woo —wpo w1/’
then we can identify Siw with the matrix

0 Wio —Wonq
= 2skw W.
<W21 — W2 0

In general, S,,_1 can be identified with (—1)"2skw.
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When n = 3, we get for w = widx1 + wodxo + widxs,

S1w = Skw(—wz3 — wap, w12, w13)dxo A dr3
— Skw(wz1, —w11 — w33, we3)dry A dr3
+ Skw(w31, w3, —w11 — wrz)dxry A dx).

Identify w € AL(V;V) with matrix W by W;; = w;;, and identify
Siw € A2(V; K) with matrix U given by

—wW33 — W22 w21 w31
U= w12 —w1] — W33 w32
w13 w23 —w1l — W22

Then, W and U related by equations

1
==W =W —tr(W)I, =="lu=ut - S ()1

Hence, Sq is invertible.
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Easily get from fact dj41d;, = 0 and definition
Sk = dkKk — Kk—l—ldk : /\k(Q, V) — /\k+1(Q; K),

di+15k + Sk1d, =0 (6)

This identify, for k = n -2, i.e., d,_1S,->+ S,,_1d,,_> = 0 is
key identity in establishing stability of continuous and discrete
variational formulations of elasticity with weak symmetry.

Formula more complicated stated in terms of proxy fields. When
n = 2 and k = 0, if we identify w = (w1, wo)L € AO(Q; V) with
vector W, then formula (d1Sg + S1dg)w = 0 becomes

(divW)x + 2skw curl W = 0, skw M = (M — M) /2.

When n = 3 and k = 1, if we identify w € AL(Q;V) with matrix
W, then formula (d>S1 + S»dq)w = 0 becomes

Skw div(=ZW) — 2skw curl W = 0.
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Mixed Formulation of Elasticity with Weak Symmetry
(in notation of exterior calculus)

Assume 2 contractible domain in R", V = R", and K skew-
symmetric matrices. Since S = S, 1 : A" 1(Q; V) - A"(Q2:K)
corresponds (up to factor £2) to taking skew-symmetric part of
its argument, elasticity problem with weak symmetry becomes:

Find (o,u,p) € HA"1(Q; V) x L2A"(Q2; V) x L2A"(£2; K) such that

<A07 T> _I_ <d7-7 U’> o <ST7p> — Oa T € H/\n_l(Q:V)a
(do,v) = (f,v), veL2A™(;V),
(So,q) =0, qe L°A"(Q;K).

d ~ div S ~ skw
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Problem well-posed in sense that, for each f € L2A"(2;V), there
exists a unique solution (o,u,p) € HA"1(Q; V) x L2A"(Q2; V) x
LQA”(Q;K), and solution operator is bounded from

L2A™M(S2; V) — HAV (V) x L°A™(Q; V) x L°A™(2; K).

Follows from general theory of saddle point problems once we
establish two conditions: For some positive constants ¢ and c¢o,

(W1) |I7l% A < c1{AT,T) whenever 7 € HA"~1(Q; V) satisfies

(dr,v) = 0 Vv € L°A"(€2; V) and (St,q) = 0 Vq € L°A*(Q2; K),

(W2) for all nonzero (v,q) € L?A"(2:V) x L?A"(Q2;K), there
exists nonzero r € HA"1(Q; V) with

(dr,v) —(57,q) = collT|| aaCllvll 4 llal)).
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First condition is obvious (and does not even utilize orthogonality
of S7). Second condition more subtle.

Next consider finite element discretization. Choose families of
finite-dimensional subspaces /\Z‘l(V) c HA"1(: V), AR (V) C
L2A"(€2;V), and A(K) C L?A™"(Q2;K), indexed by h, and seek
discrete solution (o, up, pp) € /\Z_l(V) X AP (V) x AR(K) such that

(Aop, ) + (dr,up) — (ST,pp) =0, 7€ AFH(V),
(dop,v) = (f,v), ©ve&NA V), (Sop,q) =0, g€ N (K).

In analogy with well-posedness of continuous problem, stability
of approximation scheme ensured by Brezzi stability conditions:
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(S1) ||’7'||121I/\ < c1(A7,7) whenever T € /\Z_I(V) satisfies

(dr,v) =0 Vv € Aj(V) and (S7,q) = 0 Vq € A}(K),

(S2) for all nonzero (v,q) € AR (V) x AR(K), there exists nonzero
T € ATH(V) with

(dr,v) = (57,q) = collT|laa(llv]l + llql)),

where now constants c¢1 and ¢c» must be independent of h.

Difficulty: design finite element spaces satisfying these
conditions.
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To prove stability of discrete system, first consider proof of
stability of continuous system.

For this, use close, but non-obvious, connection between
elasticity complex and de Rham complex, described by Eastwood
and related to general construction given by Bernstein-Gelfand-
Gelfand, called BGG resolution.

Elasticity complex discussed previously related to strong
symmetry formulation of elasticity equations. Can also derive
elasticity complex related to weak symmetry formulation from
de Rham complex.

Omit details of derivation, but discuss key connections needed
for stability proof.
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Start with two vector-valued de Rham sequences, one with values
in V and one with values in K.

2, An=1(Q: K) 2L An(K) s 0,

AP 3(Q: V) -3, AP2(2: V) -2, AL V) On-1, A™(V) — 0,

Can show if de Rham sequences exact, then sequence

APT2(QK) 222, -

(dp—3,—Sn—3) dp—208,, 1 pyody 2

; /\”_Q(Q; K)
(—Spn—1,dn_1)T

A3 (W)  APH(Q: V)

A" (W) — 0

is exact, where W = K x V.
Call this: elasticity sequence with weak symmetry.

Key fact crucial to construction:
S, i HIA"2(Q:V) - HIAP1(Q; K) is an isomorphism.
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Interpret this sequence in language of differential operators in
two and three dimensions. When n = 2,

0561 (_Sladl)T> /\Q(W) —0

d od
AO(Q: K) = % AL V)

If we identify wyx € A9($2;K) with scalar function w, then

2 2 2
1 (0w /0x10x> 0“w/0x5
doSp “do(wx) = ( —82w/8$% )dml T (—6210/(99818332 dz.
We then identity this vector-valued 1-form with the matrix
< —82w/8513% 82w/8m18x2>

02w /Ox1 0z —82w/8az% =—Ju=—aiyuw.
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To translate second part of sequence, we identify

w = (“’11) dry + (’“’12) dro € AL(V:V) with the matrix
w21 w22

w = (W11 Wiz _ [—wiz wi1)
Wo1 Wao —w22 w21
Saw that —Sjw corresponds to —2skw W. Now

dyw = (81012/85131 — Owy1/0xo

aw22/8$1 — 8w21/a$2> dwl A de = —div del AN daj‘2,

Hence, modulo some constants, get elasticity sequence:

(skw,div)?T

C™(Q) L ¢ (Q: M) L C%®(Q,K x V) — 0.
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When n = 3, we have

_ oS_lod
(d07 SO) 1 1 1\ /\Q(Q,V)

(—So,do)T

AS (W) s AN(Q:K) ’

. A3(W) — 0.

Making the identifications discussed previously, obtain (modulo
some unimportant constants), elasticity sequence:

(grad,l)

/ COO(M) curlE_lcurl\ COO(M)

(skw,div)?

C*(V x K)

» C°(K xV) — 0.
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Well-posedness of Weak-Symmetry Formulation of Elasticity

To establish well-posedness of elasticity problem with weakly im-
posed symmetry, suffices to verify condition (W2). Deduced
from following theorem, which says map

(_Sn—ladn—l)T

HA"1(Q: V) s HA™(S2; K) x HA™($2; V)

IS surjective. Proof uses following well-known result from PDEs.

Lemma: Let €2 be a bounded domain in R™ with a Lipschitz
boundary. Then, for all u € L2A™(2), there exists n € HIA"1(Q)
satisfying d,_1n = p. If, in addition, Jou = 0, then we can
choose n € HIN"1(Q).
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Theorem: Given (w,pn) € L2A™(2;K) x L2A"(2;V), there exists
o€ HA"1(Q;V) such that d,,_10 = u, —S,,_10 = w. Moreover,
we may choose o so that

lollaA < c(llw]|| + [|u]]),
for a fixed constant c.

Proof: Second sentence follows from first by Banach’s theorem,
(i.e., if a continuous linear operator between two Banach spaces
has an inverse, then inverse operator continuous), so only prove
first sentence.

(1) By Lemma, can find n € HIA»1(Q; V) with d,,_1n = pu.

(2) Since w+S5,,_1n € HA"(£2; K), can apply Lemma second time
to find 7 € HIA"1(Q:K) with d,,_ 17 =w+ S,,_17.
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(3) Since S,,_» an isomorphism from HIA"2(Q:V) onto
HIAN"1(Q:K), 3p € HIAP2(Q; V) with S,,_op = 7.

(4) Define 0 =d,,_op+ne HA"1(Q: V).
(5) From steps (1) and (4), d,—10 =dp_1dp_2p+ dy—1m = p.

(6) From (4), —S,,_10 = —S,,_1d,_2p — Sp_1n. But, since
dp—1Sp—2 = —Sp—_1d,_2,

—Sn—1dn—2p = dp_15p—2p = dp_ 1T = wW + Sp_17.

Hence, —5,,_10 = w.
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Key Points.

(1) Although elasticity problem involves 3 spaces H/\”—l(Q;V),
L2A™(Q; V), and L2A™(2; K), proof uses 2 additional spaces from
the BGG construction: HA"2(2;V) and HA"1(Q2; K).

(2) Although only S,,_1 appears in method,
S,,—o plays important role in proof.

(3) Do not need S,,_» an isomorphism from
HIAP=2(V: V) to HIA"1(V:K); only surjection.
Important in discrete version of proof.

(4) Other slightly weaker conditions can be used in some places
in proof (also exploit in discrete version for some choices of finite

element spaces).
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Abstract Conditions for Stable Approximation Schemes
Basic idea: Mimic structure of continuous problem.

To establish stability of continuous problem, only used last two
spaces in top sequence and last three spaces in bottom sequence.
dy_
A" LK) = A"(K) — 0
/ Sn—2 / Sn—l
dy,_ . dy,_
A2(V) =2 AnLy) 225 A™Y(V) — 0.

Thus, look for five finite dimensional spaces connected by a
similar structure, i.e., in addition to spaces

M(K) c HA(K), A"H (V) c HAVH V), A(V) € HA™(V)
used in finite element method, also seek spaces

APHK) € HAVHK),  APTA(V) € HAM2(V).
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Require finite element spaces also connected by exact sequences,
but introduce additional flexibility by inserting L2 projection
operator I} and using approximations of §,,_> and §,,_1.

ned,,
AR~ (K) 5 AR(K) — 0
/" Sp—on /" Sp—1.n (7)
d, _ d,,_
AP=2(V) 22 ATH(V) 55 AT(V) — 0.

Next step: Identify properties of interpolants into each finite
element space needed for stability proof.

Define M} and ﬁ";; to be L2 projection operators into /\Z(K) and
AR (V), respectively.
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Define I‘IZ’_1 and ﬁz_l to be interpolation operators mapping
HIA"I(K) to AT H(K) and HIAP1(V) to AT1(V), respectively,
and satisfying

Nid, 1N~ tr = Nid, 17, 7€ (A + PHA"I(K),  (8)

dn_lﬁz_lT = N¥d,_17, T € HIAL(V). (9)
NP7 < Clirlly, 7€ (A + PHAL(K), (10)
1A=t < 7)1, 7€ HEAPH(V). (11)

Define I""IZ_2 mapping HIA"2(V) to /\Z‘Q(V) satisfying
ldn—2f1y " %pll <cllpll, pe€HA"2. (12)

In (12), d,,_» corresponds to curl. In some cases, must modify
canonical interpolation operator so defined on spaces of functions
will less smoothness than usually assumed.
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Next step: Define S,,_1 5 : AT7H(V) — A3(K) byQSn_lph = MPS,_1
as a discrete version of S,_1 and S, 5, : AT72(V) — AZ2(K) by
Sp—2n = I‘IZ‘lsn_Q as a discrete version of S,,_».

With these definitions, can establish discrete version of identity
dp—15p—2 = —Sp_1dp_2, i.€.,

szn—lsn—Q,h - - n—l,hdn—Q- (13)
Cannot expect invertibility of 5,_»,, but require S, _5; maps

/\’Z‘Q(V) onto /\Z‘l(K). To ensure this, assume /\Z‘Q(V) and
/\Z‘l(K) related by:

Sp_on1P 2r =nN7"1S, or, 7€ HIA"2(V). (14)
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Stability of Finite Element Approximation Schemes

Theorem: Assume finite element subspaces AF(K) and AF(V)
connected by exact sequences given in (7), that there are pro-
jection operators associated with these subspaces satisfying con-
ditions (8), (9) (10), (11), (12), and that condition (14) is sat-
isfied. Then, given (w,u) € AR(K) x AR (V), there exists o €
AP~1(V) such that d,_10 =, —S,,_1 0 = —MN}S,_10 = w, and

lollen < clllwll 4+ llul), (15)

where constant c independent of w,u and h.

Proof: Set ¢ = dn_QﬁZ_Qp—l— f1”—1y and follow proof in
continuous case.
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Theorem: Suppose (o,u,p) exact solution of elasticity system
and (oy, up,py) solution of discrete system, where finite element
spaces satisfy hypotheses of stability theorem. Then there is a
constant C, independent of h, such that

lo—opllaantllu—upll+lp—pull < Cinf(|lo—7|lga+Ilu—vl+lp—al),
where infimum over all T € /\Z‘l(V), v € AR(V), and g € AR (K).
Moreover,

- ~n1
o — opll + llp — prll + llup, — Mpul] < C(|le =T " "a|| + |lp — Oyp|)),
~n—1 ~
|u —upl| < C(lle = My" "ol + |lp — Mpp|| + [Ju — Myul]),
|dp—1(c —op)|l = |ldpn—10 — Nydy_10]].
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Examples of Stable Finite Element Methods for Elasticity
(1) Arnold, Falk, Winther families

For r > 0O, choose:
Ay 2(V) =P AT, AR (V) =P AT, V),
Np (V) = PrN"(11,; V),
AP LK) = ANTHTK),  ANK) = PrA™Y(T,; K).

Sequences

r—l—l

7?7,+1/\” 1(Th, K) 2L P AR (T, K) — 0

P oA 2(75,;v) =2, A AT, V) 1, p AT, V) = 0

T
are final parts of longer exact sequences involving Pr and P,
spaces. Hence, (7) satisfied without additional projection at end
of first sequence.
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For these spaces, canonical projection operators I‘Iz_l, nge, ﬁz’_l,
and M7 satisfy conditions (8)-(11).

Although canonical projection operator I':IZ_2 does not satisfy
(12), (not defined on functions in H1A"=2(V)), can define mod-
ified operator, P, : A" 2(Q;V) — ;_I_Q/\”—Q(T;L;V) that does
satisfy (12). Pyw will have same moments as w on faces of codi-
mension O and 1, but with moments of a smoothed approxima-
tion of w on faces of codimension 2. (When n = 2, vertex values
not defined, but Clement interpolant may be used instead).

To satisfy hypotheses of abstract convergence theorem, remains
to show that

ne=ts, 2B, =nN1s, ».
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Consider simplest case: n =2, r = 0. Equivalent to showing
NiSow =0, VYw=(I-P)o, oecA(V),

where M} interpolant into Py AL(7;,; V) (RT), and B, interpolant
into PoAS(7;,;V), i.e., piecewise P> vectors.

Let w = (wq,wo)! € AO(V). Since Byw =0,
/fTrfw AC=0, CePANEY), feAL(T).
which for w = (w1, w>)? is condition

/widezO, i=1,2, ee A1(7y).
€
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Must show this condition implies

/fTrfSowAu:o, we PN (FiK),  fe DT,

I.e., /Tl’e(—ngdxl + wixdxy) =0, ec€ Al(Th)
e

But if (¢1,¢2) is unit tangent to e, then

/Tre(—’wzxdwl + wixdro) = /(—wztl + w1t?)x de
(A (&

=x/e(w-n)d6=O,

i.e., degrees of freedom for RT'y are zero.

Analogous argument works for general »r when n = 2, and basic
outline of proof same when n = 3, although operator S1 more
complicated.
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Using abstract convergence theorem, straightforward to derive
following error estimates, valid for 1 < k <r 4 1, assuming o, p,
and wu sufficiently smooth.

lo —apll + llp — ppll + llup, — A%l < CRE(lo |l + 12llk),
lu —up|| < CRF(|lollx + Iplle + llwllw),
|dp_1(0 — op)|| < Ch¥||do]|y.
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(2) Arnold, Falk, Winther Reduced Element

Spaces AR(V), /\” LK), and AZ(K) remain as before, while
AV 2(V) and AV L(V) are modified. Reduced element has
S|mpler stress space.

Basic idea: in verification of surjectivity condition, did not use all
degrees of freedom of space PQ_AO(Th), i.e., did not use vanishing
of edge integral of both components of w, but only combination
—wot! + wqt? (normal component).

Instead of PQAO(Th,V), use reduced space obtained by imposing
constraint that tangential component on each edge varies only
linearly on that edge. Reduced space P>_A°%(7;,,V) used
previously to approximate velocity field in stationary Stokes
equations (together with piecewise constant pressure).
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Elements determined by vertex values and integral of normal
component on each edge. To complete construction, provide
vector-valued discrete de Rham sequence in which O-forms are

Po_NO (T3, R?), i.e., sequence:

Po AO(T; V) 5 Py AN(T;; V) B PoA2(T;,; V) — 0,
where

Pl_Al(T;L;V) = {7 € 7?1/\1(7'h;V) : Tre(7) - t constant}.
Degrees of freedom:

/eTre(T) - np1(s)ds, /eTre(T) tds.
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Identify w € AL(V;V) with matrix W. Then w € Py AL(7;; R?) if
on each edge e with tangent ¢t and normal n, Wn -t constant on
e. Defines reduced stress space with 3 degrees of freedom per
edge. Together with piecewise constants for displacements and
multipliers, gives simple stable choice of elements.

3-D simplified element constructed using similar approach.
Starting from PQ_Al(T;L;V), do not use all degrees of freedom to
satisfy surjectivity condition.

Define reduced space P, A(7,;V) and space P1_N2(T;,; V) such
that these spaces, together with P0A3(%;V), form exact
sequence

Po_NL(T5: V) 1, Pqi_ /\Q(Th,V) 2, PoN3(7,,; V) — 0.
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Then able to replace space PlAl(Th;V), which has 36 degrees
of freedom (9 per face), by space P1_A?(7;;V), which has 24
degrees of freedom (6 per face). If we identify element in reduced
space with matrix W as before, get six degrees of freedom on
each face:

/an df, /f(a: - On! Wn df, /f(a: ) nt Wndf,

/f [(z-t)sT — (z- $)tTTWn df,

where s and t denote orthogonal unit tangent vectors on face f.
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(3) PEERS

In PEERS method, n = 2 and we choose

AL (V) = PTAN(T;: V) 4+ dB3AC (T, V), AR(Y) = PoA* (T V),
A2(K) = P1A%(T;,; K) N HXA2(K) [denote by PIA2(T;,; K)].

We then choose the two remaining spaces as
AJ(V) = (P1 + Ba)AP(T5,; V), ALK) = SoAD(V).
Easy to see that
AL(K) = (P1 + B3)AY (T, K) n HIANK) = (P + B3)AL (75, K).
Since sequence
731/\ (Th, V) —> 771 /\ (Th, V) 730/\ (Thr V) — 0
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IS exact, so is sequence

(P1 + B3)AO(T; V) 2% PrAN(T;; V) + doBsAO(Th,; V)
4, Po/\Q(Th; V) — 0.

However, not true that diA}(K) = A2(K). Instead, use:
I‘I2d1/\ (K) = A2 7 (K). Allows use of stable Stokes elements.

Proof that combination (P 4+ B3)AL(7;,;K) and PYA%(7;,;K) is
stable Stokes pair (Mini-element) involves construction of
interpolation operator M} : HIAL(K) — (P + B3)AY(7;,; K)
satisfying

<d1(7_ — I_I%LT)aqh> — 07 qn € /\ (K)
Intrll < ¢, T e HIAY(K),

which gives properties (8) and (10).
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Properties (9) and (11) satisfied by RT interpolant
Al HIAY(WV) — PTAN(T;; V).
Easily check that (12) and (14) satisfied if we define

AR« HIAY(V) — (P + B3)A(7,; V)
by A9 = s;tntsgr.
Note that surjectivity trivial, since for = € HIAO(V),

So.nfhT = N;SoSy tMESer = NESor.

Applying abstract convergence theorem, and standard
approximation and regularity results, obtain:

o —opllo + llp — prllo + [lu — upllo
< Ch(lloll1 + llplls + llull1) < Ch[flo.
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(4) A PEERS-like Method with Improved Stress Approximation

In this new method, we change one space used in PEERS
element and both auxiliary spaces used in analysis, i.e., choose

A (V) = PiAN(TL V), AR(Y) = PoA? (T, V),
A(K) = PPA% (T, K),
and two remaining spaces:
N (V) = PoAO(T;,; V),
Ai(K) = SoAR(V) = PoAL (75, K) N HIAL(K).

Change from PEERS’ analysis: now use combination of
PoALN (T, K) N HIAL(K) and PPA2(7;,;K) as stable Stokes pair
(Taylor-Hood element).
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Method also modification of lowest order A-F-W method: same
o and uy, spaces and lower sequence. Changed multiplier space.

Advantage of new method: higher order approximation to stress
variable. From convergence theorem: error estimate for ||oc—oy||o
depends both on |lo — N}~ 1a||o and |[[p — Myplo.

In lowest order A-F-W method, [lo — 7" to|g < Ch2||o]|> since
M7 1o € P1. But ||p— NPpllo < Chlp|l1 since M? np € Po.

Since lNyp € P1 in new method, recover 2nd order convergence.

Since My € Py, only obtain ||lu—uy|lo < Ch. However, |Ju,—7ul|g
also O(h2) SO post-processing might produce better result.

Remark: Similar ideas used to develop hybrid methods for
elasticity equations. E.g., see Farhloul-Fortin.
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(5) Methods of Stenberg

For r > 2, n=2 or n =3, choose

A=Y (V) = PN (T, V) + dBy oAV (T,; V),

h(V) =PraN (T, V), Ap(K) = PrA*(Tp,; K),
where B, , denotes functions which on each simplex T" have form
brP,._1, where bp(x) = H;f’jll A;(x). To fit framework, choose two
remaining spaces as

NY2(V) = (Prg1 + Brgn)A"2(T3; V),
A HK) = (Prg1 + Brpn) N H (T, K) 0 HAN(K).
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Using exactness of sequence

dp— _ dy,_
Pry NV 2(T5; V) 22 PAT (T, V) 55 P AT, V) — 0,

get exactness of sequence

d,_ B
(Pra1 + Brg )N 2(T5,; V) 222 PoA (755 V)
d,_
+ dy 2By A" (T5; V) 5 P AM(T3; V) — 0.

Again not true that dn_l/\z_l(K) = A} (K). Instead, use:
Nid, 1A H(K) = AR(K)

and stable Stokes elements.
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From definition of S,,_», easy to see when n = 2,

SoAN(V) = (P41 + Brg )N (T3, K) N HIAN(K),
and when n = 3,

S1IAR(V) N HIAY (V)] = (Pry1 + Brg o)A (T3 K) N HUA?(K).

Proof that combination (P,y1 4+ B,1,)A""1(7;,; K) n HIA"~1(K)
and PrA"(7;;K) is stable Stokes pair involves construction of
interpolation operator I‘IZ‘1 : HIAP1(K) —

(Pra1+ Bran) A 1(77,; K) N HIAPL(K) satisfying

(dp—1(r —NF11),q,) =0, g € A(K),
NPtz < Clirlle, e HIA"1(K),

which gives properties (8) and (10).
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Next observe that canonical interpolant ﬁZ‘l - HInL(V) —
P-A""1(T;: V) satisfies (9) and (11).

Easily check that (12) and (14) satisfied if we define

ﬁZ_Q : Hl/\n_z(V) = (Pr—l—l + Br—l—n)/\n_2(7-h; v)n Hl/\n_2(V)
by |=|Z’_27' = 7;_12 I_IZ“_lSn_QT.

When n = 2, same analysis carries over to r = 1, since combi-
nation (P> 4+ B3)AL(7;,; K) n HIAL(K) and P1A2%(7;,; K) is stable
Stokes pair. Situation more complicated in 3-d, since analogous
combination not stable Stokes pair.
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Using abstract convergence theorem, and assuming o, p, and u
sufficiently smooth, can show:

lo — ol + llp — pll + llup — Aful < CRE(|o]lx + llpllk),
1<k<r41,

lu — up || < CRE(lo |l + 11pllk + llulls), 1
Hdn—l(o' — O'h)H < Cthdn—lUHk, 1<

83



