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CONVERGENCE OF A SECOND-ORDER SCHEME FOR THE 
NONLINEAR DYNAMICAL EQUATIONS OF ELASTIC RODS* 

RICHARD S. FALKt AND JIAN-MING XUt 

Abstract. A second-order, energy-preserving finite difference scheme to approximate the partial 
differential equations governing planar, twist-free motions of inextensible, unshearable elastic rods is 
presented and analyzed. 

Key words. energy preserving, second order, dynamics of rods 

AMS subject classifications. 35L70, 35Q72, 65M15, 73K05 

1. Introduction. We consider the numerical approximation of the following 
equations governing the planar motion of a class of inextensible elastic rods: 

(1.1) (CosO)tt =fss 
(1.2) (sin O)tt = 9ss, 

(1.3) Ott - O, = -f sin 0 + g cos 0. 

The unknowns are 0, f, and g, which are each functions of two variables s and t. The 
system is a generalization of Euler's elastica to include inertial dynamics. We assume 
that the rod is specified by a two-dimensional vector function r(s, t) = (x(s, t), y(s, t)). 
At time t, s -+ r(s, t) gives the axial curve of the rod in terms of its arc-length 
parameter s and hence, Jr,12 = x2 + y2 = 1. In system (1.1)-(1.3), the variable 0 is 
the angle between the unit tangent r, and the x-axis: 

xs = cos 0, y, = sin 0. 

The functions f and g are the stress resultants in the x- and y-directions. They 
are a priori unknowns, i.e., "reactive forces" similar to the pressure in the theory 
of incompressible fluid flow. If we assume a linear stress-strain relation, then the 
dynamical system (1.1)-(1.3) is justified: Equations (1.1) and (1.2) are derived from 
the balance of linear momentum in the x- and y-directions, and (1.3) is derived from 
the balance of angular momentum. The three equations are written in dimensionless 
units. 

The system (1.1)-(1.3) was studied by Caflisch and Maddocks [1] in 1984. For fi- 
nite length rods subject to appropriate boundary conditions, they derived the system 
(1.1)-(1.3) from a variational principle, proved a global existence theorem, and ob- 
tained the dynamical implications of an energy criterion for stability. More recently, 
Coleman and Dill [2] also derived the system (1.1)-(1.3) from a variational principle, 
obtained and classified all traveling wave solutions, and raised the question of whether 
the system is completely integrable. 

In this paper, we will present a second-order, energy-preserving scheme to approx- 
imate the smooth solution of system (1.1)-(1.3) subject to the boundary conditions 

(1.4) O(0,t) + 27r = O(1,t), Os(0t) = s(1t), 
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1186 R. S. FALK AND J.-M. XU 

(1.5) f(Ost) = f(1,t), fs(O,t) = f5(1Xt) 

(1.6) g(O, t) = g(1, t), g5(O t) = g5(1 t), 

and the initial conditions 

(1 7) O(8,O) = SO(s), St (s, O) = 01 (s). 

The boundary and initial conditions are a simplified version of those boundary 
and initial conditions used to perform solitary wave scattering experiments. The 
solitary wave solutions found by Coleman and Dill are defined on (-oo, oo) and obey 
the relations: 0 0 as s -+ -oo 0 6-? 27r or -2r as s -* 00, f -> a as s -+ ?00, 

and 05, If5 Ig 0 as s - ?0oo, where a is a constant. Since 0, f, and g approach 
their limits at ?oo with an exponential rate, the interactions of solitary waves can 
be well approximated over a sufficiently large interval L by the boundary and initial 
conditions given above. Since the analysis does not really depend on the interval 
length, we have simplified slightly by taking L = 1. 

We note that many of the ideas for the analysis of the numerical scheme we 
present here were obtained by finding appropriate discrete versions of the analysis 
done in [1] for the continuous problem. The design of energy-preserving schemes has 
a long history, and the energy-preserving property plays an essential role in proving 
convergence of the schemes; e.g., see [5] and [6], and the references therein. 

The scheme has been employed to determine the consequences of the interaction 
of solitary traveling waves governed by the system (1.1)-(1.3). The numerical results 
described in Coleman and Xu [3] strongly indicate the system is not completely in- 
tegrable in the sense of soliton theory. The solitary traveling waves do not interact 
as solitons; in particular, the change suffered by a solitary wave upon collision with 
another such wave is more than a shift in phase. 

To describe the numerical scheme, we let As = h = 1/N, (N E R), be the spatial 
discretization, and At= T be the time step. Denote 

si = jh, tn = nT (O <j < N, n > O), 

ojn v tt(sj ,tn)7 fj rv ~ f (sj ,tn) gjn - g(,j, tn). 

To discretize boundary conditions (1 e4)>--(1.6), a fictitious point j = N+ I is introduced 
such that 

0n+ -27 + 
0(8,,tn), gN+1 

- 
f(81,tn 

)5 9N+1 
g(,1 tn)- 

We choose the largest possible time step r as allowed by the classical Courant-- 
Friedrichs--Lewy (CFL) condition; i.e., 

(le8) Tr = h / v 4 

For any mesh function {u" }, we introduce the operators A' and A': 

A2U, = ( U1 - n +u2 u-1)/92 

Ahub = (Un+ 1 -2uj + un1 )/h2. 

Then the scheme we propose is 

(1.9) AcT 3SO = Ah j 

(1. 10) A 
Tsin on= A_2,n 
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SECOND-ORDER SCHEME FOR ELASTIC RODS 1187 

COl-+l -cos O 1 sin +1 -sin6O~- 
0,i~ n n 3 3 3 3 

for 1 < j < N and n > 1, subject to the boundary conditions 

(1.12) On+1 + 27r = 0n+1 n+1+ 
(1.13) fo = fkr fl = f+1 

(1.14) 9o=g9 ,N 91 =9N+ 

and the initial conditions 

(1.15) 00? = (Pj 01 = 4, 

Here { Wj} and {fbj } are mesh functions determined from Oo and 01 such that 

N N 

(1.16) Ecos j = ZcosSj, 
j=1 j=1 
N N 

(1.17) E sin Vj = E sin Wj. 
j=1 j=1 

The existence of the mesh functions {fj} and {fo} will be discussed in ?2. The 
scheme is implicit; more precisely, at each time step n > 1, we are required to solve a 
nonlinear algebraic system to find 67.1 , fjn, gj (O < j < N + 1). An iterative scheme 
is presented along with a convergence result for solving this nonlinear system. 

The structure of the paper is as follows: In ?2, we cite some results for the exact 
solution 6, f, and g and prove the conservation of the discrete energy for the scheme 
(1.9)---(1.15). In ?3, we will rewrite system (1.9)-(1.11) as a second-order semilinear 
finite difference equation for {0j }. Its right-hand side is nonlocal but does not involve 
second-order differences; bounds for the right-hand side are presented in ?4. Results 
on solvability are presented in ?5, and an error estimate is derived in ?6. 

We conclude this section by introducing some notation. Given a mesh function 
u,' I < j < N, n > O, we write Uhn = un, un, . n. un)T, AT+Uj = (Un+1 -uj)/,r, 

(1.18 h-={ (u l -U2)/h if j-1, (1.18) D-Unj_1| (U n-un )/h if j = 1N 

h (119 -lf (u -uj?21)/h if 2 < j < N= 

( u~2n2U1 n+ U n-27r)/h2 if j = l: 
(1.20) D hun <(ujn+1-2ujn + uj7t1)/h2 if 2<j< N -i, 

(un1 -2un + uN ? 27r)/h2 if j = N. 

We remark that D7- and Dh are the standard backward difference and second-order 
centered difference, if we introduce the boundary terrns uOj = UN 2wr and u7N+1 = 
u1 + 20 . However, Dj [ and D are helpful when we reformulate the scheme (1.9)-- 
(1.15) in ?3, since it is easier to modify the operators than to retain the boundary 
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1188 R. S. FALK AND J.-M. XU 

conditions. We also define the norms 11 * Iloo, 11 * Ilo, 11 II,, and functional Ie 

Hu|Hoo = max n HU1Ho = (h?u)2j 

iI~Un~ = i (II1I2 IAln,UnII2 + IlI 
n un le = IIA+unII1+ IID- Un 1)2 | h |Ile = (llih | l - \r th l l h Uh l l h lr e= (ll/+ h | | h Uh l 

Note that I Ie is not a seminorm for un = (un, n n,.. ,u4)T . However, if we had 
defined D- as the usual backward difference operator, this quantity would be just a 
rewriting of a standard seminorm on mesh functions (Un, Un, Un.... ,u un)T for those 
functions which satisfy the constraint Un = - 27r. 

Throughout the paper, C will denote a positive constant, independent of h, r, 
and unknown functions, but not necessarily the same at each occurrence. 

2. The approximation scheme and the exact solution. We first cite some 
results about the exact solution 9, f, and 4 [8]. 

DEFINITION 1. The class Cpn. is defined to be those functions in C'-1 that have 
piecewise continuous derivatives of order n. 

THEOREM 1. Let So E C2([0, 1]) and 01 E C1W([O, 1]) be given such that 

(2.1) 9o(O) + 27r =9 (1), 00(O) = 0(1), 91(O) = 9(1), 

(2.2) 01 sin Oods = 0, J 1 cos Oods -0. 

Then there exists a unique 9 E C2 ([0, 1] x [0, oc)) and f7 9 such that f 9 E 
Cpw([O, 1] x [0, oo)) satisfying equations (1.1)-(1.3) with the boundary conditions (1.4)- 
(1.6) and initial condition (1.7). 

Throughout the paper, we suppose So e C4([0, 1]) and 01 e C3([O, 1]) not only 
satisfy (2.1), (2.2) but also the additional conditions: 

(2.3) 9J(0) = 0J/(1), 09(O) =9//(1) 9/(0) = 9/(1), 09/'(0) = 09/'(1). 

Since no regularity results are known so far, we assume that the exact solution 6, f, 
and 4 are all in C4([0, 1] x [O,T]) for some T > 0. 

There are four conserved quantities for the system (1.1)-(1.3) subject to boundary 
conditions (1.4)-(1.6) (cf. [3], [7]). To express these quantities, let 

s r1 re 

x(s, t) = cos 0(77, t)d7 -j j cos 0(77, t)d 7d(, 

ps 1 {e 

y(s,t) = j sin0(T7, t)d?7-j j sin0(77, t)d?7<. 

Then we have the following. 
1. Energy. d7t/dt 0, where 

lt = A (02 + 02 + Xt2 + y2)ds. 

2. Linear momentum. dMX/dt = 0 and dMy/dt 0, where 

MX j xtds, MY ytds. 
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SECOND-ORDER SCHEME FOR ELASTIC RODS 1189 

3. Angular momentum. dC/dt = 0, where 

1 

= j(Ot + xyt - yxt)ds 

+ (x(1, t) - x(O, t)) J r(T)dT - (y(1, t) - y(O, t)) J f(T)dT, 

in which f (t) = f (O, t) = f (1, t) and g(t) = g(O, t) = g(1, t). 

4. Linear impulse. dl/dt = 0, where 

T = j (OtO, + xtx, + yty,)ds. 

Our scheme (1.9)--(1.15) preserves the discrete analogues of the first two quanti- 
ties. To show this, we introduce the mesh functions x17 and yjn which are the discrete 
analogues of x and y. For 1 < j < N + 1 and n > 0, 

N k-1 j-1 

(2.4) x3 =-h2 EE Z cos9 2+ hZcos9 
k=l i=1 i=1 

N k-1 j-1 

(2.5) yn = -h2 Z sin0 + hZsin0. 
k=1 i=l i=1 

It is clear from the definition, for 1 < j < N and n > 0, we have 

(2.6) (x+, _- Xn)/h = cos 9jn, 
(2.7) (y7+ - yjn)/h = sin 97. 

For each n > 1 fixed, we solve boundary value problem (BVP) (1.9), (1.13) and 
BVP (1.10), (1.14), respectively, in terms of { O}. It is not difficult to show that for 
1 < j < N, n > 1, 

(2.8) tA2Xn = A-f7n 
(2.9) A2 y = A-gn, 

where A- is the standard backward difference operator. If we define the discrete 
linear momentums as 

N N 

IVlh'(n) = hZ:A+xn, AYhy(n) = hZAt+yj, 
j=1 j=1 

then the identities Mhx (n + :1) = Ifhx(n) and AIh, (n + 1) = Mh((n) for n > 0 follow 
directly from equations (2.8), (2.9), and the boundary conditions (1.13), (1.14). 

To find the boundary conditions that X and y7 satisfy, we sum j from 1 to N 
in equations (1.9) and (1.10). Using the boundary conditions (1.12), (1.13), we find 
that for n > 1, 

AL2 COS 0 ) =0, T2 ( sin97) =0 
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1190 R. S. FALK AND J.-M. XU 

It follows that for n > 0, 

A+ ( cos 0) = const, A+ (Z sinO7) = const 

However, from equations (1.16) and (1.17), we see that for n > 0, 

( N )CO oj o , A = i '~ 0. 
/T (E co 

E 
) ., 

Using these equations and the definitions (2.4), (2.5), we have 

( 2.1 O) X~~~~N++1 -X1 + N 1 -X7 

(2.11) yn+l n 
y12l = n yj7. 

We now define the discrete energy: 

(2.12) E= r h + 2h2 N 

j=1 j=1 

1 N 1 1V 
+ h Z(At+x)2 +-hE(AT Y; ) 

j=l j=1 

LEMMA 1. (i) Forn > 0, we have ET+1 = En, and hence, ET = E?. 
(ii) For every n > 0, ETn is nonnegative and can be expressed in the form 

n h Z(A;+T 3) 2+ _ _ 1 [(+1 - _1) 2 + (9n OHJ+1)2] 
i=13= 

I N I N 

+ - h EZ(At+x)2 + - h Z (4 y7 ) 2. 
j=1 j=1 

(iii) Forn > O, 

(2.13) Il Dh S9n1112 + Il l2 < 24ETn 

Proof. To show part (i), we multiply equation (1.11) by h(Ojn+1 9w-1) and sum 
j from 1 to N. Applying summation by parts to the second term on the left-hand 
side, using boundary condition (1.12), and simplifying, we have 

N N 

LHS = h (A+T7)2 + I (Di [ O)(D 
- 
O[+1) 

j=1 j=1 

N N 

-h Z(A+On91)2 -h h(D 0jn-1)(D790jr). 
j=l j=l 

For the first term on the right-hand side, we use equation (2.6) to substitute cos 0j 
4 

and cos Ol, and sum by parts. Using boundary condition (2.10), we have 

N N 

h ~~~~~~~~~~(n (O n lCS9n- 1 ) J-f1 ) (j-X hZfj(cos0jn+1 -cos07=') = - j=fl-f (x - 

j=1 3=1 
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SECOND-ORDER SCHEME FOR ELASTIC RODS 1191 

Applying equation (2.8), we find 

N N N 

hZf7(coso 03h-cos0A) = --hZ(AItxn)2 +-hZ(A --1)2. 
j=1 j=1 j-= 

Using a similar treatment for the second term, we get 

N N N N 

RHS = -hZ(A+Xn)2 - h Z(At'yn)2 +- h (A+Xn-71)2 + hZ (L+4 y1)2 
j=1 j=- j=1 j=1 

Thus, we have conservation of the discrete energy 

En+I = En for n > 0. 

To show part (ii), we first use boundary condition (1.12) and CFL condition (1.8) 
to write 

N N 

2h Z(A+40n)2 + -h (D-O07)(D -0jn+1) 
j=1 j=- 

= T2 [z(Oj - j7)2 + _ (Zj+l -_ n+l)(07 - ) 

We then calculate 

1 [ (0n+l _ 01n)2 + -(rl _n+l)(07 _ >)]= h N 
22 r2Ei i 2 E. i j1 2 T2 tjE i j 

tfgnln _1 n+n _ n+l 0 +1 n+Zn(_n+1 0n ) j=1 j=1 
N (0+ - + ) + + - 1 

+ h n 1 1 nA _ n I oj - _ojnlw 2 ( n+l Io - o n+1 n 

j=1 =.1 +=N 
N N 

+1 ojn 1 + -o _- 
2 T2[2 2 Z +(07+1)+ (07) E (Oil, 2 

j=1 j=1 

+ [(on+ 1) on o(n+ ) -on NH]-[40 (0 0 0 

=h N -(/\+ 2 + i f [ ojn)2 ! Z(0?n+1)2_-l ! Z(9 7 )7 
j=1 j=1 j=1 j=1 

? E(n Z 1~) 2 + 1: -On_ 2 j1: 112n+ '11 l 
4= 4 0 20~ Flffl1\ +I00 

j=1 j=1 

In the last step, we used the equation 0on+ - 0 2 = Ipt' -t0X which is a direct 
consequence of the boundary conditions ON+l + 2r-0}y+1 and 0 

- + 2r = 0. 
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1192 R. S. FALK AND J.-M. XU 

Part (iii) can be easily derived by making use of the identities 

07n - n_ 
= (jn - ojn+1) + (ojn +1 - 07-_)' 

7n+ 1 o_fjn1 = (fn + 1 - ojn) + (07n - 0 I ) 

In the proof of conservation of the discrete energy (on which much of the analysis 
of the approximation scheme depends), we have used the fact that approximate initia] 
data can be found which satisfies the discrete compatibility conditions (1.16) and 
(1.17). We now show how such initial data can be determined which is also sufficiently 
close to the true solution. 

LEMMA 2. Let 00 E C4([o, 1]) and 01 E C3([o, 1]) satisfy conditions (2.1), (2.2), 
and (2.3). Let 9 E C4([o, 1] x [0,T]) for some T > 0 be the true solution of initial 
boundary value problem (IB VP) (1.1)-(1.7). We define 

= Oo(jh) for 1 < j < N. 

Then, for r sufficiently small, there exists a mesh function O)h such that for 1 < j < N, 

42j - 0(jh,'r) = 

and Oh satisfies equations (1.16) and (1.17). 
Proof. We introduce the mesh function 3j, 1 < j < N, defined by 

fj = 9o(jh) + 9 1(jh)Tr + 2 !r (j h, ) + 6 rrr (j h 0)r 

-~~~~~~~~ 
6 

Notice that 6,, and O... can be expressed in terms of 00 and 01 and their derivatives. 
Let 7jn = 9(jh, rn). Then, it is clear that for 1 < j < N, 

(2.14) Sj- 0 =(4) 

For any r > 0, since 9(0, T) + 2ir =(1, r), there exist (l, 42 E [0, 1] (which may 
depend on r) such that 

Cos9(4i,r) = 0, sinO(62,r) = 0. 

Hence, there is a 6 > 0, such that for 7 < 6, there exist I < k, I < N, k $ I (which 
may depend on r) such that 

(2.15) |COS(9kI <? I sinsljI <? 4,4 

Now we define j as follows: 

Oj-= j if j =A k,lI 

and Pk and 01 are determined by the system (1.16) and (1.17). We claim that for 7 
sufficiently small, Pk and 1 are well defined and have the properties 

=-S -0(,r3), 61-1 =-0(73). 

We begin by rewriting the system (1.16) and (1.17) as 

(2.16) (cos Pk -COs 5Sk) + (COS 41 -COS 1) = 'E (7), 

(2.17) (sin Yk sin (pk) + (sin4'1 - sin 1) f= 2 (7), 
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SECOND-ORDER SCHEME FOR ELASTIC RODS 1193 

where 

N N 

e6(T) = Z(c(COS - Cosej) - (cos i - cos9S!), 
j=l j=l 

N N 

62 (r) (sin -sin OJ) -Z(sins~j - sin OJ). 
j=l j=1 

To solve this system for Ik and /1, we define 

=' 
('Ok + 41)/2, = (Ok - 41)/2; 

+ = ($k + q1)/2, 
1 = (k - ,)/2. 

Then from simple trigonometric identities, we get: 

2cos +cos+ =2cos0+ cos + el, 
2 sin +cos +/ 2 sin q cosq$ + 62 

Dividing these equations, we easily obtain 

tan + - 2 sin q+ cos q! + 62 

Cos q+ Cos q- + 61 

We then choose 

>+=tan 1 [(2sin +cos + m62) 
ta-L (Cos 0+ Cos b- + el) 

+ 7r 

where m is an integer determined by the condition + = tan-1 (tan q+) + m7r. (Recall 
that the range of tan-' is [-7r/2,7r/2].) 

Squaring and summing the original equations, applying a simple trigonometric 
identity, and simplifying the result, we also obtain 

COS(4k - = (1) = Cos(k -1) + E1, 

where 

El =--1 [cos + COS 01] + 62 [sinqk + sin q1] + 62/2 + 62/2. 

Using (2.15), we get that 

COS (qk -) = COS k cos ck + sin qk sin q I < - 

and hence that 

1 5161 1 51621 62 
COS(Ok - 1) + E1l <2 + 4 + 4 2 2 

for e1 and 62 sufficiently small. We then choose 

+ = (k- 01)/2 = 2 {cos [cos(k - ;I) + E1] + nl}, 

This content downloaded from 128.6.62.8 on Fri, 23 Oct 2015 19:43:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1194 R. S. FALK AND J.-M. XU 

where n is an integer determined by the condition /k -1 = COS-1 [cos(qk q1)] + nrr. 
(Recall that the range of cos-1 is [0,wr].) Hence, fVk = i+ 'I- and Wl = -- 
are determined. 

We next show that f/j - 9(jh, r) = 0(T3). Using our previous results. we get 

tan~+ tan~+ -+ 2 sin +cos !F + E2 sin 4+cos40 
tan. - tan X =---- 

2 cos q+cosqX + E1 cos q+cOs / 

_ E2 COS + cos - l sin + cos 

(2 cos q+ cos &- +,1l) (cos q+cosq$) 

Now 2 cos 0+ cos 0-= COSOk + cosq01, and by (2.15), 

|COS0k < I) |cos |= /-i X > 
VI- 

4 4sn~ 

Hence, for c1 and e2 sufficiently small, it easily follows that E2 ?< C( Ke-6 . + IC21). Now 
by the mean value theorem, there exists a such that 

I tan b+ -tan+ I = sec2 ,3 I -+1 

(Note that + and + belong to the same branch of the tangent.) Hence, 

1-+1 < I cos2 3ll tan + -tan +I < J E21 < C( IcI + 12>1) 

Finally, from the identity cos(bk-01) = cos(k- ) +El and the mean value theorem, 
we get 

cos1 [cos(Sbk - I)] = cos 1[cos(k-X) + E1] = cos'[cosGbk-$)] E1 (1 ) 

where ( satisfies Icos(k - Q1)- < E1L. Since Icos(k -X 1)I <? 1/2 and JE1l < 
C(k1i1 + 1E21), we get for 1i11 and 1621 sufficiently small that <j ? 3/4. Hence, 

I|) -0 |- = 21 Wk - 1) - (& -1) I 
= 21 cos1 [COS(kk - -CS I- [cos(bk 1I)C? < CIE11 < C(qE11 + 1621)- 

Since 

|0k - Okl < 1 -+ I + IV) - XI IV) 11- I < Io+ - X I + 1+y - X I 

to obtain the desired error estimate, we need only show that 61 and E2 are 0(T3). 

Since 0 E C4([0, 1] x [0, T]), it follows from equation (1 3) and boundary conditions 
(1.4), (1.5), and (1.6) that 

(2.18) 0ss (0, t) = 0ss ( I, t), 5sss (O, t) = 68ss ( l t) 

Integrating equations (1.1) and (1.2) with respect to s over [0,1] and applying bound- 
ary conditions (1.5) and (1.6), we find that for any T > 0, 

(2.19) ]cos(s,7)ds = ] cosO(s,O)ds, 

(2.20) 1 sin O(s, r)ds = ] sin O(s, O)ds. 
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Using (2.18), (2.19), and (2.20), we employ the Euler-Maclaurin summation formula 
[4, pp. 297-302] to obtain 

N N 

Z cos oj? -ZE cos oJl = O(Tr3), 
j=1 j=1 

N N 

ZsinO ? -9 sino- = O(T3). 
j=l j=1 

Hence, c1 and 62 are of order r3; i.e., there is a constant A > 0, which depends on 
the initial data and the third- and fourth-order derivatives of the exact solution in a 
neighborhood of t = 0, such that for T sufficiently small, 

1k1 (T)l < AT3, 162(T) ?< Ar3. 

Combining our results completes the proof of the lemma. 

3. Semilinear form. The most important step in deriving a convergent itera- 
tion scheme for obtaining the approximate solution (and also proving its existence) is 
to eliminate {ffn} and {gjn} and to rewrite the system (1.9)-(1.14) as a single semi- 
linear equation for {0jn}. We begin with solving equations (1.9) and (1.10) to express 
f7 and gn in terms of {0jn}. Let {Kij} be the discrete Green function defined by the 
following: for 0 < j < N, 

(3.1) {ij hi(1-hj) if 0<i<j-1, (3.1) 
~~hj(1-hi) if j<i<N. 

Then, we can write for 1 < j < N, 

N 
(3.2) f7 = Pn - hZKij f2 COS Sih 

i=_1 
N 

(3.3) gjn = 
n _h Kij42 sin OS' 

i=l1 

where 

f -f = N 90 = Ni 

with the compatibility conditions: for n > 1, 

N N 

(3.4) E AT COS ojn = ?v A 2T sin Ojn = 0. 
j=1 j=1 

Next, we introduce some notation and prove a lemma which we need in the next 
step. Define 

1 

Sn (0j) = sin(T7 1jn + (1 - Tj)0n-1)dTj { (COS+1 - COS c no-s1) / (jn+1 -jn -1) if oj+ t on- 
jsin j if ojn+ = ojn 1 

This content downloaded from 128.6.62.8 on Fri, 23 Oct 2015 19:43:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1196 R. S. FALK AND J.-M. XU 

C, (0j) = f cos(roj'1 + (1 -71)0n -1 )dT 

r (sin9'+1 -sin9n-1)/X(9'n+1 _ fln1) if sj++s 

1 cos97.-1 if ojn+l = 91; 

S72(Oj) = 2ff (sin (P sin ?jn (1O-j r1>- + (1- on 1 1 

C~n (oj) 2 / csi (TI4Ojn+' + (1 - Tj)Ojn + (1 - )0j-l)d71T<; 
o o On (9j) = 2ff cos (TI9Oj+' + (1 - Tr4~Oj + (1 - ~On'dj~ 

s~ (0, Xj ) -Sn (O)CjOn (O,) + Cn (Oj) Sn (9 ); 

On (i, 9j) = S 72j( Sn iS() + Cn j )Cn( ) 

LEMMA 3. For 1 < j < N and n > 1 we have 

'L COS 69jn = - Sn ( f j L 2 fi n(f)A+ f,tL + n-l 4cs7= S(j)A.9 -j Cn (9j)AL T A3 T j 
A2 sinojn = Cn(9j)AL 20jn-_ Sn(j)At+ A+ 0n-1. 

Proof. We calculate 

A 2 COS ojn + Sn (oj )L A2 ojn 

_ 2 (y+1 _ (C-1 [(cos+1-coS-1)(O+l 2 + -') 
972oj+1 ojn7-1 - 

-(cos on+1 2 cos Ojn + cos 7jn-1)(on+71 _ l-1)] 

+(COS ojn-O + 1 n-1 )(ojn _ n-1)] 
= 2_ 1jn _ jn-1 _ 

+ (COS p_CO7 j - cosO7')(9'+1 - f1)] 

X -j(9~ 2 I cosi( n+1 + + (1- L)Oj n- 1 ) d1r On', 

T o'J L~ 
2 () 1_on sn Oj = 92 n- 9l)(9f,l+ _on 

x j jcos (TIOj+ 
1 + (1 - Tr> ~Oj + (1 Oj-7 

The other formula can be proven in the same way. 
Now, we put (3.2), (3.3) into equation (1.11) and apply Lemma 3 to obtain for 

1 < j < N, 

N 
A2jn _ A2 jn = -fTnSn (Of) + gnCn(f9) - h O KjC (9i, I j) AT 2 

i=l1 
N 

(3.5) + h , KijSg (9i, j) A t pAo-1. 
i=l 
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To find the semilinear equiation for { jn}, we observe that a A2 Ov term is needed 
to accompany the A20G, inside of the first summation on the right-hand side of (3.5). 
Toward this end, we use summation by parts and boundary condition KNj Koj = 0 
to derive for 1 < j < N, 

N N 
hZ A, Kij (i9 n7 (jJ Ihai= - h t(K\i Kvi-l)j _ Oj , o -on J 

i=1 h=1 

N 
K, Tr vn rn, oj _ O n a0ott (3.6) 1 j- Oj)- - 9) 

i=2 

Now combining (3.6) and (3.5), we obtain 

N 

AL72 -n A2j + h K on Ga j)(A 2 ! _ A2 O) 
i=h 

N 

fn Sn (Oj) + .n Cn (0j) + h Kijj7(0,. Oj A + on A+o 
i=1 

NA 

+ _ (K ij(_Ki_l,j)Cn (-, I j) ( i_)0)(-l ? 
i= I 

We then use the boundary conditions on = on - 27r and on o 9n + 2ir to eliminate 
On and on +1- The above equation can be written in terms of on'..., On and the 
operators D2 and D- defined at the end of ?1: 

(A2on - D2On) + L h (A20n - Dh2hn) = A (Oh) 

in which 
N 

(3.7) (LohUh)j = h KijC (9is9j)ui, 
i=-1 

N 

Bn(0h)j = h 
i=l 

N 

+ h E (Kij-Ki- )0n (0- Oj)D- on 

(3.9) A (Oh) = (-fOSn(Oh) + 9 C'(Oh) + B(Oh) ) 

Note that An(Oh) contains no second-order differences. The quantities fn and 9 can 
be expressed in terms of Oh and its first-order differences; the calculation is described 
at the end of this section, 
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The operator LOh is analyzed in the next section, and in particular it is shown 
that 

(3.10) (I + L )-1I + K" 

Accordingly, Oh satisfies the equation 

(3.11) A2 on - Dh = (I ++K h )A" (Oh)- 

Equation (3.11) is the main result of this section. It is a semilinear equation since 
the right-hand side does not involve second-order differences, and it is equivalent to 
(1.9)--(1.14). 

At this point, we determine fn and 3n in terms of Oh. First let us suppose that 
Oh, fn, and 3n form a solution triple to equation (3.11). Identity (3.9) implies that 

A2On - Dhfo9 = -fn(I + Knh)S (Oh) + 3 (I + Kh )Cn (Oh) + (I + K h)B (Oh) 

Multiplying this equation by hSn (Oh)T and hCn (Oh)T, respectively, and summing by 
parts, we obtain the relations 

N 

-hSn (Oh)TA2 on -h E ZD Sn (0j)D On 
j=l 

(3.12) all (Oh)f +1a2(Oh)9 -hSn(h)T(I + K )Bn(oh), 
N 

-hCn (Oh )T2O -n hZDC-C((j)D-Ojn 
j=l 

(3.13) an (Ohh)fn + an2(Oh)} _ hCn(Oh)T(I + Kn )Bn(Oh) 

where 

(3.14) anI (Oh) = hSn (Oh)T( + K h)S (Oh) 

(3.15) an2(Oh) = -hSn(Oh)T(I + K0)n(O )C 

(3.16) an I(Oh) = hCn(h )T (I+ Kh )Sn(h) 

(3.17) a2 (Oh) =- hCn(Oh)T(I + Kh)C (Oh). 

In the next section, it is shown that for h > 0, I + K' is a positive definite operator 
on RN and that for h > 0 sufficiently small and for any n > 1, 

al(Oh)a 2(Oh) - a2 (Oh)a", (Oh) < 0 

Hence, the system (3.12) and (3.13) uniquely determines fn and 3n. 
Now the required solution Oh must satisfy the compatibility condition (3.4), and 

must therefore satisfy the following equivalent forms, which are the results of Lemma 3; 
namely, 

N 

(3.18) Sn(Oh )TA h = - n (( )A O>z4+n1 
j=l 

N 

(3.19) Cn(Oh)t/h = A3 Sn (O, )A +jnA+On-1. 
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Accordingly, if we assume a, priori that fn and n have the dependence on 0h given 
by the system 

N 

an1(Oh )fn + a2 (Oh ).n = h CrL (oJ) A +ojn A + on-I 

N 

(3.20) -h E b KSn(oj )D-Ion + hSn(Oh)T(L + Knh )Bn (Oh), 
j=1 

N 

a21(Oh)fh +a22(Oh)Pn -hE S(O(j)Ah72 01 
j=1 

N 

(3.21) -h E D Cn(Oj)D-Ojn + hCn(Oh)T(I + Knh)Bn(Oh), 
j=1 

and solve equation (3.11) as a function of Oh only, we are guaranteed that the solution 
arising satisfies compatibility condition (3.4). This statement is a consequence of the 
fact that (3.12), (3.20) together and (3.13), (3.21) together imply (3.18) and (3.19). 

4. Analysis of the semilinear equation. We next present an analysis of LOh 
and Knh, and some bounds on A n(Oh) We also derive a lower bound for the absolute 
value of the determinant of the system (3.20) and (3.21). This bound is used to show 
that ffn and ?n are uniquely determined and to obtain a priori estimates for these 
quantities. 

Recall that for any mesh function Oh, the operators Lfh and Konh are defined by 
(3.7) and (3.10), where Kij is defined in (3.1). The operator Loh maps RN to RN and 
satisfies 

(4.1) IILnh UhllxK < IIUhIIO* 

Since Kij and Cn (O^, Oj) are symmetric in i and j, L n is symmetric. For any mesh 
functions Oh and fOh, it is not difficult to show 

(4.2) II(L h - Lnh)uhI < 2(O110n+1 _ on+11 + l10n-1 _ ,n-1I)IIuI 

To show that L h is positive semidefinite, we calculate 

N N-1 N-1 

hE vj(Lvn Vh)j= h2 E E K (Cn (0)Cn(0j) + Sn (0)Sn (0j))v,vj 
j=1 j=1 i=1 

N-1 N-i 1 N-1 N-1 

-h2 E E Kijaicj + h2 E E i ? 0, 

j=1 i=1 j=1 i=1 

where 

aj = Cn(Oj)v3, ij = Sn(0j)Vj. 

Here we have used the equation KN = KNj = 0 for 1 < i, j < N. The last step 
follows from the fact that Kij, 0 < i, j < N is the discrete Green function for the 
BVP: 

-Au2j = Wj, ULO = UN =O- 
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Hence, summation by parts yields that EN- -' Z l1 KijWiWj > 0 for any mesh func- 
tion {wj}. 

It follows from the inequality 1 < I + L'h < 2 that (I+Koh) = (I + Lnh is 
well defined. Moreover, K'h is symmetric, negative, semidefinite and satisfies 

1 n< (4.3) < I + Koh <1. 

It follows from the equation Kn = -Lnh (I + Lnh ) 1 that 

(4.4) IIK h Uhlloo < IIUhIIOl 

Furthermore, for any mesh function 0h and Aph, since 

Kn h- Kh -= ( +L h)n 1(L n-Lnh)(I+ LLnh<1 

K h is continuous in 0h and satisfies 

(4.5) I(Kh - Knh)uhII 
n ? 4(Ih+' - yTn+111 + l0n77 n-1 )11W11 

In order to show that the approximation scheme is well defined, we need to show 
that fn and 3n are uniquely determined by the system (3.20) and (3.21). We now 
show how this can be done. For future reference, we state the following hypothesis. 

Hypothesis (H). For each n > 0, there exists a 6, > 0 such that for 0 < h < an: 

h(411AT0nII2 + 411 A+ fn-1 112 + 21ID-0nO1 112) ? A 
The key step is the following technical lemma, which is then used to give a lower 

bound for the determinant of the system defining fn and 3n. 

LEMMA 4. Suppose that Qn is a function of n which satisfies Hypothesis (H). 
Then, for 0 < h < 6n, we have 

hZ CoS(0n+1 _ n) - COSo(0n-1 - Ofl) I 2 
[ L e+l _ IP-1 J 

1 
64(1 + 411ATnII2 + 4IIA+0h11112 + 211D-OnI2)f' 

Proof. Fix n > 1. We write for 1 < j < N, 

(4.6) CoS(0j7+' 
_ 
On) 

_ 
COS(jn'-1 ~) = sin(~o Qfn), (4.6) f~~~~~jn+l _ ojn-1 i( ) 

where 

n= 7qjn+1 + (1 - jn)0n-' for some 7 E [0, 1]. 

A direct calculation shows that 

,nV 11> 2l ('Ojz _ (Pr, 1) 2 
n 

<wl_ nAr )2 
IIDh~i0 ? _ 

3- ) + -o PN + 27r) 

3=2 
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=h j=2 -T 0') -C ~(07ii+1l _ 07-1i) + (071 - 0717h)] 

+ 2 [Zn n+i _ - ) T_(9Th+ - _N )+(0in1 _f71+21r)] 

< 2 Z [(fln+ 1 _- 1T + (07 
n_- 11 _1) 2 + ( jn7 - I1 _ 11 2] 

+ 2 -(6)n+l _ Tn-1)2 + (972+1 _ -)2 + (0U - _fln-1 + 2n)2] 

(4.7) ? 4IIAh0nlI2 + 4jjA+0h-1jjl + 2jjDh 0h7 1jj (Mh ). 

It follows that 

(22< 1 kP9 1 ,|1 -f N + 2i1)? < h 

Let son E [sop - 2ir, sOnN) be such that 

sin(non ( on) = 1, 

and denote by Jh, an integer between 1 and N, such that 

Then, using Hypothesis (H), there exists a 5 > 0 such that for 0 < h < lo, 

< - (oj hn <1.j1 h~~~~~~~~~~~ 

Hence, for 0 < h <8an, we have 

sin(Sonh - Om) > 3. 

Now, we calculate for jh + 1 < j < N, 

sin(poj -0 9) = sin ((_ - 0n ) + Z (n R - 1 -2 ( 
+ 

h Nh+=N + 1l/ 

(4-7 411A+on12_ 41 | +n- 
11 +W 21I-01 n4 -2 Ij-hn| 2 |hW|0 

The same inequality holds for 1 <j <jh. Hence for 1 <j < N, 

(4.8) sin(j I 0h ) ? - hn |j_hIInD 27s <f vllo. 

Let Nh denote the integer such that 

16(1 1 |D- - <n < 

l6(l?IID~so~II-h?Mh 461+IDs~I) 
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Note that Nh < NV/4. Then, for all j such that Ii - ihI < Nh, 

[hlj - h I(I + IID- 
n 
h l2)] 2< _ 

It follows from (4.8) that for jl - h I < Nh, 

sin(po' - >n 2 

We now observe that either 

N jh+Nh h 
hZsin2Qp!7non)h 3sin2(( -On _)Sn ) > (N + 

j=1 i=jh 

or 

N ih h 
h E sin 2((,)n _oSn) > h E sin2 (s,n o9> _ (Nh + 1). 

j=1 j=jh-Nh 

But the definition of Nh implies 

h(Nh + 1) > 
-16(1 + ID- n 

II 2) 

Hence, we obtain 

N 
h sin2((? n _ on) > 

j= - 64(1 + IID- (, 11 ) 

The conclusion of the lemma follows from (4.6) and (4.7). 
We are now ready to derive a lower bound for the determinant of the system 

defining fTn and ?. From this result, it is easy to see that these quantities are 
well defined, and bounds for fn and n may then be obtained in a straightforward 
manner. 

LEMMA 5. If Hypothesis (H) holds, then 

!aYl(0h)a22(0h) - al2(0h)a21 (0h)l 
1 1 

-2 4(1 + 411AOnII2o + 411A On 112| + 21IDD-On-1 112)2' 

where aOJ(Oh), 1 < i, j < 2, are defined in (3.14)---(3.17). 
Proof. First, we write 

laY1 (0h)a22(0h)- a2(Oh)a21(0h)l 

(4.9) [h(S (S(Oh) )- C (Oh )C))TI + Kn )(Sn (Oh) _3n cn (Oh))] 

x [hCn (Oh)T(I + K h )Cn (0h)]l 

where 

Sn S(Oh )T(I + K h )CnT(Oh) 
Cn (Oh )T(I + K 0 )Cn (Oh)' 
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Using the fact that I + K'h > 1/2 for any h > 0, we find that 
(S(Oh) -/30T())(IKh)S(6)-3C(h) 

h(Sn (Oh) _f3nCn (Oh))T( + Kn (h)S-n(h)OnCn()) 

(4.11) hC T(jh) (I+Kn)Cn (h)> hCn( h)TCn(Oh) 

Next, we observe that for 1 < j < N, 

cos(OS+1 - on) _ COS(On 1 - on) 
sTh(O )-_ flhcT(fOj) =- /1?C + 3m)2_jn-s 

= - os(0+1 ~) cosOil,-) 
COS (On+l 1_7)-O 0n-1_ ) 

Ojn+1 - on-1 

in which 

arcsin 
n1?+3)2 

It follows that 

h(Sn (Oh)_ -nCfn(Oh))T(Sn (Oh) -_InCn (Oh)) 

> h COS(jn+l -n) _ COS(jn-1 _ )2 

j=1 07 
+ 

Jn 

N l C S(Ojn+l _ os(O7 
hCn (Oh) TCn(Oh) > h 

_ 
[cos(07 +1 ( -_ 

Therefore, the conclusion of the lemma is a consequence of Lemma 4, (4.9), (4.10), 
and (4.11). 

Finally, we state some estimates for AnT(Oh), which is defined in (3.9) with Bn (Oh) 
given by (3.8), and fn, 3n determined by the system (3.20) and (3.21). The proofs of 
these estimates employ standard methods but are quite technical, and the interested 
reader can find the details in [8]. We suppose throughout that Oh satisfies Hypothesis 
(H). Then 

(4.12) IBn (06)1lo < (1 + IID-On+112 + IOnI2 + lon-11), 

(4.13) Ifnl < C(1 + 6OnI2 + 0on-112)2(1 + IID-6n+1112 + I0nI2 + In-112), 

(4.14) 1jp < C( 1 + 6 nI2 + ln- 1 1i2)2(1 + IIDh S6 |112 + I|nIe + l nhl12)j 

(4.15) |IA (0h)llK| < C(1 + |0h + 6h le ) 
x (I + ||D 

n 112 + 6 n 2 + lon-I i2), 
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(4.16) 11' + Knh)An (0h)to < C0( + 6OnI2 + 6Tn-112)2 
X (1 + tID- n+16112 + thnl2 + rn 1 12), 

in which 111 1f 11lo, and I le are defined at the end of ?1. Furthermore, if Ph iS 
another mesh function satisfying Hypothesis (H), then 

ttAn(Oh) - A n 
(^h)tx 

< C(1 + IOnI2 + tfn-112)2(1 + ItpnI2 + t1tnle)2 
(+ D h e l h e h e 0h e n112+ (4.17) x(l + tID- (On 112 + |ID-pj n+ + - OD-, + ltnl2 + n + I,n-1t2) 

x(itOT~1 - 
n 

+ 
niitD ion-1 - ton- 

+110h h- h tteI + I (-f 1lte) 

and 

11I + Kh )An (Oh) - (I + Knh )A n((Ph)tloo 
< C(1 + lOnl2 + |on-112)2(1 + lp,nl2 + 1,nl12)2 

h1II e 1+ Ih e h e +|h e+ 9helh l+f e (4.18) x(l + 11-on11 + 11-n+ 1 + lOnI2 + lnl2 + Ion-112 + p,n-12) 
h(1n+ (nh+l 0 + 1h 9h ~ Dh (e h||oe X (lIOn+1 _-(n+11 _ + HD11D 7On1 -- (rll 

n 
nite + tioni-IP1te 

5. Existence of the discrete solution. We next present an iteration scheme 
for determining the approximate solution. The convergence of this scheme proves the 
existence of this solution. 

THEOREM 2. Let Wph and O/-h be the mesh functions given by Lemma 2. Then, 
there exists a 6 > 0 such that for 0 < T < 6, equation (3.11) subject to (1.15) has a 
unique solution for n > 1. 

Proof. The proof is by a standard iteratioil argument. Setting 

Gn (on+l gh 0ng0n-1)h = (I+ K h)An (Oh), 

Nn+l,k = IID- on+l,kllo + 11 (Qn+l,k _ On)IIo, 

and 

d(on+l,k, Pn+lk) = IID- on+l,k D - n+l,klI0 d(h 'h ) Ihh h h Wh 

+ |(on+l,k - nl) - k- ) + Iln+l,k n+J 'k Ito, 
T T ho P 

we define the iteration 

I (nfl+k+l 2 fl+ n-1) -D 2on Gnh(on+lk, on onl)1 
2( h 2h +h h h-h hih h =1 

9h t h= 2Oh - 

It is then possible to show that there exists a 6 > 0, which depends on the initial 
data and on the third- and fourth-order derivatives of the exact solution in a neigh- 
borhood of t = 0 as required by Lemma 2, such that for 0 < r < 6, 
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(i) {Nm+1,k} is uniformly bounded, and 
(ii) {d(On+lk, I+l,k 1)} decreases with a geometric rate. 

The details of this are quite technical and again we refer the reader to [8]. The 
uniqueness is a consequence of the fact that any solution of (3.11) conserves discrete 
energy, and hence, it satisfies Hypothesis (H) and estimates (4.12)--(4.18). Thus, if 
Oh and Ah are two solutions of (3.11), we can employ a similar argument as used in 
proving the geometric rate decrease of the sequence {d(O" kI 0n,k- 1 to show that for 
0 < 'T < 6, 

d(O I~ K 2d(O,n for n = 2, 3. 

6. Error estimate. To obtain an error estimate for our approximation scheme, 
we first estimate the local truncation error of the scheme. 

LEMMA 6. Assume that 0, f, and 9, the exact solution of IBVP (1.1)--(1.7), are 
in C4([O, 1] x [0, T]) for some T > 0. Then, for (1 + n)T < T, we have 

A20n-D = (I + KW )A (0h) + 0(fr) 

Proof. We first show that for 1 < j < N, 

COS 0n+l cos 0n-1I 
(6.1) ^ +l _ - = _ sin 07n + 0 (,r2) 

sin Q?n+1 - sin Sj 
- 

n + 0(r2). (6.2) =CO +0() 
~,n +1 ~3n- 1 os 3 

Applying the Taylor series expansions, we have 

costj+ l co Sj -s -j 10 l-S )-co -j ( j 1 _ IWj 
- 

i R (0,n+ 1 _ tn ) 3+ 

COS01j = COS07 -sin Ojn(0Oj - Oj )--coOj (Ojn7 sin Oj a ~~~~~~~~~~~~ 

It follows that 

cos 1 _ cos 0jn- = -sin 0j(f+1 _ jn-1) 

-1 COS (g n - 
1)(6jn+ 

1 - 207 + 0- 1) + (Or' 3 _ 71 )Oj(i2) 

We then use the estimate Q+I - 20 + - = 0(r2) to obtain formula (6.1). (6.2) 
can be proven in the same way. 

Next, since 0, f, and g are in C4([0, 1] x [0, T]), it follows from the system (1.1)- 
(1.3) that the following relations hold: 

fJ85(0 t) = 05(1, t), 0888 (0 t) = 8sss (1, t), 

fss (01 t) =fss (I I t) Xfs ss. (O' t) = fs ss. (lIX t) 5 

s88(O? t) = s8s(I, t), fsss(Ol t) = fsss(1, t), 

Hence, applying the Taylor series expansions at 1 < j < N, and using (61), (6.2), 
we find that the truncation error for the system (1.1)-(1.3) is of order T2 after dis- 
cretization. Following the procedure given in ?3, and noticing that IKijl < 1, for 
O < i, j ? N, we obtain the equation 

(I + La )(A 2 - D 2n) = A`(Oh) + O(T2). 
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The conclusion of the lemma then follows from the estimate II + K7_l Iloc < 2. 
LEMMA 7 (discrete Gronwall inequality). Let {un} be a nonnegative sequLence. If 

for n > 1, 
71 

Un <A+BEuk, 
k=1 

where A, B > 0 and B < 1, then for n> 1, 

A AB n-I 
Un < 1B + (l E (nBk - 

i -B (I 
B)2k=1 

Using these results, we now obtain an error estimate for our approximation 
scheme. 

THEOREM 3. Let y'h and O'h be the mesh functions given by Lemma 2. Let Oh 

denote the solution of equation (3.11) subject to (1.15) and denote by 0, f, and 9 the 
exact solution. Then, for r sufficiently small, on any interval [0, T] in which 0 f, 
and j E C4([o0 1] x [0, T]), with (n + 1)T = T, h = V'2m there exists a constant CT, 
depending on the initial data, on the third and fourth derivatives of the exact solution, 
and on T, such that 

II|hn - hIIe ? CTT2 

Proof. To make the notation simple, we denote 

G n(Oh) = (I+ Kh )A n(Oh) 

and write 

An _Oh Dh- h = Gh(Oh) + rTn 

where rhn is the truncation error, which is of order T2 as shown in Lemma 6. We also 
introduce on = ohn _ O and define 

N N 

egh = (lh ,(g/i7)2 + >h Z (D +1 )(D- ( ))2 
j=1 j=1 

in which D- is defined by (1.18). It is clear that Df)-V/h = D-0n - D-Ok and 
A+v)n = +- n _ -A+k. Using an argument similar to that used in proving Lemma 1, 
part (ii) and (iii), we can obtain the identity 

(enh)2 = 4h Z(A+ )2+4hZ[(E)n+l - Oj2 + (ni+I On 2)] 
j=1 j=2-J 

+ --(N~1 -V42)1+ 4(~/l+1- 4,n1 25 +4h N 1 4I 

and the estimate 

(6.3) 1l[-On+1112 + IIA+/nI2J + IlD7'-b)nI|2 < 24(enh)2. 
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Proceeding with the error estimate, we find that Oh satisfies the following equa- 
tions: 
for j = 1, 

(,n+l - 2 +bjn + pnVi) - n n+ on) = (G n(h) -nG (h)) -; 

for 2 < j < N - 1, 

1 (j 
(j5fl+1 2'7 - 1) - - 2 - = (G-(Oh) - G7(Oh)) -rj7; 

and for j = N, 

;(:2 +_2Ifl? + fl1 )- h2 ?41 -2ib +N N - ) = (GN(h) -GN (nh ) - Tr. 

We multiply the jth equation by h(4)7?1 - *j7--'), 1 < j < N, and sum j from I to 
N to obtain for n > 1, 

N N 
(e h)2- (en 1)2 = h (Gj(Oh) -Gjn(Oh))(*jn+7l -n1) - h Z1Tn (jn+l _n1) 

j-1 j=l 

Hence, it follows that 

(e n)2 - (efn-1)2 < Tr(IIGhn(Oh) - Ghn(h)IIoc + llThnllo) (IlA+b)nllo + 11A tb o110). 

Using the inequality llA+/nJ10 < 4e? for n > 0, and cancelling eh + e n7 on both 
sides, we find that for n > 1, 

e0h -e 'h < 4T(IIG (Oh) - G (0h)1, + 1Trh 11) 

Therefore, we get for n > 1, 
n2 n 

(6.4) e < eo) +4TZ llk 11 hlloo + 44 Gk (Oh) Gk (Oih) I I oo 
k=1 k=1 

Now, estimate (4.18) implies that for k > 1 

JIGk(Oh) - Gk(9h) I1 

(6.5) Ohh(IIIk lh 1o + IlDli fbk+l 1o + II'VkI lo + llAL+V)k h0 
+ ID-O4llo + L'4hIo + hlA VhIo + hIDh4'h'hIo) 

where 

Oh,Oh e(1 + Ie+I h e e1)2(1 + I hI + e e) 

x (1 + |ID Ok+ 11|I2 + IID-fik 1112 + IkI2 + h1 2 + oIk-112 + f k-112 

Conservation of the discrete energy and conservation of the total energy for the con- 
tinuous system imply that there exists a constant 6 > 0 and a constant C > 0 such 
that for 0 < T < 6, if (k + 1)r < T, then 

Ck _ < C. 
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Hence, putting (6.5) into (6.4), using Lemma 1 (iii), and rearranging the summation, 
we obtain that for n > 1, 

n 
(6.6) en, < ?o + TC Z(oIk+1 Io + ekh)$ 

k=1 

in which 
v ~ ~ ~~~~~~~~~~~~n \ 

tyo = C (llthi?i + fID~4~ohII + IIjAr/hIIo + I[h/4o + IIDh hIlo + rZ IITTIboc) 
k=1 

To estimate j?07+1 lIo, we rewrite the equations for Oh as follows: 
for j = 1, 

n+1= iln + 'on + (on _ on-V1) + T2(Gn(0h) -G (fOh)) T2T-rT; 

for 2 <j < N- 1, 

V,n+l 
i n + 

?) 
(7n _ 

VPj-7) 
+ T2(GC(9h) -2G(Oh))- T; 

and for j = N, 

pn+1= 17 + 1,pn + (kn -_ on-1) + T2(G n(Oh)-Gn (Oh)) - 

Multiply the jth equation by hjn+l, 1 < j ? N, and sum j from 1 to N to obtain 

hZQ+b7?)2 = 2- | 7+if+1+ hE 7?1f + hfI4nt7n+l 

+2 (hNf + h E , + #- N) 
j=2 

N N 

h ~~~~E (On n12 h)nV)+ 
I + h2 1: 

( 
jn ( h)j+ + (h. )nV)nl +h2 2 -~fll?)f+ 9 - N 794/7 

j= j=l 

N 
-T2h S 7nn 

j=l 

Applying the Cauchy-Schwarz inequality to the right side and cancelling llJ'ip+1 Io on 
both sides, we obtain for n > 1, 

II4'hf Ito - IIlP Ito ? TII h llo + r Tn1Ghj (Oh) - Gh(Oh)lj + T2 TIT 

Hence, it follows that 

tL'j'tt lo ? (t14kti +lo+11 tJ hlo + T5 t||Th ||) +Tr5 |ttA$V Ilo 

+ Th E ||Gh( h) GG(hO) )ll OO 
k=1 
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Again, using (6.5), Lemma 1 (iii), and rearranging the summation, we find that for 

n 

(6.7) 10n'' J1o < zZo + rC (114I+l lb + ek 
k=1 

in which 

=y c (ii|+ii||i? + ||lDh f/4||o + ||A /\r fl|| + lk/)h jbo + ll Dh l/4j10 + T E lTi ll (o) 
k=1 

Combine (6.6) and (6.7) to obtain for n > 1, 

n 

+koIo+eXh = o+TCZ(I I?Io + IoeDh), 
k=l 

where 

aYo = c (IvhiIIo + IID~ Ioh lO + IIATbI I|O + I1b,||O + IDh , 411o + Tr E ITIrOO). 
k=1 

For T sufficiently small such that rO ? 1/2, the discrete Gronwall inequality implies 
that for n6> 1, 

II?/n 1 l + o + eCh ? C?yo e 

From Lemmas 2 and 6, it is clear that -yO is of order T2. Using estimate (6.3), the 
conclusion of the theorem follows. 
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