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Abstract. We study the behavior of solutions of five different boundary value problems for the Reissner-

Mindlin plate model emphasizing the structure of the dependence of the solutions on the plate thickness.
The boundary value problems considered are those modelling hard and soft clamped plates, hard and

soft simply supported plates, and free plates. As proven elsewhere, the transverse displacement variable

does not exhibit any edge effect, but the rotation vector exhibits a boundary layer for all the boundary
value problems. The bending moment tensor and shear force vector have more pronounced boundary

layers. The structures of each of these boundary layers are explored in detail. In particular, their strength

depends on the type of boundary conditions considered. They are strongest for the soft simply supported
and free plates, weakest for the soft clamped plate, and intermediate in the other two cases. For the soft

clamped and hard simply supported plate, the boundary layers vanish near a flat boundary, but this is not
true for the other boundary value problems. In order to illustrate the theory explicitly, we construct and

analyze the exact solution to all the boundary value problems in the special cases of a circular plate and

of a semi-infinite plate subject to a particular loading. We also examine the cases of an axisymmetrically
loaded circular plate and a uniaxially loaded semi-infinite plate. In these special cases, the edge effects

disappear entirely.
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vector-valued functions and operators whose values are vector-valued functions. Script
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C tensor of bending moduli

curl (vector) curl of a scalar function

D scaled bending modulus, = E/[12(1− ν2)]

div (scalar) divergence of a vector function

div (vector) divergence of a matrix function (applies by rows)

E Young’s modulus

g scaled loading function, = transverse load density per unit area divided by t3

grad gradient of a scalar function

I 2× 2 identity matrix

I1, I2 modified Bessel functions of order 1 and 2
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k shear correction factor

M tensor of bending moments

n unit vector normal to the boundary, directed outward

s unit vector tangent to the boundary, directed counterclockwise

t plate thickness

tr trace of a matrix

α =
√

12k

β =
√

12k + t2

∆ Laplace operator

E (matrix) symmetric part of the gradient of a vector function

ζ shear force vector in Reissner-Mindlin plate theory

κ curvature of the boundary

λ = Ek/[2(1 + ν)]

ν Poisson ratio

ρ, θ boundary fitted coordinates, distance to nearest boundary point and arclength
parameter value of that point, respectively

φ rotation vector in Reissner-Mindlin plate theory

φ0 = gradω0, rotation vector in biharmonic plate theory

φi interior expansion functions for φ

φρ radial component of φ (for circular plate)

φθ angular component of φ (for circular plate)

Φi boundary expansion functions for φ

χ cutoff function, identically one near boundary

ω transverse displacement in Reissner-Mindlin plate theory

ω0 transverse displacement in biharmonic plate theory

ωi interior expansion functions for ω

Ω region occupied by the midplane of the plate

∂Ω the boundary of the region Ω

1. INTRODUCTION. The Reissner-Mindlin model for the bending of an isotropic
elastic plate in equilibrium determines ω, the transverse displacement of the midplane, and
φ, the rotation of fibers normal to the midplane, as the solution of the partial differential
equations

−div C E(φ)− λt−2(gradω − φ) = 0 in Ω,(1)

−λt−2 div(gradω − φ) = g in Ω.(2)
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Here Ω is the two-dimensional region occupied by the midsection of the plate, t is the plate
thickness, gt3 is the transverse load force density per unit area, λ = Ek/2(1 + ν) with E

the Young’s modulus, ν the Poisson ratio, and k the shear correction factor, E(φ) is the
symmetric part of the gradient of φ, and the fourth order tensor C is defined by

CT = D [(1− ν)T + ν tr(T )I] , D =
E

12(1− ν2)
,

for any 2 × 2 matrix T (I denotes the 2 × 2 identity matrix). Note that the load g has
been scaled so that the solution tends to a nonzero limit as t tends to zero.

Solutions of the equations are minimizers of the energy functional

(φ, ω) 7→
∫

Ω

[
1
2

C E(φ) : E(φ) +
1
2
λt−2| gradω − φ|2 − gω

]
dx.

To obtain boundary conditions, we restrict the boundary behavior in the class of functions
over which we minimize. For example, if we insist that φ · n and φ · s (the normal and
tangential components of φ) and ω all vanish on the boundary of Ω, we obtain a model of
a clamped or welded plate, which we call hard clamped. If we impose φ ·n = 0 and ω = 0
on ∂Ω, but do not restrict φ · s, we obtain another model of clamping, which we term
soft clamped. By standard variational arguments, we derive in this case a third (natural)
boundary condition, namely that s · C E(φ)n = 0 on ∂Ω. In general, we may impose or
not each of the three essential boundary conditions φ ·n = 0, φ ·s = 0, and ω = 0, thereby
obtaining eight distinct boundary value problems. We consider in this study the five with
the greatest physical significance, which are listed in Table 1.
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Table 1 - Boundary conditions for various boundary
value problems for the Reissner-Mindlin plate model.

Essential Natural

φ · n = 0
hard clamped φ · s = 0

ω = 0
φ · n = 0

soft clamped s · C E(φ)n = 0
ω = 0

n · C E(φ)n = 0
hard simply supported φ · s = 0

ω = 0
n · C E(φ)n = 0

soft simply supported s · C E(φ)n = 0
ω = 0

n · C E(φ)n = 0

free s · C E(φ)n = 0
∂w

∂n
− φ · n = 0

For each of the first four boundary value problems, there is a unique solution for any
load g. For the free plate, a necessary and sufficient condition for the existence of a solution
is that the load satisfy the compatibility conditions

(3)
∫

Ω

g dx =
∫

Ω

xg dx =
∫

Ω

yg dx = 0.

Moreover, in this case, the solution is not unique. If (φ, ω) is a solution, then so is
(φ+ grad l, ω + l) for any linear function l.

From Eqs. 1 and 2, we deduce that

gradω − φ = −t2/λ div C E(φ),

div div C E(φ) = g.

Formally taking the limit as the thickness t tends to zero in the first equation, we obtain
Kirchhoff’s hypothesis

φ0 = gradω0

(where the subscript 0 indicates the limit at t = 0). Inserting this result in the second
equation we then obtain the classical biharmonic equation of plate bending

(4) D∆2 ω0 = g.
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Solutions of this equation are minimizers of the energy functional

ω0 7→
∫

Ω

[
1
2

C E(gradω0) : E(gradω0)− gω0

]
dx.

To obtain boundary conditions for the biharmonic model we may proceed as we did for
the Reissner-Mindlin model, enforcing or not each of the conditions ω0 = 0 and ∂ω0/∂n(=
φ0 · n) = 0 on ∂Ω. Note that if ω0 vanishes on ∂Ω then so does φ0 · s = ∂ω0/∂s, so this
quantity cannot be constrained independently. Consequently, we only obtain four distinct
boundary value problems in this way, the three most significant of which are listed in
Table 2.

Table 2 - Boundary conditions for various boundary
value problems for the biharmonic plate model.

Essential Natural

ω0 = 0
clamped ∂ω0

∂n
= 0

ω0 = 0
simply supported

(1− ν)
∂2ω0

∂n2 + ν∆ω0 = 0

∂

∂n
∆ω0 + (1− ν)

∂

∂s
(
∂2ω0

∂s∂n
− κ∂ω0

∂s
) = 0

free
(1− ν)

∂2ω0

∂n2 + ν∆ω0 = 0

A fundamental difference between the biharmonic model and the Reissner-Mindlin
model is that the solution of the former is independent of the plate thickness t (except
through the scaling factor t3 which we have absorbed into the loading function g), while
the solution of the latter depends on the thickness in a complicated way. In particular, the
solution exhibits a boundary layer for small t. More precisely, certain derivatives of the
rotation vector vary rapidly in a narrow layer around the boundary. The existence of a
boundary layer (in some sense) for the Reissner-Mindlin model has been noted by several
authors (see Refs. 5, 4, 6, and 7, Chapter 3.5). In Refs. 2 and 3 we analyzed in detail the
structure of the dependence of the solution on the plate thickness. These results apply
generally, assuming only that the boundary of Ω and the loading function g, are smooth.
We briefly recall the principal results here.

Let φ and ω satisfy Eqs. 1 and 2 and one of the sets of boundary conditions found in
Table 1. The transverse displacement admits an asymptotic expansion (as t → 0) of the
form

(5) ω ∼ ω0 + tω1 + t2ω2 + · · · .
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The functions ω0, ω1, etc., appearing in this expansion are smooth functions on Ω inde-
pendent of t. There is no degeneration in ω as t tends to zero (that is, ω converges to ω0

uniformly in the entire domain Ω, and all the derivatives of ω converge uniformly to the
corresponding derivatives of ω0). We term Expansion 5 a regular expansion. Its leading
term, ω0, satisfies the biharmonic equation (Eq. 4) and appropriate boundary conditions
(i.e., if the boundary conditions for the Reissner-Mindlin problem are hard or soft clamped,
then the boundary conditions for the biharmonic problem are clamped; similarly for simply
supported and free boundary conditions). The other terms, ω1, ω2, etc., of the expansion
may be obtained as solutions of other biharmonic problems. Explicit recipes are given in
Refs. 2 and 3.

The rotation vector φ admits an asymptotic expansion of the form

(6) φ ∼ (φ0 + tφ1 + t2φ2 + · · · ) + χ(Φ0 + tΦ1 + t2Φ2 + · · · ).

Here the first sum on the right hand side is a regular expansion as for ω. The first two
terms satisfy φ0 = gradω0, and φ1 = gradω1. However, it is generally not true that
φ2 = gradω2. The second sum represents an edge effect or boundary layer. To describe
it we introduce a coordinate system fitted to the boundary. To any point x of Ω which is
sufficiently close to the boundary, there corresponds a unique nearest boundary point x0.
We associate to x the coordinates ρ and θ giving, respectively, the distance |x − x0| and
the arclength along the boundary from x0 to some fixed reference point on the boundary
(see Figure 1). We also associate to x a normal vector n = nx, namely the unit vector in
the direction of x0, and a tangential vector s = sx which is equal to the vector nx rotated
counterclockwise 90̊ . Note that this construction assumes that ∂Ω is smooth, that is, has
no corners.

Returning to Expansion 6, the functions Φ0, Φ1, etc., have the explicit form

Φi = e−
√

12kρ/tFi(ρ/t, θ)

where Fi is a smooth function, independent of t. Each Φi may be determined as the
solution of a certain system of ordinary differential equations in the stretched variable
ρ/t. Because of the exponential factor, these functions are negligibly small outside a layer
about the boundary of width proportional to t. Near the boundary, they vary rapidly in
the direction of the normal: ∂Φi/∂n = O(1/t), ∂2Φi/∂n

2 = O(1/t2), etc.

Since the boundary-fitted coordinates are only valid in a region near the boundary, the
functions Φi are only defined in that region. Therefore, we introduce the cutoff function χ
which equals zero outside of the region, and which equals one in a region near the boundary.
Consequently, the products χΦi appearing in the expansion 6 are defined everywhere in
Ω. (Actually, for the two particular regions we consider in Sections 3 and 4, the circle and
the halfplane, χ may be taken to be identically one.)
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Fig. 1 - Boundary fitted
coordinates ρ and θ for the point x.

Table 3 - Terms which vanish in the boundary layer
expansions 5 and 6 for various boundary value problems.

hard clamped ω1 φ1 Φ0,Φ1 Φ2 · n
soft clamped ω1 φ1 Φ0,Φ1,Φ2 Φ3 · n

hard simply supported ω1 φ1 Φ0,Φ1 Φ2 · n
soft simply supported Φ0 Φ1 · n

free Φ0 Φ1 · n

For each of the boundary conditions, certain of the terms in expansions 5 and 6 vanish
(no matter for what load or boundary). Moreover, in all cases, the first nonvanishing Φi
is purely tangential, i.e., has zero normal component. The vanishing terms are listed in
Table 3.

Note that φ1 and ω1 vanish for the first three boundary conditions, but not the other
two. Thus, in these three cases the difference between the Reissner-Mindlin and biharmonic
solutions is of order t2 in the interior, while in the remaining two cases it is of order t.

The strength of the boundary layer for φ is determined by the relative orders of the
initial terms of the interior and boundary layer expansions. Since we have normalized the
load so that the solution is always of order one with respect to t in the interior (i.e., φ0

is always nonzero), the determining factor is the power of t before the first nonvanishing
term of the boundary layer expansions. Thus, from Table 3, we see that the soft simply
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supported and free plates exhibit the strongest boundary layer, the hard clamped and hard
simply supported plates have a weaker layer, and the soft clamped plate has the weakest
layer. In each case, the normal component of φ (recall that the normal direction is defined
in a neighborhood of the boundary) has a weaker boundary layer than the tangential
component.

Even for the soft simply supported and free plates, the leading term of the boundary
layer expansion is of order t. Thus for t small, the boundary layer has a small effect on
φ. However it has a more pronounced effect on various quantities derived from φ. For
example, the bending moment tensor, M = C E(φ), depends on the first derivatives of
φ and has a boundary layer of one order higher than that for φ itself. Thus for the soft
simply supported and the free plates, the edge effect on the moments is of the same order
as the moments themselves. The shear force is given by the vector

ζ = λt−2(gradω − φ)

(which we have again scaled to be O(1) in the interior at t tends to zero). Since the first
two terms of the interior expansions cancel, we obtain the asymptotic expansion

ζ ∼ λ [(gradω2 − φ2) + t(gradω3 − φ3) + · · · ]− χ(t−1Φ1 +Φ2 + · · · ).

Thus, for the soft simply supported and free plates, for which Φ1 is generally nonzero, the
boundary layer dominates the shear force vector in the boundary region, and we have a
very marked edge effect. For the hard clamped and hard simply supported plates, the edge
effect is an order one effect on the shear, and for the soft clamped plate it is an order t
effect.

Figure 2 shows the exact solution of the boundary value problem for the soft simply
supported circular Reissner-Mindlin plate of radius 1. The load g is taken to be cos θ,
the elastic coefficients are E = 1, ν = 0.3. (The exact solution to this problem can
be determined as explained in section 3.) Results for the transverse displacement and a
component of the rotation vector, the bending moment tensor, and the shear force vector
are shown plotted along a radius of the disc for a thick plate, a moderately thick plate,
and a thin plate. The radius was taken along the positive x-axis for the displacement and
along the positive y-axis in the other three cases. Note that the boundary layer is clearly
visible in the large derivative of the bending moments for the thin plate. It is even clearer
in the shear, which becomes very large in a tiny boundary layer for the thin plate.

Some of the terms of the boundary layer expansion for φ involve the curvature of the
boundary, and some of these vanish when the curvature is zero. For example, one can
compute in the case of the hard simply supported plate (see Ref. 2) that

Φ2 = − 1
6k(1− ν)

s
∂∆ω0

∂s
e−
√

12kρ/t.
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Fig. 2 - Transverse displacement, rotation, bending
moment, and shear force along a radius of the unit disc for

the soft simply supported Reissner-Mindlin plate.

Now for the hard simply supported plate, ω0 satisfies the boundary conditions for the
simply supported biharmonic plate given in Table 2, whence one easily shows

∆ω0 = κ(1− ν)
∂ω0

∂n
.

Hence, if the curvature κ is identically zero, then Φ2 vanishes. In fact, it can be shown that
in a neighborhood of a flat section of the boundary, all the Φi vanish. For the soft clamped
plate problem we can also show that the Φi vanish if κ vanishes identically. However, the
solutions of the other boundary value problems experience an edge effect on straight as
well as curved boundaries.
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The theory just described can be found in more detail, along with a rigorous mathemat-
ical justification and a number of applications, in Refs. 2 and 3. In the following section, we
illustrate this theory in the case of a circular plate with a particulary simple load, a case in
which we are able to derive the exact solution and the expansions explicitly. In Section 4,
we consider a semi-infinite plate (the plate problem posed on a halfplane) to illustrate the
effect of a flat boundary. In Section 5, we consider briefly the simplifications which arise if
the load is axisymmetric on a circular plate or uniaxial on a semi-infinite plate. In these
cases, the expansions become extremely simple, and the edge effects disappear altogether.

The determination of exact solutions and their interior and boundary layer expansions,
which is given in Sections 3 and 4, involves a great deal of computation which, while in
principle elementary, is very cumbersome. In the following section we give a reformulation
of the Reissner-Mindlin system which simplifies the construction of exact solutions to some
extent. The computations leading to Tables 4, 5, and 6, and the expansions at the end
of Sections 3 and 4 were performed using the Mathematica computer algebra system and
were independently verified using the Maple computer algebra system.

2. CONSTRUCTION OF EXACT SOLUTIONS. Our basic construction de-
fines a solution to the Reissner-Mindlin equations in terms of three functions, v, m, and q,
which satisfy the uncoupled partial differential equations

D∆2 v = g,(7)

∆m = 0,(8)

− t2

12k
∆ q + q = 0.(9)

We define φ and ω in terms of these functions by the equations

(10) φ = grad v − λ−1t2(gradm+ curl q), ω = −λ−1Dt2 ∆ v + v − λ−1t2m.

It follows that,
gradw − φ = −λ−1t2(D grad ∆ v − curl q),

and so
−λt−2 div(gradw − φ) = D∆2 v = g.

It also follows easily from the definitions that

div C E(φ) = D grad ∆ v − curl q,

so
−div C E(φ)− λt−2(gradw − φ) = 0.

Thus, for any functions v, m, and q satisfying Eqs. 7–9, we obtain functions φ and ω which
satisfy the Reissner-Mindlin equations, Eqs. 1 and 2.
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It remains to satisfy the various boundary conditions described in Section 1. For each
of the boundary value problems given in Table 1 we prescribe corresponding boundary
conditions on v, m, and q. Since Eq. 7 is fourth order, while Eqs. 8 and 9 are second order,
we need to give four boundary conditions. Three of the boundary conditions are clear: we
merely substitute the formulas given in Eqs. 10 into the boundary conditions for φ and ω.
Thus, for example, in the hard clamped case we get

∂v

∂n
− λ−1t2

(
∂m

∂n
− ∂q

∂s

)
= 0,

∂v

∂s
− λ−1t2

(
∂m

∂s
+
∂q

∂n

)
= 0,

−λ−1Dt2 ∆ v + v − λ−1t2m = 0.

As a fourth boundary condition, we choose v = 0 in the hard and soft clamped and hard
and soft simply supported cases, and m = 0 in the case of the free plate. Note that in the
case of the free plate, this boundary condition, together with the differential equation 8,
implies that m vanishes identically.

3. THE CIRCULAR PLATE. We now specialize to the case where the domain Ω
is the unit circle and employ polar coordinates r and θ. For the soft and hard clamped and
soft and hard simply supported plates we take as the load function g(r, θ) = cos θ. This
load does not satisfy the compatibility conditions given by Eq. 3 necessary for existence
of a solution in the case of a free plate, so we use g(r, θ) = cos 2θ in that case. We do not
take the simplest load, g ≡ 1, since in that special situation there is no boundary layer.

Consistent with the use of polar coordinates, we decompose the rotation vector into
its radial and angular components

φr = φ1 cos θ + φ2 sin θ, φθ = −φ1 sin θ + φ2 cos θ.

As remarked in Section 1, φr will have a weaker boundary layer than φθ.

Written in polar coordinates, the construction of the previous section gives

φr =
∂v

∂r
− λ−1t2

(
∂m

∂r
− 1
r

∂q

∂θ

)
,

φθ =
1
r

∂v

∂θ
− λ−1t2

(
1
r

∂m

∂θ
+
∂q

∂r

)
,

ω = −Dλ−1t2
(
∂2v

∂r2 +
1
r

∂v

∂r
+

1
r2

∂2v

∂θ2

)
+ v − λ−1t2m,

where v, m, and q satisfy Eqs. 7–9.
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In the case of the soft and hard clamped and soft and hard simply supported plates,
we easily see from the form of the load that

v(r, θ) = V (r) cos θ, m(r, θ) = M(r) cos θ, q(r, θ) = Q(r) sin θ,

for some functions V , M , Q of one variable. Substituting in Eqs. 7–9 we get

D

[
V ′′′′(r) +

2
r
V ′′′(r)− 3

r2
V ′′(r) +

3
r3
V ′(r)− 3

r4
V (r)

]
= 1,

M ′′(r) +
1
r
M ′(r)− 1

r2
M(r) = 0,

− t2

12k

[
Q′′(r) +

1
r
Q′(r)− 1

r2
Q(r)

]
+Q(r) = 0.

It is easy to compute the general solution of these ordinary differential equations. Excluding
solutions for which the functions or first derivative are unbounded at the origin, we obtain

V (r) = r4/(45D) + ar3 + br, M(r) = cr, Q(r) = dI1(αr/t).

Here a, b, c, and d are arbitrary constants, α =
√

12k, and I1 denotes the modified
Bessel function of order 1. To determine the constants a, b, c, and d, we substitute these
expressions for φ and ω into the boundary conditions given in Table 1. This gives three
linear equations, to which we append the equation v = 0 as explained in the previous
section. The resulting system of four linear equations in four unknowns may be solved to
give the results in Table 4. The solution for the hard clamped plate is also given in Ref. 4.
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Table 4 - Exact solutions to the Reissner-Mindlin
equations on the unit disc with g = cos θ.

φr =
[
4r3/(45D) + 3ar2 + b− cλ−1t2 + r−1λ−1dt2I1(αr/t)

]
cos θ

φθ =
[
−r3/(45D)− ar2 − b+ cλ−1t2 − dαλ−1tI ′1(αr/t)

]
sin θ

ω =
[
r4/(45D)− λ−1t2r2/3 + a(r3 − 8Dλ−1rt2) + br − cλ−1t2r

]
cos θ

a =
[
−5Dt3I1(α/t) + α

(
λ+ 5Dt2

)
I ′1(α/t)

]
/(2Df)

b =
[
7Dt3I1(α/t)− α

(
λ+ 7Dt2

)
I ′1(α/t)

]
/(6Df)

hard
clamped c = αλI ′1(α/t)/f

d = λt/f

f = 15
[
4Dt3I1(α/t)− α

(
λ+ 4Dt2

)
I ′1(α/t)

]
a =

[
−
(
α2λ+ 5α2Dt2 + 10Dt4

)
I1(α/t) + 2αt

(
λ+ 5Dt2

)
I ′1(α/t)

]
/(2Df)

b =
[(
α2λ+ 7α2Dt2 + 14Dt4

)
I1(α/t)− 2αt

(
λ+ 7Dt2

)
I ′1(α/t)

]
/(6Df)

soft
clamped c =

[
−α2λI1(α/t) + 2αλtI ′1(α/t)

]
/f

d = 2λt2/f

f = 15
[(
α2λ+ 4α2Dt2 + 8Dt4

)
I1(α/t)− 2αt

(
λ+ 4Dt2

)
I ′1(α/t)

]
a =

[
5Dt3(1− ν)I1(α/t) + α

(
4λ+ λν − 5Dt2 + 5Dνt2

)
I ′1(α/t)

]
/(2Df)

b =
[
−7Dt3(1− ν)I1(α/t)− α

(
6λ+ λν − 7Dt2 + 7Dνt2

)
I ′1(α/t)

]
/(6Df)

hard
simply

supported
c = −αλ(1− ν)I ′1(α/t)/f

d = −λ(1− ν)t/f

f = 15
[
−4Dt3(1− ν)I1(α/t)− α

(
3λ+ λν − 4Dt2 + 4Dνt2

)
I ′1(α/t)

]
a =

[
−
(
4α2 + α2ν + 10t2

)
I1(α/t) + 10αtI ′1(α/t)

]
/(2Df)

b =
[(

6α2 + α2ν + 14t2
)
I1(α/t)− 14αtI ′1(α/t)

]
/(6Df)

soft
simply

supported
c = α2(1− ν)I1(α/t)/f

d = 2λ/(Df)

f = 15
[(

3α2 + α2ν + 8t2
)
I1(α/t)− 8αtI ′1(α/t)

]
In the case of a free plate, we proceed similarly to obtain the exact solution. In this
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case v, m, and q have the form

v(r, θ) = V (r) cos 2θ, m(r, θ) = M(r) cos 2θ, q(r, θ) = Q(r) sin 2θ,

where V , M , and Q solve

D

[
V ′′′′(r) +

2
r
V ′′′(r)− 9

r2
V ′′(r) +

9
r3
V ′(r)

]
= 1,

M ′′(r) +
1
r
M ′(r)− 4

r2
M(r) = 0,

− t2

12k

[
Q′′(r) +

1
r
Q′(r)− 4

r2
Q(r)

]
+Q(r) = 0.

Solving, we obtain

V (r) = (r4 log r)/(48D) + ar4 + br2, M(r) = cr2, Q(r) = dI2(αr/t).

Finally, we solve for a, b, c, and d, using the boundary conditions for the free plate and
the supplementary boundary condition m = 0, to get the results in Table 5.

Table 5 - Exact solution to the Reissner-Mindlin
equations on the unit disc with

g = cos 2θ and free boundary conditions.

φr =
[
r3/(48D) + r3 log r/(12D) + 4ar3 + 2br − 2crλ−1t2 + 2dr−1λ−1t2I2(αr/t)

]
× cos 2θ

φθ =
[
−r3 log r/(24D)− 2ar3 − 2br + 2cλ−1t2r − dαλ−1tI ′2(αr/t)

]
sin 2θ

ω =
{
r2[−8λ−1t2 + (r2/D − 12λ−1t2) log r]/48 + a(r4 − 12Dλ−1r2t2)

+br2 − cλ−1t2r2
}

cos 2θ

a =
(
{−8λ+ (1− ν)[3λ− 7D(α2 + 12t2)]}I2(α/t) + 42αD(1− ν)tI ′2(α/t)

)
/(24Df)

b =
(
{4λ+ 6D(α2 + 8t2)− (1− ν)[λ−D(α2 + 28t2)]}I2(α/t)

−2αD(17− 11ν)tI ′2(α/t)
)
/(8Df)

c = 0

d = −λ(1 + 2ν)/f

f = 12
(
{2λ− (1− ν)[λ−D(α2 + 12t2)]}I2(α/t)− 6αD(1− ν)tI ′2(α/t)

)

Having computed the exact solution to the various boundary value problems, we can
derive asymptotic expansions like those given in Formulas 5 and 6 directly. To do this,
first we substitute asymptotic expansions for I1 and I ′1 into the equations given at the
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top of Table 4 and for I2 and I ′2 into the equations at the top of Table 5. The required
expansions are given in Ref. 1, Chapter 9.7 as

In(z) ∼ ez√
2πz

[
1− (4n2 − 12)

1!(8z)1
+

(4n2 − 12)(4n2 − 32)
2!(8z)2

−(4n2 − 12)(4n2 − 32)(4n2 − 52)
3!(8z)3

+ · · ·
]

as z → +∞,

and

I ′n(z) ∼ ez√
2πz

[
1− (4n2 + 1 · 3)

1!(8z)1
+

(4n2 − 12)(4n2 + 3 · 5)
2!(8z)2

−(4n2 − 12)(4n2 − 32)(4n2 + 5 · 7)
3!(8z)3

+ · · ·
]

as z → +∞.

When we substitute these expansions in the formulas for a, b, and c (but not d), the terms
eα/t and

√
2πα/t all cancel, leaving the quotient of two power series in t, which can be

reduced to a single power series by standard manipulations. For example, for the hard
clamped plate we get

a ∼ αλ− 7λt/8 + [5αD + 57λ/(128α)]t2 + · · ·
−30αDλ+ 105Dλt/4− [120αD2 + 855Dλ/(64α)]t2 + · · ·

∼ − 1
30D

− t2

30λ
+

t3

30αλ
+ · · · .

From the form of ω, in particular the fact that it is independent of d, we can see that ω
will admit a regular (power series) expansion in t for all the boundary value problems.

On the other hand, when we substitute these expansions in the formula for d, the
exponential and square root terms remain. Now d enters the formulas for φr and φθ
multiplied by In(αr/t) and I ′n(αr/t), respectively. Consequently, the terms involving

√
t

will cancel, while the exponential terms combine to give a factor of e−α(1−r)/t = e−
√

12kρ/t.
Thus the terms involving d, and these alone, determine the boundary layer expansion. Since
this term includes a factor of t2 for φr for all the boundary value problems, it will always be
the case that the radial components of Φ0 and and Φ1 vanish. For φθ, the corresponding
factor is the first power of t, so only Φ0 need have vanishing tangential component in
general. For the hard clamped and hard simply supported boundary conditions, d contains
an additional power of t, so in addition the radial component of Φ2 and the tangential
component of Φ1 also vanish. For the soft clamped case, there is a factor of t2 in d, so the
radial components of Φ2 and Φ3 and the tangential components of Φ1 and Φ2 vanish in
this case.

In fact, using elementary manipulations, we can compute as many terms of the asymp-
totic expansions of φ and ω as desired. The first several terms are given below. (For the
hard clamped plate these results are also basically contained in Ref. 4.)
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Hard clamped

φr ∼
{[

1− 9r2 + 8r3

90D
+

(1− r2)t2

5Dα2(1− ν)
+ · · ·

]
+ e−α(1−r)/t

[
−2t3

15Dα3(1− ν)
+ · · ·

]}
cos θ

φθ ∼
{[
−1 + 3r2 − 2r3

90D
− (3− r2)t2

15Dα2(1− ν)
+ · · ·

]
+ e−α(1−r)/t

[
2t2

15Dα2(1− ν)
+ · · ·

]}
sin θ

ω ∼
{
r − 3r3 + 2r4

90D
+

(11r − 10r2 − r3)t2

15Dα2(1− ν)
+ · · ·

}
cos θ

Soft clamped

φr ∼
{[

1− 9r2 + 8r3

90D
+

(1− r2)t2

5Dα2(1− ν)
+ · · ·

]
+ e−α(1−r)/t

[
4t4

15Dα4(1− ν)
+ · · ·

]}
cos θ

φθ ∼
{[
−1 + 3r2 − 2r3

90D
− (3− r2)t2

15Dα2(1− ν)
+ · · ·

]
+ e−α(1−r)/t

[
−4t3

15Dα3(1− ν)
+ · · ·

]}
sin θ

ω ∼
{
r − 3r3 + 2r4

90D
+

(11r − 10r2 − r3)t2

15Dα2(1− ν)
+ · · ·

}
cos θ

Hard simply supported

φr ∼
{

6 + ν − 36r2 − 9νr2 + 24r3 + 8νr3

90D(3 + ν)
− (5 + 3ν + 3r2 − 3νr2)t2

15Dα2(3 + ν)2
+ · · ·

+ e−α(1−r)/t
[

2t3

15Dα3(3 + ν)
+ · · ·

]}
cos θ

φθ ∼
{
−6− ν + 12r2 + 3νr2 − 6r3 − 2νr3

90D(3 + ν)
− (−5− 3ν − r2 + νr2)t2

15Dα2(3 + ν)2 + · · ·

+ e−α(1−r)/t
[

−2t2

15Dα2(3 + ν)
+ · · ·

]}
sin θ

ω ∼
{

6r + νr − 12r3 − 3νr3 + 6r4 + 2νr4

90D(3 + ν)

+
(r − r2)(91 + 58ν + 11ν2 + r − 2νr + ν2r)t2

15Dα2(1− ν)(3 + ν)2
+ · · ·

}
cos θ
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Soft simply supported

φr ∼
{

6 + ν − 36r2 − 9νr2 + 24r3 + 8νr3

90D(3 + ν)
+

(1− ν)(1− 3r2)t
15Dα(3 + ν)2 + · · ·

+ e−α(1−r)/t
[

2t2

15Dα2(3 + ν)
+ · · ·

]}
cos θ

φθ ∼
{
−6− ν + 12r2 + 3νr2 − 6r3 − 2νr3

90D(3 + ν)
+

(1− ν)(r2 − 1)t

15Dα(3 + ν)2 + · · ·

+ e−α(1−r)/t
[

−2t
15Dα(3 + ν)

+ · · ·
]}

sin θ

ω ∼
{

6r + νr − 12r3 − 3νr3 + 6r4 + 2νr4

90D(3 + ν)
+

(1− ν)(r − r3)t
15Dα(3 + ν)2 + · · ·

}
cos θ

Free

φr ∼
{

3(17− 4ν − ν2)r − (1− ν)(29 + 3ν)r3

144D(1− ν)(3 + ν)
+
r3 log r

12D
+

(1 + 2ν)r(ν + r2 − νr2)t
3αD(1− ν)(3 + ν)2

+ · · ·

+ e−α(1−r)/t
[

−(1 + 2ν)t2

3α2D(1− ν)(3 + ν)
+ · · ·

]}
cos 2θ

φθ ∼
{

3(−17 + 4ν + ν2)r + (1− ν)(19 + 3ν)r3

144D(1− ν)(3 + ν)
− r3 log r

24D
− (1 + 2ν)r(2ν + r2 − νr2)t

6αD(1− ν)(3 + ν)2

+ · · · + e−α(1−r)/t
[

(1 + 2ν)t
6αD(1− ν)(3 + ν)

+ · · ·
]}

sin 2θ

ω ∼
{

3(17− 4ν − ν2)r2 − (1− ν)(19 + 3ν)r4

288D(1− ν)(3 + ν)

+
r4 log r

48D
+

(1 + 2ν)r2(2ν + r2 − νr2)t
12αD(1− ν)(3 + ν)2

+ · · ·
}

cos 2θ
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4. THE SEMI-INFINITE PLATE. In this section we consider the semi-infinite
plate, i.e., the case when the domain Ω is equal to the half plane y > 0. For the loading
function we take g(x, y) = cosx. This load is compatible with the existence of a solution
for the free plate, so we may use it for all five boundary conditions. We again use the
construction of Section 2.

Based on the form of the load, we seek v, m, and q as

v(x, y) = V (y) cosx, m(x, y) = M(y) cosx, q(x, y) = Q(y) sinx,

where V (y), M(y), and Q(y) satisfy

D [V ′′′′(y)− 2V ′′(y) + V (y)] = 1,

M ′′(y)−M(y) = 0,

− t2

12k
[Q′′(y)−Q(y)] +Q(y) = 0.

Solving, we obtain

V (y) = 1/D + ae−y + bye−y, M(y) = ce−y, Q(y) = de−βy/t,

where β =
√

12k + t2. Solving for the unknown constants from the boundary conditions
in Table 1 and the supplementary boundary condition (v = 0 or m = 0), we obtain the
results given in Table 6.

Finally, straightforward algebraic manipulations give the following asymptotic expan-
sions.

Hard clamped

φ1 ∼
{[

e−y + ye−y − 1
D

− 2(1 + y)e−yt2

Dα2(1− ν)
+ · · ·

]
+ e−αy/t

[
2t2

Dα2(1− ν)
+ · · ·

]}
sinx

φ2 ∼
{[

ye−y

D
− 2ye−yt2

Dα2(1− ν)
+ · · ·

]
+ e−αy/t

[
2t3

Dα3(1− ν)
+ · · ·

]}
cosx

ω ∼
[

1− e−y − ye−y
D

+
2(1− e−y + ye−y)t2

Dα2(1− ν)
+ · · ·

]
cosx

Soft clamped

φ1 ∼
[
e−y + ye−y − 1

D
− 2(1 + y)e−yt2

Dα2(1− ν)
+ · · ·

]
sinx

φ2 ∼
[
ye−y

D
− 2ye−yt2

Dα2(1− ν)
+ · · ·

]
cosx

ω ∼
[

1− e−y − ye−y
D

+
2(1− e−y + ye−y)t2

Dα2(1− ν)
+ · · ·

]
cosx
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Table 6 - Exact solutions to the Reissner-Mindlin
equations on the upper halfplane with g = cosx.

φ1 = [−1/D − ae−y − bye−y + cλ−1t2e−y − dβλ−1te−βy/t] sinx
φ2 = [−ae−y + b(1− y)e−y + cλ−1t2e−y − dλ−1t2e−βy/t] cosx
ω = [1/D + λ−1t2 + ae−y + b(2Dλ−1t2 + y)e−y − cλ−1t2e−y ] cosx

a = −1/D
b = (−βλ/D − βt2 + t3)/fhard

clamped c = −βλ/f
d = −λt/f
f = βλ+ 2βDt2 − 2Dt3

a = −1/D
b = −(λ+Dt2)/(Df)soft

clamped c = −λ/f
d = 0
f = λ+ 2Dt2

a = −1/D
b = −1/(2D)hard

simply
supported c = 0

d = 0

a = −1/D
b = {2βλνt + (t− β)2[λ+D(1− ν)t2]}/(2Df)soft

simply
supported c = −βλ(1− ν)t/f

d = −λ[λ+D(1− ν)t2]/(Df)
f = −λ(β2 + t2) + (1− ν)t[βλ−Dt(β − t)2]

a = ν[λ−D(β2 + t2)]/(Df)
b = λν/(Df)

free c = 0
d = 2λν/f
f = −2λ+ (1− ν)[λ−D(β − t)2]
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Hard simply supported

φ1 =
2e−y + ye−y − 2

2D
sinx

φ2 =
e−y + ye−y

2D
cosx

ω ∼
[

2− 2e−y − ye−y
2D

+
2(1− e−y)t2

Dα2(1− ν)

]
cosx

Soft simply supported

φ1 ∼
{[

2e−y + ye−y − 2
2D

− (1− ν)ye−yt
2Dα

+ · · ·
]

+ e−αy/t
[
− t

Dα
+ · · ·

]}
sinx

φ2 ∼
{[

e−y + ye−y

2D
+

(1− ν)(1− y)e−yt
2Dα

+ · · ·
]

+ e−αy/t
[
−t2
Dα2

+ · · ·
]}

cosx

ω ∼
[

2− 2e−y − ye−y
2D

+
(1− ν)ye−yt

2Dα
+ · · ·

]
cosx

Free

φ1 ∼
{[
−(1− ν)(3 + ν) + ν(1 + ν − y + νy)e−y

D(1− ν)(3 + ν)
− 4ν(1 + ν − y + νy)e−yt

αD(1− ν)(3 + ν)2
+ · · ·

]

+ e−αy/t
[

4νt
αD(1− ν)(3 + ν)

+ · · ·
]}

sinx

φ2 ∼
{[
−ν(2− y + νy)e−y

D(1− ν)(3 + ν)
− 4ν(2− y + νy)e−yt
αD(1− ν)(3 + ν)2

+ · · ·
]

+ e−αy/t
[

4νt2

α2D(1− ν)(3 + ν)
+ · · ·

]}
cosx

ω ∼
[

(1− ν)(3 + ν) + ν(1 + ν − y + νy)e−y

D(1− ν)(3 + ν)
+

4ν(1 + ν − y + νy)e−yt
αD(1− ν)(3 + ν)2

+ · · ·
]

cosx
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5. Axisymmetric and Uniaxial Loads. The general construction given in Section 2
simplifies considerably for a circular plate with load independent of θ or for a semi-infinite
plate with load independent of x. In this case v turns out to be identical with ω0, the
solution to the corresponding biharmonic problem, m is constant, and q is zero. Since q
vanishes, there is no edge effect.

Suppose that the plate domain Ω is either the disc or the halfplane, and that the load
g depends only on r or y, respectively, in the two cases. Let ω0 be the solution of one of
the boundary value problems for the biharmonic equation listed in Table 2. Then ω0 also
depends only on r or y. Set

φ = gradω0, ω = ω0 −
t2

λ
(D∆ω0 −m),

where m equals zero for the free plate and equals the constant value of ∆ω0 on ∂Ω in the
other cases. It is easy to see that φ and ω satisfy the Reissner-Mindlin equations. If ω0

satisfies the boundary conditions for a clamped biharmonic plate, then φ and ω satisfy the
boundary conditions for both the hard and soft clamped Reissner-Mindlin plates. Indeed,
that φ ·s = φ ·n = 0 follows immediately from the boundary conditions for ω0. Combining
these with our choice of m also implies that ω vanishes on ∂Ω. Finally,

s · C E(φ)n = D(1− ν)
(
∂2ω0

∂s∂n
− κ∂ω0

∂s

)
,

which vanishes because ω0 and ∂ω0/∂n are constant on ∂Ω.

In a similar way, it is easy to see that if ω0 satisfies the boundary value problem for a
simply supported biharmonic plate, then φ and ω satisfy the boundary conditions for both
the hard and soft simply supported Reissner-Mindlin plates, while if ω0 satisfies the free
plate biharmonic problem, then φ and ω satisfy the free plate Reissner-Mindlin problem.

Note that for these loadings, the rotation vector φ is independent of t and agrees with
that of the biharmonic theory, while the transverse displacement ω differs from ω0 only by
the addition of a term of order t2. The interior expansion for ω reduces to two terms. Let
us also note that the problem of a circular plate with a uniformly distributed load is often
used as a benchmark problem for Reissner-Mindlin solvers. We see here that it is a rather
atypical problem.

6. CONCLUSIONS. We have described the detailed structure of the dependence of
the solution to the Reissner-Mindlin plate model on the plate thickness. This theory, which
was derived and justified for a general smoothly bounded plate by the authors in Refs. 2
and 3, is exemplified here through explicit computations in the case of a circular plate and
a semi-infinite plate. These cases conform in detail to the predicted behavior, confirming
the sharpness of the general theory. In particular, the transverse displacement exhibits no
edge effect for any of the boundary value problems considered, while the rotation vector has

21



a weak boundary layer whose strength depends on the particular boundary value problem.
The weakest layer occurs for the soft clamped plate, the strongest for the free and soft
simply supported plates, and the hard clamped and hard simply supported plates are
intermediate. The moment tensor and, especially, the shear force vector, exhibit stronger
edge effects than the rotation vector in all cases. In the case of a flat boundary, the edge
effect disappears for the soft clamped and hard simply supported plates, but not in the
other cases. The case of an axisymmetric or uniaxial loading is quite special: in this case
the edge effect disappears entirely for all the boundary value problems considered.
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