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MATHEMATOLMODEUillGANDNUMEMCALANALYSIS
MODàJSATIONMATHÉMATMMCnAKU.YSEÉ

(Vol 28, n" 6, 1994, p 667 à 698)

REDUCED CONTINUITY FINITE ELEMENT METHODS
FOR FIRST ORDER SCALAR HYPERBOLIC EQUATIONS (*)

by D.-M. CAI C) and R. S FALK (')

Commumcated by J BRAMBLE

Abstract — Two exphcit fimte element methods for afirst order hnear hyperbohc problem in
R2 are proposed and analyzed These schemes are designed to produce an approximate solution
which has a certain number of continuous moments across element edges L2 error estimâtes of
order O (hn + m)for both schemes are obtained This is the same convergence rate knownfor tne
discontinuons Galerkin method, but is achieved with fewer computations Some numencal
results for these methods are presented and comparisons are made with other exphcit finite
element methods for this problem prevwusly studied in the literature

Résumé —On analyse deux methodes explicites d'éléments finis pour un problème
hyperbolique linéaire du premier ordre Les schémas sont conçus pour obtenir une solution
approchée possédant un certain nombre de moments continus à travers les faces des éléments
Des estimations d'erreur L2 d'ordre O(hn+m) sont obtenues pour chacun des deux schémas
C' est le même taux de convergence que pour ta méthode de Galerkin discontinue, mats il est
obtenu avec moins de calculs Quelques résultats numériques sont présentés et des comparai-
sons sont faites avec d'autres méthodes explicites d'éléments finis de la littérature appliquées au
même problème

1. INTRODUCTION

The finite element approximation of the first order scalar hyperbolic
équation

j8'Vw + a w = / in H c= R2 ,
u = g on r i n ( /2) , {lA)

has been investigated using several different approaches. Previous analysis
of this problem was done for two types of explicit approximation schemes :
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668 D.-M. CAI, R. S. FALK

one which produces a piecewise polynomial approximation which is
discontinuous across the triangle edges in the finite element mesh and one
which produces a continuous piecewise polynomial approximation. The
discontinuous triangular scheme has been analyzed first by Lesaint and
Raviart [9], with improved and additional error estimâtes obtained by
Johnson and Pitkaranta [8]. Optimal order error estimâtes were also derived
in the case of semiuniform triangular meshes by Richter [11]. In the case of
the continuous scheme, Falk and Richter [3] obtained estimâtes for a method
initiated by Reed and Hill [10] using triangular éléments. For rectangular
element approximations, Lesaint and Raviart [9] and Winther [12] developed
discontinuous and continuous finite element methods, respectively. They
both achieved the optimal order of convergence, assuming sufficient
regularity.

In this paper, we propose and analyze a class of reduced continuity finite
element schemes for this problem. These schemes produce piecewise
polynomial approximations which are continuous for a certain number of
moments across interelement edges and are devised to retain the advantages
of the previous two methods. As in the case of the previous methods, these
schemes are explicit, in that the finite element solution may be developed in
an explicit manner from element to element, and have the property that the
solution in a given layer of éléments may be computed in parallel. Hence
they can be easily implemented and are economie in practice. This is quite
different from the streamline-diffusion method. The latter is an implicit
scheme originally introduced by Hughes and Brooks [6] for numericaliy
solving convection dominated convection-diffusion problems and later
applied to (1.1) as their corresponding reduced problems by Johnson et al.
[7]. Since an implicit method must solve a large linear system, its
computational cost could be large.

The previous explicit schemes using triangular éléments rely on the
following unified variational formulation on each triangle T :

{P . Vuh + auh, v)T - (M+ - ui ) v/3 . n dr = (ƒ, v)T

for veVh^T, (1.2)

where the approximate solution uh e Pn(T\ the set of polynomials on T of
degree =s n and u^ and u^ dénote the upstream and downstream limits of
uh on Fin(T). The choice of the test space VK T and the boundary continuity
conditions will then détermine each scheme. When VhT = Yn(T) and no
boundary continuity of uh is imposed, we get the discontinuous Galerkin
method. If Vhi T = Pn _ t (T), where / dénotes the number of inflow sides that
T has, and uh is enforced to be continuous globally, we then obtain a
continuous method. Analogously, in our schemes we also make use of (1.2)
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FIXITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 669

and choose VhT such that it contains ail polynomials in the crosswind
variable t of degree =s n and a suitable number of continuous boundary
moments in each case. Since the boundary continuity conditions will
decrease the degrees of freedom to be determined, thus reducing the number
of unknowns to be solved for in the approximate solution, our schemes
obviously require fewer computations per triangle than the discontinuous
Galerkin method. Employing a test function depending only on t, we obtain
L2 error estimâtes of order O (hn + m ) and other accuracy properties similar to
the discontinuous Galerkin method. This L2 resuit is also an improvement on
the O (hn + 1/4) L2 error estimate previously shown for the continuous method
at the cost of a little more computational effort.

We note that it is also possible to develop reduced continuity rectangular
éléments for équation (1.1) which produce optimal order convergence rates
under the assumption of sufficient regularity (cf. [1]).

An outline of the paper is as follows. In the next section some basic
notation and assumptions are provided. In § 3 we describe two discrete
problems and give a characterization of these methods to show more
similarities to the continuous and discontinuous methods. The proof of
existence and uniqueness of solutions to the discrete problems is given in § 4.
In § 5, the main stability results of the proposed methods are established and
then used to dérive the desired error estimâtes. Finally, in § 6, we provide
some results of numerical experiments for the proposed methods and
compare them with the continuous and discontinuous methods.

2. NOTATION AND ASSUMPTIONS

For the sake of simplicity, we consider a model problem of the form

f3 . Vu = ƒ in O , (2U

u = g on r i n ( /2) ,

where fï is a constant unit vector. For the case with a variable p and a lower
order term a, the main results in Theorem 5.3 can still be obtained (cf. [1]).
In the above, Ü is a bounded polygonal domain in R2 and Fm(Q ) its inflow
boundary. By the inflow boundary Fm(D) of a région D we mean
{P G F(D): p • n (P ) < 0 } , where n (F ) is the unit outward normal to D at
P. Then we set rout(D) = T(D) - r in(D).

In what follows, for a région D and a piecewise smooth curve
F, ( . , . )D and || . ||D dénote the inner product and the norm on
Û(D\ and || . \\k D and | . \k r dénote the norms on Hk(D) and Hk(r\
respectively. Moreover, we shall use | . | to dénote the Euclidean norm or its

vol. 28, n° 6, 1994



670 D.-M CAI, R. S FALK

corresponding matrix norm and define a weighted inner product and its
induced norm on L2(F) as the following

(w, v)r = wv I/3 • n | dr and |w \r = (w, w)lp- .
J r

Let P,7 (D ) be the space of poiynomials of degree ^ n on D and
Sp(t?!, ..., v^p a vector space spanned by the polynomials vn i = 1, ..., 1,
over D. We take gt to be a suitable interpolant of g on rm(f2 ) and dénote the
limit of w (P ± e/3 ) as s decreases to 0 by vv± (P ). Let C stand for a generic
constant independent of all major variables M, ƒ, and /Ï, and not necessarily
the same at its various occurrences.

To describe the methods we shall analyze, let Ah be a quasi-uniform
triangulation of O such that no maximal diameter of triangular element
T e Ah is bigger than h. More specifically, we assume that Ah satisfies the
following hypothesis :

H i (quasi-uniform)

h
"max , -

Pmin

uniformly for all Ah when h is sufficiently small, where

hmax = max hT , hT = the diameter of T ; and

r » PT = t n e radius of the inscribed circle in T .

Note that each triangle in Ah is either of type I (with one inflow side) or of
type II (with two inflow sides). We will sometimes consider a partition of
Ah into certain layers :

Sx= {TeAh:rm(T)^r

Sl + 1= {TeAh:rm(T)crm(ü-Uk^Sk)} , i = 1, 2, ... .

As will be seen from the construction of the methods proposed in § 3, we can
develop the approximate solution layer by layer and simultaneously over all
éléments within a layer.

We further assume that Ah satisfies the following two hypotheses.
H2 (nonalignment). There exists *?0 > 0 independent of h such that

along all inflow edges of type II triangles.
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 671

H3 The total number of layers in Ah is O {h~ l ).

Some remarks about the necessity and validity of these hypotheses are
given in the Appendices.

We next list some facts which will be used later in this paper.
(i) The intégration by parts formula :

JT Jr(T) JT

(ii) The inverse inequalities :

\\Vw\\T*Ch-l\\w\\T for

and

C/r1/2|Mlr for

(2.2)

(2.3)

(2.4)

For the sake of convenience, when i — 1, 2, 3, we dénote by
Fx the sides of T e Ah numbered counterclockwise, by ax the opposite
vertices of Fn by n, the unit outward normals to Ft and by rt the unit
tangential vectors along Fn taken in a counterclockwise direction. We shall
always take F3 to be the inflow side of a type I triangle or the outflow side of
a type II triangle. On each Te Ah of type I (II) we establish a local oblique
coordinate System (£, s) with the origin at ax (a2) and spanned by the tangent
r = T3(— r3) and the characteristic p. Thus every point in a type I triangle
has positive s coordinate while that in a type II triangle has négative s
coordinate. This notation is illustrated in figure 1.

Typeï Type II

1*3

n2

Figure 1.
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6 7 2 D.-M CAI, R S FALK

The relations between this local oblique System (t, s) and the global
orthogonal System (JC, y ) can be easily demonstrated via the following linear
transformation

y-yo

where (x0, y0) are the coordinates that the origin of the System (t, s) has
under the system (x, y).

We next observe that both rm(T) and rout(T) can be parameterized in
terms of équations : s = sm(t) and s = sout(t) for t e [0, tT] and T can be
described by

T = {(t,s):te [0, tT], s s [sm(t\ sout(t)]} .

For any function 0 on T, we dénote 0out = <P \r ( r) and <Pm = <P \r ,Ty

Equivalentiy, in terms of (t, s) coordinates, #out(O = ^{t, sOut(0) and
<&m(t) = <P(t, sm(t)). We also define, for convenience, a weighted inner
product and its induced norm in L2([0, tT] ) as follows

Ç
T w(t)v(t)\/3 . n 3 | dt and \w\ = (w, w)m

Jo

With this inner product, we introducé a boundary projection P t:L
2 [0, tT] -•

P«[0, tT]9 which will be used frequently in the sequel. We aiso dénote by
Pn, the standard L2 interior projection into PW(T). Moreover, we define the
Extension Ev(t, s) of v(t) to be a function over T e Ah such that

— Ev(t, s) - 0 and Ev(t, 0) = v(t\ and note that ws = f3 • Vw.

Finally, we state a lemma containing two change of variables formulas and
an intégration identity which we shall frequently use in this paper. The proof
is elementary and we omit it here.

LEMMA 2.1 : Any function w defined on a triangle T ofeither type satisfies

and

w | £ . n | ^ r = \ woux\f3 . n 3 | dt , (2.5)

f w\fi.n\dr = (tTwm\p.n3\dt; (2.6)

f f'T" f Jout (O
\ wdxdy = \ w | y8 . n31 ds dt . (2.7)
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 673

3. FORMULATION OF THE METHODS

Let Ah be a triangulation of O satisfying hypotheses Hl5 H2, and
H3 of the previous section. Using the variational équation

f
(fi • VwA, v )T - {ut - uh ) v/3 • n dr = (ƒ, v )T

forall v eVKT, (3.1)

where Vhy T is a test space to be specified, we can formulate our schemes as
follows :

Method M\ : For n s* 1, find uh eL2{f2) such that uj; = gf on rm(f2 ),
uh | T e Pn(r) for any T e Ah and for triangles of type I, uh satisfies (3.1) with

ƒ, = 0 for / = 0 , 1 n - 1 ; (3.2)

while for triangles of type II, uh satisfies (3.1) with Vh T = Pi(T) when
n = 1 or VK T = Pn _ 2(T) ® Sp(^ " \ ^ " l, rn)r and

{ut - ui ) rl dr = O for / = 0, 1, ..., ra - 2 and * = 1, 2 (3.3)

when re =3= 2.

Method M2
h: For odd re s= 1, find uheL2{O) such that ŵ  = 07 on

Fm{12) and for a type I triangle T, uh satisfies the same conditions as in
M\ ; while for a type II triangle T,uh\Te Pn{T) © Sp(sf")r satisfies (3.1)
with Vh T = Pn _2 © Sp(f " ! , ^n) r and

(«A - «Â ) r / ^ r = 0 for / = 0, 1, ..., re - 1 and i = 1, 2 . (3.4)
r,

Remark 3.1 : Note that in M^ the schem ; for type II triangles is in fact a
discontinuous Galerkin method when re = 1. This reflects a common feature
of the scheme of order re for two-inflow-side triangles ; they all have
2 (re - 1) continuity conditions on the inflow triangle sides.

Remark 3.2 : There are some difficulties in formulating even-order
éléments over an arbitrary type II triangle for Method M .̂ For example,
suppose {t, s) is an orthogonal coordinate System and T is a triangle with the
vertices (1,0), ( - 1, 0), and ( 0 , - 1 ) in {t, s) for simplicity. Then the
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674 D.-M CAI, R S FALK

polynomial uh(t, s) = s(10 t2 — S s — 7) satisfies all requirements in M^ over
a type II triangle when n = 2 and u^ = f = 0. This implies that the second-
order element of M^ is not unisolvent over this triangle. In fact, all even-
order éléments over this triangle are not unisolvent, as can be seen from the
proof of Lemma 4.1.

We observe that the approximate solution uh has a total of an( = (n + 1 )
(n + 2 )/2) or an + 1 degrees of freedom in each triangle. For both methods
the number of the continuity conditions on the inflow boundary of a type I
triangle is n9 leaving a total of an_, + 1 degrees ot freedom to be
determined. For a type II triangle the degrees of freedom to be determined
are crn_2 + 3 and <rn_2 + 2 for Ml

h and M ,̂ respectively, which are exactly
the dimensions of the test spaces.

4. CHARACTERIZATION AND WELL-POSEDNESS

To help expose the essential features of the discrete problems proposed in
the last section, we want to characterize their approximate solutions
uh in a fashion analogous to the continuous and discontinuous methods
discussed in [4]. Then we proceed to show that these problems are well-
formulated.

Suppose uh is a solution developed on a type I triangle for either
M£ or M% Then it satisfies (3.1) with VKT= Fn_l(T)® Sp(tn)T. Since
(uh)s e Pn_l(T), we have, by making use of the boundary continuity
conditions (3.2),

Hence for any w e. Pn[0, tT],

by (3.1) and Lemma 2.1. This implies

I fs

= (J
f

Jö

in view of M£ ,n, uh in € P„[0, tT]. On the other hand, we see that

;s) = utm(t)+ (uh)s ds. Therefore,
Jo

uh(t,s) = ulm(t) + Pt r°Ut(0 (I-Pn_l)fds+ PPn_xfds. (4.1)
Jo Jo
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To characterize uh on a type II triangle, we first introducé a function U on
T such that Um = u^ in and Us = ƒ. Then for v e V kt T, we find

0 = «uh-U)s,v)T+ « m - £ / m f t > >

= - (uk - U, vs)T + {ui out - t/out, i?) ,

by Lemma 2.1 and af ter integrating by parts.
When uh is a solution of Ml

h for n ̂  2 (the case n = 1 is the same as the
discontinuous scheme ; see below), we first take v = Ew in the above
identity with w E P„[0, tT]. It follows that

Observing that vs e Pn_ 3(T) ® Sp(^n"2) r for any u e Prt _2(T)
r""1, J " " 1 , fn)r = VAjr, we conclude that

P:-3*H=PÏ-3U9 (4.3)

where P n*_ 3 is an L2 interior projection to Pn _ 3 (T) © Sp (sn ~ 2 )T. Moreover,
by the continuous moment conditions (3.3), we have

j utrldr^\ UT1 dr for / = 0, 1, ..., n-2 and i = 1, 2 . (4.4)

Thus we have specified uh in terms of f/.
Similarly, we have a characterization for an M | solution :

«Â,out = ^/^out» (4.5)

V 3 « f c = ̂ - 3 P . (4.6)

f u+
h r

ldr = f Url dr for / = 0, 1, .... n - 1 and i = 1, 2 . (4.7)

Later, from Lemma 4.1, we will see that on a triangle of type II, an
approximate solution is completely deteimined by (4.2), ..., (4.4) for
Mj and by (4.5), ..., (4.7) for M2

h,
Let us now briefly describe the characterizations for the continuous and

discontinuous Galerkin methods developed in [4], For the continuous
method, an approximate solution uh has the représentation

vol 28, n° 6, 1994



676 D.-M. CAI, R. S. FALK

on a type I triangle and satisfies

-^uh,out = Pt,n-i-^UQUi a n d Pn__3uh = Pn_3U

on a type II triangle, where U is defined as before with Um = uh m and
P t, n - i dénotes the L2 projection into Pw _ x [0, tT]. For the discontinuous
method, uh is characterized as

t (J-Rn_l)fds+ Rn-

on a type I triangle with Rn __ x denoting the projection into Prt _ x (T) with
respect to the weighted L2 inner product [p, q] = (sp, q)T and

uZ = P U and P Ui = P , [ /

on a type II triangle with t/ as defined for M.\ and M|. From the
characterizations given above, we can obtain a clearer view of similarities
between these four explicit schemes.

We now want to prove an existence and uniqueness resuit for our methods.

LEMMA 4.1 : There exist unique solutions to the discrete problems
M^ and Wl%

Proof : The statement is obvious for a one-inflow-side triangle by the
représentation (4.1). For a two-inflow-side triangle, we first prove the
uniqueness for each method. The existence of the numerieal solution then
follows since in either case the sum of the dimension of the test space and the
number of the continuous moments on the inflow boundary is exactly the
same as the number of degrees of freedom of the finite element.

To dérive uniqueness of the problem M^ with «&2, let us choose the
degrees of freedom of the finite element to be the standard ones related to the
three vertices an the moments from 0 to n - 2 on each side Ft and the inner
product with the polynomials of degree s= n ~ 3 over T (when n = 2, this part
is void). The corresponding basis functions {<f>n tfftJJ t}k\ i = 1, 2» 3 ;
j = 0, 1, ..., n - 2 ; k = 1, 2, ..., crn_3} c PB(D satisfy

*„(*/) = 0 , f 4*l}

= 0 ,
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 677

for i, / = 1, 2, 3 ; j9 m = 0, 1, ..., n — 2 ; k, q = 1, 2, ..., crn_3 with
{H^} a basis of P n _ 3 ( J ) and 5 the Kronecker delta. Then we can express
uh as

3 / n - 2 \ <rn-3

= £ ( c< ̂ <+ Z dv *v ) + E
i = 1 \ y = 0 / *= 1

where cn dtJ and e^ are constants.
If Mft, m = ƒ = 0> t n e n ^ = 0 by its définition. The characterization

(4.2), ..., (4.4) imply that cx = c2 = ^Z7 = ^ = 0 for all /, y, k. Hence
uh is reduced to c3 s<f> (t, s) with <f> e P B _x(r ) and s<j> = <f>3. Note that

| s(<f>tfdsdt= f (s<f>\<f>tdsdt= f (<t>3\4>t
JT JT JT

= <f>3 4>t T * n dr — 4>34>ttdsdt = 0 .
J r(r) J r

Since 51 does not change sign in 7\ we have <£, = 0 in T. This implies that <f> is
a polynomial of s.

On the other hand, I <f>^ rl dr = 0, l = 0, 1, ..., n - 2 implies thati, <£3 r
l dr = 0, / = 0, 1, ..., n - 2 implie

JA

0 3 is a multiple of s{s — Si) ... C? = s « - i ) with 0 = s0 > sl > • • • >
5„_! > e being n Gauss-Radau quadrature points on the interval [e, 0] , It
then follows that uh = cs(s - s^ ... (s - 5„_ j) with c some constant. From
(4.3) we see that

[*0 / [%

= c J ^ - ^ K S - S J ) 2 . . . ( s - J „ _ i ) 2 -
Je \J

= c | / 3 - n 3 | ( / n 2 - i w 1 ) J ( 5 - ^ ^ 2 ... (s-sn_x)
2ds9

Je

where t — ml s + bx and t = m2s + b2 are the parametric équations for

f°
r t a n d r 2 , r e s p e c t i v e l y . H e r e w e a l s o u s e d t h e f a c t t h a t s(s — sx) ...

Je
(s - sn_ j) qn _2(s) ds — 0 for all polynomials ^ n _ 2 of degree ^ n - 2. Since
w t # m2 and | /3 • n., | ^ 0 we conclude that c = 0. Thus w/7 - 0 in T.

We now turn to the problem M^. Again we have U = 0 when
M*,in = / = °- T h u s b y (4-5) ' M ,̂out = 0. Rewrite uh as uk = s(ctn +
Pn-i(t>

 5)X where c i s a constant a n d p n - 1 E Fn^1(T). We assert that c is
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678 D.-M CAI, R S. FALK

zero. In f act, let t — ml s + bx and t = m2s + b2 again be parametric
équations for Fx and F2, respectively. Then

uh \rx = c m ï ^ + ^ - i C O ) and u+
h \p^ = cmn

2s{sn + rn_x(s))

for some n~l degree polynomials of s : qn^\ and r„_ l s since mu

m2 # 0 by the définition of a type II triangle. Note that (4.7) for
Fx is now equivalent to

f
Je

= 0 , / = 0, 1, ..., n - 1 .

If we take e < sw < * • • < ^ j <: 50 = 0 to be the n + 1 Gauss-Radau quadrature
points on [e, 0 ] , then

Analogously,

l (5 ~ s l ) •" (S ~ Sn) •

Since «jf | r (« ) = MJ | r (e ), cm? = cm^. The fact that r t and F2 are not

parallel implies ml =£ m2. Thus m" ^ m^ for odd n. This yields c — 0. We
now have M̂  = spn_ x(t, s) e Pn(T) and u\ \r = 0, i = 1, 2. When n = 1,

we can conclude that ŵ  = 0 in 7\
When n ^ 3, M̂  = A x A2 A3/7 t t_3, where Xu A2, A3 are the barycentric

coordinates in T and pn_3e Pn_3(T). Taking the inner product of
uh wi thp n _3 and applying the positivity of Al as well as Pn^3 uh = 0 from
(4.6), we finally obtain /? r t_3 = 0. This means uh = 0 in T. The proof of
uniqueness is therefore completed. D

Remark 4.1 : In Method Mj, the test function s" ~ ! for type II triangles can
be replaced by any sn~l~k tk whenever 0 * s £ < : / ï - l i s even. This is easy to
see from the above proof.

One of the immédiate conséquences of the above lemma is the following
local stability inequality which will be used for deriving the global stability in
the next section.

L E M M A 4.2 : Let uh be the solution of Method Ml
h or M2

h. Then

(4.8)
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 679

Proof : To use a scaling argument to prove this lemma, we need to

introducé a référence triangle T with vertices àx = (1, 0), â2 = (0, 1 ),

â3 = (0, 0). For a generic triangle T e Ah, dénote by FT the invertible affine

transformation of T to T such that

where B is a 2 x 2 matrix of the form

5 = ( a 1 - a 3 , a 2 - a 3 ) = ( | r 2 | T2, - j / ^ rx) .

Defining i) (x, y) = v o F T(x, y ) = v (JC, y ) for any function i? defined on T

and

(
\ d/dy

we have
yS -Vuh = B~l $

where

Observe that the référence transformation F r preserves the types of
triangles. This can be seen by noting that F~1 (/3 ) = B~1 ^ =

1 / )8 • nv (3 . n2 \ '

^ ^ ( T T T ' T r T ) ' Al = (" h 0 ) ' *2 = (0' " 1} ' and ni *T2 " °
imply that /3 • n{ and /3 • n2 have the same signs as (£~ ! /3 ) . ôj and

(B~ r )S ) . n2, respectively.

Transforming (3.1), ..., (3.4) to 7, we have

(u/t - w;7 ) vf3 • n, df = | det 5 | (ƒ, v )f , for all v e Vh f , (4.9)

re /*t = /*2 =

tinuity conditions

where /*t = /*2 = 1 and /x3 = —— ; and the corresponding boundary con-
2

I î - ù-h) f' dr = o, r, c rm(D

and / = 0 , 1, .... « - 2 ( o r « - l ) . (4.10)
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Let us dénote by {^,1 and {#"*} t n e basis functions for the trial and test

spaces on 7\ respectively, and Ü = (Ûj\ the coefficient set. We also set

{$ to be the direction of B'1 (3 and nt the unit outward normals to

ft. Then by the fact that /l>'' fl — = P -nn (4.9) and (4.10) are
l^"1 p\ d t £

equivalent to the following linear algebraic system

ï - - v r . _ - - . .
I p — 1 O I *™̂  I '
I D P r f (f\ J r

jfc= 1, 2, .... dimVfcf, (4.11)
and

uj- j üït'dï, / | C r m ( f )

and / = 0, 1, .... n - 2 ( o r « - 1 ) , (4.12)

or, in matrix form,

AÜ = b, (4.13)
where A is a o*n x o-n or (<rn + 1 ) x (<rn + 1 ) matrix.

It is obvious that A is uniformly bounded over all triangles by the
hypothesis that all angles are bounded away from zero (the minimum angle
condition implied in Hj). Together with Lemma 4.1 we can also infer the
uniform boundedness of A~ l and the bound : \B~ 1 13 \ ~ 1 ̂  Ch. Hence the
solution Û of the system (4.13) satisfies

where the last inequality can be derived by carefully observing the system
(4.11) and (4.12). When T is of type I, (/§ • n)in is bounded uniformly away
from 0 by the minimum angle condition. When T is of type II, the hypothesis
H2 assures such a property. Therefore, for a triangle of either type,

The desired inequality (4.8) nows follows by transforming from T back to T.
D
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Remark 4.2 : For a type I triangle the a priori estimate (4.8) is in fact an
immédiate conséquence of the représentation (4.1). In this case the minimum
angle condition is not needed.

Remark 4.3 : If we select the bases for the trial spaces in such a way that ail
moments appearing in the boundary conditions are included in the degrees of
freedom of the finite element, the computational cost can be reduced
significantly. More specifically, for a type I element of odd order n in
Mx

h and an element of either type in Mj[, we can express uh in the form

üh = X Z ^ * ( " * ) ^ i / + Z ^*("*) ^k(+ i*(àh)i) for a type I (II) f ,
i = 1 j=0 * = 1

where {^*, V *} is the dual basis of |t^i;, rjk\ , a basis of P„(r) satisfying

r j k r m d r = 0 , (ty*, w^)f = Skq,

l
for /, / = 1, 2, 3 ; j , m = 0, 1, ..., « - 1 ; £, # = 1, 2, ..., crrt_3 with
{wq} a basis of Pn_3(7

1) ; and

= 'sî" ~ I Ï
t = 1 ; = 0

For a type II triangle in M^ we can select the basis used in the proof of the
uniqueness lemma. For an even order element of type I, it is still possible to
obtain a basis possessing the desired properties. For example, when
n = 2, we may take the average values and the first moments on the inflow
side and one of the outflow sides and only the average on the other outflow
side to be five out of six degrees of freedom required and complete them by a
quadratic polynomial which is zero at two Gauss-Legendre points on e ach
triangle side (see [5] or [1, Appendix A.3] for details). Under these special
bases the Systems to be solved actually have size crn _ x + 1 for one-inflow-
side éléments and <rn_2 + 3 or an_2 -\- 2 for two-inflow-side éléments.

5. STABILITY AND ERROR ESTIMATES FOR THE TRIANGULAR SCHEMES

In this section our intention is to dérive some stability results for methods
M;z and M^ and then to obtain error estimâtes as their conséquence. The
achievement of this goal is based on the employment of the a priori estimate
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(4.8) established in the last section and some test functions depending only
on t. The analysis framework constituted here will cover not only methods
M^ and M|, but also any finite element method which adopts the variational
équation (3.1) and satisfies (4.8), where the test space Vht T must contain all
polynomials in the crosswind variable t of order =£ n. Thus the discontinuous
Galerkin method is another typical example. For other possible schemes
included in this framework, see [1, Appendix A.6].

We now proceed to establish some basic properties of uh over T.

LEMMA 5.1 : The solution uh of Method M\ or Ml satisfies the following
inequality on a triangle T of either type,

Â, out

-Pt)u~Km\2 + h\\f\\\) . (5.1)

Proof: Set wh = uh-EP tu^m. Then (3.1), ..., (3.4) still hold with
wh in place of uh. By Lemma 4.2 and the change of variables formula (2.6),
we have

Therefore by the inverse estimate (2.3),

| | ( «*) , | | r = \\^h)s\\T^Ch-'\\wh\\T^C {h-m\{I -Pt)ulm\ + \\f\\T] ,

and by (2.4),

| «*, out - uh, in | + | < in - «Â, in |

« |«Â,out-^/«Â,m| + \Km-PtUh,m\ + 2 | (ƒ - P,) U~K m\

« Ch~ V2\\uh - EP, Ui m\\T + 2\{1-Pt) Ui l n |

*C{\V-P,)ulm\ +h"2\\f\\T} .

The desired inequality then follows from a suitable combination of the above
two results. D

The next lemma will be used, together with the previous one, to help
establish another local stability result that, unlike (4.8), can be iterated over
the entire triangulation to obtain global stability of the methods.

LEMMA 5.2 : There holds, for a triangle T of either type,

Kom|2+ | ( / -^)^ s i n | 2

^ K , i n | 2 + CA EPs{ulwt + u~Km))T + Ch\\f\\\.
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Proof : Take v(t, s) = E[w(t)] e VhT in (3.1). Then application of the
intégration by parts formula (2.2) and identities (2.5) and (2.6) yields

{u-K om - "*, in, w) - (ƒ, Ew)T . (5.2)

Selecting w(t) = P t(ul out + «Â, m)(t), we have

|^/ ^out |2 = \Pt ^ i n | 2 + (ƒ» EPt{u-Koui + «^m))r . (5.3)

When 7 is of type I, note that |M^0Ut|
2 = |/% "Â, out|2 + | (7 -^JMÂ.outl2

and

by the factthatw^ in = P , wĵ m and Lemma 5.1. It then follows from (5.3) that

K a u t l 2 * | « * , m | 2 + (f, EP t{ulo* + UIK))T+ Ch\\f\\\ .

W h e n T i s o f t y p e I I , n o t i n g t h a t | w ^ m | 2 = | Pt u~K i n | 2 + | (ƒ - P t) u~K m | 2

a n d Pt ui out = ui out, w e t h e n h a v e

Before combining Lemma 5.1 and Lemma 5.2 to get the local stability
desired, we necd the following identities to simplify its proof.

LEMMA 5.3 : When T is of type I, then

= 2^out(O-2(/-P,) (uh)sds-Pt f ds (5.4)
Jo Jo

= 2^^^) + ̂  /ds; (5.5)
Jo

while when T is of type II, then

>-ƒ>, f ds (5.6)
J s.Jsm(t)

-hm{t)-2(I-Pt)ulm(t) + Pt f° ƒ&. (5.7)
n(0
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Proof. For a triangle T of type I, by (5.2) and (2.7), we have

f

J

WO
f ds, (5.8)

Also it is easy to see that

f WO

Jo

Noting that (/ - Pt)u^m = 0, the application of (/ - P t) on both sides of
the above identity yields

rwo

This implies

Hence,
rwo

ƒ ds .

Also from (5.8),

r

rwo
Uh'ont Jo

r

pout('
W/r, out r J o

Jo

These are the desired identities (5.4) and (5.5).
The identities (5.6) and (5.7) for a triangle T of type II can be obtained

directly from (5.2) upon noting that P t ŵ  out = u~h> out. D

THEOREM 5.1 : For the solution uh of Method M\ or M2
h, there exists a

positive constant M independent of h, f and u suc h that for a triangle
TeAh

"À, out | 2 - 2 (wom, u~K out> + M {h || (uhX || 2T

where u is the exact solution of the model problem (2.1).
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Proof * (i) When T is of type I, by (5.4) and (5.5),

(us, EPt(u~K out + u~K i n ) ) r = uEPt(u~K out + u~K in

Jr(T)

("out* *%("*, out + «*, in)) - <«in> *% («ft, out + "Â, m)>
o r*out(o

" («in» 2 w i ! i i n + / ) ,
Jout (0

<wout, «Af0Ut> - 2 ( « i n , MAfin)

Here 5 is a positive constant to be determined and for the last inequality we
have used the following estimation based on the Schwarz inequality,
Lemma 2.1 and the arithmetic-geometrie mean inequality :

f WO \
' J (Pk)* ds)

f*outCO

and analogously,

«out+ !*» , / » , J °Ut(/ f ds) ^ c { h \ \ f \ \ 2
T + | w | ^ o u t ( r ) + l " l r m ( r ) }

Combining the above results with Lemma 5.2 yields

| «Â, out | 2 ^ | ul in | 2 + 2 <Mout, «Â, out) - 2 («m. «Â, in)

Finally the desired inequality for this case is obtained by adding (5.1) to the
above inequality and taking s = M = 1/2.
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(ii) When T is of type II, by (5.6) and (5.7)

<ƒ, EPt(ul out + ui m))T = (us, EPt(Ml out + ui m))T

= («oüt» P Ml out + Ui in)> - (Um, Pt(ül out + Ui m)>

= ("om>2^out-/>, P fds) - tumi2Ptulm+Pt\° f ds)
\ Jsm(t) f \ Jsm(t) I

= 2 (Uonv Ui out> - 2 <Mm, M̂ 4 m> + 2 <Wm, (I -Pt) Ui in>

- («out + Min»^r ƒ

^ 2 <wout, w^ o u t) - 2 <Mm, ui in> + - I (/ - Pt) ui m | 2

Here we have used a similar estimation to part (i). By Lemma 5.2, we then
have

Kout|2-2(«out> «Â,out> + 2 \V -Pt)Ulm\2

^ | ul m 12 - 2 <M n , «A-, in> + C {AII ƒ II * + I u 12
r(T)} . (5.9)

From (5.1), there exists a positive constant M such that

M{h\\(uh\fT+ Kin-«Â,m!2}

i { | 2 | 2 } . (5.10)

Adding (5.9) and (5.10) establishes the second part of the theorem. D
In order to state the global stability results, we need some additional

notation. First let us recall that {Sj} are the layers defined in Section 2. Then
we define Fronts F. as follows :

FJ = Fj _, u rout(s,) - r ^ ) , j = ï, 2 , . . . .
j

Also we represent Q3 = [^J Sk.
k = \

THEOREM 5.2 : /ƒ uh is the solution of Method M\ or M% then

-h\2
 +h\\f\\l+ l |„|2 } (5.11)

Tcfl, >
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with M a positive constant. Furthermore

Te Ah

l J J (5.12)l+ £ MJ.J.

Proof : Recalling the inner product and norm notation we defined before,
we see by (2.5) and (2.6),

and

By summing the inequality in Theorem 5.1 over all layers Sk, 1 =̂  k *zj, we
obtain

\u-h\2
F -2(u,u-h)F +M\h\\(uh)s\\

2
n + X \uim-u-Km\2

r

Thus

*!ƒ•;\

Subtracting (1/2)\u^ | and multiplying by 2 on both sides, we then

establish the inequality (5.11).
From Lemma 4.2, we have
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Applying (5.11), we obtain

-h\2
 +h\\f\\i+ x

Summing over all layers Sp 1 «= j =s N (Af is the total number of the layers in
Ah)9 and noting that N — O (h~l ) by Hypothesis H3, we infer

K I I ^ C I K I J +h\\f\\l+ £ \u\*r(r\. (5.13)

On the other hand, the application of (5.11) with F} = r o u t ( /2 ) yields

The result (5.12) is the sum of (5.13) and (5.14). D
Our final concern in this section is to dérive error estimâtes. In f act, they

are simply a corollary of Theorem 5.2.
Let Uj be any continuous interpolant of the exact solution u such that

Uj | T e Pn (T) for any T e Ah and satisfies

| | M - M f | | / r * C A - + 1 ^ | | i i | | „ + l t r , y = 0 , l ; (5.15)

One example is that u} interpolâtes u at a n equispaced points on T. It is
well known that this interpolant satisfies the approximation properties given
above (refer to [2, Chap. 3] for details).

We now set eh = uh - uJt Then (3.1), ..., (3.4) remain valid when
uh and ƒ are replaced by eh and (u — uf)s> respectively. Hence we may apply
the previous results with u replaced by u - M7. By taking u^ - uj =
gf on rm(f2) and inserting (5.15) and (5.16) into Theorem 5.2, we now
conclude

THEOREM 5.3 : Let u e Hn+I(f2) be the solution of équation (2.1) and
uh the solution of the approximation Method Ml

h or M% Then there exists a
constant C independent of u and h such that

\\

I J ( W - ^ for y =
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and

COROLLARY 5 .1 .

This corollary can be easily derived by the inverse property. lts error
order, however, may not be the best possible we can get in these two
methods. The actual situations could be better (see Tables 6.1 and 6.2 in § 6).

6. NUMERICAL RESULTS

We now present some numerical results for our proposed schemes and
compare them with the corresponding results for the continuous and
discontinuous methods.

To generate a triangulation, we first divide the région f2 (for simplicity, we
always select f2 to be a unit square in our experiments) uniformly into
N2 squares and then divide each square into four triangles. This is done by
randomly selecting a common vertex in the neighborhood of the centroid
with the property that all inflow sides of type II triangles are uniformly away
from the characteristic direction. The resulting mesh is then nonuniform (cf.
fig. 2). We shall approximate the solution of each test problem by both
quadratic and linear éléments.

Example 6J : Let us first consider the équation

1 dit 2 all r\ • n sr*. i x sr\ t \
_ — + _ _ = 0 in 12 = (0, 1 ) x (0, 1 ) ,
/** / 5 3V

with the initial data chosen to make the exact solution be u = \z\a, where
z = (2 x — y )/ V5 is a coordinate orthogonal to the characteristic direction
and a is a positive number to be selected later. Note that | z \a e
Ha+ m~e(f2) for any e > 0. We shall estimate errors in the L2 norm
llM~Mfcll/2' *ne ^2 n o r m °f *ne gradient ||V(M —M^)|| as well as the

L2 norm of the characteristic derivative \\/3 • V(M - uh)\\ .

To see the rate of convergence under the regularity condition required in
the theory, we select a = 2.5 for the quadratic approximation and
ar = 1.5 for the linear. Table 6.1 illustrâtes some numerical results for our
reduced continuity (for brevity, RC) method M^ as well as for the continuous
and discontinuous methods using quadratic approximations. We observe that

vol. 28, n° 6, 1994



690 D -M CAI, R S FALK

Figure 2. — Triangular mesh for N— 4

the order of L2 error in uk for Ml
h tends to be 2 5, while that in

yö Vuh is approaching 1 0 These agree well with our theoretical prédictions
and also show that our theoretical results for these two errors are best

TABLE 6 1
Numencal results for Example 6 1 Quadratic approximation a = 2 5

^ d E3= \\0 V(u-uh)\\n

N

16
32
64

128
256
N
16
32
64

128
256

N
16
32
64

128
256

Contmaoas Methcd

Ei

167 (-4)
368 (-5)
803 (-6)
174 (-6)
372 (-7)

E2

744 (-3)
257 (-3)
900 (-4)
318 (-4)
113 (-4)

E3

189 (-3)
521 (-4)
141 (-4)
378 (-5)
100 (-5)

Rate

2 18
2 18
2 19
2 21
2 22
Rate
1 56
153
151
150
149
Rate

183
186
188
190
192

RC Method

Ex

354 (-5)
515 (-6)
791 (-7)
127 (-7)
214 (-8)

E2

438 (-3)
121 (-3)
337 (-4)
948 (-5)
271 (-5)

E*

260 (-3)
708 (-4)
189 (-4)
504 (-5)
134 (-5)

Mi
Rate

2 87
2 78
2 70
2 63
2 58
Rate
187
185
185
183
181
Rate

186
188
190
191
192

Discontmuous Method

Ei

361 (-5)
523 (-6)
798 (-7)
128 (-7)
214 (-8)

E2

365 (-3)
101 (-3)
284 (-4)
812 (-5)
237 (-5)

Es
160 (-3)
435 ( 4)
116 (-4)
311 (-5)
824 ( 6)

Rate
2 87
2 79
2 71
2 64
2 58
Rate
189
185
183
180
178
Rate

187
188
190
191
192
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possible under their regularity assumptions. We also see an interesting f act :
the rate of the L2 error in the gradient of uh is about 1.8, much better than our
theoretical result 1.5 in this case, which is derived from L2 error estimâtes by
the inverse property. Similar phenomena can be observed for the linear
approximation from Table 6.2, where the RC method Mj; is compared with
the discontinuous Galerkin method which coincides with Ml

h in this case :
linear, a = f = 0.

Comparing the data for the RC methods with those for the continuous and
discontinuous methods in Tables 6.1 and 6.2, we see that the rates of
convergence of the RC methods are close to their counterparts in the
discontinuous ones while the convergence rates for the continuous schemes
are slightly lower. All the expérimental convergence rates match with their
corresponding theoretical results. The fact that the number of unknowns
increases as we go from the continuous to RC to discontinuous method is
generally reflected in a corresponding decrease in absolute errors.

TABLE 6.2.

Numerical results for Example 6.1. Linear approximation, a = 1.5.

£ , = E2= | f l and E3 = \\0.V{u-uh)\\a

N
16
32
64

128
256

N
16

32

64

128

256

N
16

32

64

128

256

RC Method

Ei

.426 (-3)

.124 (-3)

.385 (-4)

.127 (-4)

.440 (-5)

E2

.356 (-1)

.192 (-1)

.103 (-1)

.561 (-2)

.308 (-2)
Ez

.232 (-1)

.123 (-1)

.640 (-2)

.334 (-2)

.174 (-2)

Mï
Rate
1.88
1.78
1.69
1.60
1.54
Rate

.92

.89

.89

.88

.87
Rate

.92

.92

.94

.94

.94

Discontinuous Method

Ex

.385 (-3)

.113 (-3)

.356 (-4)

.120 (-4)

.422 (-5)

E2

.208 (-1)

.119 (-1)

.681 (-2)

.392 (-2)

.227 (-2)

£3

.139 (-1)

.744 (-2)

.391 (-2)

.205 (-2)

.107 (-2)

Rate
1.88
1.77
1.67
1.57
1.51
Rate

.86

.80

.81

.80

.79
Rate

.92

.90

.93

.93

.94
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To see the effect of the additional differentiabihty in the exact solution, we
also performed expenments in the cases a = 3 for the quadratic and
a = 2 for the hnear An ïmprovement of the rate of convergence is observed.
Except for the rate of L2 error for the continuous method, which slightly
lagged behmd, the convergence rate for the other methods approached the
optimal.

Example 6 2 The following équation is considered

3 \
\/5 /

m n =

Here we note that the lower order term a is nonzero and the exact solution
u = exp (x + y ) is a smooth function The computations (omitted here again)
show that all methods discussed in Example 6.1 achieve their corresponding
optimal order of convergence in this case

APPENDIX A

We shall give a counterexample to show that if Hypothesis H2 is violated,
then the local stabihty inequality (4.8), which plays an important rôle m our
analysis, will no longer be true. For simplicity, we only consider
M^ with n =2= 2 in our example This approach can be apphed to M^ upon
slightly modifying the proof of Lemma 4.1 for this scheme.

Let {Tk} be a séquence of unit isocèles nght triangles of type II with
respect to the charactenstic direction f3 Q = (0, 1 )T such that the outtlow side
of Tk is lts hypoténuse and the angle between f$0 and the left inflow side of
Tk tends to zero Equivalently, we can consider the triangle T = Aax a2a3

with the various charactenstic directions pk = (cos 0h sin 0k)
T, k = 0, 1,

2, ..., where hm 6k = 90 = TT/2, ax = (1, 0), a2 = (0, 1), and a3 -

(0, 0). As bef ore, we dénote 7^ = a2a3 and F2 = a3ax.
For each k = 0, 1, 2, . ., let uh k be the discrete solution of M\ on T

satisfying (3.1) and (3.3) with p = pk, ui J _ = 1 , and ui k\ = ƒ = 0

Note that T has a side Fx parallel to /30 and is therefore a type I triangle with
respect to fi0 by the original définition of the type. We can, however, assume
it has a type II structure and the proof of Lemma 4 1 is still valid. Hence
uhQ is well defined and ||uh 01|T ^ 0 since M^,o|r = !•

In terms of a matrix formulation, each uh k corresponds to a coefficient
vector Uk which is the solution of the hnear system

Ak uk = h
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in the form of (4.11) and (4.12). It is not difficult to see that Ak -• Ao and
bk -• bQ as k -• oo in the standard Euclidean norms. The unique existence of
uht 0 implies the invertibility of Ao. Hence

We then have lim uhi * = «*, o uniformly on T. Thus, uK k -• uht 0 in

L2(T). If now (4.8) remains valid for all uhky we have

J^ i
= Ch | / V n i l dr = Chcos 0k.

This leads to

0 ^ | | M A , o | | r = l i m H M A,Jt | l r= l i m Chcos 0k = 0 ,
k-* cc k -> oo

a contradiction. Therefore, (4.8) may not be true if H2 is violated.

APPENDIX B

In gênerai, Hypothesis H3 is not true even though Hypotheses Hj and
H2 are satisfied. The left picture in figure B.l illustrâtes such a f act, where
the number in each triangle indicates the layer to which it belongs. We see
that there are about O{h~2) many layers in this mesh. Moreover, we can
easily see that most of the triangles in this mesh are obtuse triangles. This
suggests that to obtain a triangulation with only O {h~l ) many layers we may
need to pose some restrictions on these sort of triangles. In the following
lemma, we give a sufficient condition for producing a mesh satisfying
H3.

LEMMA B.l : Suppose that Ah is a triangulation satisfying Hypotheses
Hj and H2 and that all inner angles of type II triangles are at most
TT

— . Then Ah satisfies H3.

An example of Lemma B.l is depicted in the right picture of figure B.l.
To prove Lemma B.l we need some notation. Take d = 2 pmin, where

Pmin is a s defined in H^ Dénote 0mm as the minimal inner angle in
Ah implied in Hls i.e., if 0 is an inner angle of a triangle in Ah, then
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Figure B.l.

Also from H2, there exists a 0O > 0 such that any acute angle between (5 and
an inflow side of a type II triangle is at least 6Ö. We then set

0. = min {0min, 00} .

By a path from Tb e Ah to Te e 4A we mean an ordered set of 2 or more
triangles

Tx < T2 < . . . < Tl

such that Tx = Tb, Tt = Te and rout(r, _ ! ) Pi r^T,) is the common side of
Tt _ j and Tn i = 2, ...,/. The s/ze of a path is the number of triangles in that
path.

Place O in an orthogonal coordinate System (z, s) where the s direction is
/3. Then to each T e Ah we associate a quantity s* such that

5 . ( r ) = min {s(P):P e TQut(T)} .

We can now state and prove a lemma which will be used in the proof of
Lemma B.l.

LEMMA B.2 : Under the assumptions of Lemma B.l,
(i) if Tx < 72, then

s,(Jx)^ min s(P)**sm(T2);
PeT2

(ii) if Tl < T2 and T2 is of type II, then
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(iii) ifTi<T2<"' <Ti is a path consisting of type I triangles and

then there exists a k(^ l) such that

Proof : (i) If T2 is of type I, then s, (T2 ) = min s (P ). If T2 is of type II, by
/>er2

the assumption on type II triangles in Lemma B.l and H2, we have
s,CT2)>

 m m S(P)' Hence, for either case the following inequalities hold
P<=T2

s*(T2) =* min s(P ) = min s(P ) =2= min s(P ) = s^T^ .
PeT2 Perm(T2) P e r^TJ

(ii) Let T2 = Aax a2 a3, labeled counterclockwise, with the outflow side
ÛEJÛ2- Suppose a2a3 is the common side shared by T1 and T2. For a type II
triangle, since all of its inner angles are no bigger than TT/2 by the
assumptions in Lemma B.l and an acute angle between an inflow side and fS
is at least 60 by H ^ this angle is also at most « 7 2 - 60. If
s(a2), noting that \a^â3\ 2= d, we then find

s(a2) s* s(a3) + dcos l ^- — 0O ) = s(a3) + d sin 00 .

Thus,

+ d sin 60 ^ smçrx) + d sin ^0 .

For the case ^(Ö!) < 5(a2)» a similar argument on ^Û^ will lead to the same
conclusion.

(iii) Let Tx = A.al a2a3 with the inflow side axa2 and let a2a3 be the
common side of 7\ and T2. For the case when the common side of
7\ and T2 is axa3, the following argument remains valid with a2 replaced by
av

If one of a2 and a3, say a2, is the common vertex for ail Tn

1=^/=^/, then ail Tl must lie on the same side of the line passing
a2 and parallel to fi (see fig. B.2(a)). Since < a3 a2 al +2 ^ TT — 6mm and
<a i + i a2al+2^ 0mm, 2^i ^ / , by Hj, we have
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This violâtes the assumption on /. Therefore, there must exist a &(=s / ) such
that all Tn 1 =s; i ^ k — 1, except Tk have a common vertex. k cannot be

^ 3. This is consistent with k ss / since /

the common vertex is a2.

i. Again assume that

(b) (c)

Figure B.2.

If s(a3) ^ 51 (a2) (see ƒ/#. B.2(^?)), since all acute angles between
ala2 and A 4 =s= / ^ A: + 1, are at most ir 12 — 0mm, we have

= min {s(ak\ s(ak+1)}
d sin 0min ^sn sin 0

If s(a3) < s(a2) (see//g. B.2(c)), since ^ is nondecreasing along a path,
we obtain

sin 0sin

Analogously, we can obtain these results when that common vertex is
a3. The conclusion in this part is then proved. D

Proof of Lemma B.l : Consider any path Tl<T2< • • • <Tk such that

k = -£— 4-2. If Tt is of type II for some 2 ^ / ^ k, then s*(Tt) ^
L ̂ min J

s*(Tt _ i) + d sin 00 by (ii). Otherwise, by (iii) we have ^(T,) ^
ö? sin 0mm for some 2 ^j ^ k. Since ^ is nondecreasing along a path by (i),
we conclude that
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For any path from Tl to TL of size

>•

where M is the uniform upper bound for h/d as indicated in Hu consider it to

be a union of disjoint subpaths of size —— + 2. Then the application of
L 0min J

the above discussion and (i) yields

s A W > s.(Tx ) + dsineJ\ -^— 1 + 1 )(M + 1 )
\ L sin 0m J /

=* ̂ (7*!) + d(M + 1 ) > s,(Tr) + A + d .

Since the diameter of a triangle is no bigger than h, we have
min s(P ) > s*(TL) - h ̂  ^(7^) + d . (B.l)
PerL

Now consider a partition of the interval inf s(P), sup s (P)\ :
Lp € n pen J

inf 5(F ) = 50 <
 5i < * ' • < SN = SUP ^ ^ )

Pen Pen

such that J, - J, _ i = d, i = 1, 2, ..., Af - 1, and % - % _ ! ̂  d. Then
Af =s= C//Ï by Hp To each subinterval [.ŷ  _u st) we associate a strip subset of
D such that a point of /2 lies in that strip if and only if its s coordinate belongs
to [st_i, st), Then f2 is decomposed into N strips.

Let us start with the first strip of O (corresponding to [>0, sx)\ It can only
overlap with at most L — 1 layers. Otherwise, there exists a path from
Tb to Te of size at least L such that

s0 ^ min s(P ) =s s*(Tb) =s min s(P )*zsx .
PeTb PeTe

Hence min s(P ) - s*(Tb) ^sx- s0 = d. This contradicts (B.l). Therefore,
PeTe

the total number of layers is no bigger than LN =s C/h, where C dépends on
0mm and ö0

 b u t n o t *• a
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