
Cm EIGENFUNCTIONS OF PERRON-FROBENIUS OPERATORS

AND A NEW APPROACH TO NUMERICAL COMPUTATION

OF HAUSDORFF DIMENSION

RICHARD S. FALK AND ROGER D. NUSSBAUM

Abstract. We develop a new approach to the computation of the Hausdorff

dimension of the invariant set of an iterated function system or IFS. In the one

dimensional case, our methods require only C3 regularity of the maps in the
IFS. The key idea, which has been known in varying degrees of generality for

many years, is to associate to the IFS a parametrized family of positive, linear,

Perron-Frobenius operators Ls. The operators Ls can typically be studied in
many different Banach spaces. Here, unlike most of the literature, we study

Ls in a Banach space of real-valued, Ck functions, k ≥ 2; and we note that

Ls is not compact, but has a strictly positive eigenfunction vs with positive
eigenvalue λs equal to the spectral radius of Ls. Under appropriate assump-

tions on the IFS, the Hausdorff dimension of the invariant set of the IFS is

the value s = s∗ for which λs = 1. This eigenvalue problem is then approxi-
mated by a collocation method using continuous piecewise linear functions (in

one dimension) or bilinear functions (in two dimensions). Using the theory of

positive linear operators and explicit a priori bounds on the derivatives of the
strictly positive eigenfunction vs, we give rigorous upper and lower bounds for

the Hausdorff dimension s∗, and these bounds converge to s∗ as the mesh size
approaches zero.

1. Introduction

Our interest in this paper is in finding rigorous estimates for the Hausdorff
dimension of invariant sets for (possibly infinite) iterated function systems or IFS’s.
The case of graph directed IFS’s (see [40] and [39]) is also of great interest and can
be studied by our methods, but for simplicity we shall restrict attention here to the
IFS case.

Let D ⊂ Rn be a nonempty compact set, ρ a metric on D which gives the
topology on D, and θj : D → D, 1 ≤ j ≤ m, a contraction mapping, i.e., a
Lipschitz mapping (with respect to ρ) with Lipschitz constant Lip(θj), satisfying
Lip(θj) := cj < 1. If m < ∞ and the above assumption holds, it is known that
there exists a unique, compact, nonempty set C ⊂ D such that C = ∪mj=1θj(C).
The set C is called the invariant set for the IFS {θj | 1 ≤ j ≤ m}. If m = ∞ and
sup{cj | 1 ≤ j ≤ m} = c < 1, there is a naturally defined nonempty invariant set
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C ⊂ D such that C = ∪∞j=1θj(C), but C need not be compact. It is useful to note
that the Lipschitz condition of the IFS can be weakened, and we address this in a
subsequent section (cf. (H6.1) in Section 6).

Although we shall eventually specialize, it may be helpful to describe initially
some function analytic results in the generality of the previous paragraph. Let H be
a bounded, open, mildly regular subset of Rn and let Ck(H̄) denote the real Banach
space of Ck real-valued maps, all of whose partial derivatives of order ν ≤ k extend
continuously to H̄. For a given positive integer N , assume that bj : H̄ → (0,∞) are
strictly positive CN functions for 1 ≤ j ≤ m <∞ and θj : H̄ → H̄, 1 ≤ j ≤ m, are
CN maps and contractions. For s > 0 and integers k, 0 ≤ k ≤ N , one can define a
bounded linear map Ls,k : Ck(H̄)→ Ck(H̄) by the formula

(1.1) (Ls,kf)(x) =
m∑
j=1

[bj(x)]sf(θj(x)).

Linear maps like Ls,k are sometimes called positive transfer operators or Perron-
Frobenius operators and arise in many contexts other than computation of Haus-
dorff dimension: see, for example, [1]. If r(Ls,k) denotes the spectral radius of Ls,k,
then λs = r(Ls,k) is positive and independent of k for 0 ≤ k ≤ N ; and λs is an alge-
braically simple eigenvalue of Ls,k with a corresponding unique, normalized strictly
positive eigenfunction vs ∈ CN (H̄). Furthermore, the map s 7→ λs is continuous. If
σ(Ls,k) ⊂ C denotes the spectrum of the complexification of Ls,k, σ(Ls,k) depends
on k, but for 1 ≤ k ≤ N ,

(1.2) sup{|z| : z ∈ σ(Ls,k) \ {λs}} < λs.

If k = 0, the strict inequality in (1.2) may fail. A more precise version of the above
result in stated in Theorem 5.1 of this paper and Theorem 5.1 is a special case of
results in [46]. The method of proof involves ideas from the theory of positive linear
operators, particularly generalizations of the Krĕın-Rutman theorem to noncompact
linear operators; see [32], [3], [53], [44], and [37]. We do not use the thermodynamic
formalism (see [49]) and often our operators cannot be studied in Banach spaces of
analytic functions.

The linear operators which are relevant for the computation of Hausdorff di-
mension comprise a small subset of the transfer operators described in (1.1), but
the analysis problem which we shall consider here can be described in the gen-
erality of (1.1) and is of interest in this more general context. We want to find
rigorous methods to estimate r(Ls,k) accurately and then use these methods to
estimate s∗, where, in our applications, s∗ will be the unique number s ≥ 0 such
that r(Ls,k) = 1. Under further assumptions, we shall see that s∗ equals dimH(C),
the Hausdorff dimension of the invariant set associated to the IFS. This observa-
tion about Hausdorff dimension has been made, in varying degrees of generality by
many authors. See, for example, [6], [7], [5], [9], [10], [13], [18], [20], [22], [21], [24],
[25], [26], [27], [39], [38], [47], [49], [50], [51], and [54].

In the applications in this paper, H will always be a bounded open subset of
Rn for n = 1 or 2. When n = 1, we shall assume that H is a finite union of
bounded open intervals, that θj : H̄ → H̄ is a CN contraction mapping, where
N ≥ 3, (or more generally satisfies (H6.1)) and θ′j(x) 6= 0 for all x ∈ H̄. In the
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notation of (1.1), we define bj(x) = |θ′j(x)|. When n = 2, we assume that H is

a bounded, open mildly regular subset of R2 = C and that θj , 1 ≤ j ≤ m are
analytic or conjugate analytic contraction maps (or more generally satisfy (H6.1)),
defined on an open neighborhood of H̄ and satisfying θj(H) ⊂ H. We define
Dθj(z) = limh→0 |[θj(z + h) − θj(z)]/h|, where h ∈ C in the limit, and we assume
that Dθj(z) 6= 0 for z ∈ H̄. In this case, Ls,k is defined by (1.1), with x replaced
by z, and bj(z) = |Dθj(z)|s.

Given the existence of a strictly positive CN eigenfunction vs for (1.1) when
H ⊂ R, we show in Section 6 for p = 1 and p = 2, that one can obtain explicit upper
and lower bounds for the quantity Dpvs(x)/vs(x) for x ∈ H̄, where Dp denotes the
p-th derivative of vs. Such bounds can also be obtained for p = 3 and p = 4, but
the arguments and calculations are more complicated. When H ⊂ R2, it is also
possible to obtain explicit upper and lower bounds for Dp

1vs(x1, x2))/vs(x1, x2)
and Dp

2vs(x1, x2))/vs(x1, x2), where D1 = ∂/∂x1 and D2 = ∂/∂x2. However, for
simplicity we restrict ourselves to the choice θj(z) = (z + βj)

−1, where βj ∈ C and
Re(βj) > 0. In this case we obtain in Section 7 explicit upper and lower bounds for
Dp
kvs(x1, x2))/vs(x1, x2) for 1 ≤ p ≤ 4, 1 ≤ k ≤ 2, and x1 > 0. In both the one and

two dimensional cases, these estimates play a crucial role in allowing us to obtain
rigorous upper and lower bounds for the Hausdorff dimension.

The basic idea of our numerical scheme is to cover H̄ by nonoverlapping intervals
of length h if H ⊂ R or by nonoverlapping squares of side h if H ⊂ R2. We then
approximate the strictly positive, C2 eigenfunction vs by a continuous piecewise
linear function (if H ⊂ R) or a continuous piecewise bilinear function (if H ⊂ R2).
Using the explicit bounds on the unmixed derivatives of vs of order 2, we are then
able to associate to the operator Ls,k, square matrices As and Bs, which have
nonnegative entries and also have the property that r(As) ≤ λs ≤ r(Bs). A key
role here is played by an elementary fact which is not as well known as it should
be. If M is a nonnegative matrix and v is a strictly positive vector and Mv ≤ λv,
(coordinate-wise), then r(M) ≤ λ. An analogous statement is true if Mv ≥ λv.
We emphasize that our approach is robust and allows us to study the case H ⊂ R
when θj(·), 1 ≤ j ≤ m, is only C3.

If s∗ denotes the unique value of s such that r(Ls∗) = λs∗ = 1, so that s∗ is the
Hausdorff dimension of the invariant set for the IFS under study, we proceed as
follows. If we can find a number s1 such that r(Bs1) ≤ 1, then, since the map s 7→ λs
is decreasing, λs1 ≤ r(Bs1) ≤ 1, and we can conclude that s∗ ≤ s1. Analogously, if
we can find a number s2 such that r(As2) ≥ 1, then λs2 ≥ r(As2) ≥ 1, and we can
conclude that s∗ ≥ s2. By choosing the mesh size for our approximating piecewise
polynomials to be sufficiently small, we can make s1 − s2 small, providing a good
estimate for s∗. For a given s, r(As) and r(Bs) are easily found by variants of
the power method for eigenvalues, since (see Section 8) the largest eigenvalue has
multiplicity one and is the only eigenvalue of its modulus. When the IFS is infinite,
the procedure is somewhat more complicated, and we include the necessary theory
to deal with this case.

If the coefficients bj(·) and the maps θj(·) in (1.1) are CN with N > 2, it
is natural to approximate vs(·) by piecewise polynomials of degree N − 1 when
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H ⊂ R and by corresponding higher order approximations when H ⊂ R2. The
corresponding matrices As and Bs may no longer have all nonnegative entries and
the arguments of this paper are no longer directly applicable. However, we hope to
prove in a future paper that the inequality r(As) ≤ λs ≤ r(Bs) remains true and
leads to much improved upper and lower bounds for r(Ls). Heuristic evidence for
this assertion is given in Table 3.2 of Section 3.2.

We illustrate our new approach by first considering in Section 3 the computation
of the Hausdorff dimension of invariant sets in [0, 1] arising from classical continued
fraction expansions. In this much studied case, one defines θm = 1/(x + m), for
m a positive integer and x ∈ [0, 1]; and for a subset B ⊂ N, one considers the
IFS {θm |m ∈ B} and seeks estimates on the Hausdorff dimension of the invariant
set C = C(B) for this IFS. This problem has previously been considered by many
authors. See [4], [6], [7], [18], [20], [22], [21], [25], [26], and [19]. In this case, (1.1)
becomes

(Ls,kv)(x) =
∑
m∈B

( 1

x+m

)2s

v
( 1

x+m

)
, 0 ≤ x ≤ 1,

and one seeks a value s ≥ 0 for which λs := r(Ls,k) = 1. Table 3.1 in Section 3.2
gives upper and lower bounds for the value s such that λs = 1 for various sets
B. Jenkinson and Pollicott [26] use a completely different method and obtain,
when |B| is small, high accuracy estimates for dimH(C(B)), in which successive
approximations converge at a super-exponential rate. It is less clear (see [25]) how
well the approximation scheme in [26] or [25] works when |B| is moderately large or

when different real analytic functions θ̂j : [0, 1] → [0, 1] are used. Here, in the one
dimensional case, we present an alternative approach with much wider applicability
that only requires the maps in the IFS to be C3. As an illustration, we consider in
Section 3.3 perturbations of the IFS for the middle thirds Cantor set for which the
corresponding contraction maps are C3, but not C4.

In Section 4, we consider the computation of the Hausdorff dimension of some
invariant sets arising for complex continued fractions. Suppose that B is a subset
of I1 = {m + ni |m ∈ N, n ∈ Z}, and for each b ∈ B, define θb(z) = (z + b)−1.
Note that θb maps Ḡ = {z ∈ C | |z − 1/2| ≤ 1/2} into itself. We are interested in
the Hausdorff dimension of the invariant set C = C(B) for the IFS {θb | b ∈ B}.
This is a two dimensional problem and we allow the possibility that B is infinite.
In general (contrast work in [26] and [25]), it does not seem possible in this case
to replace Ls,k, k ≥ 2, by an operator Λs acting on a Banach space of analytic
functions of one complex variable and satisfying r(Λs) = r(Ls,k). Instead, we work
in C2(Ḡ) and apply our methods to obtain rigorous upper and lower bounds for the
Hausdorff dimension dimH(C(B)) for several examples. The case B = I1 has been
of particular interest and is one motivation for this paper. In [16], Gardner and
Mauldin proved that d := dimH(C(I1)) < 2, in [38], Mauldin and Urbanski proved
that d ≤ 1.885, and in [48], Priyadarshi proved that d ≥ 1.78. In Section 4.2, we
prove that 1.85550 ≤ d ≤ 1.85589.

The square matrices As and Bs mentioned above and described in more detail
in Section 3 have nonnegative entries and satisfy r(As) ≤ λs ≤ r(Bs). To apply
standard numerical methods, it is useful to know that all eigenvalues µ 6= r(As)
of As satisfy |µ| < r(As) and that r(As) has algebraic multiplicity one and that
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corresponding results hold for r(Bs). Such results are proved in Section 8 in the
one dimensional case when the mesh size, h, is sufficiently small, and a similar
argument can be used in the two dimensional case. Note that this result does not
follow from the standard theory of nonnegative matrices, since As and Bs typically
have zero columns and are not primitive. We also prove that r(As) ≤ r(Bs) ≤
(1 + C1h

2)r(As), where the constant C1 can be explicitly estimated. In Section 9,
we prove that the map s 7→ λs is log convex and strictly decreasing; and the same
result is proved for s 7→ r(Ms), where Ms is a naturally defined matrix such that
As ≤Ms ≤ Bs.

Although many of the key results in the paper are described above, the paper
is long and an outline summarizing the sections may be helpful. In Section 2,
we recall the definition of Hausdorff dimension and present some mathematical
preliminaries. In Sections 3 and 4, we present the details of our approximation
scheme for Hausdorff dimension, explain the crucial role played by estimates on
derivatives of order ≤ 2 of vs, and give the aforementioned estimates for Hausdorff
dimension. We emphasize that this is a feasibility study. We have limited the
accuracy of our approximations to what is easily found using the standard precision
of Matlab and have run only a limited number of examples, using mesh sizes that
allow the programs to run fairly quickly. In addition, we have not attempted to
exploit the special features of our problems, such as the fact that our matrices are
sparse. Thus, it is clear that one could write a more efficient code that would also
speed up the computations. However, the Matlab programs we have developed are
available on the web at www.math.rutgers.edu/~falk/hausdorff/codes.html,
and we hope other researchers will run other examples of interest to them.

The theory underlying the work in Sections 3 and 4 is deferred to Sections 5–9.
In Section 5 we describe some results concerning existence of Cm positive eigen-
functions for a class of positive (in the sense of order-preserving) linear operators.
We remark that Theorem 5.1 in Section 5 was only proved in [46] for finite IFS’s.
As a result, some care is needed in dealing with infinite IFS’s: see Theorem 5.2
and Corollary 5.3. In Section 6, we derive explicit bounds on the derivatives of
the eigenfunction vs of Ls in the one-dimensional case and in Section 7, we derive
explicit bounds on the derivatives of eigenfunctions of operators in which the map-
pings θβ are given by Möbius transformations which map a given bounded open
subset H of C := R2 into H. In Section 8, we verify some spectral properties of the
approximating matrices which justify standard numerical algorithms for computing
their spectral radii. Finally, in Section 9, we show the log convexity of the spectral
radius r(Ls), which we exploit in our numerical approximation scheme.

2. Preliminaries

We recall the definition of the Hausdorff dimension, dimH(K), of a subset K ⊂
RN . To do so, we first define for a given s ≥ 0 and each set K ⊂ RN ,

Hs
δ (K) = inf{

∑
i

|Ui|s : {Ui} is a δ cover of K},

where |U | denotes the diameter of U and a countable collection {Ui} of subsets of
RN is a δ-cover of K ⊂ RN if K ⊂ ∪iUi and 0 < |Ui| < δ. We then define the



6 RICHARD S. FALK AND ROGER D. NUSSBAUM

s-dimensional Hausdorff measure

Hs(K) = lim
δ→0+

Hs
δ (K).

Finally, we define the Hausdorff dimension of K, dimH(K), as

dimH(K) = inf{s : Hs(K) = 0}.

We now state the main result connecting Hausdorff dimension to the spectral
radius of the map defined by (1.1). To do so, we first define the concept of an
infinitesimal similitude. Let (S, d) be a compact, perfect metric space. If θ : S → S,
then θ is an infinitesimal similitude at t ∈ S if for any sequences (sk)k and (tk)k
with sk 6= tk for k ≥ 1 and sk → t, tk → t, the limit

lim
k→∞

d(θ(sk), θ(tk)

d(sk, tk)
=: (Dθ)(t)

exists and is independent of the particular sequences (sk)k and (tk)k. Furthermore,
θ is an infinitesimal similitude on S if θ is an infinitesimal similitude at t for all
t ∈ S.

This concept generalizes the concept of affine linear similitudes, which are affine
linear contraction maps θ satisfying for all x, y ∈ Rn

d(θ(x), θ(y)) = cd(x, y), c < 1.

In particular, the examples discussed in this paper, such as maps of the form θ(x) =
1/(x+m), with m a positive integer, are infinitesimal similitudes. More generally, if
S is a compact subset of R1 and θ : S → S extends to a C1 map defined on an open
neighborhood of S in R1, then θ is an infinitesimal similitude. If S is a compact
subset of R2 := C and θ : S → S extends to an analytic or conjugate analytic map
defined on an open neighborhood of S in C, θ is an infinitesimal similitude.

Theorem 2.1. (Theorem 1.2 of [47].) Let θi : S → S for 1 ≤ i ≤ N be infinitesimal
similitudes and assume that the map t 7→ (Dθi)(t) is a strictly positive Hölder
continuous function on S. Assume that θi is a Lipschitz map with Lipschitz constant
ci ≤ c < 1 and let C denote the unique, compact, nonempty invariant set such that

C = ∪Ni=1θi(C).

Further, assume that θi satisfy

θi(C) ∩ θj(C) = ∅, for 1 ≤ i, j ≤ N. i 6= j

and are one-to-one on C. Then the Hausdorff dimension of C is given by the unique
σ0 such that r(Lσ0

) = 1.

3. Examples in one dimension

3.1. Continued fraction Cantor sets. We first consider the problem of comput-
ing the Hausdorff dimension of some Cantor sets arising from continued fraction
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expansions. More precisely, given any number 0 < x < 1, we can consider its
continued fraction expansion

x = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a1, a2, a3, . . . ∈ N. We then consider the Cantor set E[m1,...,mp], of all points
in [0, 1] where we restrict the coefficients ai to the values m1, . . . ,mp. A number of
papers (e.g., [6], [7], [18], [20], [22], [26]) have considered this problem in the case of
the set E1,2, consisting of all points in [0, 1] for which each ai has the value 1 or 2.
In [26], a method is presented that computes this dimension to 25 decimal places.
Computations are also presented in that paper and in [25] for other choices of the
values m1, . . . ,mp. In [4], the Hausdorff dimension of the Cantor set E2,4,6,8,10 is
computed to three decimal places (0.517).

Corresponding to the choices of mi, we associate contraction maps θm(x) =
1/(x+m). A key fact is that the Cantor sets we consider can be generated as limit
points of sequences of these contraction maps. For example, the set E1.2 can be
generated using the maps θ1(x) = 1/(x + 1) and θ2(x) = 1/(x + 2) as the set of
limit points of sequences θm1

. . . θmn(0), for m1,m2, . . . ∈ {1, 2}.

For v ∈ C[0, 1], we define

(3.1) (Lsv)(x) =

p∑
j=1

∣∣∣θ′mj (x)
∣∣∣sv(θmj (x)).

Our computations are based on the following result, which we shall prove in subse-
quent sections.

Theorem 3.1. For all s > 0, Ls has a unique strictly positive eigenvector vs with
Lsvs = λsvs, where λs > 0 and λs = r(Ls), the spectral radius of Ls. Further-
more, the map s 7→ λs is strictly decreasing and continuous, and for all p > 0,
(−1)pD(p)vs(x) > 0 for all x ∈ [0, 1] and

(3.2) |D(p)vs(x)| ≤ (2s)(2s+ 1) · · · (2s+ p− 1)(γ−p)vs(x),

where γ = minjmj. Finally, the Hausdorff dimension of the Cantor set generated
from the maps θm1 , . . ., θmp is the unique value of s with λs = 1.

Note that it follows easily from (3.2) when p = 1 and x1, x2 ∈ [0, 1] , that

(3.3) vs(x2) ≤ vs(x1) exp(2s|x2 − x1|/γ).

To see this, write

log
vs(x2)

vs(x1)
= log vs(x2)− log vs(x1) =

∫ x2

x1

d

dx
log vs(x) dx =

∫ x2

x1

v′s(x)

vs(x)
dx,

apply the bound in (3.2), and exponentiate the result.

To obtain approximations of the dimension of the Cantor sets described in this
section, we first approximate a function f ∈ C2[0, 1] by a continuous, piecewise
linear function defined on a mesh of interval size h on [0, 1]. More specifically, we
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approximate f(x), xk ≤ x ≤ xk+1 by its piecewise linear interpolant f I(x) given
by

f I(x) =
xk+1 − x

h
f(xk) +

x− xk
h

f(xk+1), xk ≤ x ≤ xk+1,

where the mesh points xk satisfy 0 = x0 < x1, · · · < xN = 1, with xk+1 − xk =
h = 1/N . The goal is to reduce the infinite dimensional eigenvalue problem to a
finite dimensional one. Standard results for the error in linear interpolation on an
interval [a, b] assert that

f I(x)− f(x) =
1

2
(b− x)(x− a)f ′′(ξ)

for some ξ ∈ [a, b]. If xrj ≤ θmj (x) ≤ xrj+1, we get

vIs (θmj (x)) =
[xrj+1 − θmj (x)]

h
vs(xrj ) +

[θmj (x)− xrj ]
h

vs(xrj+1).

We can also use the properties in Theorem 3.1 to bound the interpolation error.
Letting f(x) = vs(x), we obtain from Theorem 3.1 that

0 < v′′s (θmj (x)) ≤ 2s(2s+ 1)γ−2vs(θmj (x)).

Using the interpolation error estimate and (3.3), we get for xrj ≤ θmj (x) ≤ xrj+1,

0 < vIs (θmj (x))− vs(θmj (x))

≤ [xrj+1 − θmj (x)][θmj (x)− xrj ]s(2s+ 1)γ−2 max
[xrj ,xrj+1]

vs(ξ).

≤ [xrj+1 − θmj (x)][θmj (x)− xrj ]s(2s+ 1)γ−2 exp(2sh/γ) vIs (θmj (x)),

since the point at which the maximum occurs is within h of either of the two
endpoints of the subinterval.

Using this estimate, we have precise upper and lower bounds on the error in the
interval [xrj , xrj+1] that only depend on the function values of vs at xrj and xrj+1.
Letting

errj(x) = [xrj+1 − θmj (x)][θmj (x)− xrj ]s(2s+ 1)γ−2 exp(2sh/γ),

we have for each mesh point xk, with xrj ≤ θmj (xk) ≤ xrj+1,

[1− errj(xk)]vIs (θmj (xk)) ≤ vs(θmj (xk)) ≤ vIs (θmj (xk)).

Since for each mesh point xk, r(Ls)vs(xk) = (Lsvs)(xk), we can use (3.1) and
the above result to to see that

r(Ls)vs(xk) = Lsvs(xk) =

p∑
j=1

∣∣∣θ′mj (xk)
∣∣∣svs(θmj (xk))

≤
p∑
j=1

∣∣∣θ′mj (xk)
∣∣∣svIs (θmj (xk))

and

r(Ls)vs(xk) ≥
p∑
j=1

∣∣∣θ′mj (xk)
∣∣∣s[1− errj(xk)]vIs (θmj (xk)).
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Let ws be a vector with (ws)k = vs(xk), k = 0, . . . N . Define (N + 1) × (N + 1)
matrices Bs and As by

(Bsws)k =

p∑
j=1

∣∣∣θ′mj (xk)
∣∣∣swIs(θmj (xk)),

(Asws)k =

p∑
j=1

∣∣∣θ′mj (xk)
∣∣∣s[1− errj(xk)]wIs(θmj (xk)),

where, if xrj ≤ θmj (x) ≤ xrj+1, we define

wIs(θmj (x)) =
[xrj+1 − θmj (x)]

h
(ws)rj +

[θmj (x)− xrj ]
h

(ws)rj+1.

Note that all of the entries of Bs will be nonnegative and since errj(x) = O(h2),
this is true for As as well, provided h is sufficiently small.

Since vs(xk) > 0 for k = 0, . . . , N , we can apply the following result about
nonnegative matrices to see that

r(As) ≤ r(Ls) ≤ r(Bs).
Lemma 3.2. Let M be an (N + 1)× (N + 1) matrix with non-negative entries and
w an N + 1 vector with strictly positive components.

If (Mw)k ≥ λwk, k = 0, . . . N, then r(M) ≥ λ,
If (Mw)k ≤ λwk, k = 0, . . . N, then r(M) ≤ λ.

Since this result is crucial to our approximation scheme, we supply the proof
below to keep our presentation self-contained. Note, however, that Lemma 3.2 is
actually a special case of much more general results concerning order-preserving,
homogeneous cone mappings: see Lemma 2.2 in [34] and Theorem 2.2 in [36]. If we
let D denote the positive diagonal (N + 1)× (N + 1) matrix with diagonal entries
wj , 1 ≤ j ≤ N + 1, r(M) = r(D−1MD); and Lemma 3.2 can also be obtained by
applying Theorem 1.1 on page 24 of [41] to D−1MD.

Proof. If (Mw)k ≥ λwk, k = 0, . . . N , it easily follows that (Mnw)k ≥ λnwk and
so ‖Mnw‖∞ ≥ λn‖w‖∞. Let e be vector with all ei = 1. Then

‖Mn‖∞ = ‖Mne‖∞ ≥ ‖Mnw‖∞/‖w‖∞ ≥ λn.
Hence,

r(M) = lim
n→∞

‖Mn‖1/n∞ ≥ λ.

If (Mw)k ≤ λwk, k = 0, . . . N , it easily follows that (Mnw)k ≤ λnwk. Let k be
chosen so that ‖Mn‖∞ =

∑
j(M

n)k,j . Since [r(M)]n = r(Mn) ≤ ‖Mn‖∞,

min
j
wj [r(M)]n ≤ min

j
wj
∑
j

(Mn)k,j ≤
∑
j

(Mn)k,jwj = (Mnw)k ≤ λnwk.

So,
min
j
wj ≤ [λ/r(M)]nwk.

If r(M) > λ, then letting n → ∞, we get that minj wj ≤ 0, which contradicts the
fact that all wj > 0. Hence, r(M) ≤ λ. �
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As described in Section 1, if s∗ denotes the unique value of s such that r(Ls∗) =
λs∗ = 1, then s∗ is the Hausdorff dimension of the set E[m1,...,mp]. If we can find a
number s1 such that r(Bs1) ≤ 1, then r(Ls1) ≤ r(Bs1) ≤ 1, and we can conclude
that s∗ ≤ s1. Analogously, if we can find a number s2 such that r(As2) ≥ 1, then
r(Ls2) ≥ r(As2) ≥ 1, and we can conclude that s∗ ≥ s2. By choosing the mesh
sufficiently fine, we can make s1 − s2 small, providing a good estimate for s∗.

We can also reduce the number of computations by first iterating the maps θmi
to produce a smaller initial domain that we need to approximate. For example,
if we seek the Hausdorff dimension of the set E1,2, since θ1([0, 1]) = [1/2, 1] and
θ2([0, 1]) = [1/3, 1/2], the maps θ1 and θ2 map [1/3, 1] 7→ [1/3, 1], so we can re-
strict the problem to this subinterval. Further iterating, we see that θ1([1/3, 1]) =
[1/2, 3/4] and θ2([1/3, 1]) = [1/3, 3/7]. Hence the maps θ1 and θ2 map [1/3, 3/7] ∪
[1/2, 3/4] to itself and we can further restrict the problem to this domain.

3.2. Continued fraction Cantor sets – numerical results. In this section, we
report in Table 3.1 the results of the application of the algorithm described above
to the computation of the Hausdorff dimension of a sample of continued fraction
Cantor sets. Where the true value was known to sufficient accuracy, it is not hard
to check that the rate of convergence as h is refined is O(h2). Although the theory
developed above does not apply to higher order piecewise polynomial approxima-
tion, since one cannot guarantee that the approximate matrices have nonnegative
entries, we also report in Table 3.2 and Table 3.3 the results of higher order piece-
wise polynomial approximation to demonstrate the promise of this approach. In
this case, we only provide the results for Bs, which does not contain any corrections
for the interpolation error. In a future paper we hope to prove that rigorous upper
and lower bounds for the Hausdorff dimension can also be obtained when higher
order piecewise polynomial approximations are used.

The errors are computed based on the results reported in [26]. For the last
five entries, we do not have independent results for the true solution correct to a
sufficient number of decimal places to compute the error.

In the computations shown using higher order piecewise polynomials, since the
number of unknowns for a continuous, piecewise polynomial of degree k on N uni-
formly spaced subintervals of width h is given by kN + 1, to get a fair comparison,
we have adjusted the mesh sizes so that each computation involves the same number
of unknowns. For this problem, the eigenfunction vs is smooth and the computa-
tions show a dramatic increase in the accuracy of the approximation as the degree
of the approximating piecewise polynomial is increased.

3.3. An example with less regularity. For 0 ≤ λ ≤ 1, we consider the maps

(3.4) θ1(x) =
1

3 + 2λ
(x+ λx7/2), θ2(x) =

1

3 + 2λ
(x+ λx7/2) +

2 + λ

3 + 2λ
,

which map the unit interval to itself. Both these maps ∈ C3([0, 1], but /∈ C4([0, 1].
We note that because of the lack of regularity, the methods of [26] and [25] cannot
be applied. When λ = 0, these maps become

θ1(x) =
x

3
, θ2(x) =

x

3
+

2

3
,
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Table 3.1. Computation of Hausdorff dimension s of some con-
tinued fraction Cantor sets.

Set h lower s upper s lower err upper err

E[1,2] .0001 0.531280505099895 0.531280506539767 1.18e-09 2.63e-10

.00005 0.531280505981423 0.531280506343388 2.96e-10 6.62e-11

E[1,3] .0001 0.454489076859422 0.454489077843624 8.02e-10 1.82e-10

.00005 0.454489077459035 0.454489077707546 2.03e-10 4.57e-11

E[1,4] .0001 0.411182724095752 0.411182724934834 6.79e-10 1.60e-10
.00005 0.411182724603313 0.411182724815117 1.71e-10 4.03e-11

E[2,3] .0001 0.337436780744847 0.337436780851139 6.12e-11 4.51e-11
.00005 0.337436780790228 0.337436780817793 1.58e-11 1.17e-11

E[2,4] .0001 0.306312767993699 0.306312768092506 5.91e-11 3.97e-11

.00005 0.306312768039239 0.306312768061760 1.35e-11 8.98e-12

E[3,4] .0001 0.263737482885901 0.263737482913807 1.15e-11 1.64e-11
.00005 0.263737482894486 0.263737482901574 2.94e-12 4.15e-12

E[10,11] .0002 0.146921235390446 0.146921235393309 3.37e-13 2.53e-12
.00005 0.146921235390764 0.146921235390925 1.95e-14 1.42e-13

E[100,10000] .0004 0.052246592638657 0.052246592638662 1.88e-15 3.12e-15
.0001 0.052246592638659 0.052246592638659 1.25e-16 1.25e-16

E[2,4,6,8,10] .0001 0.517357030830725 0.517357030987649
.00005 0.517357030911231 0.517357030949266

E[1,. . . ,10] .0001 0.925737589218857 0.925737591547918
.00005 0.925737590664670 0.925737591246997

E[1,3, 5, . . . , 33] .0001 0.770516007582087 0.770516008987138

.00005 0.770516008433225 0.770516008784885

E[2, 4, 6, . . . , 34] .0001 0.633471970121772 0.633471970288076

.00005 0.633471970211609 0.633471970252711

E[1, . . . ,34] .0001 0.980419623378987 0.980419625624112
.00005 0.980419624765058 0.980419625326256

Table 3.2. Computation of Hausdorff dimension s of E[1,2] using
higher order piecewise polynomials.

degree h s error

1 .01 0.531282991861209 2.49 e-06

2 .02 0.531280509905739 3.63 e-09
4 .04 0.531280506277708 5.03 e-13

5 .05 0.531280506277197 7.99 e-15

and the corresponding Cantor set has Hausdorff dimension ln 2/ ln 3
≈ 0.630929753571458.

Our computations, shown in Table 3.4, are based on the following result, which
we shall prove in subsequent sections.

Theorem 3.3. Let

(Lsv)(x) =

2∑
j=1

|θ′j(x)|sv(θj(x)),

where θ1 and θ2 are given by (3.4). For all s > 0, Ls has a unique (up to nor-
malization) strictly positive C2 eigenvector vs with Lsvs = λsvs, where λs > 0 and
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Table 3.3. Computation of Hausdorff dimension s of E[2,4,6,8,10]
using piecewise cubic polynomials.

h s

0.1 0.517357031893604
.05 0.517357031040156

.02 0.517357030941730

.01 0.517357030937108
.005 0.517357030937029

.002 0.517357030937018

.001 0.517357030937018

λs = r(Ls), the spectral radius of Ls. Furthermore, the map s 7→ λs is strictly
decreasing and continuous, and for all x1, x2 ∈ [0, 1], we have the estimate

0 <
D2vs(x)

vs(x)
≤ s2[C1(λ)]2

(6 + 4λ

4− 3λ

)
+ s

(6 + 4λ)2

(4− 3λ)(8 + 11λ)

[
C2(λ) + C1(λ)M0(λ)

(6 + 4λ)

(4− 3λ)

]
,

where C1, C2, and M0 are defined by (6.6), (6.23), and (6.14), respectively. Finally,
the Hausdorff dimension of the Cantor set generated from the maps θ1 and θ2 is
the unique value of s with λs = r(Ls) = 1.

Table 3.4. Computation of Hausdorff dimension s of less regular examples.

λ h lower s upper s upper s - lower s
0.0 .0001 0.630929753571458 0.630929753571458 0
0.25 .0001 0.691029102085966 0.691029110502743 8.4168e− 09
0.5 .0001 0.733474587362570 0.733474622222681 3.4860e− 08
0.75 .0001 0.767207161950980 0.767207292955634 1.3100e− 07
1.0 .0001 0.796727161816835 0.796727861914653 7.0010e− 07

4. Examples in two dimensions

4.1. The problems. Let H = {(x, y) ∈ R2 : (x−1/2)2+y2 ≤ 1/4, y ≥ 0}. Writing
z = x+ iy, we can consider H as a subset of the complex plane.

Let CR(H) denote the Banach space of real-valued, continuous functions f :
H → R in the sup norm. Let I1 = {b = m+ ni : m ∈ N, n ∈ Z} and for b ∈ I1 and
z ∈ C, let θb(z) = 1/(z + b). If D = {z ∈ C : |z − 1/2| ≤ 1/2}, it is known that
for b ∈ I1, θb(D) ⊂ D and θb1(D \ {0}) ∩ θb2(D \ {0}) = ∅ for b1, b2 ∈ I1, b1 6= b2.
Clearly, θb(D) ⊂ D \ {0} for b ∈ I1. If we identify H with {z ∈ D : Im(z) ≥ 0},
and if b ∈ I1 and Im(b) ≥ 0, θb(H) ⊂ {z ∈ D : Im(z) ≤ 0}. Hence 1/(z + b) ∈ H if
z ∈ H, b ∈ I1, and Im(b) ≥ 0. If z ∈ H, b ∈ I1, and Im(b) < 0, one can show that
θb(z) ∈ {z ∈ D : Im(z) > 0}.
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Let CR(D) denote the Banach space of real-valued, continuous functions v : D →
R and let B denote a subset of I1. If B is a finite set and s ≥ 0, one can define a
bounded linear map Ls : CR(D)→ CR(D) by

(4.1) (Lsv)(z) =
∑
b∈B

∣∣∣ d
dz
θb(z)

∣∣∣sv(θb(z)) =
∑
b∈B

v(θb(z))

|z + b|2s
.

If B is infinite, one can prove (see Section 5 of [42]) that if, for some s > 0, the
infinite series

∑
b∈B[1/|z + b|2s] converges for some z ∈ D, then it converges for all

z ∈ D and z 7→ [1/|z + b|2s] is a continuous function on D. It then follows with
the aid of Dini’s theorem that Ls given by (4.1) defines a bounded linear map of
CR(D)→ CR(D).

If we define σ = σ(B) := inf{s > 0 | ∃z ∈ D such that
∑
b∈B[1/|z + b|2s] < ∞},

it follows from the above remarks that for all s > σ(B), Ls defined by (4.1) gives a
bounded linear map of CR(D)→ CR(D). If s = σ, it may or may not happen that∑
b∈B[1/|z + b|2s] < ∞ for some z ∈ D. In any event, it is not hard to prove that

if s > 1,
∑
b∈B[1/|z + b|2s] <∞ for all z ∈ D.

Our computational results are based on the following theorems, which are special
cases of results which we shall prove in subsequent sections of the paper.

Theorem 4.1. Let B be a subset of I1, and for s > σ(B) = σ, let Ls : CR(D) →
CR(D) be defined by (4.1). For each s > σ(B), there exists a unique (to within
scalar multiples) strictly positive Lipschitz eigenvector vs of Ls, i.e., Lsvs = λsvs,
where λs > 0 and λs = r(Ls), the spectral radius of Ls defined by r(Ls) :=
limk→∞ ‖Lks‖1/k. If B̄ := {b̄ | b ∈ B}, then vs(z̄) = vs(z) for all z ∈ D. If B is
finite, vs(x, y) is C∞ on D and x 7→ vx(x, y) is decreasing for (x, y) ∈ D.

If B ⊂ I1, let B∞ = {ω = (b1, . . . , bk, . . .) | bj ∈ B ∀j ≥ 1}. Given z ∈ D and
ω(b1, . . . , bk, . . .) ∈ B∞, one can prove that limk→∞(θb1 ◦θb2 ◦· · ·◦θbk)(z) := π(ω) ∈
D exists and is independent of z. Define K = {π(ω) |ω ∈ B∞}. It is not hard to
prove that K = ∪b∈Bθb(K). In general K is not compact, but if B is finite, K is
compact and is the unique compact, nonempty set K such that K = ∪b∈Bθb(K).
We shall call K the invariant set associated to B.

Theorem 4.2. Let B be a subset of I1 and let K be the invariant set associated to
B. The Hausdorff dimension s∗ of K is given by s∗ = inf{s > 0 | r(Ls) = λs < 1}
and r(Ls∗) = 1 if B is finite or Ls∗ is defined. The map s 7→ λs, s > 1, is a
continuous, strictly decreasing function for s > σ(B).

In all examples which we shall consider, Ls is a bounded linear map of CR(D)→
CR(D) for s = s∗ and r(Ls∗) = 1.

Theorems 4.1 and 4.2 essentially reduce the problem of estimating the Hausdorff
dimension of the invariant set K for B ∈ I1 to the problem of estimating the value
of s for which r(Ls) = 1. If B̄ = B and if we use the fact that vs(z̄) = vs(z) for
z ∈ H, we find that

(4.2) λsvs(z) =
∑

b∈B,|b|≤R
Im(b)≥0

1

|z + b|2s
vs(1/(z̄ + b̄))
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+
∑

b∈B,|b|≤R
Im(b)<0

1

|z + b|2s
vs(1/(z + b)) +

∑
b∈B,|b|>R

1

|z + b|2s
vs(1/(z + b)).

If B = I1, it was stated in [38] that the Hausdorff dimension of the invariant
set K is ≤ 1.885 and in [48], it was shown that the Hausdorff dimension of the
set K is ≥ 1.78. We shall give much sharper estimates below. We shall also
give estimates for the Hausdorff dimension of the invariant set of B ⊂ I1, for
some other choices of B, e.g., B = I2 := {b = m + ni : m ∈ N, n ∈ N ∪ 0} and
B = I3 := {b = m+ ni : m ∈ {1, 2}}, n ∈ {0,±1,±2}}.

4.2. Numerical Method. For an integer N > 0, we define a mesh domain Dh ⊃
D, consisting of squares of sides h = 1/N . Dh is chosen to have the property that
if (x, y) ∈ D, then the four corners of the mesh square of side h containing (x, y)
are mesh points in Dh. Although we could simply choose Dh to be the rectangle
[0, 1]× [0, 1/2], that choice would add unknowns we do not use. We also note that
in the case B = I3, there is a smaller domain E ⊂ D such that θb(E) ⊂ E \{0} and
although we have not done so, we could have reduced the size of the approximate
problem by using a mesh domain Eh ⊃ E.

Figure 4.1. Domain D and mesh domain Dh

.

We then approximate the function vs by a piecewise bilinear function defined
on the mesh Dh so that we can approximate the infinite dimensional eigenvalue
problem by a finite dimensional one. In order to obtain a finite dimensional problem,
we also need to restrict the range of b to the set |b| ≤ R for a suitably chosen value
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of R for which the error in restricting the sum can be given a precise bound which
is sufficiently small.

More precisely, our goal is to again define matrices As and Bs such that

r(As) ≤ r(Ls) ≤ r(Bs), s > 1.

We then use the same procedure as for the one-dimensional problems. If s∗ denotes
the unique value of s such that r(Ls∗) = λs∗ = 1, then s∗ is the Hausdorff dimension
of the set K. If we can find a number s1 such that r(Bs1) ≤ 1, then r(Ls1) ≤
r(Bs1) ≤ 1, and we can conclude that s∗ ≤ s1. Analogously, if we can find a
number s2 such that r(As2) ≥ 1, then r(Ls2) ≥ r(As2) ≥ 1, and we can conclude
that s∗ ≥ s2. By choosing the mesh sufficiently fine, we can make s1 − s2 small,
providing a good estimate for s∗.

We next describe how to construct the matrices As and Bs, once we have defined
the mesh Dh. To do this, we use the following results (proved in Section 7).

vs(z1) ≤ vs(z2) exp(
√

5s|z1 − z2|), z1, z2 ∈ D,(4.3)

− s

4γ2(s+ 1)
vs(x, y) ≤ Dxxvs(x, y) ≤ 2s(2s+ 1)

γ2
vs(x, y),(4.4)

−2s

γ2
vs(x, y) ≤ Dyyvs(x, y) ≤ 2s(2s+ 1)

4γ2
vs(x, y).(4.5)

Here we suppose that vs(z) is as in (4.2) and that Re(b) ≥ γ > 0 for all v ∈ B.

We also use some standard results about bilinear interpolation. On the mesh
square

Rk,l = {(x, y) : xk ≤ x ≤ xk+1, yl ≤ y ≤ yl+1},
where xk+1 − xk = yl+1 − yl = h, the bilinear interpolant f I(x, y) of a function
f(x, y) is given by:

f I(x, y) =
[xk+1 − x

h

][yl+1 − y
h

]
f(xk, yl) +

[x− xk
h

][yl+1 − y
h

]
f(xk+1, yl)

+
[xk+1 − x

h

][y − yl
h

]
f(xk, yl+1) +

[x− xk
h

][y − yl
h

]
f(xk+1, yl+1).

The error in bilinear interpolation satisfies for all (x, y) ∈ Rk,l and some points
(ak, bl) and (ck, dl) ∈ Rk,l,

f I(x, y)− f(x, y) = 1/2)
[
(xk+1 − x)(x− xk)(Dxxf)(ak, bl)

+ (yl+1 − y)(y − yl)(Dyyf)(ck, dl)
]
.

For z = x + iy, let f(x, y) = vs(θb(z)). Further let zk,l = xk + iyl. If (x̃, ỹ) =
(Re θb(z), Im θb(z)) ∈ Rk,l, (which we will sometimes abbreviate by θb(z) ∈ Rk,l),
we get

vIs (θb(z)) =
[xk+1 − x̃

h

][yl+1 − ỹ
h

]
vs(zk,l) +

[ x̃− xk
h

][yl+1 − ỹ
h

]
vs(zk+1,l)

+
[xk+1 − x̃

h

][ ỹ − yl
h

]
vs(zk,l+1) +

[ x̃− xk
h

][ ỹ − yl
h

]
vs(zk+1,l+1).
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Defining
Ψb(z) = 1/(z̄ + b̄),

we have an analogous formula for vIs (Ψb(z)), with (x̃, ỹ) = (Re Ψb(z), Im Ψb(z)).

We next use inequalities (4.3), (4.4), and (4.5) to obtain bounds on the interpo-
lation error. By (4.4) and (4.5), we get for θb(z) = x̃+ iỹ where (x̃, ỹ) ∈ Rk,l,

−
[ s

8γ2(s+ 1)
+

s

γ2

]
([xk+1 − x̃][x̃− xk]vs(ak, bl) + [yl+1 − ỹ][ỹ − yl]vs(ck, dl))

≤ vIs (θb(z))− vs(θb(z))

≤ s(2s+ 1)

γ2
([xk+1 − x̃][x̃− xk]vs(ak, bl) + [yl+1 − ỹ][ỹ − yl]vs(ck, dl)) .

Applying (4.3), we then obtain

−
[ s

8γ2(s+ 1)
+
s

γ2

]
([xk+1 − x̃][x̃− xk] + [yl+1 − ỹ][ỹ − yl]) exp(

√
10sh)vIs (θb(z))

≤ vIs (θb(z))− vs(θb(z))

≤ s(2s+ 1)

γ2
([xk+1 − x̃][x̃− xk] + [yl+1 − ỹ][ỹ − yl]) exp(

√
10sh)vIs (θb(z)).

since any point in Rk,l is within
√

2h of each of the four corners of the square Rk,l.
An analogous result holds for vs(Ψb(z)).

Using this estimate, we have precise upper and lower bounds on the error in the
mesh square Rk,l that only depend on the function values of vs at the four corners
of the square and the value of b. Letting

err1
b(θb(z)) =

(
[xk+1 − x̃][x̃− xk] + [yl+1 − ỹ][ỹ − yl]

)s(2s+ 1)

γ2
exp(
√

10sh),

err2
b(θb(z)) =

(
[xk+1 − x̃][x̃− xk] + [yl+1 − ỹ][ỹ − yl]

) s
γ2

[9 + 8s

8 + 8s

]
exp(
√

10sh),

(where again θb(z) = x̃ + iỹ), we have for each mesh point zi,j = xi + iyj , with
θb(zi,j) ∈ Rk,l,

[1− err1
b(zi,j)]v

I
s (θb(zi,j)) ≤ vs(θb(zi,j)) ≤ [1 + err2

b(zi,j)]v
I
s (θb(zi,j)).

Again, the analogous result holds for vs(Ψb(z)). Before using this result as in the
one dimensional examples to find upper and lower matrices that can be used to find
upper and lower bounds on the Hausdorff dimension of the set K, we must first
deal with the final expression in (4.2) where the sum is taken over |b| > R.

Lemma 4.3. For s > 1, we have∑
b∈I1,|b|>R

1

|z + b|2s
vs(θb(z)) ≤ exp

( 2s√
R2 −R

)( R

R− 1

)s
·
[( 1

2s− 1

)( 1

R− 1

)2s−1

+
(π

2

)( 1

s− 1

)( 1

R−
√

2

)2s−2
]
vs(0).

∑
b∈I2,|b|>R

1

|z + b|2s
vs(θb(z)) ≤ exp

( 2s√
R2 −R

)( R

R− 1

)s
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·
[( 1

2s− 1

)( 1

R− 1

)2s−1

+
(π

4

)( 1

s− 1

)( 1

R−
√

2

)2s−2
]
vs(0).

Proof. Using (4.3), we have

vs(θb(z)) ≤ exp(2s|θb(z)|)vs(0).

Now for z = x+ iy ∈ D and b = m+ in ∈ I1, we have

min
(x−1/2)2+y2≤1/4

(x+m)2 + (y + n)2 ≥ min
0≤x≤1

(x+m)2 + min
|y|≤1/2

(y + n)2

≥ m2 + (|n| − 1/2)2 ≥ m2 + n2 − |n|.
Hence, for z ∈ D,

1

|z + b|2
=

1

(x+m)2 + (y + n)2
≤ 1

m2 + n2 − |n|
.

Also, it is easy to check that if m2 + n2 ≥ R2 > 1,

1

m2 + n2 − |n|
≤ R

R− 1

1

m2 + n2
≤ 1

R2 −R
.

Hence, for m2 + n2 ≥ R2 > 1 and z ∈ D,

exp(2s|θb(z)|) ≤ exp
( 2s√

m2 + n2 − |n|

)
≤ exp

( 2s√
R2 −R

)
.

It follows that∑
b∈I1,|b|>R

1

|z + b|2s
exp(2sθb(z))

≤ exp
( 2s√

R2 −R

)( R

R− 1

)s ∑
b∈I1,|b|>R

( 1

m2 + n2

)s
.

Now for n = 0 and m ≥ R,∑
m≥R

1

m2s
≤
∫ ∞
R−1

1

r2s
ds =

1

2s− 1

( 1

R− 1

)2s−1

.

For b = m+ in ∈ I1 with m ≥ 1, n ≥ 1, and |b| ≥ R, let

B(m,n) = {(ξ, η) : m ≤ ξ ≤ m+ 1, n ≤ η ≤ n+ 1}.
Then for (u, v) ∈ B(m,n),

1

(u− 1)2 + (v − 1)2
≥ 1

m2 + n2
.

Also,

(u− 1)2 + (v − 1)2 ≥ (m− 1)2 + (n− 1)2 = m2 + n2 − 2(m+ n) + 2

≥ m2 + n2 − 2
√

2
√
m2 + n2 + 2 = (

√
m2 + n2 −

√
2)2 ≥ (R−

√
2)2 ≡ R2

1.

Hence,∑
m≥1,n≥1
m2+n2>R2

( 1

m2 + n2

)s
≤

∑
m≥1,n≥1
m2+n2>R2

∫∫
B(m,n)

( 1

(u− 1)2 + (v − 1)2

)s
du dv
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≤
∫∫

u≥0,v≥0
u2+v2≥R2

1

( 1

u2 + v2

)s
du dv =

π

2

∫ ∞
R1

1

r2s
r dr =

π

2

r2−2s

2− 2s

∣∣∣∞
R1

=
π

2

1

2s− 2

1

R2s−2
1

=
π

4

1

s− 1

(
1

R−
√

2

)2s−2

.

A similar argument shows that

(4.6)
∑

m≥1,n≤−1
m2+n2>R2

( 1

m2 + n2

)s
≤ π

4

1

s− 1

( 1

R−
√

2

)2s−2

.

Combining these estimates, we obtain∑
b∈I1,|b|>R

1

|z + b|2s
exp(2sθb(z)) ≤ exp

( 2s√
R2 −R

)( R

R− 1

)s
·
[

1

2s− 1

( 1

R− 1

)2s−1

+
π

2

1

s− 1

( 1

R−
√

2

)2s−2
]

=: cR,s.

and a similar estimate for the sum over I2, where the factor π/2 is replaced by π/4,
since we no longer include the bound in (4.6). The lemma follows immediately. �

For s = 1.85, evaluating the above expression gives 0.000796 for R = 100,
0.000236 for R = 200, and 0.000117 for R = 300. For s = 1.60, the corresponding
expression for the set I2 gives 0.005582 for R = 100, 0.002347 for R = 200, and
0.001427 for R = 300.

To use these results, we proceed for the finite sum analogously to Section 3 to
get matrices As and Bs. To account for the terms where |b| > R, we note that for
the lower matrix As, we can simply drop all terms where |b| > R, while for the
upper matrix Bs, we add to the operator a term of the form cR,sv(0) so that we
are now approximating the operator

(L0
sv)(z) =

∑
b∈B,|b|≤R

∣∣∣ d
dz
θb(z)

∣∣∣sv(θb(z)) + cR,sv(0) =
∑

b∈B,|b|≤R

v(θb(z))

|z + b|2s
+ cR,sv(0),

where cR,s is one of the constants in Lemma 4.3, depending on whether we are
interested in I1 or I2.

5. Existence of Cm positive eigenvectors

In this section we shall describe some results concerning existence of Cm positive
eigenvectors for a class of positive (in the sense of order-preserving) linear opera-
tors. We shall later indicate how one can often obtain explicit bounds on partial
derivatives of the positive eigenvectors. As noted above, such estimates play a cru-
cial role in our numerical method and therefore in obtaining rigorous estimates of
Hausdorff dimension for invariant sets associated with iterated function systems.

The methods we shall describe can also be applied to the important case of graph
directed iterated function systems, but for simplicity we shall restrict our attention
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Table 4.1. Computation of Hausdorff dimension s for several val-
ues of h and R (rounded to 5 decimal places).

Set h R lower s upper s

I1 .02 100 1.85459 1.85609
I1 .01 100 1.85507 1.85595
I1 .005 100 1.85518 1.85591
I1 .02 200 1.85503 1.85604
I1 .01 200 1.85550 1.85589
I1 .02 300 1.85513 1.85603

I2 .02 100 1.60240 1.60677
I2 .01 100 1.60270 1.60668
I2 .005 100 1.60277 1.60666
I2 .02 200 1.60444 1.60654
I2 .01 200 1.60474 1.60644
I2 .02 300 1.60504 1.60650

I3 .02 1.53705 1.53790
I3 .01 1.53754 1.53774
I3 .005 1.53765 1.53770

in this paper to a class of linear operators arising in the iterated function system
case.

The starting point of our analysis is Theorem 5.5 in [46], which we now describe
for a simple case. If H is a bounded open subset of Rn and m is a positive integer,
Cm(H̄) will denote the set of real-valued Cm maps f : H → R such that all partial
derivatives Dαf with |α| ≤ m extend continuously to H̄. (Here α = (α1, . . . , αn)
is a multi-index with αj ≥ 0 for all j, Dj = ∂/∂xj for 1 ≤ j ≤ n and Dα =
Dα1

1 · · ·Dαn
n ), Cm(H̄) is a real Banach space with ‖f‖ = sup{|Dαf(x)| : x ∈

H, |α| ≤ m}.

We say that H is mildly regular if there exist η > 0 and M ≥ 1 such that
whenever x, y ∈ H and ‖x − y‖ < η, there exists a Lipschitz map ψ : [0, 1] → H
with ψ(0) = x, ψ(1) = y and

(5.1)

∫ 1

0

‖ψ′(t)‖ dt ≤M‖x− y‖.

(Here ‖ · ‖ denotes any fixed norm on Rn. If the norm is changed, (5.1) remains
valid, but with a different constant M .)

Let B denote a finite index set with |B| = p. For β ∈ B, we assume

(H5.1) bβ ∈ Cm(H̄) for all β ∈ B and bβ > 0 for all x ∈ H̄ and all β ∈ B.
(H5.2) θβ : H → H is a Cm map for all β ∈ B, i.e., if θβ(x) = (θβ1

(x), . . . θβn(x)),

then θβk ∈ Cm(H̄) for all β ∈ B and for 1 ≤ k ≤ n.

In (H5.1) and (H5.2), we always assume that m ≥ 1.
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We define Λ : Cm(H̄)→ Cm(H̄) by

(5.2) (Λ(f))(x) =
∑
β∈B

bβ(x)f(θβ(x)).

For integers µ ≥ 1, we define Bµ := {ω = (j1, . . . jµ) | jk ∈ B for 1 ≤ k ≤ µ}. For
ω = (j1, . . . jµ) ∈ Bµ, we define ωµ = ω, ωµ−1 = (j1, . . . jµ−1), ωµ−2 = (j1, . . . jµ−2),
· · · , ω1 = j1. We define

(5.3) θωµ−k(x) = (θjµ−k ◦ θjµ−k−1
◦ · · · ◦ θj1)(x),

so

(5.4) θω(x) := θωµ(x) = (θjµ ◦ θjµ−1
◦ · · · ◦ θj1)(x).

For ω ∈ Bµ, we define bω(x) inductively by bω(x) = bj1(x) if ω = (j1) ∈ B := B1,
bω(x) = bj2(θj1(x))bj1(x) if ω = (j1, j2) ∈ B2 and, for ω = (j1, j2, . . . jµ) ∈ Bµ,

(5.5) bω(x) = bjµ(θωjµ−1
(x))bωµ−1

(x).

If is not hard to show (see [42], [4], [46]) that

(5.6) (Λµ(f))(x) =
∑
ω∈Bµ

bω(x)f(θω(x)).

It is easy to prove (see [46]) that Λ defines a bounded linear map of Cm(H̄) →
Cm(H̄). We shall let Λ̂ denote the complexification of Λ and let σ(Λ̂) denote the

spectrum of Λ̂. We shall define σ(Λ) = σ(Λ̂). If all the functions bj and θj are CN ,
then we can consider Λ as a bounded linear operator Λm : Cm(H̄) → Cm(H̄) for
1 ≤ m ≤ N , but one should note that in general σ(Λm) will depend on m.

To obtain a useful theory for Λ, we need a further crucial assumption. For a
given norm ‖ · ‖ on Rn, we assume

(H5.3) There exists a positive integer µ and a constant κ < 1 such that for all
ω ∈ Bµ and all x, y ∈ H,

(5.7) ‖θω(x)− θω(y)‖ ≤ κ‖x− y‖.

If we define c = κ1/µ < 1, it follows from (H5.3) that there exists a constant M
such that for all ω ∈ Bν and all ν ≥ 1,

(5.8) ‖θω(x)− θω(y)‖ ≤Mcν‖x− y‖ ∀x, y ∈ H.

If the norm ‖ · ‖ in (5.8) is replaced by a different norm | · |, (5.8) remains valid,
although with a different constant M . This in turn implies that (H5.3) will also be
valid with the same constant κ, with | · | replacing ‖ · ‖ and with a possibly different
integer µ.

The following theorem is a special case of Theorem 5.5 in [46].
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Theorem 5.1. Let H be a bounded open subset of Rn and assume that H is mildly
regular. Let X = Cm(H̄) and assume that (H5.1), (H5.2), and (H5.3) are satisfied
(where m ≥ 1 in (H5.1) and (H5.2)) and that Λ : X → X is given by (5.2). If
Y = C(H̄), the Banach space of real-valued continuous functions f : H̄ → R and
L : Y → Y is defined by (5.2), then r(L) = r(Λ) > 0, where r(L) denotes the
spectral radius of L and r(Λ) denotes the spectral radius of Λ. If ρ(Λ) denotes
the essential spectral radius of Λ (see [36],[42],[47], and [44]), then ρ(Λ) ≤ cmr(Λ)
where c = κ1/µ is as in (5.8). There exists v ∈ X such that v(x) > 0 for all x ∈ H̄
and

(5.9) Λ(v) = rv, r = r(Λ).

There exists r1 < r such that if ξ ∈ σ(Λ) \ {r}, then |ξ| ≤ r1; and r = r(Λ) is an
isolated point of σ(Λ) and an eigenvalue of algebraic multiplicity 1. If u ∈ X and
u(x) > 0∀x ∈ H̄, there exists a real number su > 0 such that

(5.10) lim
k→∞

(
1

r
Λ

)k
(u) = suv,

where the convergence in (5.10) is in the Cm topology on X.

Remark 5.1. If α is a multi-index with |α| ≤ m, where m ≥ 1 is as in (H5.1) and
(H5.2), it follows from (5.10) that

(5.11) lim
k→∞

(
1

r

)k
DαΛk(u) = suD

αv,

and

(5.12) lim
k→∞

(
1

r

)k
Λk(u) = suv,

where the convergence in (5.11) and (5.12) is in the topology of C(H̄), the Banach
space of continuous functions f : H̄ → R.

It follows from (5.11) and (5.12) that for any multi-index α with |α| ≤ m,

(5.13) lim
k→∞

(DαΛk(u))(x)

Λk(u)(x)
=

(Dα(v))(x)

v(x)
,

where the convergence in (5.13) is uniform in x ∈ H̄. If we choose u(x) = 1 for all
x ∈ H̄, it follows from (5.6) that for all multi-indices α with |α| ≤ m, we have

(5.14) lim
k→∞

Dα(
∑
ω∈Bk bω(x))∑

ω∈Bk bω(x)
=
Dαv(x)

v(x)
,

where the convergence in (5.14) is uniform in x ∈ H̄. We shall use (5.14) in our
further work to obtain explicit bounds on sup

{
|Dαv(x)|/v(x) : x ∈ H̄

}
.

We shall also need information about positive eigenvectors when the index set
B is countable, but not finite. Direct analogues of Theorem 5.5 in [46] exist when
B is countable, but not finite, but such analogues were not stated or proved in
[46]. Thus we shall make do with less precise theorems concerning strictly positive
Lipschitz eigenvectors.
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Given a metric space (S, d), a countable index set B, and continuous maps θβ :
S → S and bβ : S → R for β ∈ B, we shall say that the families {θβ : β ∈ B}
and {bβ : β ∈ B} are uniformly Lipschitz if there exist constants M1 and M2,
independent of β ∈ B, such that

d(θβ(x), θβ(y)) ≤M1d(x, y), ∀x, y ∈ S and ∀β ∈ B
and

|bβ(x)− bβ(y)| ≤M2d(x, y), ∀x, y ∈ S and ∀β ∈ B.
If S is a subset of RN , we shall take the metric d to be given by some norm ‖ · ‖ on
Rn.

For (S, d) a compact metric space, C(S) will denote the real Banach space of
continuous functions f : S → R with ‖f‖ := sup{|f(x)| : x ∈ S}. If bβ : S → (0,∞)
is a positive, continuous function for all β ∈ B, we shall assume that

(5.15)
∑
β∈B

bβ(x) = b(x) <∞

for all x ∈ S and x 7→ b(x) is continuous on S. If Dk, k ≥ 1 is any increasing
sequence of finite subsets Dk ⊂ B with ∪k≥1Dk = B, Dini’s theorem implies that

lim
k→∞

∑
β∈Dk

bβ(x) = b(x)

and that the convergence is uniform in x ∈ S. Using this fact, one can define for
f ∈ C(S), L(f) ∈ C(S) by

(5.16) (Lf)(x) =
∑
β∈B

bβ(x)f(θβ(x)).

Here, one is assuming that (5.15) holds with x 7→ b(x) continuous on S and that
θβ : S → S is continuous for all β ∈ S, and under these assumptions, L : C(S) →
C(S) is a bounded linear operator. Also, one can see that for integers µ ≥ 1 that

(5.17) (Lµf)(x) =
∑
ω∈Bµ

bω(x)f(θω(x)),

where bω and θω are as defined in equations (5.4) and (5.5).

If M is a fixed positive constant, we define a closed cone K(M ;S) ⊂ C(S) by

(5.18) K(M ;S)

= {f ∈ C(S) | f(x) ≥ 0 ∀x ∈ S and f(y) ≤ f(x) exp(Md(x, y))∀x, y ∈ S}.

Our next theorem follows easily from Lemma 5.3 in Section 5 of [47] and Theorem
5.3 on page 86 of [42].

Theorem 5.2. Let H ⊂ Rn be a bounded, open subset of Rn and let the metric on
H̄ be given by a fixed norm ‖ · ‖ on Rn. Let B be a countable (not finite) index set
and assume that θβ : H̄ → H̄ and bβ : H̄ → (0,∞), β ∈ B, are continuous functions
and that {θβ |β ∈ B} and {bβ |β ∈ B} are uniformly Lipschitz. Assume that for
all x ∈ H̄,

∑
β∈B bβ(x) := b(x) < ∞ and that x 7→ b(x) is continuous. Assume

that there exists an integer µ ≥ 1 and a constant κ < 1 such that for all ω ∈ Bµ,
Lip(θω) ≤ κ. Assume also that the family of maps {x 7→ log(bβ(x)) : β ∈ B} is
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uniformly Lipschitz. Then there exists a constant A such that for all integers ν ≥ 1
and for all ω ∈ Bν
(5.19) Lip(θω) ≤ Acν , c = κ1/µ.

Also, for each integer ν ≥ 1, the family of maps {x 7→ log(bω(x)) : ω ∈ Bν} is
uniformly Lipschitz, so there exists M0 > 0 such that bω ∈ K(M0; H̄)(see (5.17)
with S := H̄) for all ω ∈ Bµ. If L : C(H̄) → C(H̄) is given by (5.16) with
H̄ := S, L has a strictly positive eigenvector v ∈ K(M0/(1−κ); H̄) with eigenvalue
r = r(L) > 0. The algebraic multiplicity of the eigenvalue r equals one, and r is
the only eigenvalue of L of modulus r.

Proof. In the following proof, we shall not distinguish in notation between L and its
complexification L̃, but of course σ(L) refers to the spectrum of L̃ and eigenvalues

refer to (possibly complex) eigenvalues of L̃. We leave to the reader the proof of
(5.17) and of the fact that for any ν ≥ 1, the set of maps {x 7→ log(bω(x)) : ω ∈ Bν}
is uniformly Lipschitz. If we start with (5.17), rather than (5.16), Lemma 5.3 in
[47] shows that Lµ has a strictly positive eigenvector v ∈ K(M0/(1 − κ); H̄) with
eigenvalue r = r(Lµ) = [r(L)]µ > 0. If we apply Theorem 5.3, p. 86 in [42] to Lµ,
we find that rµ is the only eigenvalue of Lµ of modulus rµ and rµ has algebraic
multiplicity one as an eigenvalue of Lµ. Since [(1/r)L]µv = v and w = (1/r)L(v)
is also a nonzero fixed point of [(1/r)L]µ, it must be that [(1/r)L]v = λv for some
λ 6= 0. We must have λ > 0, because (1/r)L(v)(x) > 0 for all x ∈ H̄ and v(x) > 0
for all x ∈ H̄. This implies that λµv = v and λ > 0; so λ = 1 and v is a strictly
positive eigenvector of L with eigenvalue r(L). If we now apply Theorem 5.3 of [42]
to L, we find that r(L) is an eigenvalue of L of algebraic multiplicity one and r(L)
is the only eigenvalue of L of modulus r(L). Note, however, that σ(L) may well
contain elements of modulus r(L). �

Corollary 5.3. Let assumptions and notation be as in Theorem 5.2. Assume in
addition that H is convex and that bβ ∈ C1(H̄) for all β ∈ B. For each integer
ν ≥ 1, define

Mν = sup{‖∇bω(x)‖
bω(x)

: ω ∈ Bν , x ∈ H̄},

where we use the Euclidean norm on Rn. Define M∞ by M∞ = lim infν→∞Mν . If
v is a strictly positive eigenvector of L in (5.15), v ∈ K(M∞, H̄).

Proof. If x, y ∈ H, then because we assume that H is convex, xt := (1−t)x+ty ∈ H
for 0 ≤ t ≤ 1. (We use t as a superscript here.) If ω ∈ Bν , ν ≥ 1, it follows that

| log(bω(y)− log(bω(x)| =
∣∣∣∣∫ 1

0

d

dt
log bω(xt) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∇bω · (y − x)

bω(xt)
dt

∣∣∣∣ ≤ ∫ 1

0

‖∇bω‖‖y − x‖
bω(xt)

dt.

This shows that x 7→ log bω(x) is Lipschitz on H̄ with Lipschitz constant ≤Mν , so
bω ∈ K(Mν ; H̄) for ω ∈ Bν . If Acν < 1, the argument used in the proof of Lemma
5.3 in [47] now shows that v ∈ K(Mν/(1 − Acν); H̄). Since limν→∞Acν = 0, we
conclude that v ∈ K(M∞; H̄). �
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Remark 5.2. Under slightly stronger assumptions, the bounded linear operator
L : C(S) → C(S) := Y induces a bounded linear operator Λ : X → X, where X
denotes the Banach space of Lipschitz functions f : S → R. One can prove that
r(Λ) = r(L) and ρ(Λ) < r(Λ), where ρ(Λ) denotes the essential spectral radius of
Λ. See [47] and Section 5 of [42] for details.

In some applications, the domain H in Theorem 5.1 or Theorem 5.2 possesses
some symmetry or symmetries, and this is often reflected in a corresponding sym-
metry of the unique, normalized positive eigenvector v in these theorems.

Corollary 5.4. Let assumptions and notation be as in Theorem 5.1 or Theorem 5.2
and let v denote the unique normalized strictly positive eigenvector of L in Theo-
rem 5.1 or Theorem 5.2. Assume that π : H̄ → H̄ is a Cm map, m ≥ 1, such that
π(π(x)) = x for all x ∈ H̄. Assume that there exists a one-one map β 7→ β̄ of B
onto B such that π(θβ̄(x)) = θβ(π(x)) and bβ(π(x)) = bβ̄(x) for all β ∈ B and all

x ∈ H̄. It then follows that v(π(x)) = v(x) for all x ∈ H̄.

Proof. Define w(x) = v(π(x)), so w(θβ(x)) = v(π(θβ(x))) for all β ∈ B and x ∈ H̄.
If λ := r(Λ), it follow that

λv(π(x)) = λw(x) =
∑
β∈B

bβ(π(x))v(θβ(π(x))) =
∑
β∈B

bβ̄(π(x))v(θβ̄(π(x))).

Since bβ̄(π(x)) = bβ(x) and v(θβ̄(π(x))) = v(π(θβ(x))) = w(θβ(x)), we find that

λw(x) =
∑
β∈B

bβ(x)w(θβ(x)) = (Λ(w))(x),

so

w1(x) =
v(x) + w(x)

2
=
v(x) + v(π(x))

2
is a strictly positive eigenvector of Λ with eigenvalue λ and w1(π(x)) = w1(x) for
all x ∈ H̄. By the uniqueness of the strictly positive eigenvector of Λ, there exists
µ > 0 such that v(x) = µw(x) for all x ∈ H̄, which implies that v(π(x)) = v(x) for
all x ∈ H̄. �

Remark 5.3. Suppose that H is a bounded, open mildly regular subset of C = R2

and for all z = x + iy, x̄ = x − iy ∈ H. Define π(z) = z̄ and assume that the
hypotheses of Corollary 5.4 are satisfied, so v(z̄) = v(z) for all z ∈ H. Using this
fact, the original eigenvalue problem can be reduced to an equivalent problem on the
closure of H+, where H+ = {z ∈ H| Im(z) > 0}.

6. Estimates for derivatives of vs: the one dimensional case

Throughout this section, we shall assume that H ⊂ R1 is a bounded, open set
such that H = ∪nj=1(cj , dj), where [cj , dj ] ∩ [ck, dk] = ∅ whenever 1 ≤ j ≤ n,
1 ≤ k ≤ n, and j 6= k. B will denote a finite index set. For β ∈ B and some integer
m ≥ 1, we assume

(H6.1:) For each β ∈ B, bβ ∈ Cm(H̄), θβ ∈ Cm(H̄), bβ(x) > 0 for all x ∈ H̄ and
θβ(H) ⊂ H. There exist an integer µ ≥ 1 and a real number κ < 1 such that
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for all ω ∈ Bµ := {(β1, β2, · · · , βµ) |βj ∈ B for 1 ≤ j ≤ µ} and for all x, y ∈ H̄,
|θω(x)−θω(y)| ≤ κ|x−y|, where θω := θβµ◦θβµ−1◦· · ·◦θβ1 for ω = (β1, β2, · · · , βµ) ∈
Bµ.

As in Section 5, we define Y = C(H̄) and Xm = Cm(H̄). Assuming (H6.1), we
define for s ≥ 0, a bounded linear operator Ls : Y → Y by

(6.1) (Lsf)(x) =
∑
β∈B

[bβ(x)]sf(θβ(x)).

As in Section 5, Ls(Xm) ⊂ Xm and Ls|Xm defines a bounded linear map of Xm to
Xm which we denote by Λs. Theorem 5.1 is now directly applicable (replace bβ(x) in
Theorem 5.1 by bβ(x)s) and yields information about σ(Λs). In particular, r(Ls) =
r(Λs) > 0 and there exists a unique (to with normalization) strictly positive, Cm

eigenvector vs of Λs with eigenvalue r(Λs).

If ω = (β1, β2, . . . , βp) ∈ Bp, recall that we define bω(x) by

bω(x) = bβp(θβp−1
◦ θβp−2

◦ · · · ◦ θβ1
(x)) · · · bβ3

((θβ2
◦ θβ1

)(x))bβ2
((θβ1

(x))bβ1
(x),

and

(6.2) (Lpsf)(x) =
∑
ω∈Bp

[bω(x)]sf(θω(x)).

Notice that Lps is of the same form as Ls and Theorem 5.1 is also directly ap-
plicable to Lps . Since vs is also an eigenvector of Lps , we could also work with (6.2)
instead of (6.1): Bp is an index set corresponding to B, bω, ω ∈ Bp, corresponds to
bβ , β ∈ B, and θω, ω ∈ Bp, corresponds to θβ , β ∈ B. In our subsequent work in
this section, we shall start from (6.1), but the theorems we shall obtain translate
directly to the case of using (6.2); and indeed it is sometimes desirable to start from
(6.2) for some p > 1.

If m is as in (H6.1) and k is a positive integer with k ≤ m, we define D = d/dx, so
(Df)(x) = f ′(x) and (Dkf)(x) = f (k)(x). We are interested in obtaining estimates
for

(6.3) sup{|Dkvs(x)|/vs(x) : x ∈ H̄}.

Hypothesis (H6.1) implies that there exist constants M > 0 and c = κ1/µ, (so
c < 1), such that for all x, y ∈ H̄, for all integers ν ≥ 1 and all ω ∈ Bν ,

(6.4) |θω(x)− θω(y)| ≤Mcν |x− y|.

It follows that if we define ε0 = 1, and for ν ≥ 1,

(6.5) εν := sup
{
|θω(x)− θω(y)|/|x− y| : ω ∈ Bν and x, y ∈ H,x 6= y

}
,

we have that εν ≤Mcν and
∑∞
ν=1 εν <∞.

We define constants C1 and C1(s) for s > 0 by

(6.6) C1 = sup
{ |Dbβ(x)|

bβ(x)
: β ∈ B, x ∈ H

}
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and

C1(s) = sup
{ |Dbβ(x)s|

bβ(x)s
: β ∈ B, x ∈ H

}
.

A calculation shows that for all ω ∈ Bν , ν ≥ 1,

(6.7)
|Dbω(x)s|
bω(x)s

= s
Dbω(x)

bω(x)
,

so

(6.8) C1(s) = sC1, for s > 0.

We begin by considering (6.3) for the case k = 1. In our applications, we shall
only need the case s > 0, so we shall restrict our attention to this case.

Theorem 6.1. Assume that (H6.1) is satisfied. If C1 and εν , ν ≥ 1 are as in (6.6)
and (6.5) respectively, then, for s > 0,

(6.9) sup
{ |Dvs(x)|

vs(x)
: x ∈ H̄

}
≤ C1s

( ∞∑
ν=0

εν

)
.

If δ ∈ {0, 1} and (−1)δ(Dbω)(x)/bω(x)) ≤ 0 for all ω ∈ Bν , all ν ≥ 1 and all x ∈ H̄,
then (−1)δDvs(x) ≤ 0 for all x ∈ H̄ and all s > 0.

Proof. For a fixed ω = (j1, j2, . . . , jν) ∈ Bν , for notational convenience define
ξk(x) = (θjk ◦ θjk−1

◦ · · · ◦ θj1)(x) and ξ0(x) = x for all x ∈ H̄, so

bω(x) = bjν (ξν−1(x))bjν−1(ξν−2(x)) · · · bj1(ξ0(x)).

By the chain rule and product rule for differentiation, we find

(6.10) Dbω(x) = bω(x)

[
ν−1∑
k=0

b′jk+1
(ξk(x))ξ′k(x)

bjk+1
(ξk(x))

]
.

It follows from (6.10) that

(6.11)
|Dbω(x)|
bω(x)

≤
ν−1∑
k=0

C1εk ≤ C1

∞∑
k=0

εk.

Using (6.7), we see that

(6.12)
|D(bω(x)s)|
bω(x)s

≤ sC1

∞∑
k=0

εk,

and it follows that

|D(
∑
ω∈Bν (bω(x)s)|∑

ω∈Bν (bω(x)s)
≤
∑
ω∈Bν |D(bω(x)s)|∑

ω∈Bν bω(x)s
≤ sC1

∞∑
k=0

εk.

Using Theorem 5.1 and (5.14), we conclude by letting ν →∞ that

(6.13)
|Dvs(x)|
vs(x)

≤ sC1

∞∑
k=0

εk.

The final statement of the theorem follows by a similar argument, using (6.7) and
(5.14). Details are left to the reader. �
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To facilitate the analysis of (6.3) when k = 2, we first prove a lemma.

Lemma 6.2. Assume that (H6.1) is satisfied with m ≥ 2 and define M0 by

(6.14) M0 = sup{|D2θβ(x)| : β ∈ B, x ∈ H̄}.

If ω ∈ Bk, then

(6.15) |D2θω(x)| ≤M0

k−1∑
j=0

ε2jεk−j−1.

Proof. Recall, for a fixed ω = (β1, β2, · · · , βk) ∈ Bk, we have defined ξ0(x) = x and
ξp(x), 1 ≤ p ≤ k by

ξp(x) = (θβp ◦ θβp−1
◦ · · · ◦ θβ1

)(x).

Hence,

(6.16) ξ′k(x) =

k∏
j=1

θ′βj (ξj−1(x)).

By differentiating (6.16), we find that

(6.17) ξ′′k (x) =

k−1∑
j=0

(θ′′βj+1
(ξj(x))ξ′j(x))

[ k∏
p=1
p6=j+1

θ′βp(ξp−1(x))
]
.

If there exist two distinct integers p and q with 1 ≤ p ≤ k and 1 ≤ q ≤ k such
that θ′βp(ξp−1(x)) = 0 and θ′βq (ξq−1(x)) = 0, (6.17) implies that ξ′′k (x) = 0. If there

exists exactly one integer q with 1 ≤ q ≤ k such that θ′βq (ξq−1(x)) = 0, (6.17)

implies that

(6.18) ξ′′k (x) =
[
θ′′βq (ξq−1(x))ξ′q−1(x)

] [q−1∏
p=1

θ′βp(ξp−1(x))

][
k∏

p=q+1

θ′βp(ξp−1(x))

]
,

where we interpret
∏k
p=q+1 θ

′
βp

(ξp−1(x)) = 1 = ε0 if q = k. It follows from (6.18)

that

(6.19) |ξ′′k (x)| ≤M0εk−qε
2
q−1.

If there does not exist p, 1 ≤ p ≤ k, with θ′βp(ξp−1(x)) = 0, (6.16) implies that

ξ′k(x) 6= 0, and we obtain from (6.17) that
(6.20)

ξ′′k (x) =

k∑
q=1

(θ′′βq (ξq−1(x))ξ′q−1(x))

[
q−1∏
p=1

θ′βp(ξp−1(x))

][
k∏

p=q+1

θ′βp(ξp−1(x))

]
.

Then (6.20) implies that

(6.21) |ξ′′k (x)| ≤
k∑
q=1

M0εk−qε
2
q−1,

which completes the proof. �
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If M and c, 0 < c < 1, are chosen as in (6.4), Lemma 6.2 implies that for all
ω ∈ Bk and k ≥ 2

(6.22) |D2θω(x)| ≤M0Mck−1 +

k−1∑
q=2

M0M
3ck−2cq +M0M

2c2k−2

= M0Mck−1(1 +Mck−1) +M0M
3ck

1− ck−2

1− c
.

Lemma 6.3. Assume that (H6.1) is satisfied with m ≥ 2 and define a constant C2

by

(6.23) C2 = sup
{ |D2bβ(x)|

bβ(x)
: β ∈ B, x ∈ H

}
.

Let C1, C2, and M0 be as in (6.6), (6.23), and (6.14). Then for s > 0, and for
ω ∈ Bν , with ν ≥ 1, we have the estimates

(6.24)
D2(bω(x)s)

bω(x)s
≤ s2C2

1

( ∞∑
k=0

εk

)2

+ s
( ∞∑
k=0

ε2k

)[
C2 + C1M0

( ∞∑
k=0

εk

)]
and

(6.25)
D2(bω(x)s)

bω(x)s
≥ −s

( ∞∑
k=0

ε2k

)[
C2

1 + C2 + C1M0

( ∞∑
k=0

εk

)]
.

Proof. For a fixed ω = (j1, j2, . . . , jν) ∈ Bν , let ξk(x) be as defined in the proof of
Theorem 6.1. A calculation gives

(6.26)
D2(bω(x)s)

bω(x)s
= s(s− 1)

(
D(bω(x))

bω(x)

)2

+ s
D2(bω(x))

bω(x)
.

Using (6.10) we see that

(6.27) D2bω(x) = bω(x)

(
D(bω(x)

bω(x)

)2

+ bω(x)D

(
ν−1∑
k=0

b′jk+1
(ξk(x))ξ′k(x)

bjk+1
(ξk(x))

)
,

which gives

(6.28)
D2(bω(x)s)

bω(x)s
= s2

(
D(bω(x)

bω(x)

)2

+ sD

(
ν−1∑
k=0

b′jk+1
(ξk(x))ξ′k(x)

bjk+1
(ξk(x))

)
:= T1 + T2.

A calculation gives

(6.29) sD

(
ν−1∑
k=0

b′jk+1
(ξk(x))ξ′k(x)

bjk+1
(ξk(x))

)

= s

ν−1∑
k=0

b′′jk+1
(ξk(x))(ξ′k(x))2 + b′jk+1

(ξk(x))ξ′′k (x)

bjk+1
(ξk(x))

− s
ν−1∑
k=0

[b′jk+1
(ξk(x))ξ′k(x)]2

[bjk+1
(ξk(x))]2

.

It follows that

(6.30) T2 ≤ s

(
ν−1∑
k=0

C2ε
2
k +

ν−1∑
k=0

C1|ξ′′k (x)|

)
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and

(6.31) T2 ≥ −s

(
ν−1∑
k=0

C2ε
2
k +

ν−1∑
k=0

C1|ξ′′k (x)|+
ν−1∑
k=0

C2
1ε

2
k

)
.

Lemma 6.2 implies that

(6.32)

ν−1∑
k=0

|ξ′′k (x)| ≤M0

∞∑
k=0

( k∑
q=1

εk−qε
2
q−1

)
= M0

( ∞∑
q=0

ε2q

)( ∞∑
k=0

εk

)
,

so we obtain from (6.30) and (6.31) that

(6.33) T2 ≤ s

(
C2

∞∑
k=0

ε2k + C1M0

( ∞∑
q=0

ε2q

)( ∞∑
k=0

εk

))
and

(6.34) T2 ≥ −s

(
(C2 + C2

1 )
( ∞∑
k=0

ε2k

)
+ C1M0

( ∞∑
q=0

ε2q

)( ∞∑
k=0

εk

))
.

Combining equations (6.28), (6.33), and (6.34) and using (6.11), we obtain for s > 0
and ω = Bν

(6.35)
D2(bω(x)s)

bω(x)s
≤ s2C2

1

( ∞∑
k=0

εk

)2

+ s
( ∞∑
k=0

ε2k

)[
C2 + C1M0

( ∞∑
k=0

εk

)]
and

(6.36)
D2(bω(x)s)

bω(x)s
≥ −s

( ∞∑
k=0

εk

)2
[

(C2 + C2
1 ) + C1M0

( ∞∑
k=0

εk

)]
,

which completes the proof. �

Theorem 6.4. Assume that (H6.1) is satisfied with m ≥ 2, and for s > 0, let vs
denote the strictly positive, normalized Cm eigenvector of Ls in (6.1). For integers
ν ≥ 0, define εν by ε0 = 1 and by (6.5) for ν ≥ 1. In addition, let C1, C2, and M0

be constants given by (6.6), (6.23), and (6.14), respectively. Then for all x ∈ H̄,
we have the following estimates.

D2vs(x)

vs(x)
≤ s2C2

1

( ∞∑
k=0

εk

)2

+ s
( ∞∑
k=0

ε2k

)[
C2 + C1M0

( ∞∑
k=0

εk

)]
and

D2vs(x)

vs(x)
≥ −s

∞∑
k=0

ε2k

[
(C2 + C2

1 ) + C1M0

( ∞∑
k=0

εk

)]
.

Proof. Theorem 6.4 follows immediately from (5.14) and (6.35) and (6.36). �

The estimates given in Theorems 6.1 and 6.4 are somewhat crude. If one has
more information about the coefficients bβ(·) and the maps θβ(·), β ∈ B, one can
obtain much sharper results. An example is provided by the following theorem.
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Theorem 6.5. Assume that (H6.1) is satisfied with m ≥ 2. Assume, also, that
H = (a1, a2) is a bounded open interval in R and that θ′β(u) ≥ 0, θ′′β(u) ≥ 0,

b′β(u) ≥ 0, b′′β(u) ≥ 0, and

(6.37) b′′β(u)bβ(u)− (1− s)[b′β(u)]2 ≥ 0

for all β ∈ B, for all u ∈ H, and for a given real number s. If s > 0 and vs is the
strictly positive Cm eigenvector of Λs, it follows that for all u ∈ H̄
(6.38) Dvs(u) ≥ 0 and D2vs(u) ≥ 0.

If, in addition, there exists a set F ⊂ H̄ (possibly empty) such that for all u ∈ H̄ \F
and all β ∈ B, b′β(u) > 0 and strict inequality holds in (6.37), then for all u ∈ H̄\F ,

(6.39) Dvs(u) > 0 and D2vs(u) > 0.

Proof. For ν ≥ 1, let ω = (j1, j2, · · · , , jν) denote a fixed element of Bν and for
0 ≤ k ≤ ν, let ξk(x) be as defined in the proof of Theorem 6.1. We leave to the
reader the simple proof that ξ′k(x) ≥ 0 and ξ′′k (x) ≥ 0 for all x ∈ H̄ and 0 ≤ k ≤ ν.
Using (6.7) and (6.10), it follows that

(6.40)
D(bω(x)s)

bω(x)s
= s

Dbω(x)

bω(x)
= s

ν−1∑
k=0

b′jk+1
(ξk(x))ξ′k(x)

bjk+1
(ξk(x))

≥ s
b′j−1(x)

bj−1(x)
≥ 0.

Using (5.14) and taking the limit as ν →∞, we conclude that Dvs(x)/vs(x) ≥ 0 for
all x ∈ H̄. If, in addition, there exists a set F as in the statement of Theorem 6.5
and if x /∈ F , it follows that

inf
{
s
b′β(x)

bβ(x)
: β ∈ B

}
:= sδ1(x) > 0,

so (6.40) then implies that

D(bω(x)s)

bω(x)s
≥ sδ1(x).

Again using (5.14) and letting ν → ∞, we conclude that Dvs(x) ≥ sδ1(x) > 0 for
all x ∈ H̄ \ F . Because all terms in the summation in (6.40) are nonnegative, we
conclude that

(6.41) s2

(
Dbω(x)

bω(x)

)2

≥ s2
ν−1∑
k=0

[b′jk+1
(ξk(x))]2[ξ′k(x)]2

[bjk+1
(ξk(x))]2

.

If one replaces s2[Dbω(x)/bω(x)]2 in (6.28) by the lower bound in (6.41) and if one
then uses (6.29) and simplifies, one obtains

(6.42)

D2(bω(x)s)

bω(x)s
≥
ν−1∑
k=0

[sb′′jk+1
(ξk(x))bjk+1

(ξk(x))− (s− s2)b′jk+1
(ξk(x))2][ξ′k(x)]2

[bjk+1
(ξk(x))]2

+ s

ν−1∑
k=0

b′jk+1
(ξk(x))ξ′′k (x)

bjk+1
(ξk(x))

.

If (6.37) is satisfied, one deduces from (6.42) that D2(bω(x)s)/bω(x)s ≥ 0; and
again using (5.14) and letting ν →∞, one obtains that D2vs(x) ≥ 0 for all x ∈ H̄.
If a set F exists and if x /∈ F and one only takes the term k = 0 in the summation
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in (6.42), then because we assume that strict inequality holds in (6.37) for all β ∈ B
and all x /∈ F , we find that there is a number δ2(x; s) > 0 such that

D2(bω(x)s)

bω(x)s
≥ δ2(x; s).

Again, using (5.14) and letting ν →∞, this implies that for x /∈ F ,

D2vs(x)

vs(x)
≥ δ2(x; s) > 0,

which completes the proof. �

Example 3.6: To illustrate the methods of this section, we consider a simple
example which nevertheless has some interest because of a failure of smoothness
which makes techniques in [26] inapplicable. For 0 ≤ λ ≤ 1, define

θ1(x) =
1

3 + 2λ
(x+ λx7/2), θ2(x) = θ1(x) +

2 + λ

3 + 2λ
,

so θj : [0, 1] → [0, 1], θ1(0) = 0, and θ2(1) = 1. For simplicity we suppress the
dependence of θj(x) on λ in our notation. If λ = 0, one obtains the iterated
function system which gives the middle thirds Cantor set. If B = {1, 2} and λ > 0
and ω = (j1, j2, . . . , jν) ∈ Bν , notice that D3θω(x) is defined and Hölder continuous
for all x ∈ [0, 1]; but if j1 = 1, D4θω(x) is not defined. If 0 ≤ λ ≤ 1, one can check
that 0 < θ′j(x) < 1 for 0 ≤ x ≤ 1; and it follows that there exists a unique compact,
nonempty set Jλ ⊂ [0, 1] such that

Jλ = θ1(Jλ) ∪ θ2(Jλ).

Note that J0 is the middle thirds Cantor set.

For λ ∈ [0, 1] fixed, and 0 < s ≤ 1, let X = C2[0, 1] and Y = C[0, 1], and define

b1(x) := b2(x) := b(x) := Dθ1(x) =
1

3 + 2λ
(1 + 7

2λx
5/2).

As in Section 1, define Λs : X → X and Ls : Y → Y by the same formula:

(6.43) (Λs(f))(x) = b(x)s[f(θ1(x)) + f(θ2(x))].

Theorem 5.1 implies that r(Ls) = r(Λs); and it follows, for example, from theorems
in [47] that the Hausdorff dimension of Jλ is the unique value of s, 0 < s ≤ 1, for
which r(Λs) = 1.

If f ∈ Y is a nonnegative function, we have for 0 ≤ λ ≤ 1 that

(Ls(f))(x) ≥
( 1

3 + 2λ

)s
[f(θ1(x)) + f(θ2(x))] ≥

(1

5

)s
[f(θ1(x)) + f(θ2(x))].

If u(x) = 1 for 0 ≤ x ≤ 1, it follows that

Ls(u) ≥
(1

5

)s
(2u),

which implies that r(Ls) ≥ 2(1/5)s. If log denotes the natural logarithm and
0 ≤ s < log(2)/ log(5), it follows that r(Ls) > 1. Thus we restrict attention to
0 ≤ λ ≤ 1 and s ≥ log(2)/ log(5) ≈ .4307. A calculation gives, for 0 < x ≤ 1 that

b′′(x)b(x)− (1− s)[b′(x)]2 = ( 7
2 )( 5

2 )λ{( 3
2 )x1/2 − ( 7

2 )λ[( 3
2 )− ( 5

2 )(1− s)]x3}
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≥ ( 7
2 )λ{( 3

2 )− ( 7
2 )λ[( 3

2 )− ( 5
2 )(1− s)]x3} > 0.

It follows from Theorem 6.5 that Dvs(u) > 0 and D2vs(u) > 0 for 0 < u ≤ 1. If
λ = 0, vs is a constant and r(Ls) = (2/3s), and one obtains the well-known result
that the Hausdorff dimension of the Cantor set is log(2)/ log(3).

It remains to apply Theorems 6.1 and 6.4 in our example. Because Dθj(x) = b(x)
and 0 < b(x) ≤ κ(λ) = (2 + 7λ)/(6 + λ), we can define εν(λ) := εν = κ(λ)ν , where
εν is defined as in (6.5). Because b1(x) = b2(x) = b(x) = (3 + 2λ)−1(1 + ( 7

2 )λx5/2),
to compute C1(λ) = C1 as in (6.6), we need to compute

C1(λ) : = C1 = sup{[( 7
2 )λ( 5

2 )x3/2)][1 + ( 7
2 )λx5/2)]−1 : 0 ≤ x ≤ 1}

= ( 5
2 ) sup{[( 7

2 )λu3][1 + ( 7
2 )λu5]−1 : 0 ≤ u ≤ 1}.

An elementary but tedious calculus argument, which we leave to the reader, yields

(6.44) C1(λ) =

{
[( 5

2 )( 7
2 )λ][1 + ( 7

2 )λ]−1, 0 < λ ≤ 3
7

( 7λ
2 )( 3

7λ )3/5, 3
7 ≤ λ ≤ 1.

It also follows from Theorems 6.1 and 6.5 that for 0 < x ≤ 1,

(6.45) 0 <
Dvs(x)

vs(x)
≤ sC1(λ)

( ∞∑
ν=0

εν

)
= sC1(λ)[1− κ(λ)]−1 = sC1(λ)(6 + 4λ)/(4− 3λ).

If C2 = C2(λ) is as in (6.23), we have to compute

C2 := C2(λ) = sup{[( 7
2 )λ( 5

2 )( 3
2 )x1/2)][1 + ( 7

2 )λx5/2)]−1 : 0 ≤ x ≤ 1}
= ( 5

2 )( 3
2 ) sup{[( 7

2 )λu][1 + ( 7
2 )λu5]−1 : 0 ≤ u ≤ 1}.

A simple calculus exercise yields

(6.46) C2(λ) =

{
[( 15

4 )( 7
2 )λ][1 + ( 7

2 )λ]−1, 0 < λ ≤ 1
14

3( 1
4 )1/5[( 7

2 )λ]4/5, 1
14 ≤ λ ≤ 1.

If we recall the definition of M0, we also obtain from Example 3.6 that

(6.47) M0 = M0(λ) = sup
{ 1

(3 + 2λ)

7

2
λ

5

2
x3/2 : 0 ≤ x ≤ 1

}
=

(35λ)

4

1

(3 + 2λ)
.

If we now refer to Theorem 6.4, we find for 0 < x ≤ 1, .4307 ≤ s , and 0 < λ ≤ 1,
that

(6.48) 0 <
D2vs(x)

vs(x)
≤ s2[C1(λ)]2

(6 + 4λ

4− 3λ

)
+ s

(6 + 4λ)2

(4− 3λ)(8 + 11λ)

[
C2(λ) + C1(λ)M0(λ)

(6 + 4λ)

(4− 3λ)

]
.

As was shown in Section 3 (see Theorem 3.3 and Table 3.4), with the aid of (6.48),
we can obtain rigorous, high accuracy estimates (upper and lower bounds) for the
Hausdorff dimension of Jλ for 0 < λ ≤ 1.
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7. The Case of Möbius Transformations

By working with partial derivatives and using methods like those in Section 6, it
is possible to obtain explicit estimates on partial derivatives of vs(x) in the gener-
ality of Theorem 5.1. However, for reasons of length and in view of the immediate
applications in this paper, we shall not treat the general case here and shall now
specialize to the case that the mappings θβ(·) are given by Möbius transforma-
tions which map a given bounded open subset H of C := R2 into H. Specifically,
throughout this section we shall usually assume:

(H7.1): γ ≥ 1 is a given real number and B is a finite collection of complex numbers
β such that Re(β) ≥ γ for all β ∈ B. For each β ∈ B, θβ(z) := 1/(z + β) for
z ∈ C \ {−β}.

As we note in Remark 7.6, the assumption in (H7.1) that γ ≥ 1 is only a conve-
nience; and the results of this section can be proved under the weaker assumption
that γ > 0.

For γ > 0 we define Gγ ∈ C by

(7.1) Gγ = {z ∈ C : |z − 1/(2γ)| < 1/(2γ)}.
It is easy to check that if w ∈ C and Re(w) > γ, then (1/w) ∈ Gγ . It follows that
if Re(z) > 0, β ∈ C and Re(β) ≥ γ > 0, then θβ(z) ∈ Ḡγ . Let H be a bounded,
open, mildly regular subset of C = R2 such that H ⊃ Gγ and H ⊂ {z | Re(z) > 0},
and let B denote a finite set of complex numbers such that Re(β) ≥ γ > 0 for all
β ∈ B. We define a bounded linear map Λs : Cm(H̄) → Cm(H̄), where m is a
positive integer and s ≥ 0, by

(7.2) (Λs(f))(z) =
∑
β∈B

∣∣∣ d
dz
θβ(z)

∣∣∣sf(θβ(z)) :=
∑
β∈B

1

|z + β|2s
f(θβ(z)).

As in Section 1, Ls : C(H̄)→ C(H̄) is defined by (7.2). We use different letters to
emphasize that σ(Λs) 6= σ(Ls), although r(Λs) = r(Ls).

If all elements of B are real, we can restrict attention to the real line and, as
we shall see, the analysis is much simpler. In this case we abuse notation and take
Gγ = (0, 1/γ) ⊂ R2 and H = (0, a), a ≥ 1/γ. For f ∈ Cm(H̄) and x ∈ H̄, (7.2)
takes the form

(7.3) (Λs(f))(x) =
∑
β∈B

1

(x+ β)2s
f(θβ(x)).

If, for 1 ≤ j ≤ n, Mj =
( aj bj
cj dj

)
is a 2 × 2 matrix with complex entries and

det(Mj) = ajdj−bjcj , define a Möbius transformation ψj(z) = (ajz+bj)/(cjz+dj).
It is well-known that

(7.4) (ψ1 ◦ ψ2 ◦ · · · ◦ ψn)(z) = (Anz +Bn)/(Cnz +Dn),

where

(7.5)

(
An Bn
Cn Dn

)
= M1M2 · · ·Mn.
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If B is a finite set of complex numbers β such that Re(β) ≥ γ > 0 for all β ∈ B,
we define Bν as before by

Bν = {ω = (β1, β2, . . . , βν) |βj ∈ B for 1 ≤ j ≤ ν}

and θω = θβn ◦ θβn−1
· · · θβ1

. Given ω = (β1, β2, . . . , βν) ∈ Bν , we define

(7.6) ω̃ = (βν , βν−1, . . . , β1)

so

(7.7) θω̃ = θβ1
◦ θβ2

· · · θβn .

For Λs as in (7.2) ν ≥ 1, and f ∈ Cm(H̄), recall that

(7.8) (Λνs (f))(z) =
∑
ω∈Bν

∣∣∣dθω(z)

dz

∣∣∣sf(θω(z)) =
∑
ω∈Bν

∣∣∣dθω̃(z)

dz

∣∣∣sf(θω̃(z)).

The following lemma allows us to apply Theorem 5.1 to Λs in (7.2).

Lemma 7.1. (Compare Remark 7.13.) Let β1 and β2 be complex numbers with
Re(βj) ≥ γ ≥ 1 for j = 1, 2. If ψj(z) = 1/(z + βj) for Re(z) ≥ 0 and θ = ψ1 ◦ ψ2,
then for all z, w with Re(z) ≥ 0 and Re(w) ≥ 0,

(7.9) |θ(z)− θ(w)| ≤ (γ2 + 1)−2|z − w|.

Proof. It suffices to prove that |(dθ/dz)(z)| ≤ (γ2 +1)−2 for all z ∈ C with Re(z) ≥
0. Using (7.4) and (7.5) we see that

|(dθ/dz)(z)| = |β1|−2|z + (1/β1) + β2|−2,

so it suffices to prove that |β1|2 |z + (1/β1) + β2|2 ≥ (γ2 + 1)2 for Re(z) ≥ 0. If we
write β1 = u+ iv with u ≥ γ,

Re(z + (1/β1) + β2) ≥ u/(u2 + v2) + γ,

so

|z + (1/β1) + β2|2 ≥ [u/(u2 + v2) + γ]2

and

|β1|2 |z + (1/β1) + β2|2 ≥ (u2 + v2)
[ u2

(u2 + v2)2
+

2uγ

(u2 + v2)
+ γ2

]
=

u2

(u2 + v2)
+ 2uγ + γ2(u2 + v2) = g(u, v).

Because u ≥ γ, g(u, 0) = 1 + 2γ2 + γ4 = (γ2 + 1)2. Using the fact that u ≥ γ ≥ 1,
we also see that for v ≥ 0

∂g(u, v)

∂v
=
−u2(2v)

(u2 + v2)2
+ 2γ2v ≥ 0,

which implies that g(u, v) ≥ g(u, 0) = (γ2 + 1)2 for u ≥ γ and v ≥ 0. Since
g(u,−v) = g(u, v), g(u, v) ≥ (γ2 + 1)2 for v ≤ 0 and u ≥ γ. �

With the aid of Lemma 7.1, the following theorem is an immediate corollary of
Theorem 5.1.
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Theorem 7.2. Assume (H7.1) and let H be a bounded, open mildly regular subset
of {z ∈ C | Re(z) > 0} such that H ⊃ Gγ , where Gγ is defined by (7.1). For a
given positive integer m and for s > 0, let X = Cm(H̄) and Y = C(H̄) and let
Λs : X → X and Ls : Y → Y be given by (7.2). If r(Λs) (respectively, r(Ls)) denote
the spectral radius of Λs (respectively, Ls), we have r(Λs) > 0 and r(Λs) = r(Ls).
If ρ(Λs) denotes the essential spectral radius of Λs,

(7.10) ρ(Λs) ≤ (γ2 + 1)−mr(Λs).

For each s > 0, there exists vs ∈ X such that vs(z) > 0 for all z ∈ H̄ and
Λs(vs) = r(Λs)vs. All the statements of Theorem 5.1 are true in this context
whenever Λ and L in Theorem 5.1 are replaced by Λs and Ls respectively.

In the notation of Theorem 7.2, it follows from (5.14) that for any multi-index
α = (α1, α2) and for z = x+ iy = (x, y)

(7.11) lim
ν→∞

Dα
(∑

ω∈Bν

∣∣∣ ddz θω(z)
∣∣∣s)∑

ω∈Bν

∣∣∣ ddz θω(z)
∣∣∣s =

Dαvs(x, y)

vs(x, y)
,

where the convergence is uniform in (x, y) := z ∈ H̄ and Dα = (∂/∂x)α1(∂/∂y)α2 .

Lemma 7.3. Let βj, j ≥ 1 be a sequence of complex numbers with Re(βj) ≥ γ ≥ 0
for all j. For complex numbers z, define θβj (z) = (z + βj)

−1 and define matrices

Mj =
(

0 1
1 βj

)
. Then for n ≥ 1,

(7.12) M1M2 · · ·Mn =

(
An−1 An
Bn−1 Bn

)
,

where A0 = 0, A1 = 1, B0 = 1, B1 = β1 and for n ≥ 1,

(7.13) An+1 = An−1 + βn+1An and Bn+1 = Bn−1 + βn+1Bn.

Also,

(θβ1
◦ θβ2

· · · θβn)(z) = (An−1z +An)/(Bn−1z +Bn),

and we have

(7.14) Re(Bn/Bn−1) ≥ γ

and

(7.15)
∣∣∣ d
dz

[An−1z +An
Bn−1z +Bn

]∣∣∣s = |Bn−1|−2s|z +Bn/Bn−1|−2s.

Proof. Equation (7.12) follows by induction on n. It is obviously true for n = 1. If
we assume that (7.12) is satisfied for some n ≥ 1, then

M1M2 · · ·MnMn+1 =

(
An−1 An
Bn−1 Bn

)(
0 1
1 βn+1

)
=

(
An An−1 + βn+1An
Bn Bn−1 + βn+1Bn

)
,

which proves (7.12) with An+1 and Bn+1 defined by (7.13). Similarly, we prove
(7.14) by induction on n. The case n = 1 is obvious, Assuming that (7.13) is
satisfied for some n ≥ 1, we obtain from (7.13) that

Bn+1/Bn = Bn−1/Bn + βn+1.
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Because Re(w) ≥ γ, where w := Bn/Bn−1, we see that |1/w − 1/(2γ)| ≤ 1/(2γ)
and Re(1/w) = Re(Bn−1/Bn) ≥ 0, so

Re(Bn+1/Bn) ≥ Re(Bn−1/Bn) + Re(βn+1) ≥ γ.
Hence (7.13) is satisfied for all n ≥ 1. Because det(Mj) = −1 for all j ≥ 1, we get

that det
(An−1 An
Bn−1 Bn

)
= (−1)n, and (7.15) follows. �

Before proceeding further, it will be convenient to establish some elementary
calculus propositions. For (u, v) ∈ R2 \ {(0, 0)} and s > 0, define

G(u, v; s) = (u2 + v2)−s.

Define D1 = (∂/∂u), so Dm
1 = (∂/∂u)m for positive integers m; similarly, let

D2 = (∂/∂v) and Dm
2 = (∂/∂v)m.

Lemma 7.4. For positive integers m, there exist polynomials in u and v with
coefficients depending on s, Pm(u, v; s) and Qm(u, v; s), such that

Dm
1 G(u, v; s) = Pm(u, v; s)G(u, v; s+m), Dm

2 G(u, v; s) = Qm(u, v; s)G(u, v; s+m).

Furthermore, we have P1(u, v; s) = −2su, Q1(u, v; s) = −2sv, and for positive
integers m,

Pm+1(u, v; s) = (u2 + v2)(D1Pm(u, v; s))− 2(s+m)uPm(u, v; s)

and

Qm+1(u, v; s) = (u2 + v2)(D2Qm(u, v; s))− 2(s+m)vQm(u, v; s).

Proof. If m = 1,

D1G(u, v; s) = (−2su)G(u, v; s+ 1), D2G(u, v; s) = (−2sv)(u2 + v2; s+ 1),

so P1(u, v; s) = −2su and Q1(u, v; s) = −2sv.

We now argue by induction and assume we have proved the existence of Pj(u, v; s)
and Qj(u, v; s) for 1 ≤ j ≤ m. It follows that

Dm+1
1 G(u, v; s) = D1[Pm(u, v; s)G(u, v; s+m)]

= [D1Pm(u, v; s)]G(u, v; s+m)] + Pm(u, v; s)[−2(s+m)u]G(u, v; s+m+ 1)

= [(u2 + v2)(D1Pm(u, v; s))− 2(s+m)uPm(u, v; s)]G(u, v; s+m+ 1).

This proves the lemma with

Pm+1(u, v; s) := (u2 + v2)(D1Pm(u, v; s))− 2(s+m)uPm(u, v; s).

An exactly analogous argument, which we leave to the reader, shows that

Qm+1(u, v; s) := (u2 + v2)(D2Qm(u, v; s))− 2(s+m)vQm(u, v; s).

�

An advantage of working with Möbius transformations is that one can easily
obtain tractable formulas for expressions like (θβ1 ◦ θβ2 · · · θβn)(z). Such formulas
allow more precise estimates for the left hand side of (5.14) than we obtained in
Section 6.
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Lemma 7.5. In the notation of Lemma 7.4, for all (u, v) ∈ R2 \ {(0, 0)}, for all
s > 0, and all positive integers m, Pm(u, v; s) = Qm(v, u; s).

Proof. Fix s > 0. We have P1(u, v; s) = Q1(v, u; s) for all (u, v) 6= (0, 0). Arguing
by mathematical induction, assume that for some positive integer m we have proved
that Pm(u, v; s) = Qm(v, u; s) for all (u, v) 6= (0, 0). For a fixed (u, v) 6= (0, 0), we
obtain, by virtue of the recursion formula in Lemma 7.4,

Pm+1(v, u; s) = (u2 + v2) lim
∆v→0

Pm(v + ∆v, u; s)− Pm(v, u; s)

∆v
− 2(s+m)vPm(v, u; s)

= (u2 + v2) lim
∆v→0

Qm(u, v + ∆v; s)−Qm(u, v; s)

∆v
− 2(s+m)vQm(u, v; s)

= Qm+1(u, v; s).

By mathematical induction, we conclude that Pn(u, v; s) = Qn(v, u; s) for all posi-
tive integers n. �

Remark 7.1. By using the recursion formula in Lemma 7.4, one can easily com-
pute Pj(u, v; s) for 1 ≤ j ≤ 4.

P1(u, v; s) = −2su,

P2(u, v; s) = 2s(2s+ 1)u2 − 2sv2,

P3(u, v; s) = −2s(2s+ 1)(2s+ 2)u3 + (2s)(2s+ 2)(3)uv2,

P4(u, v; s) = (2s)(2s+ 2)[(2s+ 1)(2s+ 3)u4 − 6(2s+ 3)u2v2 + 3v4].

By virtue of Lemma 7.5, we also obtain formulas for Qj(v, u; s) = Pj(u, v; s).
Also, Lemmas 7.4 and 7.5 imply that

Dj
1G(u, v; s)

G(u, v; s)
=
Pj(u, v; s)

(u2 + v2)j
,

Dj
2G(u, v; s)

G(u, v; s)
=
Pj(v, u; s)

(u2 + v2)j

and the latter formulas will play a useful role in this section. In particular, for a
given constant γ > 0, we shall need good estimates for

sup
{Dj

kG(u, v; s)

G(u, v; s)
: u ≥ γ, v ∈ R

}
and inf

{Dj
kG(u, v; s)

G(u, v; s)
: u ≥ γ, v ∈ R

}
where k = 1, 2 and 1 ≤ j ≤ 4. Although the arguments used to prove these
estimates are elementary, these results will play a crucial role in our later work.

Lemma 7.6. Let γ > 0 be a given constant and assume that u ≥ γ and v ∈ R. Let
D1 = (∂/∂u) and G(u, v; s) = (u2 + v2)−s, where s > 0. For j ≥ 1 we have

Dj
1G(u, v; s)

G(u, v; s)
=
Pj(u, v; s)

(u2 + v2)j
,

where Pj(u, v; s) is as defined in Remark 7.1; and the following estimates are sat-
isfied.

−2s

γ
≤ D1G(u, v; s)

G(u, v; s)
< 0,
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− s

4γ2(s+ 1)
≤ D2

1G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)

γ2
,

−2s(2s+ 1)(2s+ 2)

γ3
≤ D3

1G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 2)

γ3(s+ 2)2
,

−2s(s+ 1)(2s+ 2)(3)

γ4
≤ D4

1G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)(2s+ 2)(2s+ 3)

γ4
.

Proof. By Remark 7.1,

Dj
1G(u, v; s)

G(u, v; s)
=
Pj(u, v; s)

(u2 + v2)j
,

and Remark 7.1 provides formulas for Pj(u, v; s). It follows that

Dj
1G(u, v; s)

G(u, v; s)
=
−2su

u2 + v2
< 0.

Since
2su

u2 + v2
≤ 2su

u2
≤ 2s

γ
,

we also see that
D1G(u, v; s)

G(u, v; s)
≥ −2s

γ
.

Using Remark 7.1, we see that

D2
1G(u, v; s)

G(u, v; s)
=

2s(2s+ 1)u2 − 2sv2

(u2 + v2)2
,

so
D2

1G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)u2

(u2 + v2)2
.

Since
u2

(u2 + v2)2
≤ u2

u4
≤ 1

γ2
,

we find that
D2

1G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)

γ2
,

If we write v2 = ρu2, we see that

D2
1G(u, v; s)

G(u, v; s)
=

2s(2s+ 1− ρ)

u2(1 + ρ)2
,

and if 0 ≤ ρ ≤ 2s+ 1, we obtain the upper bound given above and a lower bound
of zero. If ρ > 2s+ 1, we see that

D2
1G(u, v; s)

G(u, v; s)
≥ 2s

γ2
inf

{
2s+ 1− ρ
(1 + ρ)2

: ρ > 2s+ 1

}
.

It is a simple calculus exercise to show that

inf

{
2s+ 1− ρ
(1 + ρ)2

: ρ > 2s+ 1

}
= − 1

8(s+ 1)
,

achieved at ρ = 4s + 3; and this gives the lower estimate −s/[4γ2(s + 1)] of the
lemma.



COMPUTATION OF HAUSDORFF DIMENSION 39

Using Remark 7.1 again, we see that

D3
1G(u, v; s)

G(u, v; s)
=

2s(2s+ 2)u[−(2s+ 1)u2 + 3v2]

(u2 + v2)3
.

It follows that

D3
1G(u, v; s)

G(u, v; s)
≥ −2s(2s+ 1)(2s+ 2)

[
u

(u2 + v2)

]3

≥ −2s(2s+ 1)(2s+ 2)

[
1

u

]3

≥ −2s(2s+ 1)(2s+ 2)
1

γ3
.

On the other hand, if we write v2 = ρu2, then

D3
1G(u, v; s)

G(u, v; s)
=

2s(2s+ 2)

u3

[3ρ− (2s+ 1)]

(1 + ρ)3

≤ 2s(2s+ 2)

γ3
sup

{
3ρ− (2s+ 1)

(1 + ρ)3
: ρ ≥ 0

}
.

Once again, a straightforward calculus argument shows that

sup

{
3ρ− (2s+ 1)

(1 + ρ)3
: ρ ≥ 0

}
=

1

(s+ 2)2

and the supremum is achieved at ρ = s + 1. Using this fact, we obtain the upper
estimate of the lemma.

Finally, we obtain from Remark 7.1 that

D4
1G(u, v; s)

G(u, v; s)
=

2s(2s+ 2)[(2s+ 1)(2s+ 3)u4 − 6(2s+ 3)u2v2 + 3v4]

(u2 + v2)4
.

Dropping the negative term in the numerator and observing that 3 ≤ (2s+1)(2s+3)
and u4 + v4 ≤ (u2 + v2)2, we see that

D4
1G(u, v; s)

G(u, v; s)
≤ (2s)(2s+ 1)(2s+ 2)(2s+ 3)(u4 + v4)

(u2 + v2)4

≤ (2s)(2s+ 1)(2s+ 2)(2s+ 3)

(u2 + v2)2
≤ (2s)(2s+ 1)(2s+ 2)(2s+ 3)

γ4
.

On the other hand, because −u4 − v4 ≤ −2u2v2, we obtain that

−D
4
1G(u, v; s)

G(u, v; s)
≤ (2s)(2s+ 2)[−3u4 + 6(2s+ 3)u2v2 − 3v4]

(u2 + v2)4

≤ 3(2s)(2s+ 2)[−2u2v2 + (4s+ 6)u2v2]

(u2 + v2)4

≤ 3(2s)(2s+ 2)[4(s+ 1)(u2 + v2)2/4]

(u2 + v2)4

≤ 3(2s)(2s+ 2)(s+ 1)

(u2 + v2)2
≤ 3(2s)(2s+ 2)(s+ 1)

γ4
,

which gives the lower estimate of Lemma 7.6. �
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The following lemma gives analogous estimates for

Dj
2G(u, v; s)

G(u, v; s)
=
Pj(v, u; s)

(u2 + v2)j
.

Lemma 7.7. Let γ > 0 be a given real number, D2 = (∂/∂v) and for s > 0 and
(u, v) ∈ R2 \ {(0, 0)}, define G(u, v; s) = (u2 + v2)−s, If u ≥ γ and v ∈ R, we have
the following estimates.

|D2G(u, v; s)|
G(u, v; s)

≤ s

γ
,

−2s

γ2
≤ D2

2G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)

4γ2
,

|D3
2G(u, v; s)|
G(u, v; s)

≤ 2s(2s+ 2)

γ3
max

{
25
√

5

72
,

2s+ 1

8

}

−2s(s+ 1)(2s+ 2)(3)

γ4
≤ D4

2G(u, v; s)

G(u, v; s)
≤ 2s(2s+ 1)(2s+ 2)(2s+ 3)

γ4
.

Proof. By Remark 7.1, P1(v, u; s) = −2sv, so

|D2G(u, v; s)|
G(u, v; s)

=
2s|v|
u2 + v2

.

The map w 7→ w/(u2 + w2) has its maximum on [0,∞) at w = u, so (2s|v|/(u2 +
v2) ≤ s/u ≤ s/γ; and we obtain the first inequality in Lemma 7.7. Using Re-
mark 7.1 again, we see that

D2
2G(u, v; s)

G(u, v; s)
=

2s[(2s+ 1)v2 − u2]

(u2 + v2)2
.

It follows that
D2

2G(u, v; s)

G(u, v; s)
= 2s(2s+ 1)

|v|2

(u2 + v2)2
.

The map v 7→ |v|/(u2 + v2) has its maximum at |v| = u, so [|v|/(u2 + v2)]2 ≤
1/(4u2) ≤ 1/(4γ2), and

D2
2G(u, v; s)

G(u, v; s)
=

2s(2s+ 1)

4γ2
.

Similarly, one obtains

D2
2G(u, v; s)

G(u, v; s)
≥ − 2su2

(u2 + v2)2
≥ −2s

u2
≥ −2s

γ2
.

With the aid of Remark 7.1 again, we see that

D3
2G(u, v; s)

G(u, v; s)
= 2s(2s+ 2)v

[−(2s+ 1)v2 + 3u2]

(u2 + v2)3
:= A(u, v).

For a fixed u ≥ γ, v 7→ A(u, v) is an odd function of v, so if α(u) = sup{A(u, v) :
v ∈ R}, −α(u) = inf{A(u, v) : v ∈ R}. If v ≤ 0,

A(u, v) ≤ (2s)(2s+ 1)(2s+ 2)

[
|v|

u2 + v2

]3

≤ (2s)(2s+ 1)(2s+ 2)
[ u

2u2

]3
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≤ (2s)(2s+ 1)(2s+ 2)

8γ3
.

If v > 0,

A(u, v) ≤ (2s)(2s+ 2)(3u2)
v

(u2 + v2)3
.

A calculation shows that v 7→ v/(u2 + v2)3 achieves its maximum for v ≥ 0 at

v = u/
√

5, so for v > 0,

A(u, v) ≤ (2s)(2s+ 2)(3u−3)[
√

5(6/5)3]−1 ≤ (2s)(2s+ 2)γ−3(25
√

5/72).

Note that 25
√

5/72 ≈ .7764 < 1. Using Remark 7.1 again, we see that

D4
2G(u, v; s)

G(u, v; s)
= 2s(2s+ 2)

[(2s+ 1)(2s+ 3)v4 − 6(2s+ 3)u2v2 + 3u4]

(u2 + v2)4
.

Since u4 + v4 ≤ (u2 + v2)2, it follows easily that

D4
2G(u, v; s)

G(u, v; s)
≤ 2s(2s+2)(2s+1)(2s+3)

u4 + v4

(u2 + v2)4
≤ 2s(2s+2)(2s+1)(2s+3)γ−4.

Similarly, we see that

(2s+ 1)(2s+ 3)v4 − 6(2s+ 3)u2v2 + 3u4 ≥ 3(u4 + v4)− 6(2s+ 3)[(u2 + v2)/2]2

≥ 3(u2 + v2)2 − 6[(u2 + v2)/2]2 − 6(2s+ 3)[(u2 + v2)/2]2.

This implies that

D4
2G(u, v; s)

G(u, v; s)
≥ 2s(2s+ 2)

3− 3/2− 3/2(2s+ 3)

(u2 + v2)2

≥ −(2s)(2s+ 2)3(s+ 1)(u2 + v2)−2 ≥ −(2s)(2s+ 2)(3s+ 3)γ−4,

which completes the proof of Lemma 7.7. Note that (2s)(2s+ 1)(2s+ 2)(2s+ 3) ≥
2s(2s+ 2)(3s+ 3). �

Remark 7.2. Lemmas 7.6 and 7.7 show that whenever u ≥ γ > 0, s > 0, k = 1
or k = 2, and 1 ≤ j ≤ 4,

|Dj
kG(u, v; s)|
G(u, v; s)

≤ (2s)(2s+ 1) · · · (2s+ j − 1)γ−j .

We have not determined whether the above inequality holds for all j ≥ 1.

Using Lemmas 7.6 and 7.7, we can give uniform estimates for the quantities
(∂/∂x)jvs(x, y)/vs(x, y) and (∂/∂y)jvs(x, y)/vs(x, y), where s > 0, 1 ≤ j ≤ 4, and
vs(x, y) is the unique (to within normalization) strictly positive eigenvector of the
linear operator Λs : Cm(H̄)→ Cm(H̄) in (7.2) for m ≥ 1.

Theorem 7.8. Let B be a finite set of complex numbers β such that Re(β) ≥ γ ≥ 1
for all β ∈ B. For β ∈ B and s > 0, define θβ(z) = (z+ β)−1. Let H be a bounded,
mildly regular open subset of C := R2 such that H ⊃ Gγ = {z ∈ C : |z − 1/(2γ)| <
1/(2γ)}, and Re(z) > 0 for all z ∈ H, so θβ(H) ⊂ Gγ for all β ∈ B. For a positive
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integer m, define a real Banach space Cm(H̄) = X and defined a bounded linear
operator Λs : X → X by

(Λsf)(z) =
∑
β∈B

∣∣∣ d
dz
θβ(z)

∣∣∣sf(θβ(z)).

Then Λs has a unique (to within normalization) positive eigenvector vs ∈ X and
vs ∈ C∞. Furthermore, we have the following estimates for (x, y) ∈ H̄.

−2s

γ
≤ ∂vs(x, y)

∂x
[vs(x, y)]−1 ≤ 0,(7.16)

− s

4γ2(s+ 1)
≤ ∂2vs(x, y)

∂x2
[vs(x, y)]−1 ≤ 2s(2s+ 1)

γ2
,(7.17)

−2s(2s+ 1)(2s+ 2)

γ3
≤ ∂3vs(x, y)

∂x3
[vs(x, y)]−1 ≤ (2s)(2s+ 2)

γ3(s+ 2)2
,(7.18)

−2s(2s+ 2)(3s+ 3)

γ4
≤ ∂4vs(x, y)

∂x4
[vs(x, y)]−1 ≤ (2s)(2s+ 1)(2s+ 2)(2s+ 3)

γ4
,

(7.19)

∣∣∣∂vs(x, y)

∂y

∣∣∣[vs(x, y)]−1 ≤ s

γ
,(7.20)

−2s

γ2
≤ ∂2vs(x, y)

∂y2
[vs(x, y)]−1 ≤ 2s(2s+ 1)

4γ2
,(7.21) ∣∣∣∂3vs(x, y)

∂y3

∣∣∣[vs(x, y)]−1 ≤ (2s)(2s+ 2)

γ3
max{25

√
5/72, (2s+ 1)/8},(7.22)

−2s(2s+ 2)(3s+ 3)

γ4
≤ ∂4vs(x, y)

∂y4
[vs(x, y)]−1 ≤ (2s)(2s+ 1)(2s+ 2)(2s+ 3)

γ4
.

(7.23)

Hence, if D1 = ∂/∂x and D2 = ∂/∂y, we have for k = 1, 2 and 1 ≤ j ≤ 4 that

(7.24)
|Dj

kvs(x, y)|
vs(x, y)

≤ (2s)(2s+ 1) · · · (2s+ j − 1)

γj
.

Proof. For any integer m ≥ 1, we can view Λs as a bounded linear operator of
Cm(H̄) to Cm(H̄). We know that Λs has a strictly positive eigenvector vs(x, y) ∈
Cm(H̄) such that sup{vs(x, y) | (x, y) ∈ H̄} = 1. By the uniqueness of this eigen-
vector, vs(x, y) must actually be C∞.

Using the notation of (7.6) and (7.7) and also using (7.15) in Lemma 7.3, we see
that ∣∣∣ d

dz
θω̃(z)

∣∣∣s = |Bn−1|−2s|z +Bn/Bn−1|−2s.

By Lemma 7.3, Re(Bn/Bn−1) ≥ γω ≥ γ, so writing Im(Bn/Bn−1) = δω, we obtain
that for k = 1, 2 and 1 ≤ j,

(7.25) Dj
k

(∣∣∣ d
dz
θω̃(z)

∣∣∣s) ∣∣∣ d
dz
θω̃(z)

∣∣∣s
= Dj

k

[
(x+ γω)2 + (y + δω)2

]−s[
(x+ γω)2 + (y + δω)2

]s
.
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However, if we write (x+ γω) = u ≥ γ and (y + δω) = v, we see that

(7.26)

(( ∂
∂x

)j[
(x+ γω)2 + (y + δω)2

]−s)[
(x+ γω)2 + (y + δω)2

]−s
=

[( ∂
∂u

)j
G(u, v; s)

]
[G(u, v; s]

−1
,

where the right hand side of the above equation is evaluated at u = x + γω and
v = y + δω. If we combine (7.25) and (7.26) with the estimates in Lemma 7.6 and
if we then use (7.11), we obtain the estimates on (∂/∂x)jvs(x, y) given in (7.16) -
(7.19).

Similarly, we have

(7.27)

(( ∂
∂y

)j[
(x+ γω)2 + (y + δω)2

]−s)[
(x+ γω)2 + (y + δω)2

]−s
=

[( ∂
∂v

)j
G(u, v; s)

]
[G(u, v; s]

−1
.

If we combine (7.25) and (7.27) with the estimates in Lemma 7.7 and if we then
use (7.11), we obtain the estimates on (∂/∂y)jvs(x, y) given in (7.20) - (7.23). �

Remark 7.3. It turns out that exactly the same estimates given in Theorem 7.8
hold for a more general class of Perron-Frobenius operators which we shall need
later. Let notation be as in Theorem 7.8, so Re(β) ≥ γ ≥ 1 for β ∈ B and
θβ(z) = 1/(z+β) for β ∈ B. Let A be a finite index set (possibly empty) of integers
disjoint from B and for j ∈ A, let zj ∈ H be a given point, aj a positive real, and
θj : H → G the map defined by θj(z) = zj for all z ∈ H, so Lip(θj) = 0. If m is a
positive integer and s ≥ 0, define a bounded linear map As : X := Cm(H̄)→ X by

(7.28) (Asf)(z) =
∑
β∈B

1

|z + β|2s
f(θβ(z)) +

∑
j∈A

asjf(θj(z)).

Notice that As satisfies all the hypotheses of Theorem 5.1, so all the conclusions of
Theorem 5.1 hold. In particular, As has a unique (to within normalization) strictly
positive eigenvector ws ∈ Cm(H̄). Because the eigenvector ws is unique and m ≥ 1
is arbitrary, ws is C∞ on H.

Define an index set D = A ∪ B and for δ ∈ D, define bδ(z) = 1/|z + β|2s if
δ = β ∈ B and bδ(z) = aj if δ = j ∈ A. As usual, if µ is a positive integer, let

Dµ = {ω = (δ1, δ2, . . . , δµ) | δk ∈ D for 1 ≤ k ≤ µ}.
If D1 = ∂/∂x and D2 = ∂/∂y, for k ≥ 1 and p = 1 or 2, we know that (writing
z = x+ iy := (x, y))

Dk
pws(x, y)

ws(x, y)
= lim
µ→∞

Dk
p

(∑
ω∈Dµ bω(x, y)

)
∑
ω∈Dµ bω(x, y)

.

If ω = (δ1, δ2, . . . , δµ) ∈ Dµ and δk /∈ A for 1 ≤ k ≤ µ, we have seen in Lem-
mas 7.6 and 7.7 that Dk

pbω(x, y)/bω(x, y) satisfies the same estimates given for

Dk
pvs(x, y)/vs(x, y) in equations (7.16)- (7.24). Thus assume that δt ∈ A for some

t, 1 ≤ t ≤ µ and δt′ /∈ A for t′ < t. A little thought shows that if t = 1, bω(z)
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is a constant. If t = 2, bω(z) = c(ω, z)bδ1(z), where c(ω, z) is a positive constant.
Generally, if 2 ≤ t ≤ µ, bω(z) = c(ω, z)bωt−1(z), where c(ω, z) is a positive constant
and ωt−1 = (δt−1, δt−2, . . . , δ1) ∈ Dt−1 and δ1, δ2, . . . , δt−1 ∈ B. It follows that
Dk
pbω(x, y)/bω(x, y) = 0 if t = 1 and otherwise

Dk
pbω(x, y)/bω(x, y) = Dk

pbωt−1
(x, y)/bωt−1

(x, y).

But using Lemmas 7.6 and 7.7 again, it follows that if δt ∈ A for some t, 1 ≤
t ≤ µ, Dk

pbω(x, y)/bω(x, y) is identically zero or Dk
pbω(x, y)/bω(x, y) satisfies the

same estimates given for Dk
pvs(x, y)/vs(x, y). It follows that Dk

pws(x, y)/ws(x, y)

satisfies the same estimates given for Dk
pvs(x, y)/vs(x, y) in Theorem 7.8.

Corollary 7.9. Let notation and hypotheses be as in Theorem 7.8. If z0 =
(x0, y0) ∈ H and z1 = (x1, y1) ∈ H ,

(7.29) vs(z0) ≤ vs(z1) exp [(
√

5s/γ)|z1 − z0|].

Proof. Let H1 ⊃ H be a convex, bounded open set such that Re(z) > 0 for all
z ∈ H1. (As usual, we identify x + iy with (x, y).) For z ∈ H1 and Λs given
by (7.2) and viewed as a bounded linear operator Λs : Cm(H̄1) → Cm(H̄1), Λs
has a strictly positive eigenvector v̂s : H̄1 → (0,∞) in Cm(H̄1). By uniqueness,
v̂s(z) = vs(z) for all z ∈ H. Thus, by replacing H by H1, we can assume that H is
convex.

Define zt = (1− t)z0 + tz1 for 0 ≤ t ≤ 1 and note that∣∣∣ ∫ 1

0

d

dz
log(vs(zt)) dt

∣∣∣ =
∣∣∣ log

(vs(z1)

vs(z0)

)∣∣∣
≤
∫ 1

0

∣∣∣D1vs(zt)

vs(zt)
(x1 − x0) +

D2vs(zt)

vs(zt)
(y1 − y0)

∣∣∣ dt.
Using (7.16) and (7.20), we obtain∣∣∣ log

(vs(z1)

vs(z0)

)∣∣∣ ≤ ∫ 1

0

∣∣∣2s
γ

(x1−x0)+
s

γ
(y1−y0)

∣∣∣ dt ≤ √5s

γ

√
(x1 − x0)2 + (y1 − y0)2,

which gives the estimate in Corollary 7.9. �

Remark 7.4. If B ⊂ C is an infinite, countable index set with Reβ ≥ γ ≥ 1 and
θβ(z) = 1/(z+β), we can consider, in the notation of Corollary 7.9, Ls : C(H̄1)→
C(H̄1) given by (Lsf)(z) =

∑
β∈B |θ′β(z)|sf(θβ(z)) for s > σ(B), Here we assume

that there exists z∗ ∈ Gγ and s∗ > 0 such that
∑
β∈B[bβ(z∗)]

s∗ < ∞, where we

have written bβ(z) := |θ′β(x)|. If then follows there exists a number σ(B) ≥ 0

such that for all s > σ(B), the map Ls defines a bounded linear map of C(H̄1) to
C(H̄1), while

∑
β∈B[bβ(z)]s = ∞ for all z ∈ H̄1 and all s with 0 ≤ s < σ(B). By

using Lemmas 7.6 and 7.7 and the argument in Corollary 7.9, we see that for all
ω ∈ Bµ, and all µ ≥ 1, bsω(x, y) ∈ K(

√
5s/γ; H̄1). With the aid of Lemma 5.3

in [47] and Theorem 5.3 on page 86 in [42], we see that Ls has a unique strictly
positive eigenvector vs, and with the aid of Corollary 5.3 in Section 5, we conclude
that vs ∈ K(

√
5s/γ; H̄1). In other words, the conclusion of Corollary 7.9 is also

valid when B is countable but not finite.
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If (H7.1) is satisfied and all elements of B are real, we can, as already noted,
restrict attention to the real line, take Gγ := (0, γ) and H := (0, a) to be open
intervals with a ≥ γ and let Λs be given by (7.3) with f ∈ Cm(H̄). Then (7.11)
remains valid, but with z replaced by x ∈ H̄ ⊂ R and Dα replaced by Dν

1 , and
D1 = d/dx. Furthermore, for a fixed ω = (β1, β2, . . . , βν) ∈ Bν , Lemma 7.3 implies
that there exists γω, dependent on ω such that γω ≥ γ, so that after using (7.15),
we obtain

Dν
1 (|D1θω̃(x)|s)(|D1θω̃(x)|s)−1 = Dν

1 [(x+ γω)−2s](x+ γω)2s.

In this case, it is easy to carry out the calculation explicitly and obtain for all
ω ∈ Bν and x ∈ H̄ that

(7.30) 0 < (−1)νDν
1 (|D1θω̃(x)|s)(|D1θω̃(x)|s)−1 ≤ (2s)(2s+ 1) · · · (2s+ ν − 1)

γν
.

By using (7.11) and (7.30), we thus obtain the following theorem.

Theorem 7.10. Let γ ≥ 1 be a fixed real number and let B be a finite set of real
numbers β with β ≥ γ for all β ∈ B. Let Gγ = (0, γ) and H = (0, a) ⊃ Gγ be
open intervals of real numbers, and for a positive integer m, let Xm denote the real
Banach space Cm(H̄). For s > 0 define a bounded linear operator Λs : Xm → Xm

by

(Λs(f))(x) =
∑
β∈B

(x+ β)−2sf(1/(x+ β)).

Then Λs has a unique, normalized, strictly positive eigenvector vs(x), vs is C∞,
and for all ν ≥ 1 and x ∈ H̄,

0 ≤ (−1)ν
Dν

1vs(x)

vs(x)
≤ (2s)(2s+ 1) · · · (2s+ ν − 1)

γν
.

Remark 7.5. One can prove that the eigenvector vs(x) in Theorem 7.10 extends
to an analytic function vs(z) defined on {z ∈ C | Re(z) > 0}. In fact, much more
general analyticity results of this type can be established. Since we shall not utilize
such analyticity theorems in this paper, we omit the proofs.

Remark 7.6. Throughout this section we have assumed for convenience that 1 ≤
γ ≤ Re(β) for all β ∈ B, where B is a finite set of complex numbers. In fact, the
main results of this section can be obtained under the assumption that Re(β) ≥
γ > 0 for all β ∈ B. In the notation of this section, the key point is to prove that
there exists an integer ν ≥ 1 and a constant κ < 1 such that for all z, w ∈ C with
Re(z) > 0 and Re(w) > 0 and for all ω ∈ Bν , one has

(7.31) |θω(z)− θω(w)| ≤ κν |z − w|.
Inequality (7.31) can be established with the aid of the Carathéodory-Reiffen-Finsler
metric (see [17] for the definition and basic results about the CRF metric) and the
argument given in Section 6 of [47]. Once (7.31) has been established in the case
Re(β) ≥ γ > 0, all the theorems of this section follow by the same arguments.

8. Computing the Spectral Radius of As and Bs

In previous sections, we have constructed matrices As and Bs such that r(As) ≤
r(Ls) ≤ r(Bs). The m × m matrices As and Bs have nonnegative entries, so
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the Perron-Frobenius theory for such matrices implies that r(Bs) is an eigenvalue
of Bs with corresponding nonnegative eigenvector, with a similar statement for
As. One might also hope that standard theory (see [41]) would imply that r(Bs),
respectively r(As), is an eigenvalue of Bs with algebraic multiplicity one and that
all other eigenvalues z of Bs (respectively, of As) satisfy |z| < r(Bs) (respectively,
|z| < r(As)). Indeed, this would be true if Bs were primitive, i.e., if Bks had all
positive entries for some integer k. However, typically Bs has many zero columns
and Bs is neither primitive nor irreducible (see [41]); and the same problem occurs
for As. Nevertheless, the desirable spectral properties mentioned above are satisfied
for both As and Bs. Furthermore Bs has an eigenvector ws with all positive entries
and with eigenvalue r(Bs); and if x is any m× 1 vector with all positive entries,

lim
k→∞

Bks (x)

‖Bks (x)‖
=

ws
‖ws‖

,

where the convergence rate is geometric. Of course, corresponding results hold for
As. Such results justify standard numerical algorithms for approximating r(Bs)
and r(As).

In this section, we shall prove these results in the one dimensional case. Similar
theorems can be proved in the two dimensional case, but for reasons of length,
we shall restrict our attention here to the one dimensional case and delay a more
comprehensive discussion of the underlying issues to a later paper. The basic point,
however, is simple: Although As and Bs both map the cone K of nonnegative
vectors in Rm into itself, K is not the natural cone in which such matrices should
be studied. We shall define below, for large positive real M , a cone KM ⊂ K such
that As(KM ) ⊂ KM and Bs(KM ) ⊂ KM . The cone KM is the discrete analogue
of a cone which has been used before in the infinite dimensional case (see [47],
Section 5 of [42], Section 2 of [35] and [6]). Once we have proved that As(KM ) ⊂
KM and Bs(KM ) ⊂ KM , we shall see that the desired spectral properties of As
and Bs follow easily. In a later paper, we shall consider higher order piecewise
polynomial approximations to the positive eigenvector vs of Ls. We shall show
that the corresponding matrices As and Bs no longer have all nonnegative entries,
but still, under appropriate assumptions, map KM into KM .

Throughout this section, [a, b] will denote a fixed, closed, bounded interval and
s a fixed nonnegative real. For a given positive integer n ≥ 2, and for integers j,
0 ≤ j ≤ n, we shall write h = (b − a)/n and xj = a + jh. C will denote a fixed
constant and we shall always assume at least that h ≤ 1 and

(8.1) |C|h/4 ≤ 1.

In our applications C will depend on s, but we shall not indicate the dependence
here. If f : {xj | 0 ≤ j ≤ n} → R, one can extend f to a map f I : [a, b] → R by
linear interpolation, so

(8.2) f I(x) =
x− xj
h

f(xj+1) +
xj+1 − x

h
f(xj), for xj ≤ x ≤ xj+1, 0 ≤ j < n.

We shall denote by Xn (or X, if n is obvious), the real vector space of maps
f : {xj | 0 ≤ j ≤ n} → R; obviously Xn is linearly isomorphic to Rn+1. For a given
positive real M , we shall denote by KM ⊂ Xn the closed cone given by
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(8.3) KM = {f ∈ Xn | f(xj+1) ≤ f(xj) exp(Mh)

and f(xj) ≤ f(xj+1) exp(Mh), 0 ≤ j < n}.

The reader can verify that if f ∈ KM , f(xj) ≥ 0 for 0 ≤ j ≤ n, and either
f(xj) > 0 for all 0 ≤ j ≤ n, or f(xj) = 0 for all 0 ≤ j ≤ n.

If xj , 0 ≤ j ≤ n, are as above, define a map Q : [a, b]→ [0, h2/4] by

Q(u) = (xj+1 − u)(u− xj), for xj ≤ u ≤ xj+1, 0 ≤ j < n.

Lemma 8.1. Assume that β ∈ KM0
\ {0} for some M0 > 0, that 0 < h ≤ 1 and

that h and C satisfy (8.1). Let θ : [a, b]→ [a, b] and define β̂s ∈ Xn by

(8.4) β̂s(xk) = [1 + 1
2CQ(θ(xk))][β(xk)]s.

Then β̂s ∈ KM1
, where M1 = sM0 + (1 + h)/2 ≤M0 + 1.

Proof. Define ψ ∈ Xn by

ψ(xk) = 1 + 1
2CQ(θ(xk))

and suppose we can prove that ψ ∈ K(1+h)/2. For notational convenience define
b(xk) = [β(xk)]s. Then for 0 ≤ k < n, we obtain

ψ(xk)b(xk) ≤ ψ(xk+1) exp([1 + h]h/2)b(xk+1) exp(sM0h)

= ψ(xk+1)b(xk+1) exp(M1h),

and the same calculation gives

ψ(xk+1)b(xk+1) ≤ exp(M1h)ψ(xk)b(xk),

which implies that xk 7→ ψ(xk)b(xk) is an element of KM1 .

Define δ = (1 + h)/2. Since ψ(xk) > 0 for 0 ≤ k ≤ n, one can check that
ψ(·) ∈ Kδ if and only if, for 0 ≤ k < n,

| log(ψ(xk+1))− log(ψ(xk))| =
∣∣∣ log

(ψ(xk+1)

ψ(xk)

)∣∣∣ ≤ δh.
Given xk and xk+1 with 0 ≤ k < n, write ξ = θ(xk) and η = θ(xk+1). Define
u := 1

2CQ(θ(xk)) and v = 1
2CQ(θ(xk+1)), so ψ(xk) = 1 + u and ψ(xk+1) = 1 + v.

Because u and v both lie in the interval [0, Ch2/8], (8.1) implies that |u−v| ≤ h/2,
|u| ≤ h/2 and |v| ≤ h/2. It follows that

| log(ψ(xk))− log(ψ(xk+1))| = | log(1 + u)− log(1 + v)| =
∣∣∣ ∫ 1+u

1+v

(1/t) dt
∣∣∣.

Because 0 ≤ 1/t ≤ 1/(1− h/2) ≤ 1 + h for all t ∈ [1 + v, 1 + u], we obtain

| log(ψ(xk))− log(ψ(xk+1))| ≤ (1 + h)|u− v| ≤ (1 + h)h/2,

which proves the lemma. �
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Lemma 8.2. Let assumptions and notation be as in Lemma 8.1. Let δ denote
a fixed positive real and s a fixed nonnegative real. Assume, in addition that θ :
[a, b] → [a, b] is a Lipschitz map with Lip(θ) ≤ c < 1 and that, for h = (b − a)/n
and M1 as in Lemma 8.1, exp(−[M1 + δ]h) ≥ (1 + c)/2 and M > 0 is such that
exp(Mh) ≥ 2. Define a linear map Ls : Xn → Xn by Ls(f) = g, where

g(xk) := f I(θ(xk))β̂s(xk), 0 ≤ k ≤ n.
Then, if KM ⊂ Xn is defined by (8.3), Ls(KM ) ⊂ KM−δ.

Proof. For a fixed k, 0 ≤ k < n, define ξ = θ(xk) and η = θ(xk+1). We must prove
that if h and M satisfy the above constraints and f ∈ KM , then

f I(ξ)β̂s(xk) ≤ exp([M − δ]h)f I(η)β̂s(xk+1),

f I(η)β̂s(xk+1) ≤ exp([M − δ]h)f I(ξ)β̂s(xk).

Using Lemma 8.1, we see that xk 7→ β̂s(xk) is an element of KM1
, so the above

inequalities will be satisfied if

f I(ξ) ≤ exp([M −M1 − δ]h)f I(η),(8.5)

f I(η) ≤ exp([M −M1 − δ]h)f I(ξ).(8.6)

For notational convenience, we write M2 = M1 + δ. By interchanging the roles of
ξ and η, we can assume that η ≤ ξ, and it suffices to prove that (8.5) and (8.6)
are satisfied for M and h as in the statement of the Lemma. Define j = n − 1 if
ξ ≥ xn−1 and otherwise define j to be the unique integer, 0 ≤ j < n− 1, such that
xj ≤ ξ < xj+1. Because 0 ≤ ξ − η ≤ ch < h, there are only two cases to consider:
either (i) xj ≤ η ≤ ξ or (ii) xj−1 < η < xj and xj ≤ ξ < xj+1.

We first assume that we are in case (i), so ξ, η ∈ [xj , xj+1] and 0 ≤ ξ − η ≤ ch,
Using (8.2), we see that (8.5) is equivalent to proving

(8.7) (xj+1 − ξ)f(xj) + (ξ − xj)f(xj+1)

≤ exp([M −M2]h)[(xj+1 − η)f(xj) + (η − xj)f(xj+1)].

Subtracting (xj+1 − η)f(xj) + (η− xj)f(xj+1) from both sides of (8.7) shows that
(8.7) will be satisfied if

(8.8) (ξ − η)[f(xj+1)− f(xj)]

≤ [exp([M −M2]h)− 1][(xj+1 − η)f(xj) + (η − xj)f(xj+1)].

Equation (8.8) will certainly be satisfied if f(xj+1) ≤ f(xj), so we can assume
that f(xj+1) − f(xj) > 0 and 1 < f(xj+1)/f(xj) ≤ exp(Mh). If we divide both
sides of (8.8) by f(xj) and recall that ξ − η ≤ ch, we see that the left hand side
of (8.8) is dominated by ch[exp(Mh) − 1], while the right hand side of (8.8) is
≥ [exp([M −M2]h)− 1]h, Thus, (8.8) will be satisfied if

(8.9) c ≤ exp([M −M2]h)− 1

exp(Mh)− 1
= exp(−M2h) +

exp(−M2h)− 1

exp(Mh)− 1
.

If h > 0 is chosen so that exp(−M2h) ≥ (1 + c)/2, a calculation shows that (8.9)
will be satisfied if

(8.10) M ≥ log(2)/h,
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where log denotes the natural logarithm. Thus, if h > 0 satisfies (8.1), M ≥
log(2)/h, and exp(−M2h) ≥ (1 + c)/2, (8.5) is satisfied in case (i). Under the same
conditions on h and M , an exactly analogous argument shows that (in case (i)),
(8.6) is also satisfied.

We next consider case (ii), so ξ ∈ [xj , xj+1], η ∈ [xj−1, xj ] and 0 ≤ ξ−η ≤ ch. It
follows that ξ−xj = c1h and xj−η = c2h, where c1 ≥ 0, c2 ≥ 0, and c1+c2 ≤ c < 1.
As before, we need to show that inequalities (8.5) and (8.6) are satisfied. Inequality
(8.6) takes the form

(8.11) f I(η) =
η − xj−1

h
f(xj) +

xj − η
h

f(xj−1)

≤ exp([M −M2]h)
[ξ − xj

h
f(xj+1) +

xj+1 − ξ
h

f(xj)
]
,

which is equivalent to

(8.12) (η−xj−1)+(xj−η)
f(xj−1)

f(xj)
≤ exp([M−M2]h)

[
(ξ−xj)

f(xj+1)

f(xj)
+(xj+1−ξ)

]
,

Since f(xj−1)/f(xj) ≤ exp(Mh), f(xj+1)/f(xj) ≥ exp(−Mh), xj − η = c2h and
ξ − xj = c1h, (8.12) will be satisfied if

(8.13) (1− c2) + c2 exp(Mh) ≤ exp([M −M2]h)[c1 exp(−Mh) + (1− c1)].

Because c2 ≤ c− c1, we have

(1− c2) + c2 exp(Mh) ≤ (1− c+ c1) + (c− c1) exp(Mh),

and inequality (8.13) will be satisfied if

(8.14) (1 + c1 − c) + (c− c1) exp(Mh) ≤ exp(−M2h)[c1 + (1− c1) exp(Mh)].

A necessary condition that (8.14) be satisfied is that exp(−M2h) ≥ (c−c1)/(1−c1).
Since (c−c1)/(1−c1) ≤ c and c < (1+c)/2, we choose h = (b−a)/n > 0 sufficiently
small that

(8.15) exp(−M2h) ≥ (1 + c)/2.

For this choice of h, (8.14) will be satisfied if

(1 + c1 − c) + (c− c1) exp(Mh) ≤ 1 + c

2
[c1 + (1− c1) exp(Mh)],

which is equivalent to

(8.16) (1 + c1/2)(1− c) ≤ [(1 + c1)(1− c)/2] exp(Mh).

Since (2 + c1)/(1 + c1) ≤ 2, (8.16) will be satisfied if

(8.17) 2 ≤ exp(Mh).

Thus (8.11) will be satisfied if h satisfies (8.15) and, for this h, M satisfies (8.17).

Inequality (8.5) will be satisfied in case (ii) if

(8.18) (ξ−xj)
f(xj+1)

f(xj)
+(xj+1−ξ) ≤ exp([M−M2]h)

[
(η−xj−1)+(xj−η)

f(xj−1)

f(xj)

]
.

The same reasoning as above shows that if h > 0 satisfies (8.15) and M then satisfies
(8.17), (8.18) will be satisfied. Details are left to the reader. �
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Theorem 8.3. Let N denote a positive integer or N =∞. For 1 ≤ j ≤ N , assume
that θj : [a, b]→ [a, b] is a Lipschitz map with Lip(θj) ≤ c < 1, c independent of j.
For 1 ≤ j ≤ N , assume that βj ∈ KM0 \ {0} ⊂ Xn, where M0 is independent of j.
For j ≥ 1, let Cj be a real number with |Cj | ≤ C, where C is independent of j; and

for a fixed s ≥ 0, define β̂j,s ∈ Xn by

β̂j,s(xk) = [1 + 1
2CjQ(θj(xk))][βj(xk)]s, 0 ≤ k ≤ n.

Let δ > 0 be a given real number and for j ≥ 1 define a linear map Lj,s : Xn → Xn

by

(Lj,sf)(xk) = β̂j,s(xk)f I(θj(xk)).

If N =∞, assume that there exists k0, 0 ≤ k0 ≤ n, such that
∑∞
j=1[β̂j(xk)]s <∞

and define a linear map Ls : Xn → Xn by Ls =
∑N
j=1 Lj,s. Assume that h =

(b− a)/n ≤ 1 and Ch/4 ≤ 1 and define M2 = [sM0 + (1 + h)/2] + δ. Assume also
that exp(−M2h) ≥ (1 + c)/2 and that M ∈ R is such that exp(Mh) ≥ 2. Then we
have that Ls(KM \ {0}) ⊂ KM−δ \ {0}.

Proof. Lemma 8.1 implies that xk 7→ β̂j,s(xk) is an element of KM1
, where M1 =

sM0 + (1 + h)/2. It follows that if N = ∞ and
∑N
j=1 β̂j,s(xk0) < ∞, it must be

true that
∑N
j=1 β̂j,s(xk) < ∞ for all k, 0 ≤ k ≤ N ; and Ls : Xn → Xn is also a

well-defined bounded linear map when N =∞. Under our hypotheses, Lemma 8.2
implies that Lj,s(KM \ {0}) ⊂ KM−δ \ {0}, so Ls(KM \ {0}) ⊂ KM−δ \ {0}. �

At this point we need to recall some general results relating to u0-positive linear
operators. Recall that a closed subset C of a Banach space Y is called a closed
cone if (i) ax + by ∈ C whenever a and b are nonnegative reals and x, y ∈ C and
(ii) C ∩ (−C) = {0}, where −C = {−x |x ∈ C}. A closed cone C in a real Banach
space (Y, ‖ · ‖) is called reproducing if Y = {f − g | f, g ∈ C}, and a closed cone C
induces a partial ordering ≤C on Y by x ≤C y if and only if y − x ∈ C. If x ∈ C
and y ∈ C, we shall say that x and y are comparable (in the partial ordering ≤C)
if there exist positive reals α > 0 and β > 0 such that αx ≤C y and y ≤C βx. If
x, y are comparable, we shall write

M(y/x;C) = inf{β > 0 | y ≤C βx}, m(y/x;C) = sup{α > 0 |αx ≤C y}.
The following proposition can be found in [30] and [31].

Proposition 8.4. Let C be a closed, reproducing cone in a real Banach space Y ,
and let A : Y → Y be a bounded linear operator such that A(C) ⊂ C. Assume
that there exists v ∈ C \ {0} and r > 0 such that Av = rv. Assume (this is the
u0-positivity of A) that there exists u0 ∈ C \ {0} with the following property: For
every x ∈ C \ {0}, there exists a positive integer m(x) and positive reals a(x) and

b(x) such that either (i) a(x)u0 ≤C Am(x)(x) ≤C b(x)u0 or (ii) Am(x)(x) = 0. If Â

denotes the complexification of A, r is an eigenvalue of Â of algebraic multiplicity
1; and if Aw = λw for some w ∈ C \ {0} and λ > 0, λ = r and w is a positive

scalar multiple of v. If z ∈ C is an eigenvalue of Â and z 6= r, then |z| < r.

Remark 8.1. Note that Proposition 8.4 only gives information about eigenvalues
of Â. If σ(Â) denotes the spectrum of Â, it is possible, under the assumptions of

Proposition 8.4, that there exists z ∈ σ(Â) with |z| = r and z 6= r.
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Remark 8.2. Proposition 8.4 can be derived from the so-called Birkhoff-Hopf the-
orem, though we shall not do so here. We refer the reader to the papers [2], [23],
and [52] for the original work by Birkhoff, Hopf, and Samelson. A general version
of the Birkhoff-Hopf theorem, applications to spectral theory, and references to the
literature can be found in [12] and [11]; see also Appendix A of [33]. Section 2.2 of
[35] (particularly Lemma 2.12) is closely related to our work here.

Theorem 8.5. Let notation and assumptions be as in Theorem 8.3. Then Ls
has an eigenvector v ∈ KM−δ \ {0} with eigenvalue r > 0. If L̂s denotes the

complexification of Ls, r is an eigenvalue of L̂s of algebraic multiplicity one; and if
Lsw = λw for some w ∈ KM \ {0}, λ = r, and w is a positive multiple of v. If z

is an eigenvalue of L̂ and z 6= r, then |z| < r.

Proof. We shall need a very special case of Lemma 2.12 in [35]. Because M−δ < M ,
Lemma 2.12 in [35] implies that all elements x, y ∈ KM−δ \{0} are comparable with
respect to the partial ordering ≤KM given by KM ⊃ KM−δ. Furthermore, we have

sup{M(y/x;KM )/m(y/x;KM ) : x, y ∈ KM−δ \ {0}} <∞.

Since Theorem 8.3 implies that Ls(KM \ {0}) ⊂ KM−δ \ {0}, it follows that if
u ∈ KM−δ \{0}, Lsu ∈ KM−δ \{0} and u and Lsu are comparable, so Lsu ≥KM αu
for some α > 0. This implies that r(Ls) ≥ α > 0. In our particular case, the cone
KM has nonempty interior in Xn, although in the generality of Lemma 2.12, this
is not usually true. The Krĕın-Rutman theorem implies that Ls has an eigenvector
vs ∈ KM with eigenvalue r = r(Ls) > 0; and since rvs = Ls(vs), vs ∈ KM−δ. If we
define u0 := vs, Lemma 2.12 in [35] implies that Ls(x) is comparable to vs (with
respect to the partial ordering ≤KM ) for all x ∈ KM \{0}. Theorem 8.5 now follows
directly from Proposition 8.4. �

Remark 8.3. Since the linear maps As and Bs are both of the form of the map
Ls in Theorem 8.3, Theorem 8.5 implies the desired spectral properties of As and
Bs. With greater care it is possible to use results in [11] to estimate the so-called
spectral clearance q(Ls) of Ls, given by

q(Ls) := sup{|z|/r : z ∈ σ(Ls) and z 6= r(Ls)} < 1.

Remark 8.4. We claim that there is a constant E, which can be easily estimated,
such that, for h = (b− a)/n sufficiently small,

r(Bs) ≤ r(As)(1 + Eh2).

(Of course we already know that r(As) ≤ r(Bs).) For a fixed s ≥ 0, let βj(·) and
θj(·) be as in Theorem 8.3. We know that As and Bs are of the form of Ls in
Theorem 8.3, so we can write, for 0 ≤ k ≤ n,

(Asf)(xk) =

N∑
j−1

[1 + (Cj/2)Q(θj(xk))][βj(xk)]sf I(θj(xk),

(Bsf)(xk) =

N∑
j−1

[1 + (Dj/2)Q(θj(xk))][βj(xk)]sf I(θj(xk).

We assume that h ≤ 1 and Ch/4 ≤ 1, where C is a positive constant such that
max(|Cj |, |Dj |) ≤ C for 1 ≤ j ≤ N . We assume also that for 1 ≤ j ≤ N , Cj ≤ Dj.
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Let K = {f ∈ Xn | f(xk) ≥ 0 for 0 ≤ k ≤ n}, so As(K) ⊂ K and Bs(K) ⊂ K.
Define µ ≥ 1 by

µ = sup{[1 +
Dj

2
Q(θj(xk))][1 +

Cj
2
Q(θj(xk))]−1 : 1 ≤ j ≤ N, 0 ≤ k ≤ N} ≥ 1.

Then for all f ∈ K and 0 ≤ k ≤ n, (Bs(f))(xk) ≤ µ(As(f))(xk), which implies
that r(Bs) ≤ µr(As). Since Q(u) ≤ h2/4, a little thought shows that µ ≤ (1 +
Ch2/8)(1− Ch2/8)−1 ≤ 1 + Eh2, which gives the desired estimate.

9. Log convexity of the spectral radius of Λs

Throughout this section we shall assume that hypotheses (H5.1), (H5.2), and
(H5.3) in Section 5 are satisfied and we shall also assume that H is a bounded,
open, mildly regular subset of Rn. As in Section 5, we shall write X = Cm(H̄) and
Y = C(H̄). For s ∈ R, we define Λs : X → X and Ls : Y → Y by

(9.1) (Λs(f))(x) =
∑
β∈B

(bβ(x))sf(θβ(x))

and

(9.2) (Ls(f))(x) =
∑
β∈B

(bβ(x))sf(θβ(x)).

Theorem 5.1 implies that r(Λs) is an algebraically simple eigenvalue of Λs for
s ∈ R and that sup{|z| : z ∈ σ(Λs), z 6= r(Λs)} < r(Λs), where σ(Λs) denotes
the spectrum of Λx.

Let X̂ denote of the complexification of X, so X̂ is the Banach space of Cm maps
f : H → C such that x 7→ (Dαf)(x) extends continuously to H̄ for all multi-indices

α with |α| ≤ m. For s ∈ C one can define Λ̂s : X̂ → X̂ by

(9.3) (Λ̂s(f))(x) =
∑
β∈B

(bβ(x))sf(θβ(x)) :=
∑
β∈B

exp(s log bβ(x))f(θβ(x)).

The reader can verify that s 7→ Λ̂s ∈ L(X̂, X̂) is an analytic map. Because r(Λ̂s)

is an algebraically simple eigenvalue of Λ̂s for s ∈ R and sup{|z| : z ∈ σ(Λs), z 6=
r(Λs)} < r(Λs), it follows from the kind of argument used on pages 227-228 of [43]

that there is an open neighborhood U of R ∈ C and the map s ∈ U 7→ r(Λ̂s) is
analytic on U .

Theorem 9.1. Assume that hypotheses (H5.1), (H5.2), and (H5.3) are satisfied
with m ≥ 1 and that H ⊂ Rn is a bounded, open mildly regular set. For s ∈ R,
let Λs and Ls be defined by (9.1) and (9.2). Then we have that s 7→ r(Λs) is log
convex, i.e., s 7→ log(r(Λs)) is convex on [0,∞).

Proof. Because Theorem 5.1 implies that r(Ls) = r(Λs) for all real s, it suffices to
take s0 < s1, and 0 < t < 1 and prove that

r(L(1−t)s0+ts1) ≤ r(Ls0)1−tr(Ls1)t.
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We shall use an old trick (see [45] and the references therein). Let vsj (x), j = 0, 1
denote the strictly positive eigenvector of Lsj which is ensured by Theorem 5.1.
Then

Lsjvsj = r(Lsj )vsj .

For a fixed t, 0 < t < 1, define st = (1− t)s0 + ts1 and

wt(x) = (vs0(x))1−t(vs1(x))t.

Then, using Hölder’s inequality, we find that

(9.4) (Lst(wt))(x) =
∑
β∈B

(bβ(x)s0vs0(x))1−t(bβ(x)s1vs1(x))t

≤
(∑
β∈B

(bβ(x)s0vs0(x)
)1−t(∑

β∈B

(bβ(x)s1vs1(x)
)t

= [r(Ls0)1−tr(Ls1)t]wt(x).

Because wt(x) > 0 for all x ∈ H̄, a standard argument (see Lemma 5.9 in [47])
shows that

(9.5) r(Lst) = lim
k→∞

‖Lkst‖
1/k = lim

k→∞
‖Lkst(wt)‖

1/k.

Using inequalities (9.4) and (9.5), we see that

r(Lst) ≤ r(Ls0)1−tr(Ls1)t.

�

In general, if V is a convex subset of a vector space X, we shall call a map
f : V → [0,∞) log convex if (i) f(x) = 0 for all x ∈ V or (ii) f(x) > 0 for all x ∈ V
and x 7→ log(f(x)) is convex. Products of log convex functions are log convex, and
Hölders inequality implies that sums of log convex functions are log convex.

Results related to Theorem 9.1 can be found in [45], [28], [29], [8], [15], and [14].
Note that the terminology super convexity is used to denote log convexity in [28]
and [29], presumably because any log convex function is convex, but not conversely.
Theorem 9.1, while adequate for our immediate purposes, can be greatly general-
ized by a different argument that does not require existence of strictly positive
eigenvectors. This generalization (which we omit) contains Kingman’s matrix log
convexity result in [29] as a special case.

In our applications, the map s 7→ r(Ls) will usually be strictly decreasing on an
interval [s1, s2] with r(Ls1) > 1 and r(Ls2) < 1, and we wish to find the unique
s∗ ∈ (s1, s2) such that r(Ls∗) = 1. The following hypothesis insures that s 7→ r(Ls)
is strictly decreasing for all S.

(H9.1): Assume that bβ(·), β ∈ B satisfy the conditions of (H5.1). Assume also
that there exists an integer µ ≥ 1 such that bω(x) < 1 for all ω ∈ Bµ and all x ∈ H̄.

Theorem 9.2. Assume hypotheses (H5.1), (H5.2), (H5.3), and (H9.1) and let H
be mildly regular. Then the map s 7→ r(Λs), s ∈ R, is strictly decreasing and real
analytic and lims→∞ r(Λs) = 0.
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Proof. If Ls : C(H̄)→ C(H̄) is given by (5.2), it is a standard result that r(Lνs ) =
(r(Ls))

ν and r(Λνs ) = (r(Λs))
ν for all integers ν ≥ 1, and Theorem 5.1 implies that

r(Ls) = r(Λs). Thus it suffices to prove that for some positive integer ν, s 7→ r(Lνs )
is strictly decreasing and lims→∞ r(Lνs ) = 0.

Suppose that K denotes the set of nonnegative functions in C(H̄) and A :
C(H̄) → C(H̄) is a bounded linear map such that A(K) ⊂ K. If there exists
w ∈ C(H̄) such that w(x) > 0 for all x ∈ H̄ and if (A(w))(x) ≤ aw(x) for all
x ∈ H̄, it is well-known (and easy to verify) that r(A) ≤ a, where r(A) denotes
the spectral radius of A. In our situation, we take ν = µ, where µ is as in (H9.1),
and A = (Ls)

µ. If s < t and vs is the strictly positive eigenvector for (Ls)
µ, (H9.1)

implies that there is a constant c < 1, c = c(s, t), such that cbω(x)s ≥ bω(x)t for all
ω ∈ Bµ and x ∈ H. Thus we find that

cr(Ls)
µvs(x) =

∑
ω∈Bµ

cbω(x)svs(θω(x)) ≥
∑
ω∈Bµ

bω(x)tvs(θω(x)) = (Lµt (vs))(x).

It follows that r(Lt)
µ ≤ c(s, t)r(Ls)

µ, so r(Lt) < r(Ls), for s < t. Because 0 <
bω(x) < 1 for all x ∈ H̄ and ω ∈ Bµ, it is also easy to see that limt→∞ ‖(Lt)µ‖ = 0;
and since ‖(Lt)µ‖ ≥ r(Lµt ), we see that limt→∞ r(Lµt ) = 0. �

Remark 9.1. It is easy to construct examples for which (H9.1) is satisfied for
some µ > 1, but not satisfied for µ = 1. The functions θ1(x) := 9/(x + 1) and
θ2(x) := 1/(x + 2) both map the closed interval H̄ = [1/11, 9] into itself. There is
a unique nonempty compact set J ⊂ H̄ such that

J = θ1(J) ∪ θ2(J).

For s ∈ R, define Ls : C(H̄)→ C(H̄) by

(Lsf)(x) :=

2∑
j=1

|Dθj(x)|sf(θj(x)) :=

2∑
j=1

bj(x)sf(θj(x)),

where D := d/dx. The Hausdorff dimension of J is the unique s = s∗, 0 < s∗ < 1,
such that r(Ls) = 1. Our previous remarks show that

(L2
sf)(x) =

2∑
j=1

2∑
k=1

|D(θj ◦ θk)(x)|sf(θj ◦ θk)(x)).

One can check that (H9.1) is not satisfied for µ = 1, but is satisfied for µ = 2.

Remark 9.2. Assume that the assumptions of Theorem 9.2 are satisfied and define
ψ(x) = log(r(Ls)) = log(r(Λs)) (where log denotes the natural logarithm), so s 7→
ψ(s) is a convex, strictly decreasing function with ψ(0) > 1 (unless |B| = p = 1)
and lims→∞ ψ(s) = −∞. We are interested in finding the unique value of s such
that ψ(s) = 0. In general suppose that ψ : [s1, s2] → R is a continuous, strictly
decreasing, convex function such that ψ(s1) > 0 and ψ(s2) < 0, so there exists a
unique s = s∗ ∈ (s1, s2) with ψ(s∗) = 0. If t1 and t2 are chosen so that s1 ≤ t1 <
t2 ≤ s∗ and tk+1 is obtained from tk−1 and tk by the secant method, an elementary
argument show that limk→∞ tk = s∗. If s∗ ≤ t2 < t1 < s2 and s1 ≤ t3, a similar
argument shows that limk→∞ tk = s∗. If ψ ∈ C3, elementary numerical analysis
implies that the rate of convergence is faster than linear (= (1 +

√
5)/2). In our

numerical work, we apply these observations, not directly to ψ(s) = log(r(Λs)), but
to convex decreasing functions which closely approximate log(r(Λs)).
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One can also ask whether the maps s 7→ r(Bs) and s 7→ r(As) are log convex,
where As and Bs are the previously described approximating matrices for Ls. An
easier question is whether the map s 7→ r(Ms) is log convex, where As and Bs are
obtained from Ms by adding error correction terms. We shall prove that s 7→ r(Ms)
is log convex, at least in the one dimensional case. The proof in the two dimensional
case is similar.

First, we need to recall a useful theorem of Kingman [29]. Let M(s) = (aij(s))
be an m ×m matrix whose entries aij(s) are either strictly positive for all s in a
fixed interval J or are identically zero for all s ∈ J . Assume that s 7→ aij(s) is log
convex on J for 1 ≤ i, j ≤ m. Under these assumptions, Kingman [29] has proved
that s 7→ r(Ms) is log convex.

Let n ≥ 2 be a positive integer, and for a < b given real numbers, define xk =
a + kh, −1 ≤ k ≤ n + 1, h = (b − a)/n. Let Xn denote the vector space of
real valued maps f : {xk | 0 ≤ k ≤ n} → R, so Xn is a real vector space linearly
isomorphic to Rn+1. As usual, if f ∈ Xn, extend f to a map f I : [a, b] → R by
linear interpolation, so

f I(u) =
u− xk
h

f(xk+1) +
xk+1 − u

h
f(xk), xk ≤ u ≤ xk+1, 0 ≤ k ≤ n.

For 1 ≤ j ≤ N , assume that θj : [a, b] → [a, b] are given maps and assume that
bj : [a, b] → (0,∞) are given positive functions. For s ∈ R, define a linear map
Ms : Xn → Xn by Ms(f) = g, where

g(xk) =

N∑
j=1

[bj(xk)]sf I(θj(xk)), 0 ≤ k ≤ n,

so if f(xk) ≥ 0 for 0 ≤ k ≤ n, g(xk) ≥ 0 for 0 ≤ k ≤ n. We can write g(xk) =∑n
m=0 akm(x)f(xm), where for 0 ≤ k, m ≤ n,

akm(x) =
∑

j,xm−1≤θj(xk)≤xm

[bj(xk)]s[θj(xk)− xm−1]/h

+
∑

j,xm≤θj(xk)≤xm+1

[bj(xk)]s[xm+1 − θj(xk)]/h.

If, for a given k and m, there is no j, 1 ≤ j ≤ N , with xm−1 ≤ θj(xk) ≤ xm+1, we
define akm = 0. Since the sum of log convex functions is log convex, s 7→ akm(s) is
log convex on R. It follows from Kingman’s theorem that s 7→ r(Ms) is log convex,
where r(Ms) denotes the spectral radius of Ms.
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