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ANALYSIS OF A CONTINUOUS FINITE ELEMENT METHOD
FOR HYPERBOLIC EQUATIONS*

RICHARD S. FALKf AND GERARD R. RICHTER

Abstract. A finite element method for hyperbolic equations is analyzed in the context of a first order
linear problem in RE. The method is applicable over a triangulation ofthe domain, and produces a continuous
piecewise polynomial approximation, which can be developed in an explicit fashion from triangle to triangle.
In a sense, it extends the basic upwind difference scheme to higher order. The method is shown to be stable,
and error estimates are obtained. For nth degree approximation, the errors in the approximate solution and
its gradient are shown to be at least of order h n+1/4 and h n-I/E, respectively, assuming sufficient regularity
in the solution.
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1. Introduction. In this paper, we analyze a finite element method for the first
order scalar hyperbolic equation

a. Vu+u=f in,
(1)

u g on the inflow boundary F(I),

where a is a unit vector and 11 is a bounded polygonal domain in R :. The method
produces a continuous pieeewise polynomial approximation to u over a triangulation
of 1, and was first reported in the literature by Reed and Hill [8].

A contrasting and more common finite element approach to (1), applicable when
the independent variables are time and space, is that of applying a finite element
diseretization in space only, then solving numerically the resulting system of ordinary
differential equations. See, for example, 1] and [4]. Examples of hyperbolic equations
of practical interest which do not involve time and are not directly amenable to this
approach are the neutron transport equation [7] and the problem of determining the
diffusion coefficient a(x) in

Vp Va + aAp f.
The latter is an inverse problem arising in flow through porous media [2], [5], [9].

Several techniques for obtaining full finite element diseretizations of (1) have been
reported in the literature. Reed and Hill [8] have provided computational results for
the scheme that is the focal point of this paper and also for two other schemes, one
of which produces a discontinuous approximation. The discontinuous method has
been analyzed by Lesaint and Raviart [7], and more recently by Johnson and Pitkaranta
[6], who obtained improved estimates. In a related work, Winther [ 11 obtained optimal
order error estimates for a continuous finite element method applicable over a
rectangular mesh.

To describe the method which we shall analyze, we let Ah be a quasiuniform
triangulation of /, constructed so that no triangle has a side parallel to the characteristic
direction at any point. For any subdomain fs of f/, we denote by F,(s) the inflow
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258 RICHARD S. FALK AND GERARD R. RICHTER

portion of the boundary of 12s, i.e., {x r(12s)l a n < 0}, where n is the unit outward
normal to fs, and by Fout(12s) the remaining (outflow) portion of F(fs). With Ah as
above, each triangle has one inflow side and two outflow sides (a type I triangle) or
two inflow sides and one outflow side (a type II triangle). Furthermore, the triangles
{ T} in Ah may be ordered so that

Equivalently, for each k, the domain of dependence of Tk contains none of
Tk+, Tk+2,’’’. This was shown in [7] for constant a and will be proved in the
Appendix for smooth variable a (the assumption we make in our analysis). This
ordering allows an approximate solution to be developed in an explicit manner, first
in T1, then in T2, etc. At the point when the solution is to be formed in a given triangle,
it will be known along the inflow to that triangle.

We seek an approximate solution in the subspace

$7, {Vh C([I) such that VhlT - P.( T)},

where P(T) denotes the space of polynomials of degree _-<n over the triangle T.
Letting g be a suitable intcrpolant of g in S,lr,<a) and denoting the L2 inner product
over T by (,), we describe the finite clement method of interest as follows.

PROBLEM Ph. Find Uh S, such that Uh =g on F.([I), and for triangles of
type I

(3) ( VUh + Uh, Vh)r (f, Vh)r for all Vh P.-I(T),

while for triangles of type II

(4) (a. VUh +flUh, Vh)r=(f, Vh)r for all Vh P,-2(T).

-n+lNote that the approximate solution Uh has a total of tr .,= j degrees offreedom
in each triangle. In a one-inflow-side triangle, there are n + 1 degrees of freedom in
Uh along the inflow, leaving a total of t-i to be determined from (3). In a two-inflow-
side triangle, there are 2n + 1 degrees of freedom in Uh along the inflow, leaving try_2

to be determined from (4). Thus in both (3) and (4), the number of equations equals
the number of unknowns.

We shall assume in our analysis that n >- 2, although the case n 1 is also of some
interest. The latter is a degenerate case in which (4) is vacuous and (3) completely
determines the approximate solution. A simple calculation reveals that for a mesh of
right triangles with a constant,/3 0, and f O, Uh at the triangle vertices is given
by the upwind difference scheme. Thus the finite element method (3), (4) may be
viewed as an extension ofthe upwind difference scheme to higher order and nonuniform
meshes.

We note that other continuous finite element methods besides the one analyzed
in this paper may be applied over triangles. For example, in place of low order
polynomials, one might use as test functions the Lagrange basis functions that are
unity at the unknown points. Numerical experiments in [8] indicate that this method
does not perform as well as the one analyzed in this paper.

A natural question is how the continuous method described by (3), (4) compares
with the discontinuous Galerkin method, which is fairly well established theoretically.
In the case of the latter, one updates the solution on both type I and type II triangles
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 259

T as follows: Given u h_ on F.(T), find uhlre P.(T) such that

(a. Vuh + auh, vh)r- u h+ l) hot II

(f’ vh)r- Ir uh__vha n for all vh P,(T)
in(T)

where v_(x) lims_.0_ v(x + sa), and v+(x) lims_,o+ v(x + sa), for x lying on a side
common to two triangles. Hence to update the solution on a triangle requires the
solution of a tr, x tr, linear system of equations. When the case of piecewise quadratics
is taken as an example, the discontinuous method yields a 6 x 6 system on each triangle,
whereas the continuous method produces a 1 x 1 system on type I triangles and a 3 x 3
system on type II triangles. This illustrates the main advantage of the continuous
method: it is less costly to apply. In terms of existing error estimates for the two
schemes, using piecewise polynomials ofdegree -< n, the discontinuous Galerkin method
has the error estimates

and hence, using inverse properties of the subspace,

Ilu-u llw. O(h"-’/2).
In this paper, we prove that the continuous finite element method satisfies the same
H estimate and an L2 estimate with a power of h one quarter less. All this analysis
assumes sufficient regularity of the solution. In the last section of the paper, we present
the results of some computational experiments, which show that on very smooth
solutions, with a regular mesh, it is possible to achieve optimal order approximation.
The same is true for the discontinuous Galerkin method. One important feature of the
discontinuous Galerkin method is that it produces good results on problems with
discontinuous solutions. We have not undertaken a detailed study of the continuous
method for such problems; however, we provide computational results for a numerical
experiment with discontinuous initial data.

The next section of this paper further describes our notation and the hypotheses
under which our results will be established. Section 3 contains an existence and
uniqueness proof for the approximate solution and a derivation of some of its local
properties. Two basic identities are derived in 4 and then used in 5 to prove stability
of the method. Error estimates are given in 6, followed by numerical results in 7.

2. Assumptions and notation. For D a domain in R2, let Ilfllo (of2 dx dy) 1/2,
and for F a line segment, let IfIt= (rf2 dT’) 1/2. Let II ,o denote the norm in the
Sobolev space H"(D) and Iloo,o and I1 ,oo,o the norms in the Sobolev spaces L(D)
and W’(D)]2, respectively. We assume that a W’(D)]2 and/3 L(D) for the
coefficients in (1). Henceforth, we shall omit the subscript D when D f. We also
denote by Pkf the L2 projection over T into Pk(T) (the space of polynomials of degree
-< k over T).

It will be convenient to have the following notation relative to an arbitrary triangle
T of Ah. For 1, 2, 3, we denote by Fi the sides of T numbered counterclockwise,
by ai the vertices of T opposite Fi, by ni the unit outward normals to F, and by z
the unit tangents along F taken in a counterclockwise direction. We shall always take
F3 to be the inflow side of a type I triangle or the outflow side of a type II triangle. This
notation is illustrated in Fig. 2.1.
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260 RICHARD S. FALK AND GERARD R. RICHTER

a3 K r2

FIG. 2.1

For computational and theoretical purposes, it is advantageous to think of the
triangles in a given triangulation hh as partitioned into layers Si. We define these as
follows:

Si+I { T AhIFi"( T) Fi" (fl- Uki Sk) } i= 1,2,’’..

With this partition of Ah, the approximate solution may be obtained in an explicit
manner, first in $1, then in S2, etc. Within each layer, the approximate solution can
be obtained in parallel since the solution in any of the triangles within a layer does
not depend on the solution in other triangles in that layer. This is illustrated in Fig.
2.2, with the number inside each triangle indicating the layer to which it belongs.

In our analysis, we assume that {Ah} is a family of triangulations of fl satisfying
the following hypotheses"

Hl: All angles of all triangles are uniformly bounded away from zero.
H2" la" nl is uniformly bounded away from zero along all sides of all triangles.

(This assumption is essential in our analysis but does not appear to be
necessary computationally.)

FIG. 2.2
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 261

H3" The ratio of the maximum to minimum triangle sides within Ah is uniformly
bounded.

H4: The triangles in Ah can be partitioned into O(h-1) layers (where layers are
as defined above).

For the sake of brevity and to avoid the introduction of additional variables, we
shall use the notation us to mean Vu. c when c is any unit vector. Equivalently, one
may think of us as a partial derivative of u with respect to a coordinate in the direction
a, provided the second variable on which u depends is constant in the direction a. In
this notation, we state an integration by parts formula

(5) I vW=Ir vwa. n- I vw- f (V. a)vw
T (T) T T

which will be used several times in the paper.
Finally, we shall use the symbol C to denote a generic constant, depending at

most on the coefficients a and fl in (1) and the bounds in assumptions H1-H4.

3. Existence and uniqueness. In order to establish the results in this section, it will
be convenient to introduce a reference triangle " with vertices tl (1, 0), 2 (0, 1),
and t$3 (0, 0). The reference triangle T can be mapped into the triangle T by the
affine transformation

The matrix F can be written

=F +a3

=(Irl,

where IFi[ is the length of Fi. Defining V"h(, ) V(X, y) (for an arbitrary v defined on
T) and

v

we have

where

a. VUh =A" h

A=F-la and F-1-
1 |n/F21|

Transforming (3) and (4) to , we obtain

(6) (A. h+.h--])vhddfi=O forall

where O is the number of inflow sides that has. In if’, we express ah in the form

j=l

where are the usual equispaced nodes for nth degree interpolation in and &j(x, ))
are the corresponding Lagrange basis functions for P.(T). We then require that (6)
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262 RICHARD S. FALK AND GERARD R. RICHTER

be satisfied for each ofthe analogous basis functions (8, .P) for P,_p(#). The resulting
linear algebraic system is equivalent to the following:

(7)
j=l

(8) given value for P Fn(T)
or, in matrix form,

K b.

The above are trn equations in as many variables, the inflow yielding a total of n + 1
or 2n / 1 conditions, depending on whether T is of type I or II.

Now let Q denote the centroid of T, ao a(Q), and Ao F-lao. The coefficient
matrix K can then be written

K=Ko+ hK1
where Ko corresponds to a to and/3 0. Note that hAo involves ratios of sides of
triangles in Ah which, by H3, are uniformly bounded, and that It(x)-ao] _-< Chlla]ll,oo
for x T. Thus both Ko and K1 are uniformly bounded over all triangles. We next show
that Ko is invertible under assumption H2. It will then follow that Kff is uniformly
bounded and that Problem Ph has a unique solution for sufficiently small h.

Establishing the invertibility of Ko is equivalent to showing that the only solution
to (3) or (4) with fl =f=O, a replaced by ao, and Uh -0 on Fin(T) is Uh =--0. We now
do this.

For type I triangles, we take /)h (Uh)to Pn-l(T), and infer that (Uh),,o 0. This,
together with Uh =0 on Fn(T), implies that Uh =-- 0 in T. (We have assumed that h is
sufficiently small that replacement of a by ao does not alter the inflow and outflow
sides of T.)

For type II triangles, we note that Uh 0 on F,(T) implies that Uh can be written
in the form Uh *lWh where s and r/are coordinates along the two inflow sides, with
: =r/=0 at a3, s, r/_->0 in T, and Wh Pn-E(T). Taking Vh Wh in (4), we use the
integration by parts formula (5) to obtain

o ((u)o, w)=(n(w)o, w)+((n)oW, w)

1
(n, (w)o) + ((n)o, w,)

=1I Whno n dr+((n)o, W).2 o.,(T)

Now (7)o is positive in T and Bao" n is nonnegative on Fo,(T). Hence w =0 in
T and un 0 in T. We have thus established the following result.

LEaA 3.1. There exists a constant ho such that for all h <-ho, Problem Ph has a
unique solution.

We shall henceforth implicitly assume that h <- ho, so that the approximate solution
is well defined. We now establish several estimates applying over a single triangle T.
They will be used later in the derivation of the main stability result.

LEMMA 3.2. Let Uh Pn(T) satisfy (3) or (4)..Then

(9) [[uh r-<- C{h/2luh[r,.(r)+ h Ilfl[ r}
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 263

and

(10) IlVuhll<--_ C {h’/] dub

where z denotes arclength along Fi,(T).
Proof. From Lemma 3.1 and (7) and (8), it immediately follows that

Inequality (9) follows from (1 1) by transforming coordinates from to Z To prove
(10), let Po be a point on the inflow to T and write Uh Uh(Po)+ Vh. Then

dv. Ch

and

vUh

Now vh P,(T) satisfies (3) or (4) with f replaced by f--flUh(PO). Applying the first
part of the lemma, we obtain

<-- C{h/lvn[r,.<r) + hllf- 13Uh(Po)ll}

C { h3/2 duh }< / h Ilfll / hlll311,rlluh(Po)ll

C { h3/2 dUh h3/2
Fn(T)

e result follows immediately.
LA 3.3. Let T be a type II triangle and h P,(T). en

(12) II()llrC(h/l()lro.,(r)+lle,_=()llr+hlIVll}..
oof We first prove the result for the case a ao, a constant vector. Here

v(h)oeP,_(T). Moreover, if v=O on Fo(T) and P_2v=O, then v0 in
This can be shown by writing v=p(z)+ sq(s, z), where z is a coordinate measured
along Fot(T) and s is a coordinate in the direction of ao with s 0 on Fot(T). en
v=O on Fot(T) implies that p(z)=O and P,_2v=O therefore implies that

sqw dx@ 0 for all w P,-2(T).
T

By taking.w q P,-2(T), we conclude that q 0 in Z us v 0 in Z In the reference
triangle we therefore have

which, when transformed back to the original triangle, becomes

(13)
Now suppose a is not constant. Using (13), we obtain

II()ll I1()o11+

(14)
+ h/21(o-) Vhlro.,<r)+ IlP.-=([o-] )11}
+ I1( o)" vll.

Inequality (12) now follows by standard estimates.
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264 RICHARD S. FALK AND GERARD R. RICHTER

4. Basic identities. The test function Vh =--(Uh),e in (3) and (4) will play a key
role in our stability analysis. (Recall that - and a’2 are the tangents to the two outflow
sides of a type I triangle or the two inflow sides of a type II triangle.) In this section,
we derive expressions for the two terms in the integral

(u,+u,-u)r.

To facilitate the exposition, we state some obvious identities relating a (a, a_)
and - and n, the unit tangential and normal vectors to the sides F of a triangle T
(as depicted in Fig. 2.1). Let y (-a, a) t. en

(a) %. n - n, i,j 1, 2, 3,

(15) (b) %.y=n.a, i=1,2,3,

(c) y. n=-a. , i=1,2,3.

In addition, the following identity is also valid for any unit vector a (a, a2) t.
LMMA 4.1.

(" n2)( n3)+(a" nl)(3 n2)+(" n3)(g2 nl) =0.

oof Let denote the angle between a and n, measured counterclockwise from
a. Since may be obtained by rotating n through an angle /2,. n cos [(i + /2) 6] sin (6 ().
Thus the lemma may be recast as

cos 2 sin (3 )+ cos 1 sin (2 3) + cos 3 sin ( 2) 0g

which can be verified by expanding the sines in the above formula.
We shall now derive the desired identities.
LEMMA 4.2. For any unit vector a and any twice differentiable function u:

f lfr (a" nl)(a" n2) 2 lfr (gl n3)(72" n3) 2u de- u deu(-u,) dx dy
r a" n a n3T

+ (A2),u} dx dy
1

{(A)u2+ r

where (A,A2)=(1/. nE)(a" nE,-a" nl).
oof We first write u in terms of derivatives in the directions of 1 and 2. From

u ] u r:. n u/’
it follows that

with A1 and A2 as defined in the statement of the lemma. Hence, using the integration
by parts formula (5) and (15a) from the previous page, we obtain

I II {A( 2U,)-2+A2( 2u),} dx dy
T

lit lit
1

{A
2 Jr
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 265

I f {(A)._u +(A:),u} dxay.+2 r "
We next write un and u, in terms of the directional derivatives u, and u. Let y be
the unit vector (-a2, a) . Then

[Ix "i’3 l.r3
uy a \ u,/

and

(16) un rtl Ux 1 r, y r,

tl,r2,/ 7"t2] fly "l’3"y r2 y r2 n3 u,/"

Using this result and the definitions of A and A2, we now rewrite the integrand along
F3 as follows:

2
n3 + A2u2 n3gluz(2 ,r2( /’1

1

(" ):(rl"

{[(. n:)(: n)(n" ):-(. nl)(n n)(: v):]u
+[(. n:)(r, n)(, n):-( nl)(" n)(:, n)]u
+2[(. n:)(:, n)(l" v)(n" n)

-(" nl)(," n)(:. )(:. n)]u.u}.
Using Lemma 4.1 and (15b), we then obtain

2 2 n3)=
1

Au.,(r2" n3)+ A2ur:(’/"
a. n3

2 +(,rl n3)(’r2 n3)u2a}.{-(a" nl)(a" n2)tt,3

Lemma 4.2 now follows by combining terms.
LEMMA 4.3. Let T {Ah} and for PF let O(P) be the angle from a(P) to the

local tangent vector , measured counterclockwise. Then

f [u(-u.,.)dxdy=f [u.,u.dxdy-fr [(. nl)(a, n2) cotOuudr
T T (T)

fl
(r2" n3)(rl" n3) 1

uua d- pu2 d
r(T) a" n3 (T)

+ u[(fl6,)un + (fl2)nu.2] dx dy
dT

where

and

(a" n2)(rl" n3)
1 (O. n3) (’/’1. n2)’ 2

(. n,)(, n)
(a" n3)(r2" nl)

(Ce" nl)(Ce /2)(ce" 7"3)

" /’/3
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266 RICHARD S. FALK AND GERARD R. RICHTER

Proof. It follows immediately from Lemma 4.1 and the definitions of 1 and 4,2
that 4 + 42 1. Applying the integration by parts formula (5), we obtain

f 4, ,Su(-u,.,Odxdy+f k2u(-u.,.2.q) dxdy
T T T

+ f flu,’2u,’, dxdy+ f u[(d,),.2u,., +(*2),.,u,.2] dxdy.
T T

We now derive another form for the integral around F(T). Using the definitions of
and b2, (15b), and formula (16), we have

1U 7"2" n3) + d2u2(7"1" n3)
(7"1" n3)(7"2" n3)

0" /13

We also have the following identity for 1, 2:

7"i.n3 7"i’ot or’7"3

(t" tl3)(t" tli) ’ n t" /13

This may be shown by writing 7"i (7"i" a)t + (7". 7)% and then applying (15b) and
(15c).

Combining the preceding formulas, we obtain

dT"

f (7"1" n3)(7"2" n3)uua dT"
0" iq

IF (t /’/l)(t /’/2)
t 7. IFuu d7. + puu,. dT.

11_11-, " 11_11-’2

where p is as defined in the statement of the lemma. An integration by parts yields
for the last term

pUU, aT. [OU2] a3a2 "- [pu2] aa- p,rU
2 aT.

11_1I’2 10I"2

Ouu, dT.-- O,u

The lemma now follows by combining results and observing that along F
a. 7"i cos 0i
a. n, cos (0i ,tr/2)

cot 0

where O(P) denotes the angle from a(P) to 7", measured counterclockwise.

5. Stability. In this section we derive the basic stability estimates for Problem Ph.
These will be used to obtain error estimates in the next section. The norm in which
we obtain stability is a weighted sum of L2 norms of Uh and its tangential derivative
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 267

taken along fronts F, which describe the forward boundary of the solution after it has
progressed through the first j layers. More specifically, we define

Fo r,.(f),

v,_, u rou,S,)- r,.s,), j=l,2,....

The main result of this section will be the following stability theorem.
THEOREM 5.1. If Uh is the solution ofoblem P, then for h sufficiently small

la"nl +ugla" nl a,+Mh/ll(un)

_C {hl/2J[f[lj+ h-l/2[,Pn_2f[,j+ fifo { h3/2(dun/d)2:-
]. [

+ ugly. l] d}
where U S and M is a positive constant.

To prove this theorem, we first develop local stability results applicable over a
single triangle. This is complicated somewhat by the fact that the two different types
of triangles require different treatment. For each, we shall obtain a bound on the
growth of dun/d from the identities in the previous section. When these are Combined
suitably with bounds on the growth of un, the desired stability result is obtained. We
note the factor ha/:, which appears in Theorem 5.1, rather than h which might be
expected from approximation theoretic considerations.

The next two lemmas bound the growth in un over the two types of triangles.
LMMA 5.1. If T is a type I triangle and un satisfies (3) in then

(T)

oof Omitting the subscript T on the norms and inner products which follow,
we apply (5) to ((un), un). This yields

1 fr ua n d=
1
(ug, v. )+((u), u

--(ug, v )+ ((u) (-e_)u)+((u), v_u)
2

1
=(ug, v. )+((-o)" Vu, (-v_)u)-(g (-v_)u)

+( (- v_:)u)+(g P_:u)- (u, p_u).

In the last of these equalities, (3) and the fact that (un) P_(T) were used. Applying
standard estimates we obtain

+ hllfll IIuh + IIP-=fll
Ch/=llfll=+ IIP-fll=+ h/=llull=+ Ilu

LMMa 5.2. If T is a type II triangle and uh satisfies (4) on then for any e > 0

(18) ua" n dz eh3/Zl(uh ro.,)+ C{IIP.-flI+ h/llVull+ Ilull
where C depends on e.
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268 RICHARD S. FALK AND GERARD R. RICHTER

Proof. Again omitting the subscript T and using (5), we obtain

1 f u2h a. ndz =1:(u, v. ,)+ ((u), u)

1_
=--(u, v. a)+((u) (-P._)u)+(l’._f, l’._u)-(13u,
2

It then follows by standard estimates that

n c{[lla II1,/ 11/3 I1/ 1]llu, ll=/ IIP.-zflI=/ hll(u,) IlVu, I1$dr<=

_-< c(llull=/ IIP_zfll=/ hl/Zll(u.)ll=/ -h/llu.ll=} (for any e >0).

Using (12) and (4) we obtain

II(uh) z< C{hl(uh)lou,/ IlVn_z(Uh)ll=/ hZlluhll =)
<_ C{hl(Uh) iz z zo.,)4-IIP-zfll 4-Ilu.II 4-

Inserting this result in the previous inequality and replacing e by e/C establishes the
lemma.

We now combine Lemmas 4.2, 4.3, 5.1 and 5.2 into a single local stability result.
Theorem 5.1 will then be proved by an appropriate application of this local result.

THEOREM 5.2. Suppose Uh satisfies (3) on type I triangles and (4) on type II
triangles. The following stability results then hold"

(i) For a type I triangle T

fr ( h3/2(duh/d’r)2 } 2h3/2frt- ua" n dr- /3 cot 0 Uh (Uh),r dr
(T) Ol 11 (T)

<=C {hl/2[If]12T+h-1/2llPn_2fll2T+h fr [h3/2(tlh)2z+tl2h] d-}.
in(T)

(ii) For a type II triangle T

fr{ha/2(duh/dT")2 +uEha n d’-2h3/2 fl cot OUh(Uh)dz+Aha/El(uh) 2
[’out(T)

(T) Ol" I1 (T)

<- C (h3/2llfU2T+ h-’/2Upn_2fll2T+ h Iv [h3/2(Uh)2q-tl2h] dr}
in(T)

where 0 is the angle defined in Lemma 4.3 and A is a positive constant, independent of
h and u.

Proofi Let Q be the centroid of triangle T and choose v =-(u),,, in (3) and
(4). Using Lemmas 4.2 and 4.3, (3) and (4) become

12 Ir (a. n,)(a.a.n n2)(uh)2, d’-Ir fl(ot, n)(a, n2)cot Ouh(Uh) d"

1 Ir (’" n3)(7’2" n3)[(Uh)2a d-E[3Uh(tlh)a] dr(19) - a" n3

=--{fT.f(Uh),,, dx dy+R}
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 269

where

R= f (Uh).rl(Uh),r2 dx, dy’’l I [(A1)r2(t/h) 2,rl + (A2)r(Uh)2z2] dxdy
2 r

+
T

and A,A, ,, and 0 are defined in Lemmas 4.2 and 4.3. First note that by
standard estimates

(20)

Next, since (uh),,, e P,_(T),

f f(Uh),,, dx dy cIIe,-=fllll(uh).,=ll
T

(21/ Ch-lllP._=fll.llVuhllr
C{h-=llP.-=fll+ IlVu I1}.

where tr is defined by

and

l+tr=
(. n)(a, n:)

(ct(Q). nl)(Ct(Q), n2)

(7’1" 13)(7"2" r13) 1

(a(Q). nl)(a(Q), n2) a. n3"
Note that tr is of order h. The terms on the left side of (22) which have tr as a factor
can therefore be bounded by c{llVu ll / Ilu ll ). We conclude that (22) remains valid
with tr deleted.

Note also that I,ol is bounded away from both 0 (by HI) and o (by H2). Moreover,
since 7"1" t13 < 0 and 7"z" rl3 > 0, to will have the same sign as a./13, which is negative
for type I triangles and positive for type II triangles. Thus there exist constants/z, A
such that

(a)
(23)

(b)

[tol </z < for a triangle of either type,

to > A > 0 for a type II triangle.

This allows us to bound the term

y to{(Uh)2,, + 2flUh(Uh),} d7"
F3

in (22) from above for a type I triangle and from below for a type II triangle.

Using these bounds in (19), then dividing the resulting inequality by 1/2(a(Q).
(a(Q). n2) (a positive quantity by hypothesis H2), we obtain

fF (l + ’)
(uh)2

dT" 2 /3 1 + tr) cot 0 Uh (Uh),. d7"

(22) + f to{(Uh)2, + 2Uh(Uh),} aT"
dF

--< c{llVull+ h-llluhllr/
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270 RICHARD S. FALK AND GERARD R. RICHTER

But

First consider the case of a type I triangle. Here

I(u): I--< I(u):ol, +1(<- <o)’ Vul,
<__ CTh-’/ll(u):oll + hlillVullr).

Now from (3) we have

Hence

(Uh),o P.-l{f flUh --(a ao) VUh}.

II(u):oll --< c(llfll + u + h IlVu ).

Thus we obtain

(24) Irl =< c{h-’llfll + h-’llu I1+ h IlVu I1).
We use (24) in (22), multiply the resulting inequality by h3/2, then add (17). Application
of the estimates (9) and (10) then leads directly to the desired stability result for type
I triangles.

Next consider the case of a type II triangle. Here

(25)
Y > xl(u):l-211 II(R)lulr:l(u):lr,

>--( -)l(u) I -(lllllulr)=

for any/t > 0. We use (25) in (22), multiply the resulting inequality by h312, then add
(18). We choose 15 e A/4 and apply (9) and (10) again. The desired stability result
for type II triangles then follows upon setting A a/2.

The local results of Theorem 5.2 lead to global stability for Uh and dUh/d’r along
interelement boundaries. Before showing this, however, we reformulate Theorem 5.2
in a way that will enable us to control the growth of (Uh),, as well.

THEOREM 5.2a. There exists a positive constant M such that for a triangle T of
either type

l’[h312(dilh/d’r)2 +U2htr. n d’r-2h3/2 /3 cot Ouh(uh),d’r+ Mh’/ll(u,,)<,ll
F(T) " n (T)

<- C{ hll2Hf ii2T+ h-ll2iiPn-2fii2T+ h fi. [h3/2(tlh)2"t-U2h] d,r).
in(T)

Proof. For a type I triangle T, we write (3) as

((Uh)ao, l)h)--(f --tlh--(Ol--Olo) Vtlh, I)h) all Vh P,-I(T),

which implies that

(Uh),o Pn_,{f flu -(a ao) VUh}.

Thus

II(u):oll --< c{llfll + u + h IlVu )
and

II(u): -< II(u):oll + I1(< <o). vu
_<- c{11f + u - + h vu -).
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 271

Squaring and applying Lemma 3.2, we obtain

For any M>0, we may add Mh/2 times the preceding inequality to part (i) of
Theorem 5.2 and obtain the desired result for type I triangles.

For a type II triangle T, we obtain from Lemma 3.3

(26) II(uh) ll <-- C{hl(uh)lo,<) / llPn-=(Uh) ll/ h=llVuh ll}
Analogous to what has just been done for type I triangles, we find that

P._,_(u) P.-df #u ( o) vuh },

and that

IlP,-2(Uh)[[ < c{llfll+ hluh[ 2 2

Using this inequality in (26) and applying Lemma 3.2, we obtain

II(u)ll rou,()+ Ilfll+ hluh[ 2 3 2

Adding Mh/2 times the above inequality to paa (ii) of eorem 5.2, where Mm A/C,
produces the desired result for type II triangles.

Before extending eorem 5.2a into a global stability result, we establish the
following simple lemma.

LEMMA 5.3. If
(27) X + a (1 + h)X_l + b, 1, 2,.

where r > O, h > 0 and x, a, and b are nonnegative for all i, then

(28) x+
oo The solution of the inequalities (27) is

xN 2 (l+h)’-’(b,-a,)+(l+h)x

Thus

The result follows upon noting that

(1 + Kh) < enh.
We are now ready to prove the main stability result of this section.

Proof of Theorem 5.1. For any triangle T, we infer from Theorem 5.2a that

IF{h3/2(dtlh/d’r)2

f /3 cot Ou(u)&+Mh’/=ll(Uh)ll
T

IF{h3/2(dtlh/d7")2 } 2h3/2 IF<- +ul" nl &+
,.(T) a nl

+C {h’/’llfll=r+h-’/=llP._,_fllr+h fr [h3/2(Uh)2+U2h dr}.
in(T)

cot 0 Uh Uh drD
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272 RICHARD S. FALK AND GERARD R. RICHTER

Summation over all triangles T e S yields

P: + q + Mh l/2ll Uh ), 2sj <- ( l + O(h }Pj- + q-l + C(h l/211f 2
sj + h --1/2 Pn-2f 2(29)

where

and
IF { h3/2(duh/ dT")2

pj =-
la nl

b--= 2h3/2 JFi fl cot OUh(Uh),dz,

with the convention that integrals over F are taken left to right (thus fixing the sign
of (Uh), in the definition of q).

Next, we note that

(30) I1 < Cha/4P
(an immediate consequence of the Schwarz and arithmetic-geometric mean
inequalities). Hence

(31)

for h suciently small. Thus in (29) we may write

{1 + O(h)}p_ + -1 {1 + O(h)}(p_l + _1)+ O(h)_l
{1+ O(h)}(p:_ + _).

Equation (29) then becomes

p + s(32)
{l+O(h)}(p-+-)+C{h/=llfll

Inequality (31) implies that p + 0 for h sufficiently small, in which case Lemma
5.3 is applicable to (32). Using hypothesis H4, we get

(33) p

Using (30) again, we note that

p+=p{l + O(h’/)},
and infer that (33) remains valid with and qo deleted. e result is Theorem 5.1.

As a consequence of Theorem 5.1 and Lemma 3.2, we can now establish stability
for Uh, V Uh and (Uh)

THEOREM 5.3.

and

+ h3/2 v l,lh + h l/2I1()

=< C { h 1/-Ilf / h-’/llP._fll / h3/E

Proof From Lemma 3.2, we have

dub 2

ilUhll= C{hluhl hE E

dUb + hluhl =_, + f s
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 273

Thus

Applying Theorem 5.1, we obtain

Summation over all layers Sj yields

u, + h/=11Vu
(34)

t

To account for II(Uh)[l, we apply Theorem 5.1 with Fj Fou,(fl) to conclude that

(35) ha/2ll(uh)II < C{h/2llfll2a+h-/2llP,,-2fll2, +h3/21duh2 /lUhl 2 }F,,,()dz r,.a)

The statement in the theorem is the sum of (34) and (35).

6. Error estimates. To obtain error estimates for the method, we define an inter-
polant u S by the following conditions:

(i) u (ai) u (ai) for all triangle vertices a;
(ii) r (u u)7" dz 0, 0, 1,. ", n -2 for all triangle sides F;
(iii) Jr(u-u)qdxdy=O for all q6P,,-3(T) and all triangles T.

It is straightforward to show (for example, using the techniques in [3, Chap. 3]) that
u has the following approximation properties:

(36) Ilu u, I1, <-- Ch"/l-llull,,/,,
and

(37)

j=0, 1

I-,1,_-<Ch"+’/=-ll,ll.+,,, j=0,1.

Rewriting (3) and (4) in the form

((u u,) +/(u u,), v)r ((u u,) +(u u,), v),

we may apply Theorems 5.1 and 5.3 with Uh replaced by Uh- U, and f replaced by
r=-(u-u,)+(u-u,).

From (36), it follows immediately that

Moreover, for all Vh P,-2(T),

((u-u’)’’ Vh)r= fr (U--U,)VhaO" ndF-((u-u,), (Vh)o)r 0

since Vh ),o Pn-3( T ). Hence

Pn-=r II.--< Pn-=(a ao)" V(U U,)I1. / II(u U,) I1.
<--_ Ch"/ u I1/,-"
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274 RICHARD S. FALK AND GERARD R. RICHTER

We also assume, for convenience, that Uh Ul on Fi,(f). Insertion of these bounds
into Theorems 5.1 and 5.3 now yields the following theorem.

THEOREM 6.1. Let u be the solution of (1) and Uh the solution of Problem Ph. If
U nn+m(l’), them exists a constant C independent of h such that

u Uh ]]n ----< Chn+/4]1 u I]n+ 1,n,
IIV(u It.--< Chn-1/2l]ulln+l,n,
II(u <- Ch"ll u I1 +

and for j 1, 2,.

and
{IFj (U--Uh)2 dr) 1/2

<- Ch"+l/llull,+l

u Uh) dr <= Ch"-l/z u I1,+,,,.

7. Computational results. We shall present numerical results for three test prob-
lems, each involving approximation by piecewise quadratics. The first problem is

.6ux+.8uy-u=0, 0<x<l, 0<y<l,

with initial data along the x and y axes chosen to make the solution be u
exp (.6x +.8y). A triangulation was obtained by dividing the domain uniformly into
N2 squares, then dividing each square into two right triangles by drawing a diagonal
parallel to the vector (-1). In Table 6.1, values are presented for the quantities

E=-/Ir (Uh--U)20t ndr,
o.(c)

E’=_/fr (duh/dr)2dr
ou,(n) ce" n

and ratios of consecutive values of these quantities as N is doubled.
Our theory predicts errors of order h "+1/4 in Uh and h n-1/2 in dub If these

estimates correctly described the rates of convergence of Uh and dub dr, the ratios of
consecutive errors in these quantities would have limiting values 2225=4.76 and
215 2.83, respectively. In fact, the ratios in Table 6.1 are consistently larger than these
values, indicating a convergence rate similar to that of an interpolant of the exact
solution. This example illustrates the tendency of the method to achieve the optimal

TABLE 6.1
Numerical results forfirst test problem.

N E Ratio E’ Ratio

2 .735 (-3) .132 (-1)
4 .985 (-4) 7.46 .355 (-2) 3.73
8 .136 (-4) 7.23 .917 (-3) 3.87
16 .182 (-5) 7.48 .233 (-3) 3.94
32 .235 (-6) 7.37 .587 (-4) 3.97
64 .299 (-7) 7.86 .147 (-4) 3.98
128 .379 (-8) 7.93 .369 (-5) 3.99
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A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 275

order of approximation on problems with a very smooth u and a regular triangulation.
A partial explanation may be found in [ 10].

The second test problem is

u,+ur=O, 0<x<l, 0<y<l

with initial data chosen to make the solution be u=ltlzs+/2.5, e<< 1, where t=
(y-x)/,,/ is a coordinate orthogonal to the characteristic direction. The domain and
triangulation are as in the previous problem. Here there is no extra differentiability in
u beyond what is needed for applicability of our theoretical estimates. In this case,
the ratios appear to be consistent with the theoretical predictions (see Table 6.2).

The last test problem is

,fu, + u O, -oo < x < oo, > O,

with a discontinuous initial condition:

u(x, o)= .5,
O,

x<O,
x=O,
x>0.

The discontinuity propagates away from (x, t)= (0, 0) along a line making an angle
60 with the x-axis. We again, use a uniform set of right isosceles triangles in the
triangulation, but here the hypotenuses are taken parallel to the x-axis.

Both the continuous and discontinuous finite element methods were applied to
this problem. Table 6.3 indicates the L2 error in Uh at 1 and 2, displayed as
functions of the hypotenuse length h (the time step is At= hi2). For the range of

TABLE 6.2
Numerical results for second test problem.

N E Ratio E’ Ratio

2 .509(-2) .412(-1)
4 .785 (-3) 6.49 .110(-1) 3.73
8 .141 (-3) 5.58 .312 (-2) 3.53

16 .286 (-4) 4.93 .977 (-3) 3.20
32 .598 (-5) 4.78 .297 (-3) 3.29
64 .129 (-5) 4.65 .100 (-3) 2.97
128 .276 (-6) 4.66 .338 (-4) 2.96

TABLE 6.3
L errors for third test problem.

.298 .377 .247 .231
.5 .267 .263 .163 .182

.25 .186 .194 .129 .137
.125 .137 .157 .0970 .103

.0625 .111 .117 .0725 .0784
.03125 .0830 .0894 .0554 .0577

.015625 .0632 .0680 .0408 .0434
.0078125 .0481 .0519 .0307 .0327

Continuous method Discontinuous method
h t=l t=2 t=l t=2
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276 RICHARD S. FALK AND GERARD R. RICHTER

discretizations presented, the discontinuous method yields an error 29-39% less than
the continuous method. However, the discontinuous pieeewise quadratic has three
times as many degrees of freedom over the triangulation as does its continuous
counterpart. Provision for computational cost would thus reduce the advantage of the
discontinuous method on this problem.

Finally, in Figs. 6.1 and 6.2, the continuous and discontinuous solutions are
displayed for h =.03125 at time 2 (128 time steps). The discontinuity has been
smoothed more by the continuous method than by the discontinuous method.

o0O
00000000000000000000000000000000000 0

0

00000000000000000000000000

FIG. 6.1. Continuous method: 2.

FIG. 6.2. Discontinuous method: 2.

D
ow

nl
oa

de
d 

09
/0

2/
14

 to
 1

28
.6

.6
2.

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



A FINITE ELEMENT METHOD FOR HYPERBOLIC EQUATIONS 277

Appendix. Suppose Ah {T1, T2,’’" TN} is a triangulation of [ such that
[a. n[ > 0 along every side of every triangle, where a is continuous and of unit length
over [l. We will show that the triangles in Ah can be ordered such that

DEFINITION A1. A path from T Ah to Tk Ah is an ordered set of 2 or more
triangles

T/m
such that T T, T Tk and for l= 1,..., m- 1, T, and T,+I have a common side
which serves as outflow from T, and inflow to T,/,.

DEFINITION A2. A cycle is a path from a triangle to itself.
LEMMA A.1.
(i) Ah has no cycles;
(ii) There exists a triangle whose inflow is a subset of
(iii) The triangles in Ah can be ordered in a manner consistent with (38).
Proof. (i). Suppose there were a cycle with enclosed triangles as depicted in Fig.

A.1, and consider any characteristic C inside the enclosed region. C must enter the
enclosed region from some triangle A of the cycle, and leave it via another triangle B
of the cycle. Moreover, the set of triangles intersecting with this portion of C forms a
path through the interior from A to B. This path permits formation of a new cycle
having fewer enclosed triangles than the original one. Continuing in this manner, we
eventually obtain a cycle with no enclosed triangles, as shown in Fig. A.2. However,
Fig. A.2 describes a situation where, at the common vertex P, the value of a is such
that a(P). ni has the same sign for each of the normals n depicted in the figure. But
a, by assumption, is well defined at P, so a(P). x will be of constant sign only for
vectors x lying in some half plane. It is geometrically impossible for all the normals
n to lie in a common half plane. Thus there cannot be any cycles.

FIG. A.1
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Fit3. A.2

(ii) If the inflow to T is not a subset of Fin(f), there must be a path to T from
another triangle T, j i. If this were true for all triangles T Ah, there would have
to be a cycle, which was ruled out in part (i) of the lemma.

(iii) This follows by induction, using part (ii) of the lemma.
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