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ERROR ESTIMATES FOR MIXED M E T H O D S (*)

by R. S. FALK (*) and J. E. OSBORN (2)

Communicated by P. A. RAVIART

Abstract. — This paper présents abstract error estimâtes for mixed methods for the approximate
solution of elliptic boundary value problems. These estimâtes are then applied to obtain quasi-optimal
error estimâtes in the usual Sobolev norms for four examples: three mixed methods for the biharmonic
problem and a mixed method for second order elliptic problems.

Resumé. - Dans cet article, on présente des estimations d'erreur abstraites pour des méthodes
mixtes appliquées à la résolution approchée de problèmes aux limites elliptiques. On applique ensuite ces
estimations afin d'obtenir des estimations d'erreur quasi-optimales, dans les normes de Sobolev
habituelles, dans quatre exemples : Trois méthodes mixtes pour le problème biharmoniques, et une
méthode mixte pour les problèmes elliptiques du second ordre.

1. INTRODUCTION

In [5] Brezzi studied Ritz-Galerkin approximation of saddle-point problems
arising in connection with Lagrange multipliers. These problems have the form:

Given f e V' and g e W\ find (u, \|/)e V x W satisfying

[ ' }

where Kand Ware real Hubert spaces, and a ( . , .) and fc(., .) are bounded
büinear forms on Vx V and VxW9 respectively.

Given finite dimensional spaces VhczV and WhczW, 0 < h < l , the Ritz-
Galerkin approximation (uh, v|/ft) to (u, \j/) is the solution of the following
problem:

Find (ufc, v|/A)e VK x Wh satisfying

a(uh, v) + b(v, **) = (ƒ, v), Vi>€ Vk9 1
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250 R. S. FALK, J. E. OSBORN

The major assumptions in Brezzi's results are

^ Y ^ ^Jo\\u\\v, VueZh and Vft, (1.3)
veZh \\V\\V

where YO > 0 is a constant independent of h and

and

^ , , 9 ^ ^fcolMU, VcpePF, and Vfe, (1.4)
\\V\

where fco>0 is independent of h.

Using (1.3) and (1.4) Brezzi proves the following error estimate for the
approximation method determined by (1.2):

| |«-Wfc|k+IK-*/ | | iK^C(iiif | | M - X | | K + inf H^-Till^), VA. (1.5)

In [1, 2] Babuska studied Ritz-Galerkin approximation of gênerai
variationally posed problems. The main resuit of [1, 2], applied to (1.1) and
(1.2), is that (1.5) holds provided

c _ [ f l ( M , P ) + fe(P,\|Q + ft(". < P ) | > T / I I „ I I , 1 1 , || v
S U P HPH -4- II CD II è T 0 ( | | « | | K + \W\\w), i

(vt<f)eVhx1Vh \\V\\v+\\W\W V (1.6)

\f{u^)eVhxWh and Vfe,

where x0 >0 is independent of h.

It is clear from [1, 2, 5] that (1.3) and (1.4) hold if and only if (1.6) holds. (1.3)-
(1.4) or, equivalently, (1.6) is referred to as the stabiiity condition for this
approximation method.

The results of [1, 2, 5] can be viewed as a strategy for analyzing these
approximation methods: the approximation method is characterized by certain
bilinear forms, norms (spaces), and families of finite dimensional approximating
spaces, and if the method can be shown to be stable with respect to the chosen
norms, then the error estimâtes in these norms foliow in a simple manner
provided the bilinear forms are bounded and the approximation properties of Vh

and Wh are known in these norms. These results can be used to analyze, for
exampie, certain hybrid methods for the biharmonic problem [5, 6] and the
stationary Stokes problem [10]. The results of [1, 2] have also been used to
analyze a variety of variationally posed problems that are not of form (1.1).
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ERROR ESTIMATES FOR MIXED METHODS 251

There are other problems of a similar nature, however, where attempts at
using the ideas of [1, 2, 5] were not entirely successful since not all of the abstract
hypotheses were satisfied: specifically the Brezzi condition (1.3) or, equivalently,
the Babuska condition (1.6), is not satisfied with the usual choice of norms, i. e.,
the approximation methods for these problems are not stable with respect to the
usual norms. This is the case, for example, in the analysis in [7] of the Hermann-
Miyoshi [14, 15, 19] mixed method for the biharmonic problem. In the analysis
of this method a natural choice for both || . \\v and |[ . ||^ is the lst order Sobolev
norm; however this method is not stable with respect to this choice. As a resuit of
this difficulty, the error estimâtes obtained in [7] are not quasi-optimal. A similar
difficulty arises in the analysis of the Hermann-Johnson [14, 15, 16] and Ciarlet-
Raviart [9] mixed methods for the biharmonic problem. In later work of Scholz
[23] and Rannacher [21] quasi-optimal error estimâtes were obtained for the
mixed methods of Ciarlet-Raviart and Hermann-Miyoshi, although the
systematic approach of Brezzi and Babuska was abandoned.

In a forthcoming paper of Babuska, Osiorn, and Pitkâranta {3} quasi-optimal
error estimâtes for mixed methods for the biharmonic problem are derived by an
application of the resuit s of Brezzi and Babuska. In this work a new family of
(mesh dependent) norms are introduced with respect to which the above
mentioned mixed methods (Ciarlet-Raviart, Hermann-Miyoshi, Hermann-
Johnson) are stable. Error estimâtes in these norms then follow directly from the
results of Brezzi and Babu§ka, once the approximation properties of the
subspaces Vh and Wh have been determined in these new norms. Error estimâtes
in the more standard norms are then obtained by using the usual duaiity
argument.

It is the intent of this paper to provide an abstract approach to the analysis of
mixed methods which leads to quasi-optimal error estimâtes, uses only standard
norms, and is systematic. We shall assume that existence and uniqueness for the
continuous (infinité dimensional) problem has been established and develop an
abstract framework under which quasi-optimal error estimâtes can be derived
for a variety of examples which do not fit within the convergence theory of Brezzi
and Babuska using the usual norms.

Section 2 contains the abstract convergence results of the paper. In section 3
we present four examples previously analyzed in the literature and show how
error estimâtes can be derived from the theorems in section 2. Three of these
methods are mixed methods for the biharmonic problem and the fourth is a
mixed method for a second order problem analyzed by Raviart-
Thomas [22, 25].

It is interesting to note that in this last example the results of Brezzi and
Babuska apply with the choice of spaces used by Raviart-Thomas, but fail to
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2 5 2 R. S. FALK, J. E. OSBORN

yield quasi-optimal error estimâtes in all cases due to the way in which the
variables are tied together in the error estimâtes. In our analysis the error
estimâtes for the two variables are separated and quasi-optimal error estimâtes
are obtained. For the three mixed methods for the biharmonic problem that are
analyzed in section 3 the results of the present paper and those obtained in [3],
using different techniques, are the same. For additional results on mixed
methods see Oden [20]. Finally we note that some basic ideas in the analysis in
this paper are similar to those employed in Scholz [23, 24],

Throughout this paper, we shall use the Sobolev spaces Wm-p (Q), where Q is a
convex polygon in the plane, m is a nonnegative integer, and 1 g p < oo. On these
spaces we have the seminorms and norms

and

When p = 2, we dénote Wm> 2(Q) by Hm(Q) and write

and

We will further dénote by W^P{QL) the subspace of WltP(Q) of fonctions that
vanish on F = 3Q and by ifo(O) the subspace of H2(Q) of fonctions that vanish
together with their normal derivatives on F. For m = 1 and 2 we will also use the
spaces H-m(Q) = [H'S(Q)Y [the dual space of if^(fi)] with the norm on H~m(Q)
taken to be the usual dual norm. To forther simplify notation we often drop the
use of the subscript Q in the norm when the context is clear.

2. ABSTRACT RESULTS

Let V9 W, and H be three real Banach spaces with norms || .\\y, || . ||^, and
|| . \\H respectively. We assume VczH with a continuous imbedding. Let a(., .)
and b(., .) be continuous bilinear forms on H xH and VxWy respectively:

(2.1)

W. (2.2)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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We consider the foliowing problem, which we refer to as problem P:

Given ƒ e V1 and g e W\ find (u,ty)eVxW satisfying:

, (2.3)

(2.4)

where (., .) dénotes the pairing between F and V' or W and W'.

We shall be interested in this problem for a subclass of data, i. e., for ( ƒ, g) e D,

where D is a subclass of V' x W'. We shall assume that:

(Hl) For (ƒ, g)eD, P has a unique solution.

In the analysis of problem P we will also consider the adjoint problem:

Given de G', where G is a Banach space satisfying WaG with a continuous
imbedding, find (y, X)-{yd,Xd)eVxW satisfying

, (2.5)

We shall assume that:

(H2) Problem (2.5)-(2.6) has a unique solution for each de G'.

Throughout this paper we shall be concerned with the problem of
approximating the solution (u, \(/) of P. Toward this end, we suppose we are given
finite dimensional spaces Vh c V and Wh a W. We then consider the following
approximate problem, which we refer to as problem Ph:

Find (uh9 \ |/Je Vh x Wh satisfying:

a(uk9 v) + b(v, **) = (ƒ, v), VrG Vh, (2.7)

. (2.8)

We will then view uh as an approximation to u and \|/A as an approximation to \J/.
In this section we obtain estimâtes for w — wh and x)/ — \|/h.

We now state several further assumptions which we will require in the proofs
of our main results.
(H3) There is a constant <x>0 (oc independent of h) such that

\vhere Zh^{veVn:b{v, cp)=O,
(H4) S (/i) is a number satisfying

vol. 14, n°3, 1980



254 R. S. FALK, J. E. OSBORN

(H5) There is an operator nh: Y-> Vh satisfying

p) = 0, V y e 7 and

where Y= span({ yd } d e G , , w), (M, \|/) is the solution of problem P, and (yd, A,d) is
the solution of (2.5)-(2.6) corresponding to deG'.

For the examples treated in section 3 the existence and uniqueness of the
approximate solution (uh, \Jf h) can be established in various ways. We now give a
proof based on the assumptions made above.

THEOREM 1: Assume that hypotheses (H2), (H3) and (H5) are valid. Then
problem Ph has a unique solution.

Proof: Since Vh and Wh are finite dimensional, it suffices to show that if
(tth, \K)eK f tx Whsatisfies

h, (2.9)

(2.10)

then uh = \|/h = 0. Choosing t; = uh in (2,9) and (p = — v|/h in (2.10) and adding the
équations, we get a(uh9 uh) = 0.

Noting from (2.10) that uheZh and using (H3) we have ||uh\\H =0 . Hence
uh = 0.

Setting uh~0 in (2.9) we obtain:

b(v^h) = 0, VveVh. (2.11)

Now

(2.12)

By (H2), for each deG\ there exists yde Fsuch that for all cpe W:

{dy(p) = b(yd,(p).

Thus

tyh) [applying (H5)] = 0 [using (2.11)].

Equation (2.12) then implies vj/,, = O.

Our main resuit in this section are theorems 2 and 3 which present abstract
estimâtes for the er r ors u — uh and \|/ — v|/ft.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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THEOREM 2: Suppose hypotheses (H1)-(H5) are valid and that (u, \|/) and (uh, \|/h)
are the respective solutions of problems P and Ph. Then [with nh defined by (H5)],

| | | J I ] f o r a l l <peWh ( 2 . 1 3 )

and

\\u-uh\\vï\\u-nhu\\v+
S-f-

x[\\b\\S(h)\\*-v\\w+\\a\\\\u-nhu\\H] forall cpeWV (2.14)

If in addition

(H6)

where

then

r ii/, in..
(2.15)

and

l l l l ^ ^ ^ l l l U . (2.16)

Proof: Using (2.3) we see that

a(nhu, v) + b{v, \|/) = a(w, v) + b(v, y\f) + a(nhu-u, v)

= (f,v) + a{nku-u9v), VveVh, (2.17)

and from (2.4) and (H5) we see that

t(7cfctt,<p)«te,<p), V 9 e ^ h . (2.18)

Subtracting (2.7) from (2.17) we find

a(nhu-uh, v) + b(v9 ^-^h) = a(nhu-u, v), Vue Vh, (2.19)

and subtracting (2.8) from (2.18) we obtain:

&(7i*u-u*,<p) = 0, V c p e ^ (2.20)
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Choosing v — nhu — uh in (2.19) we have

a(nhu-uk9 nhu-uh) + b(nhu-uh, ^-^h)

Applying (2.20) we get

a(nhu-uh, nhu-uh) = a(nhu-u, nhu-uh)

-<p) f o r a l l c p e ^ . (2.21)

Using (2.1), (2.2), (H3), (H4) and noting from (2.20) that nhu-uheZh9 we
then obtain:

and hence

( ,2* 22)
loi all ipt fl / r J

Thus

for all cpe Wh, This proves (2.13).

Tn order to prove (2.14) we first note that

(2.14) now follows from (2.22).

To prove (2.15) we observe that (2.20) together with ZhaZ implies that

b(7ihM~«h,cp) = O5 Vcpe^. (2.23)

Hence (2.21) simplifies to

a(nhu-uh, nhu-~uh) = a(nhu-u, nhu-uh). (2.24)

Applying (2.1) and (H3) to (2.24) yields

| | h W | | H . (2.25)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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(2.15) follows by the triangle inequality.

To establish (2.16) we write

- u ^ [by (H4)]

^ \ \ \ \ H [using (2.25)].

COROLLARY: Inequality (2.15) holds without assumption (H4).

THEOREM 3: (a) Suppose hypotheses (Hl), (H2), (H3), and (H5) are valid and that
(u, \|/) and (uh, \|/h) are the respective solutions of problems P and Ph. Then (with
(y<i> ^d) and nh as defined in (H2) and (H5), respectively),

-a(uh-u, nhyd-yd)
deG'

G, forall <p, r\eWh. (2.26)

(b) If in addition (H6) holds (ZhczZ), then

l), Vr[eWh. (2.27)

(c) If we further have that:

(H7) There is an operator ZA : A -^ Wh satisfying b (u, Xh X — X) = 0 for all veVh

and all X e A, where A = span ({Xd } d e G , , \|/), (ti, \|/) i's t/ie solution of problem P , ̂ n^
(yd, ^d) is the solution of (2.5)-(2.6) corresponding to deG', then

,\|/) (2.28)

b ( w _ M h j ^ - L „ X d ) = (0, Xd-l f cX r f). (2.29)

Proof: From (2.6) we have

I K ^ | | 4r«^)/||d||c.. (2.30)

Subtraction of (2.7) from (2.3) and (2.8) from (2.4) yields

„ (2.31)

and
6(w-Mfc,Ti) = 0, V r | e ^ h . (2.32)

vol. 14, n°3, 1980



258 R. S. FALK, J. E. OSBORN

Now, combining (2.5), (H5), (2.31), and (2.32) we obtain:

b(yd,
 }\t-y\fh) = b(yd-nhyd, ty-tyh) + b(nkydi \|/-\|/h)

= b{yd-nkyd9 ty-q>) + a{uh-u9 nhyd)

= b(yd-nhyd, ty-<p) + a(uh-u, nhyd~yd) + a{uh-u, yd)

= b{yd~-nhyd, \|/-q>) + a(Mh-ii, nkyd-yd) + b(u-uh, Xd)

= b{yd~nhyd, \|/-(p) + a(i<fc-i*, nhyd-yd)

+ b(u-uh,Xd-T}) for all <p9i\eWh.

Substitution of this identity in (2.30) yields (2.26).

If Z„ciZ then

b (nh u - uh, cp) = 0, V cp e W [see (2.23) above]

and so (2.27) follows immediately.

Now, if in addition (H7) holds, then

b{yd-nhyd, ^-ZhW = b{ydi ^ -S h \ | f ) = (d, v ^ - 2 ^ ) [by (2.6)].

and
b(u-uh, \d-i:k\d) = b{u, Xd-2hXd) = {g, ki-ïkK)-

Thus (2.28) and (2.29) are established.

REMARK: Note that inequality (2.15) in theorem 2 and all the results of
theorem 3 hold without assumption (2.2). This observation is used in
subsection 3 c.

We end this section with several remarks on the hypotheses (H3)-(H7). We
assume here that V and W are Hilbert spaces.

1) It is clear that if

a{v9 v)^yQ\\v\\} forallueZfc, (2.33)

then hypotheses (1.3) in Brezzi's theorem is valid. In the applications we
consider in section 3, (2.33) is not true (with y0 independent of h) but is valid
when || v \\v is replaced by ]| v\\H. This accounts for (H3) [and (H4)].

2) In hypotheses (H5)-(H7) it appears that we are not making use of conditions
similar to (1.4). In fact, in applications the operator nh described in (H5) is often
constructed in order to verify (1.4). A more précise relationship is given below in
propositions 1 and 2. For further ideas in this direction, consult the work of
Fortin [11].

R.A.I.R.O. Analyse numérique/Numerical Analysis
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PROPOSITION 1: Suppose

^y9^ * and 'VA, (2.34)
ueV> \\V\\V

where ko>O. Then there is an operator nh: K-> Vh that satisfies

and

^Min«ii

Proof: Consider b(v, cp)onZ\ xWh, whereZ\ = {vG Vh: vis F-orthogonal to
Zh). We immediately see that

and
sup |6(u,

It thus folio ws from [1,2] that for each v e V there is a unique nhvsZ\ satisfymg

b(nhv9 <p) = b(ü, cp), Vcpe^V
Furthermore,

This proves proposition 1.
We also note that it folio ws from [1,2] that for each (p G W there exists a unique

Y,hyeWh satisfying

Furthermore,

PROPOSITION 2: Suppose

sup ,| \,—- ^ k || (p | |^, V cp e W, (2.35)

vol. 14, n°3, 1980



2 6 0 R. S. FALK, J. E. OSBORN

where k>0, and suppose there is an operator nh: V-+ Vh satisfying

b(v-nhv, <p) = 0, VcpeJF,
and

\\nhv\\vèC\\v\\v, VveV.
Then (2.34) holds.

Proof: Clearly we have

\b(v9 cp)| \b(nhv,
sup ' M M — L ̂ s u p -L

1i H
veVh \\v\\v

i.e., (2.34) holds with ko = k/C.
Thus we see that (H5) is closely related to (2.34), which is the same as (1,4).
3) Hypotheses (H6) and (H7) are also closed related as we see by the following

result.

PROPOSITION 3: E>,: W^ Wh, as defined in remark 2, satisfies

&U\ZAcp) = Mi\<p), VreK,, (2.36)
ij and only ij'ZhcZ.

Proof: Suppose (2.36) holds. Let veZh. Then

h{i\ (p)s=&(ü, Z*<p) = 0, VcpeW,
i.e., veZ. Thus ZhcZ.

Now suppose ZnŒZ. Then, iïveZi we have (2.36) by the définition of Zft,
and, ifveZh we have (2.36) since both terms are zero. Since Vh-Zn®Z{ we
obtain (2.36) for allueKh.

3. APPLICATIONS

In this section we apply the results of section 2 to several examples.

a) Ciarlet-Raviart method

Consider the biharmonic problem

A2\l/ = 0 in fl,

\ | /=-^-=0 on T = dÜ
on )

R.A.LR.O. Analyse numérique/Numerical Analysis
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where Q is a convex polygon and g is a given function. If g e H ~ 2 (Q) then there is
a unique solution \|/ e i î § (^0 of (3.1). In addition the following regularity resuit is
known for this problem: If g e H ~x (Q), then \|/ G H3 (Q) n Hl (^) and there is a
constant C such that

IM|3^C|M|-i> V^eH-^Q). (3.2)

Using the well-known correspondence between the biharmonic problem and the
Stokes problem, this regularity resuit can be deduced from the regularity resuit
for the Stokes problem proved in [17] (cf. also [13]).

We now seek an approximation to the solution \|/ of (3.1) by a mixed method,
i.e., we introducé an auxiliary variable (u=— À\|i for the method of this
subsection), write (3.1) as a lower order System, cast this System in variational
form, and then consider the Ritz-Galerkin method corresponding to this
variational formulation. In particular, the mixed method we study will be based
on the following variational formulation of (3.1), first considered by Glowinski
[12]_and Mercier [18] and further developed by Ciarletand Raviart [9]:

Given g e H ~1 (Q), find (w, \|/) e Hx (Q) x H J (Q) satisfying

uvdx —

(3.3)
VcpeHj(Q).

Using the regularity resuit (3.2) it is not difficult to show (see theorem 1 of [9])
that if \j/ is the solution to (3.1) and u = — A\|/, then (u, \|/) is a solution of (3.3),
and if (w, \|/) is a solution of (3.3), then \|/ is a solution of (3.1) and u= — A\[f.

It is clear that (3.3) is an example of problem P of section 2 with

a(u, v)= uvdx and b(u, \|/)= —
Jn Ja

(and with # replaced by -ôf). Hère the subclass D of data for which (Hl) is
satisfied is given by D = 0 x W'. Since the form a is symmetrie, the adjoint
problem (2.5), (2.6), with G = W=H J (Q), is the same as problem P and thus is
uniquely solvable for ail d e W'. Hence (H2) is satisfied. Using (3.2) we also have

II y* II i + M s ^ c I M I ^ . (3-4)
Next we discuss the ûnite dimensional subspaces used in the approximation

scheme. For 0<h< 1, let xh be a triangulation of Q with triangles Tof diameter

vol. 14, n°3, 1980
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less than or equal to h. We assume the family {xh} satisfies the minimal angle
condition, i.e., there is a constant a > 0 such that

max — ^ a , Vh,

where hT is the diameter of Tand p r is the diameter of the largest circle contained
in T, and is quasi-uniforrn, i.e., there is a constant t > 0 such that

max hT

mm nT
T

For /c^ l a fixed integer we define

{ | } , (3.5)

where Pk is the space of polynomials of degree k or less in the variables x t and x 2.
We then consider the approximate problem Ph with Vh — Sh and
Wh = ShnHo(Q). Note that this scheme yields direct approximations to \|/and
u— —Ay\f (the stream function and vorticity in hydrodynamical problems).

To apply our theorems we must check that hypotheses (H3)-(H5) are valid.
(H3) is clearly valid with oc= 1 and since our family of triangulations is quasi-
uniform, (H4) is satisfied with S{h) = C/h for some constant C. It remains to
check (H5). For veH1 (O) define nhv by:

[
nhveVhi

and

nhvdx~ I vdx, i.e.,1
let nhv be the Neumann projection of v into Vh. Then (H5) is satisfied, and in
addition standard approximability results imply that if veHr~2(ÇÏ), r ^ 3 , then

* \\v\\i* \

d 1 ̂ / ^min ( / c+1 , r — 2), J
(3.6)

; = 0, 1 and

We are now ready to apply theorems 2 and 3. Suppose y\feHr(Q), r ^ 3 and
that /c^2. Then, using (2.13), (3.6), and standard approximability results, we
have

R.A.I.R.O. Analyse numérique/Numerical Analysis
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1 inf | | \ | /-(p| | i + ||w

\\\\s (since W = - A \ | / ) > (3.7)
where s = min (r, fc +1).

From (2.14) we find in a similar fashion that

(3.8)

where s = min (r, k+1).

Finally, from (2.1), (2.2), (2.26), (3.4), (3.7), and (3.8), we have

^ C sup {||3\i-ît*J\.||i i n f

neWh

where s —min (r, fc+1).

Since (3.7)-(3.9) are valid only for k ̂  2, the methods of this paper do not yield
error estimâtes for the case k=\ in this example. For this case the reader is
referred to Scholz [24]. The estimâtes (3.7)-(3.9) improve on those in Ciarlet and
Raviart [9]. Scholz [23] obtained (3.7) under the assumption that F is smooth.
(3.7) and (3.9) were obtained by Babuska, Osborn, and Pitkàranta [3].

We remark that theorem 3 could also be used to obtain an error estimate for
IK-^ftHo [by choosing G = L2{ÇÎ)] when \|/ef/4(Q). However in order to get
quasi-optimal results we would require the regularity resuit that deL2(Çï)
implies XdeH4(Q), which is not valid on a convex polygon.

b) Hermann-Miyoshi method

We consider in this subsection another mixed method for the approximate
solution of (3.1). In this method the auxiliary variable is the vector of second
partial derivatives of \|i.

Let

v12 = v21,vijeH1(Q)}

(with the usual product norm), and
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Then the mixed method we study will be based on the following variational
formulation of (3.1).

Given geH'1 (O), ünd (u, \|/)e Vx Wsatisfying

(3.10)

Using the regularity result (3.2) it is not difficult to show that if \|/ is a solution of
(3.1) and u = (uv) is defined by ulJ = d2y\f/dxldxJ, then (u, \|/) is a solution of
(3.10), and if (u, v|/) is a solution of (3.10), then \|/ is a solution of (3.1) and

We easily observe that (3.10) is an example of problem P with V and W as
above,

(with the usual product norm),

2

a(u, v)= £

and

As in subsection 3 a the subclass D of data for which (Hl) is satisfied is given by
D = 0 x W ', and since a is again symmetrie (H2) is satisfied with G = W= H J (ü).

Letting Sh be as defined in (3.5), we then consider the approximate problem Ph

with

Vh = {y = (Vij) ; vi2 = v2i, vtJeSh}

and

With this choice for the forms a and b and the spaces Vh and Wfc, problem Ph now
describes the Hermann-Miyoshi method [14,15,19] for the approximation of the
biharmonic problem. Note that with this method we obtain direct
approximations to \|/ and ô2y\f/ôxldxJ (the displacement and the moments in
elasticity problems).
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As in subsection 3a we have hypothesis (H3) satisfied with a = l and (H4)
satisfied with S {h) — C/h for some constant C. (H5) for this example is contained
in lemma 2 in [7]. Moreover, by a minor modification of the proof of lemma 2 in
[7] we obtain the existence of nh : F-> Vh satisfying:

and for ve Vc\ [Hr 2(Q)]4, r;>3, the estimate

and
l = / = min(fc+l,r-2). (3.11)

We can now apply theorems 2 and 3 in the same way as in subsection 3 a.
Combining these theorems with (3.11) and Standard approximability results, we
obtain for \J/ei/*"(Q), with r ^ 3 and k^2:

(3.12)

(3.13)

and
(3.14)

where s = min (r, k +1). Estimâtes (3.12)-(3.14) improve those in Brezzi-Raviart
[7]. Rannacher [21] recently proved these estimâtes for fc = 2. Babuska, Osborn,
and Pitkaranta [3] proved (3.12) and (3.14).

c) Hermann-Johnson method

Weconsiderherea further mixed method for the solution of(3.1) in which the
auxiliary variable is the vector ol'second partial derivatives of \|/, as in section 3 b.

Given a triangle Te xh and a function v = (u£j.) with v tj e Hx (T), 1 g 1,7 ̂  2, and
u i 2 = î;2i w e define

*Mv)= ^

and

where v = ( v 1 , v 2 ) is the unit outward normal a n d x = (T l s Î2) = (V2» ~ VJ) is the
unit tangent along 3 T. Let

V=
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and Mv(v) is continuous at the interelement boundaries}

and

where p is some number larger than 2.
The mixed method we study in this subsection will be based on the following

variational formulation of (3.1).
Given geH'1 (Q), find (w, \|/)e VxW satisfying

T dXj 3x, ) r T

VveK,
(3.15)

The correspondence between (3.1) and (3.15) is the same as the correspondence
between(3. l)and(3.10),i.e.,if \|/is the solution of (3. l)sthen([32\|//ôx,3xj], \|/)
is a solution of (3.15), and if ((«,_,), \|/) is a solution of (3.15), then \(/ is the solution
of (3 1) and ull^P2^/dxldxr

One easily sees that (3.15) is an example of pioblem P with Kand ï^as above,
H as in section 3 b,

ul}vXiàx

and

As in the previous subsections, a subclass D of data for which (Hl) is satisfied is
given by Z) = 0 xH~l (Q), and since a is again symmetrie, (H2) is satisfied for
G = H o (O). We note that in this example the space V = V{h) dépends on h. For
each h the form b(u, \(/) is bounded on V(h) x W(where W= WQ'P,P>2) with a
bound b that dépends on h. In the error estimâtes in this subsection we do not
require that this bound be independent of h. Cf. the remark following theorem 3,
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Letting Sh be as defined by (3.5), we then consider the approximate problem
Ph with

and

With this choice for the forms a and b and the spaces Vh and Wh, we have the
method of Hermann-Johnson [14, 15, 16].

As in the previous subsections, hypothesis (H3) is satisfied with a = 1. We now
consider (H5).

For ve V we define nhveVh as in [7], section 4, i.e., nh v is defined by the
conditions

\

(3.16)

T '

and for ail sides T* of xh

and

2 and[vij-(

By lemma 3 in [7], %h\ is uniquely determined by (3.16). Since we can write

Lj=l OXOX

(3.16) easily implies (H5). We note that by lemma 4 of [7] we also have for all

H l l H l l , l^min(fc,r-2). (3.17)

We next observe that by lemma 5 of [7], Zn c Z, so that we are in the special cases
of theorems 2 and 3. In particular, by the corollary to theorem 2, (H4) need not be
satisfied in order to apply (2.15), so we shall not require {xh} to be quasi-
uniform. Since we wish to apply theorem 3, part c, we now show that hypothesis
(H7) is satisfied. As in the proof of lemma 5 in [7], for \eVh and [i e W= W\ p (Q)
we can write

*(T,H)—I I f â"M*
Text U = l JT OXiOXj

X A(Tl,y)v>ds+YéB{a,y)VL(a), (3.18)
'elh JT' aeJ,T'el
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where Ih is the set of all sides of the triangulation xh, Jh is the set of all vertices of
xh, and A(T', v) is a polynomial of degree less than OP equal to k-2 in the
variable 5.

For ^e W we now choose Zft jxe Wft so that

ir

, and V r e x , , (3.19)

_2 and VT'eIh, (3.20)

VaeJ , . (3.21)

The unique solvability of this System is easily checked. Note that by the Sobolev
imbedding theorem, \ieW implies ^ieC°(Q). Since for yeVh we have
d2vij/dxidxj\TePk-3 and A(T9 v)ePk_2 ) it follows from (3.18) that Zhp.,
as defined by (3.19)-(3.21), satisfies (H7). Furthermore, by a standard
application of the Bramble-Hilbert lemma [4], we obtain for all ue Wn Hr(Q)\

' | |M.| | / , 7 = 0, 1 and lg /^min( r , fc+1). (3.22)

We are now ready to apply theorems 2 and 3. Suppose that fc_-l and
Q), r ^ 3. From (2.15) and (3.17) we obtain:

| |u-u f I | | o^C| |u-7c hu| | ogC/ï s | |u | | 5^C^ ô | | \ l / | | ô +2, (3.23)

where ô = min (/e, r - 2 ) .

To obtain estimâtes for \|/ —\|/fc we shall apply theorem 3 in several different
ways. Choosing G = Hj(Q), cp = ƒh\ |/, and y\~Jh

fkd (where Jh<$ dénotes the
Standard Lagrange interpolant of cp in Sh), we get from theorem 3(a)'(b) that

| |^~x l /ft | | i= sup

To estimate the terms in the above expression, we introducé the affine
transformation

mapping the référence triangle f with vertices (0,0), (1,0) and (0,1) onto T, and
set
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where

and

and
1>22

Using the standard change of variables argument, we have that if ve[Hl(T)]A

and (peH'(r ) , where l ^ î and 2 ^ t , then

f y h* d<p
dx

and

Jrr ox i=i Jf;

where x and v dénote the unit tangent and unit outward normal to dT,

respectively, T\ are the sides of 7 , and | T\ | =length of T\ -

Since

\B\\SCh,

and
\Ti\*ch (cf.mi

it easily foliows that

JT i,j^ldxj Sxi JdT dx

diij dep

Now from lemma 4 of [7],

if

Ë »S
1/2

ds

. (3.24)

(3.25)

and

(3.26)
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Using the standard properties of the interpolant {cf. [8]) we also get

^ q > - ç = 0 if (pePfc(f) (3.27)
and

Using (3.24)-(3.28) we easily obtain:

(3.28)

I MV T(v-7ihv) — (q>-

i n f | | v - p | | l t f i n f H ^ -

^Ch2 inf \\y-p\\Kt inf | i 9 - ^ | U

ïor l^l^k and 2:g t ^ A; + 1 . Changing back to the original variables we further
obtain:

and

Hence if ve[H'(Q)]4 and (peH'(O) for lg/gfc and 2gtgfe + l, then

f y —ly-n v —(
JTi,j=lVXj ÔXi

U^l, (3.29)

Choosing v = yd ) cp = \|/, ï-l and £ = min(r , k+l)~s in (3.29) we get

I f / c ^ 2 we choose v = u, <p = i.d, Z = 5 - 2 , and t = 3 in (3.29) to obtain:
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If k= 1 we choose /= 1 and t = 2 to obtain:

Finally if fc^2, from (2.1), (2.15), and (3.17) with 1=1 and i = s - 2 we have

\a(uh-u,Khyd-yd)^C\\uh-u\\0\\nhyd-yd\\0

If k= 1 we choose / = 1 in (3.17) to get

|fl(»fc-i«,Jc*y--yd)^C

Applying the regularity resuit

ll I I I U l l d l l ^ (3.30)
and collecting terms, we get

1!!^!!, for fe^2 where s = min(r, fc+1) (3.31)

and
l l l l l ^ ^ for k=l. (3.32)

We now dérive estimâtes in L2{Q)- First consider the case when k=l and
\|/ e H 4 (Q). Using theorem 3 (a)-(c) with G = L 2 (Q), <p = Lfc \|/, and r\=ZhXd, and
(2.1) we easily obtain:

| | * - * * | | o = C sup {||

From (3.22) we get

and

Using (2.15) and {3.17) we have

Noting that \\d\\ _ i ^ | |d| |0 and ]|âfj|0^C|j\|/J|4, using (3.30) and combining
terms we obtain:

| j | | | | | | ( 3 . 3 3 )
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Next we consider the case fc^2. Using theorems 3(a)-(c) with G = L2(O),
= E^v|/, and r\=JhXd, and (2.1) we have

+ \b{u-nku,\d-ShXd)\} /\\d\\0.

From (3.22) with / = s = min(r—1, /c+1) we get

Using (2.15) and (3.17) with / = s - l we see that

and using (3.17) with /= 1 and (3.30) we obtain:

Finally from (3.29) with v = u, (p = A,d, 1 = J - 1 , and t = 3, and (3.31) we see that

Combining these estimâtes we have

|| \|f — \ | / J | 0 ^ C ft5" || \|/ IL.J, (3.34)

where 5"=min(r —1, k+1) and k^2.
Note that (3.34) gives an improvement over (3.31) only for /c+l^r— 1.

Estimâtes (3.31) improve estimâtes in [7]. Babuska, Osborn, and Pitkaranta [3]
have proved (3.23), (3.31)-(3.34).

d) Raviart-Thomas method

In our final example we study a mixed method for second order elliptic
problems introduced by Raviart and Thomas [22, 25]. For geL2{Q), ü a
convex polygon in [R2, we consider the model problem

-A\|/ = # in Q |
\|/ = 0 on F. J

Let H (div; Q) = { v G [L 2 (Q)]2 : div v G L 2 (Q)} with the norm

The mixed method we study is based on the following variational formulation
of (3.35).
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Find (u, \|/) G H (div; Q) x L 2 (Q) such that

u-\dx + yj/àiwydx^O, Vveiï(div; Q) (3.36)
h JQ

and

q>(divu + âf)dx = O, VcpeL2(Q). (3.37)
! •

In theorem 1 of [22] it is shown that problem (3.36)-(3.37) has a unique
solution (u, \|/)eH(div; Q) xL2(Q), that \Jr is the solution of problem (3.35), and
u = grad \|/. In addition the following regularity resuit is known for this problem:

If g e L 2 (Q) then \|/ e H 2 (Q) n H J (Q) and

(3.38)

One easily sees that (3.36)-(3.37) is an example of problem P with

a(u, v ) = u\dx and fc(u, \ | /)=
Jn JQ

The subclass /) of data for which (Hl) is satisfied is given by D = 0 x W'. Since a is
symmetrie, the adjoint problem (2.5), (2.6) with G = W= L 2 (Q) is the same as
problem P and thus is uniquely solvable for ail de W'. Hence (H2) is satisfied.
Using(3.38) we also see that XdeH2(Q) nHi(Q), yd=gradA,d, and

| | y d | | i + | | M 2 ^ C | | d | | 0 . (3.39)

We now describe the finite dimensional subspaces used in the approximation
scheme. Following [22] we begin by introducing the spaee Q associated with the
unit right triangle Tin the (Ç, ri)-plane whose vertices are âx =(1, 0), â2 =(0, 1),
Û 3 = (0, 0). For k ̂  0 an even integer, define Q to be the space of ail functions q of
the form

with
fe/2

where polA(^, ri) dénotes any polynomial of degree k in the two variables Ç, -q.
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For k ̂  1 an odd integer, define Q to be the space of all functions q of the form

with
(fc+D/2

Now consider any triangle Jin the (x1} x2)-plane whose vertices are denoted
by aiy 1 ^ Ï ^ 3 . Let FT : x -+FT(x) = BTx + bT, B reif(R2), bTeU2 be the
unique invertible affine mapping such that FT(âi) = ai9 l ^ i ^ 3 . With each
vector-valued function y = (vu v2) defined on f, we associate the function v
defined on T by

1 - - iV-— BryoFT ,
JT

where

For Q<h< 1, assume that xh is a triangulation of Q made up of triangles T
whose diameters are less than or equal to h which satisfy the minimal angle
condition (see subsection 3 a). We Snally consider probîem Ph with

where
Q r = { v e H ( d i v ; r ) : v € Q }

and

To apply our theorems we must check that the appropriate hypotheses are
satisfied. Now (H3) is trivially satisfied with a—1. In the proof of theorem 3
of [22] it is essentially shown that there is an operator nh : [tf ̂ Q)]2 -> Vh

satisfying
b(v-nhv9 cp)=O, VvetiiT^Q)]2 and

Furthermore, for vef/f-^Q)]2, r^2, we have

j j J l j j - l , f e+ l ) , (3.40)
and

| | j | | | | | , 0^mgmin{r-2, fc+1). (3.41)
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Using the regularity results (3.38) and (3.39) we easily see that Y <= [H1 (Q)]2 so
that (H5) is valid.

We next observe that for \ke Vh9 divv fc | rePk. Hence vheZfc easily implies
diwA=0 and so v^eZ. Thus ZhczZ and so we are in the special cases of
theorems 2 and 3. Again by the corollary to theorem 2, (H4) need not be
satisfied in order to apply (2.15)s so we shall not require {T*} to be quasi-
uniform.

We are now ready to dérive the error estimâtes. Assume that \(/ e Hr (Q), r ̂  2.
From (2.15) and (3.40) we obtain for fc^O:

| |u-u , | | ogC| |u-« f c i i | |o^Cfc ( | |u | |^Cfc ' | |* | | t + 1 , (3.42)

where t — min (r — 1, k + 1).
Now applying theorem 3 {a)-(b) we get

IK-^ft| |o= sup {b{yd-nhyd, \]/-cp)

\\\\ (3.43)

for ail 9, r) e Wh. Using (3.41) and standard approximability properties of W h,
we have

inf \b(yd~nhyd, \|r-q>)| ^ ||div(yd-7iftyd)||0 inf |K-cp||o

llo^H + ll^ (3.44)
where n=min(r, k+1), and choosing m=\i—2 in (3.32),

inf \b{u-nhu, Xd-ti)|g||div(u-ji*u)j|0 inf ||A.^—T]||o

^C^-2 | |dïvu| | | l_2fc2 | |X<l | l2 , (3.45)

provided /c ̂  1.

Using (2.1), (2,15), and (3.40) (with /=^i-1) we obtain for fc£ 1:

l I I J l l l l ^ H u l l ^ ^ l l y . I J i . (3.46)
Now from (3.43), (3.44), (3.45), (3.46) and the regularity resuit (3.39) we obtain
for

l K M i H U (3.47)
where \i = min (r, k +1).
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To obtain an estimate when /c = 0, we choose m = 0 in (3 41) to obtain

inf \b(u~nhu, A.d—T|)| S | |d iv(u-7t f c u) | | 0 inf | | A , d - r j | | 0

^ C | | d i v u | | 0 / î | | X . d | | 1 (3 48)

and choose l— 1 in (3 40) to obtain in the same manner as in (4 36) that

\n(uh-u9 nhyd-yd)\ ^ C | | u —7chu||01|7C|,yd —yd | |0

^cMMiiklI^lli (3 49)
Combining (3 43), (3 44) with fc = 0, (3 48), (3 49), and the regulanty
result (3 39) we get

We note that estimate (3 42) was obtained in [25], IX-3 22 a, and that (3 47)
gives an improvement over the result in [25], IX-3 22 a, in the case where

r - ^ O ) , and 2^i
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