RAIRO Analyse numérique

RICHARD S. FALK BERTRAND MERCIER Error estimates for elasto-plastic problems

RAIRO – Analyse numérique, tome 11, nº 2 (1977), p. 135-144. http://www.numdam.org/item?id=M2AN_1977_11_2_135_0

© AFCET, 1977, tous droits réservés.

L'accès aux archives de la revue « RAIRO – Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ R.A.I.R.O. Analyse Numérique/Numerical Analysis (vol. 11, n° 2, 1977, p. 135 à 144)

ERROR ESTIMATES FOR ELASTO-PLASTIC PROBLEMS (1)

by Richard S. FALK (*) $(^2)$ and Bertrand MERCIER $(^3)$

Communiqué par P. G. CIARLET

Abstract. – Under some reasonable smoothness assumptions on the displacements, we are able to derive an error estimate of the form $\|\sigma - \sigma_h\|_{L^2(\Omega)} \leq Ch$, for the approximation of the stress field σ in some problems in elasto-plasticity.

Using the same ideas, we also find a piecewise linear approximation of Mosolov's problem, for which we still get an 0(h) error estimate.

I. INTRODUCTION

In this paper, we consider the approximation of some stationary elastic-perfectly problems formalized by Duvaut-Lions [7]. Our main purpose is to derive error estimates for the approximation of the stress field σ given by a finite element method, appearing in Mercier [16]. The approximate problems we solve, however, will be in terms of the displacements, which are the natural variables for computation.

This work appears to parallel that of Johnson [12], who considered the derivation of error estimates for evolution problems in plasticity. In this stationary case, we are able to obtain improved error estimates over those derived in [12].

Using some ideas from Johnson [11], we are able to establish the existence of a displacement in $L^{\gamma}(\Omega)$ for a class of problems in stationary elasto-plasticity.

Finally, we apply the method to obtain error estimates for the elasto-plastic torsion, and Mosolov's problem.

(3) Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau,

^{(&}lt;sup>1</sup>) Manuscrit reçu le 6 février 1976.

⁽²⁾ Dept. of Mathematics, Rutgers University, New Brunswick, U.S.A.

^(*) This work was supported under NSF grant, MPS 74-05795.

II. PHYSICAL PROBLEM

Let us consider (as in [7]) a continuous medium $\Omega \subset \mathbb{R}^N$, submitted to body forces inside Ω , and to pressure loads on a part Γ_F of its boundary.

On the other part Γ_{U} , it is assumed to be fixed.

The stress field $\sigma \in K$, and the displacement field $u \in V$, are shown ([7]) to be solutions, if they exist, of the following relations :

$$(g(\sigma), \tau - \sigma) - (\varepsilon(u), \tau - \sigma) \ge 0 \quad \forall \tau \in K;$$
 (1)

$$(\sigma, \varepsilon(v)) = L(v) \qquad \forall v \in V; \qquad (2)$$

with the following notation :

$$V = \left\{ v \in (H^{1}(\Omega))^{N} \mid v = 0 \text{ on } \Gamma_{U} \right\}$$

is the set of the admissible displacements.

$$K = \{ \tau \in Y \mid \tau(x) \in P \text{ a.e.} \}$$

is the convex set of plastically admissible stress fields, where

$$Y = \left\{ \tau \mid \tau_{ij} \in L^2(\Omega); \tau_{ij} = \tau_{ji}; i, j = 1, \ldots, N \right\}$$

and P is a fixed closed convex subset of \mathbb{R}^{N^2} .

We denote by |.| the euclidean norm of \mathbb{R}^{N^2} , and observe that Y is a Hilbert space with the scalar product

$$(\tau,\sigma) = \int_{\Omega} \sum_{i,j=1}^{N} \sigma_{ij} \tau_{ij} dx,$$

and associated norm

$$\|\tau\| = \left(\int_{\Omega} |\tau|^2 \ dx\right)^{1/2}.$$

 $\varepsilon: V \to Y$ is the strain operator given by

$$\varepsilon_{ij}(v) \equiv \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right).$$

L(v) is the work of the external loads in a "virtual" displacement $v \in V(L \in V')$. $g: \mathbb{R}^{N^2} \to \mathbb{R}^{N^2}$ is an isomorphism representing the elasticity coefficients (the analogue of (1) in the elastic case would be $\varepsilon(u) = g(\sigma)$.

We make the following monotonicity hypothesis on g, i.e. there exists $\alpha > 0$ such that

$$J(\tau) \equiv \frac{1}{2} (g(\tau), \tau) \ge \alpha \|\tau\|^2 \qquad \forall \tau \in Y.$$
(3)

We note this implies a coercivity condition on the "complementary energy" $J(\tau)$.

R.A.I.R.O. Analyse Numérique/Numerical Analysis

136

Finally, we introduce the set of statically admissible stress fields

$$M = \{ \tau \in Y : (\tau, \varepsilon(v)) = L(v), \forall v \in V \}.$$

We choose $\tau \in K \cap M$ in (1). (We suppose the set $K \cap M$ is non empty.)

We then eliminate u, and we see that σ is the solution of the problem (P): Find $\sigma \in K \cap M$ such that

$$J(\sigma) = \inf_{\tau \in K \cap M} J(\tau).$$

Using hypothesis (3), we have the existence and uniqueness of σ . We are not able to prove, in the general case, that there exists a $u \in V$ such that (σ, u) is a solution of (1), (2). However, in a slightly more restrictive case, we are able to prove the existence of a weak solution $u \in [L^{q'}(\Omega)]^N$ (see section IV).

For the derivation of error estimates, we will assume that u satisfies the regularity condition

$$u \in V \cap \left[H^2(\Omega)\right]^N \tag{4}$$

From the exact solutions, given by Mandel [14], we see that this hypothesis is not an unreasonable one, provided we are not near plastic collapse.

III. APPROXIMATION

Let us assume for simplicity that Ω is a bounded polytope. Corresponding to each value of a parameter h, 0 < h < 1, let \mathcal{T}_h be a regular triangularization of Ω by N-simplices T of sides less than or equal to h. Define $V_h \subset V$ as the subspace of functions in V which are continuous on Ω and linear on each T of \mathcal{T}_h , and $Y_h \subset Y$ as the subspace of tensors in Y which are constant on each $T \in \mathcal{T}_h$. For properties of such finite element spaces, we refer the reader to [5], [6]. We note that

$$\varepsilon: V_h \to Y_h. \tag{5}$$

Using the above notation, we define our approximate problem

 (P_h) : Find $\sigma_h \in K \cap M_h$ such that

$$J(\sigma_h) = \inf_{\tau_h \in K \cap M_h} J(\tau_h),$$

where

$$M_h = \{ \tau_h \in Y_h : (\tau_h, \varepsilon(v_h)) = L(v_h), \forall v_h \in V_h \}.$$

Applying the results of [16], we know that there exists a unique solution σ_h to problem (P_h) and that it converges to σ as $h \to 0$. Our purpose, in this paper, is to derive an error estimate for $\|\sigma - \sigma_h\|$.

THEOREM 1 : If
$$u \in [H^2(\Omega)]^N$$
, we have the error estimate
 $\|\sigma - \sigma_h\| \leq Ch \|u\|_{[H^2(\Omega)]^N}$

where C is a constant independent of h, u, and σ .

Proof From (1), we get with $\tau = \sigma_h$

$$(g(\sigma), \sigma_h - \sigma) - (\varepsilon(u), \sigma_h - \sigma) \ge 0$$
(6)

and from the definition of σ_h , we have

$$(g(\sigma_h), \tau_h - \sigma_h) \ge 0 \qquad \forall \tau_h \in K \cap M_h.$$
(7)

Writing $\tau_h - \sigma_h$ as $\tau_h - \sigma + \sigma - \sigma_h$, and adding (7) to (6), we get $(g(\sigma - \sigma_h), \sigma_h - \sigma) + (g(\sigma_h), \tau_h - \sigma) - (\varepsilon(u), \sigma_h - \sigma) \ge 0 \quad \forall \tau_h \in K \cap M_h.$ Hence, applying (3)

$$\alpha \|\sigma - \sigma_h\|^2 \leq (g(\sigma_h), \tau_h - \sigma) - (\varepsilon(u), \sigma_h - \sigma).$$
(8)

Since $\sigma_h \in M_h$, and $\sigma \in M$, we have

$$(\sigma - \sigma_h, \varepsilon(v_h)) = 0 \qquad \forall v_h \in V_h.$$

so that

$$(\varepsilon(u), \sigma_h - \sigma) = (\varepsilon(u - v_h), \sigma_h - \sigma) \quad \forall v_h \in V_h$$

Since

$$\begin{aligned} (\varepsilon(u-v_h),\sigma_h-\sigma) &\leq \|\varepsilon(u-v_h)\| \, \|\sigma_h-\sigma\| \\ &\leq \frac{1}{2\alpha} \, \|\varepsilon(u-v_h)\|^2 + \frac{\alpha}{2} \, \|\sigma_h-\sigma\|^2, \end{aligned}$$

we obtain, after collecting terms, that

$$\frac{\alpha}{2} \|\sigma - \sigma_h\|^2 \leq (g(\sigma_h), \tau_h - \sigma) + \frac{1}{2\alpha} \|\varepsilon(u - v_h)\|^2,$$

$$\forall v_h \in V_h, \quad \tau_h \in K \cap M_h. \quad (9)$$

We now choose $\tau_h = \prod_h \sigma$ where \prod_h denotes the projection of $Y \to Y_h$ associated with the norm $\|\cdot\|$. Then

$$(\sigma - \tau_h, \gamma_h) = 0, \qquad \forall \gamma_h \in Y_h.$$
(10)

Applying (5) and using the fact that $\sigma \in M$, we see that

$$(\tau_h, \varepsilon(v_h)) = (\sigma, \varepsilon(v_h)) = L(v_h) \qquad \forall v_h \in V_h,$$

and hence $\tau_h \in M_h$. Since Y_h is a space of piecewise constants,

$$\tau_h \mid_T = \frac{1}{\mathrm{meas}\,(T)} \int_T \sigma \, dx.$$

Then, since $\sigma \in P$ a.e., and P is closed and convex, we get $\tau_h \in P$ for all $T \in \mathcal{T}_h$. Thus $\tau_h \in K \cap M_h$, and from (10),

$$(g(\sigma_h), \tau_h - \sigma) = 0.$$

R.A.I.R.O. Analyse Numérique/Numerical Analysis

138

Thus (9) becomes

$$\|\sigma - \sigma_h\| \leq \frac{1}{\alpha} \|\varepsilon(u - v_h)\| \quad \forall v_h \in V_h.$$
⁽¹¹⁾

Using the continuity of ε and the well known approximation properties of the space V_h [5], we obtain

$$\left\|\sigma - \sigma_{h}\right\| \leq Ch \left\|u\right\|_{\left[H^{2}(\Omega)\right]^{N}}$$

IV. REMARKS ON THE EXISTENCE OF A DISPLACEMENT

As in [7], we make the following additional hypotheses. Let $\|.\|$ be the L^{∞} norm defined by

$$||e||_{\infty} \equiv \operatorname{ess\,sup}_{x\in\Omega} |e(x)|.$$

We assume

$$\exists \delta > 0 \text{ and } \chi \in M \text{ such that } \chi + e \in K \text{ , } \forall e \in Y \text{ with } \|e\|_{\infty} \leq \delta.$$
 (12)

Furthermore, we shall restrict ourselves to the case where

$$\Gamma_F = \emptyset$$
 and where $L(v) = \int_{\Omega} f v \, dx$, $f \in [L^q(\Omega)]^N$ with $q = N$.

Choosing $\chi_h = \prod_h \chi$, we see that $\chi_h \in M_h$, and using the convexity of P, that χ_h belongs to the relative interior of K in Y_h . We may then apply the Kuhn-Tucker theorem [18] to show the existence of $u_h \in V_h$ such that

$$(g(\sigma_h), \tau_h - \sigma_h) - (\varepsilon(u_h), \tau_h - \sigma_h) \ge 0 \qquad \forall \tau_h \in K.$$
(13)

We now define $(D\tau)_i = -\sum_{j=1}^N \frac{\partial \tau_{ij}}{\partial x_j}$ and notice that $D: Y \to V'$ is the adjoint of ε .

Using the regularity we assumed on L, we see that the solution σ of (P) satisfies

$$-D\sigma + f = 0$$

in the distribution sense on Ω . Then

$$\sigma \in K_1 = \{ \tau \in Y : D\tau \in [L^q(\Omega)]^N \}.$$

We shall now prove the existence of a displacement u which satisfies the following relation

$$(g(\sigma), \tau - \sigma) - (u, D(\tau - \sigma)) \ge 0 \qquad \forall \tau \in K_1,$$
(14)

which can be considered as a weak formulation of (1).

THEOREM 2 : Under hypothesis (12), the sequence $\varepsilon(u_h)$ is bounded in $[L^1(\Omega)]^{N^2}$. Hence a subsequence of u_h is converging weakly to $u \in [L^{q'}(\Omega)]^N$ when $q' = \frac{N}{N-1}$ and (σ, u) is a solution of (14).

Proof: Let $e \in Y$ satisfy $||e||_{\infty} \leq \delta$ and let χ be as defined in (12). Since $\tau_h = \prod_h e + \chi_h \in K$, we may use this choise of τ_h in (13) to obtain

 $(g(\sigma_h), \Pi_h e) + (g(\sigma_h), \chi_h - \sigma_h) - (\varepsilon(u_h), \Pi_h e) - (\varepsilon(u_h), \chi_h - \sigma_h) \ge 0.$ (15) Using the definition (10) of Π_h , we can replace $\Pi_h e$ by e everywhere in (15). Since χ_h and $\sigma_h \in M_h$, the last term of (15) is zero. Applying the continuity

$$(e, \varepsilon(u_h)) \leq (g(\sigma_h), \chi_h - \sigma_h) + C\delta \|\sigma_h\|$$

(16)

Since Ω is bounded, σ_h being bounded in Y implies σ_h is also bounded in $[L^1(\Omega)]^{N^2}$. As (16) is true for all $e \in Y$ with $||e||_{\infty} \leq \delta$, we get

$$\|\varepsilon(u_h)\|_{[L^1(\Omega)]^{N^2}} \leq C.$$

We then apply a result of Strauss [19] to obtain

$$\|u_{h}\|_{[L^{q'}(\Omega)]^{N^{2}}} \leq C \|\varepsilon(u_{h})\|_{[L^{1}(\Omega)]^{N^{2}}} \leq C.$$

From this, we deduce that a subsequence of u_h (which we still denote by u_h) is converging weakly to u in $[L^{q'}(\Omega)]^N$.

For any $\tau \in K_1$, we choose $\tau_h = \prod_h \tau$ in (13) and obtain

$$(g(\sigma_h), \sigma_h) \leq (g(\sigma_h), \tau_h) - (\varepsilon(u_h), \tau_h - \sigma_h).$$
(17)

Now

 $(\varepsilon(u_h), \tau_h) = (\varepsilon(u_h), \tau) = (u_h, D\tau) \rightarrow (u, D\tau),$

and since $\sigma_h \in M_h$,

$$(\varepsilon(u_h), \sigma_h) = (f, u_h) \to (f, u) = (D\sigma, u).$$

Also

$$(g(\sigma_h), \tau_h) = (g(\sigma_h), \tau) \rightarrow (g(\sigma), \tau),$$

because σ_h converges to σ , and g is continuous. In the same way $(g(\sigma_h), \sigma_h)$ converges to $(g(\sigma), \sigma)$. Hence letting $h \to 0$ in (17), we obtain (14), which is the desired result.

V. OTHER APPLICATIONS

5.1. Elastic-plastic torsion

This problem is usually formulated as the following minimization problem, where N = 2, [7]:

Find $u \in K$ minimizing

$$\frac{1}{2} \|\nabla v\|^2 - (f, v) \quad \text{over } K, \text{ where}$$

$$K = \{ v \in H_0^1(\Omega) : |\nabla v| \leq 1 \text{ a.e. in } \Omega \}, \text{ and}$$

$$\| \cdot \| = \| \cdot \|_{[L^2(\Omega)]^{N^*}}.$$
(18)

R.A.I.R.O. Analyse Numérique/Numerical Analysis

140

of g, we get

LEMMA 1 : Problem (18) is equivalent to the problem :

Find $p \in K_1 \cap M$ minimizing $\frac{1}{2} \|p\|^2 - (\varphi, p)$ over $K_1 \cap M$, where φ is any solution of rot $\varphi \equiv \frac{\partial \varphi_2}{\partial x_1} - \frac{\partial \varphi_1}{\partial x_2} = -f$ (19) $K_1 = \{ p \in [L^2(\Omega)]^2 : |p| \leq 1 \text{ a.e. in } \Omega \}, and$ $M = \{ p \in [L^2(\Omega)]^2 : (p, \nabla \Psi) = 0, \forall \Psi \in H^1(\Omega) \}.$

Proof: The result follows easily by using the fact that $p \in M$ is equivalent to $p = \operatorname{rot} v$ for some $v \in H_0^1(\Omega)$ (see [13]),

$$\begin{aligned} (\varphi, \operatorname{rot} v) &= (f, v), & \forall v \in H_0^1(\Omega) \\ |\nabla v| &= |\operatorname{rot} v| & \text{for } v \in H_0^1(\Omega) \end{aligned}$$

(Recall that when v is a scalar, rot v is the vector deduced from the gradient by

a retation of $+\frac{\pi}{2}$

REMARK : We note that problem (19) is in fact the original problem (see [7]).

We further note that problem (19) can be derived from the more general problem :

Find
$$(r, \chi) \in (K_1 \cap M) \times H^1(\Omega)$$
 satisfying
 $(p, q - p) - (\varphi + \nabla \chi, q - p) \ge 0 \quad \forall q \in K_1.$ (20)

Using a result of Brezis [2], it was proved in [15] that there exists a solution to problem (20), when f is constant.

We will assume, as in section II, that χ , which may be interpreted as a displacement, belongs to $H^2(\Omega)$ We know from [3] that $p \in [H^1(\Omega)]^2$ for $f \in L^2(\Omega)$.

Following the ideas of section III, we approximate problem (19) by the problem

Find $p_h \in K_1 \cap M_h$ minimizing

$$\frac{1}{2} \|p_h\|^2 - (\varphi, p_h) \text{ over } K_1 \cap M_h, \text{ where}$$
(21)

$$M_h = \{ p_h \in Y_h : (p_h, \nabla \Psi_h) = 0 \ \forall \ \Psi_h \in V_h \},\$$

 Y_h is the subspace of $[L^2(\Omega)]^2$ of piecewise constants, and

 V_h is the subspace of $H^1(\Omega)$ of continuous piecewise linear functions.

R. S. FALK, B. MERCIER

THEOREM 3 : If $\varphi \in [H^1(\Omega)]^2$ and $\chi \in H^2(\Omega)$, then we have the error estimate $\|p - p_h\| \leq Ch [\|\varphi\|_1 + \|\chi\|_2],$

where \exists is a constant independent of φ , χ and h. $(\|\varphi\|_1)$ is the norm of φ in $[H^1(\Omega)]^2$ and $\|\chi\|_2$ is the norm of χ in $H^2(\Omega)$.

Proof: Proceeding i in identical fashion to the proof of theorem 1, we easily obtain the estimate

$$\frac{1}{2} \|p - p_h\|^2 \leq \frac{1}{2} \|\nabla(\chi - \chi_h)\|^2 + (\phi, p - q_h) \qquad \forall \chi_h \in V_h,$$

where q_h has been chosen as the $[L^2(\Omega)]^2$ projection of p onto Y_h . Since

$$(\varphi_h, p - q_h) = 0 \qquad \forall \varphi_h \in Y_h,$$

we gut

$$(\varphi, p - q_h) = (\varphi - \varphi_h, p - q_h) \leq \|\varphi - \varphi_h\| \|p - q_h\| \leq Ch_2 \|\varphi\|_1 \|p\|_1$$

(using the standard approximation properties of Y_h and the assumed regularity of p and φ). Estimating

$$\|\nabla(\chi_h - \chi)\|^2 \leq Ch^2 \|\chi\|_2^2$$

as before, we obtain the desired result.

We remark that the approximation given by (21) is not equivalent to the usual direct approximation of problem (18) by piecewise linear finite elements [10], since this would lead to an internal approximation of M, which is not the case here $(M_h \notin M)$. For the direct approximation, non-optimal error estimates have previously been derived in [8].

5.2. Mosolov's problem [7]

This problem is usually formulated as the following :

Find $u \in H_0^1(\Omega)$ minimizing

$$\frac{1}{2} \|\nabla v\| + j(\nabla v) - (f, v) \text{ over } H^1_0(\Omega), \text{ where}$$

$$j(p) \equiv g \int_{\Omega} |p| \, dx.$$
(22)

Since $\Omega \subset \mathbb{R}^2$, we form an equivalent problem in a similar fashion to lemma 1. We get problem

Find $p \in M$ minimizing

$$\frac{1}{2} \|q\|^2 + j(q) - (\varphi, q) \text{ over } M, \text{ where } \varphi \text{ and } M \text{ are chosen as in section 5.1.}$$
(23)

R.A.I.R.O. Analyse Numérique/Numerical Analysis

142

Using duality theory, we have that problem (23) is the dual of the problem

$$\sup_{\Psi \in H^{1}(\Omega)} - \frac{1}{2} \| \{ |\varphi + \nabla \Psi| - g \}^{+} \|^{2} \text{ (see [17]).}$$
(24)

Since the problem is coercive in $H^1(\Omega)/\mathbb{R}$, we know that it has a solution $\chi \in H^1(\Omega)$. Hence (p, χ) satisfies the following extremality relation

$$(p, q - p) + j(q) - j(p) - (\varphi + \nabla \chi, q - p) \ge 0 \qquad \forall q \in [L^2(\Omega)]^2.$$

We will again assume that $\chi \in H^2(\Omega)$, which is a valid assumption at least for the exact solution computed by Glowinski [9]. Using our general technique once more we approximate (23) by the following problem.

Find $p_h \in M_h$ minimizing

$$\frac{1}{2} \|q_h\|^2 + j(q_h) - (\phi, q_h) \quad \text{over} \quad q_h \in M_h,$$
(25)

where M_h is defined as in section 5.1.

THEOREM 4 : If
$$\varphi \in [H^1(\Omega)]^2$$
 and $\chi \in H^2(\Omega)$, then we have the error estimate
 $\|p - p_h\| \leq Ch [\|\varphi\|_1 + \|\chi\|_2]$

Proof: Proceeding in an identical fashion to the proof of theorem 3, we easily obtain the estimate

$$\frac{1}{2} \|p - p_{h}\|^{2} \leq Ch^{2} [\|\varphi\|_{1} + \|\chi\|_{2}]^{2} + j(q_{h}) - j(p),$$

where q_h is again the $[L^2(\Omega)]^2$ projection of p onto Y_h . Hence

$$\forall T \in \mathcal{C}_h \qquad q_h \mid_T = \frac{1}{\text{meas}(T)} \int_T p \, dx,$$

and the convexity of j implies that $j(q_h) \leq j(p)$. Thus, we get the desired result.

We remark that this approximation is again different from the direct approximation of (22) for which quasi-optimal error estimates have already been derived [9].

As far as we know, the approximate problem (25) has not been solved numerically. What we should suggest for such a n merical computation is to try to solve directly the approximation of the dual problem (24), when $H^1(\Omega)$ is approximated by V_h , because this problem would be the dual of (25). Furthermore, it is a problem of unconstrained minimization of a differentiable (but not strictly convex) function.

ACKNOWLEDGEMENTS

We wish to thank Professors Nedelec and Raviart for several helpful discussions.

R. S. FALK, B. MERCIER

REFERENCES

- 1. H. BREZIS, Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations. Contributions to nonlinear functional analyzis, E. Zarantonello (ed.), Academic Press, New York, 1971, pp. 101-156.
- 2. H. BREZIS, Multiplicateur de Lagrange en torsion élasto-plastique, Arch. Rat. Mech. Anal., 2972, pp. 32-40.
- 3. H. BREZIS, G. STAMPACCHIA, Sur la régularité de solutions d'inéquations elliptiques, Bull. Soc. Math. France, Vol. 96, 1968, 153-180.
- 4. F. BREZZI, W. HAGER, P. A. RAVIART, Error estimates for variational inequalities, to appear.
- 5. P. G. CIARLET, Numerical analysis of the finite element method, Cours d'été d'Analyse Numérique, 1975, Université de Montréal.
- 6. P. G. CIARLET, The finite element method, North Holland (to appear).
- 7. G. DUVAUT, J. L. LIONS, Les inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
- 8. R. S. FALK, Approximate solutions of some variational inequalities with order of convergence estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
- 9. R. GLOWINSKI, Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham, R.A.I.R.O., Analyse Numérique Vol. 10, 12 (1976) 13-30.
- 10. R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Approximation des inéquations variationnelles, Dunod, Paris, 1976.
- 11. C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pures et Appliquées, 55 (1976) 431-444.
- 12. C. JOHNSON, A hybrid finite element method for plasticity problems with hardening, to appear.
- 13. O. A. LADYZENSKAYA, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969.
- 14. J. MANDEL, Cours de Mécanique des Milieux Continus, T. 2, Mécanique des Solides, Gauthier-Villars, Paris, 1966.
- 15. B. MERCIER, Recherche numérique d'un champ de déplacements en élasto-plasticité, Rapport Laboria nº 71, Iria, 78150 Le Chesnay, France, 1974.
- 16. B. MERCIER, Approximation par éléments finis, et résolution par un algorithme de pénalisation-dualité d'un problème d'élasto-plasticité, C. R. Acad. Sc. Paris, T. 280, Série A, 1975, pp. 287-290.
- 17. B. MERCIER, Une méthode de résolution du problème des charges limites utilisant les fluides de Bingham, C. R. Acad. Sc. Paris, T. 281, Série A, 1975, pp. 525-527.
- 18. R. T. ROCKAFELLAR, Convex analysis, Princeton, corollary 28-2-2, 1970, p. 279.
- 29. M. J. STRAUSS, Variations of Korn's and Sobolev's inequalities, Proc. of Symposia in Pure Math., Vol. XXIII, A.M.S., Providence, R. I., 1973, pp. 207-214.