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Abstract. A family of explicit space-time finite element methods for the initial boundary
value problem for linear, symmetric hyperbolic systems of equations is described and analyzed. The
method generalizes the discontinuous Galerkin method and, as is typical for this method, obtains
error estimates of order O(hn+1/2) for approximations by polynomials of degree ≤ n.
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1. Introduction. In this paper we consider the approximate solution of linear,
symmetric hyperbolic systems of equations

Lu ≡ ut +
N∑
i=1

Aiuxi +Bu = f in ΩT ≡ Ω × [0, T ],(1.1)

where u is an m-vector, A1, . . . , AN are symmetric (m × m) matrices, and Ω is a
bounded polyhedral domain in RN with boundary Γ(Ω). We supplement (1.1) with
initial and boundary conditions of the form

u = g at t = 0, (D −N )u = 0 on Γ(Ω) × [0, T ],(1.2)

where D =
∑N
i=1 niAi, n = (nx, nt) = (n1, . . . , nN , nt) is the unit outer normal in

the space-time domain, and N is assumed to satisfy

N +N ∗ ≥ 0.(1.3)

Friedrichs [2] has shown that (1.1)–(1.2) has a unique solution under appropriate
smoothness conditions and the additional assumptions

B +B∗ −
N∑
i=1

∂Ai
∂xi
≥ σI, σ > 0,

ker(D −N ) + ker(D +N ) = Rm on Γ(Ω) × [0, T ].

To obtain results about our numerical approximation scheme, we shall assume that
(1.1)–(1.2) has a unique solution and that the slightly weaker hypothesis

B +B∗ −
N∑
i=1

∂Ai
∂xi
≥ 0(1.4)

∗Received by the editors November 3, 1997; accepted for publication (in revised form) May 4,
1998; published electronically May 5, 1999. The authors were supported in part by NSF grant DMS-
9704556 and DARPA grant 4-23685, respectively.

http://www.siam.org/journals/sinum/36-3/32946.html
†Department of Mathematics, Rutgers University, Piscataway, NJ 08854 (falk@math.rutgers.edu).
‡Department of Computer Science, Rutgers University, Piscataway, NJ 08854 (richter@cs.

rutgers.edu).

935



936 RICHARD S. FALK AND GERARD R. RICHTER

is satisfied. Two systems of this form which have important physical applications are
the following.

Example 1. The damped wave equation, Ω ⊂ R2:

wtt + βwt − wxx − wyy = φ, β ≥ 0,

w, wt given at t = 0,

w = 0 on Γ(Ω).

Defining u1 = wx, u2 = wy, u3 = wt, we have

ut +

 0 0 −1
0 0 0
−1 0 0

ux +

0 0 0
0 0 −1
0 −1 0

uy +

0 0 0
0 0 0
0 0 β

u =

0
0
φ

 .

Here

D =

 0 0 −n1

0 0 −n2

−n1 −n2 0

 .

The choice

N =

 0 0 n1

0 0 n2

−n1 −n2 2


gives

D −N = 2

0 0 −n1

0 0 −n2

0 0 −1

 , D +N = 2

 0 0 0
0 0 0
−n1 −n2 1

 ,

N +N ∗ =

0 0 0
0 0 0
0 0 4

 .

Example 2. Maxwell’s equations, Ω ⊂ R3. Although these equations are of slightly
more general form than (1.1), the methods and analysis presented in this paper can
be easily extended to cover them.(

εI 0
0 µI

)
∂

∂t

(
E
H

)
+5 ×

(−H
E

)
+

(
σ 0
0 0

)(
E
H

)
=

(
J
0

)
,

E,H given at t = 0, E × (n1, n2, n3) = 0 on Γ(Ω) × [0, T ].

Taking u =

(
E
H

)
, we have

(
εI 0
0 µI

)
ut +

(
0 M23

M∗23 0

)
ux1

+

(
0 M31

M∗31 0

)
ux2

+

(
0 M12

M∗12 0

)
ux3

+

(
σ 0
0 0

)
u =

(
J
0

)
,
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where Mkl is a 3 × 3 matrix with elements

(Mkl)ij =


1 if i = k, j = l,

−1 if i = l, j = k,

0 otherwise.

In this case,

D =

(
0 Z
Z∗ 0

)
, where Z =

 0 n3 −n2

−n3 0 n1

n2 −n1 0

 .

The choice

N =

(
Z Z
Z 0

)
gives

D −N = −
(
Z 0
2Z 0

)
, D +N =

(
Z 2Z
0 0

)
, N +N ∗ =

(
0 0
0 0

)
.

For the problem (1.1)–(1.2), we introduce a finite element scheme using elements
in the space-time domain ΩT . The method is explicit in time, easily parallelizable,
and readily amenable to local mesh refinement. Our basic approach is a generaliza-
tion of the discontinuous Galerkin method, introduced in [9] and studied by many
authors (e.g., [4], [5], [10], [11], [12]). While space-time finite element methods for the
problem (1.1)–(1.2) and more general positive symmetric systems have been proposed
previously (e.g., see [4], [8], and [13]), none of these methods are explicit in time with
the exception of [13], which is restricted to one space dimension. A method proposed
in [4], for example, uses the discontinuous Galerkin method to break the problem into
a sequence of problems on time slabs Ω× [tn, tn+1]. Within each time slab, however,
the method is implicit. Other methods for this problem use finite elements to dis-
cretize in space, but the time discretization is done using finite difference or other
time discretization methods. Examples of such methods can be found in [1], [3], [6],
and [7].

We now describe our finite element method. We divide the space-time domain
into a mesh of elements K which are unions of simplices in RN+1. Let Γ∗(K) denote
the intersection (if any) of Γ(K) (the boundary of K) with Γ(Ω) × [0, T ]. On Γ(K)−
Γ∗(K), we require nt 6= 0 and define

M≡ sign{nt} (ntI +D).

For a function v which is discontinuous on the interface between adjoining elements
K and K ′, we define one-sided limits v±(P ) = limε→0+ v(P ± εt̂), where t̂ is a unit
vector oriented in the positive t direction, and use the notation [v] = v+ − v−. We
then define the bilinear form

a(u,v) ≡ (Lu,v)K +

∫
Γin(K)

[Mu
] · v +

1

2

∫
Γ∗(K)

(N −D)u · v,

where, in general, ( , ) denotes an L2 inner product over the indicated domain and
Γin(K) (Γout(K)) denotes the portion of Γ(K)− Γ∗(K), where nt < 0 (nt > 0).
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A key mesh condition required by our method is that the solution to (1.1) within
each element K be uniquely determined by u on Γin(K) and the boundary condition
on Γ∗(K) given in (1.2) in the case where Γ∗(K) is nonempty. The mesh will then
be traversable in an explicit, element-by-element fashion, in the direction of increas-
ing t, without violating any domain of dependence conditions. The finite element
approximation is developed in the same way. Mathematical conditions guaranteeing
explicitness of the mesh are given in the next section.

On each element K, we shall approximate u by uh ∈ P n(K), where P n(K)
consists of polynomials of degree ≤ n over K. Our finite element approximation
uh starts as an appropriate interpolant u−h (x, 0) of the given initial condition and is
developed in individual elements K by

a(uh,vh) = (f ,vh)K for all vh ∈ P n(K).(1.5)

In our analysis, we make the usual assumptions of mesh quasi uniformity (the
ratio of radii of the smallest circumscribing spheres of any two elements must be
bounded) and nondegeneracy (the ratio of the smallest circumscribing sphere to the
largest inscribing sphere of any element K must be bounded independent of K). An
additional property, which we need for a local stability result, is that each element K
is convex or has a total number of inflow and outflow faces exceeding n, the degree
of the polynomial approximate solution within K. This technical assumption will
also become clearer when we describe the construction of a mesh satisfying these
conditions in section 2.

The main result of the paper will be to prove that with a mesh constructed to
satisfy the above hypotheses, the method produces a piecewise polynomial approxi-
mation uh to u which satisfies

|u− u−h |2Γout(ΩT ) +
∑
K⊂ΩT

|[u− uh]|2Γin(K) + ‖u− uh‖2ΩT ≤ C(u)h2n+1,

where ‖ · ‖k,Ω denotes the norm on Hk(Ω), with k omitted when it has value zero and
a “surface” L2 norm over Γ(K) is denoted by | · |. Details of the dependence of C(u)
on specific norms of u may be found in section 4.

An outline of the paper is as follows: In the next section we describe in detail
the construction of a finite element mesh which satisfies the properties given above.
A stability estimate for the finite element scheme is derived in section 3 and error
estimates are obtained in section 4. Finally, some computational results are presented
in section 5.

2. Mesh construction and properties. As mentioned in the introduction,
we propose to divide the space-time domain into elements K which are unions of
simplices in RN+1 and have the property that they are “explicitly” configured with
respect to domain of dependence. To understand what this means, first consider the
homogeneous equation

Lu = ut +
N∑
i=1

Aiuxi +Bu = 0.

Integrating against u over K, we get

1

2

∫
Γ(K)

(nt +D)u · u+

∫
K

[
B − 1

2

N∑
i=1

∂Ai
∂xi

]
u · u = 0.(2.1)
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We may rewrite (2.1) as∫
Γout(K)

(Mu) ·u+

∫
Γ∗(K)

Du ·u =

∫
Γin(K)

(Mu) ·u−
∫
K

[
B +B∗ −

N∑
i=1

∂Ai
∂xi

]
u ·u.

On Γ∗(K), Du · u = Nu · u ≥ 0 via (1.2) and (1.3). Thus, assuming 1.4, we obtain∫
Γout(K)

Mu · u ≤
∫

Γin(K)

Mu · u.

We require the eigenvalues λ of M to satisfy a uniform bound:

0 < γ ≤ λ(M) ≤ µ.(2.2)

Note that sign{nt} ntI = |nt|I and that ‖D‖ ≤ √N |nx|maxi ‖Ai‖, where |nx|2 =∑N
i=1 n

2
i . Satisfaction of (2.2) is therefore guaranteed if the boundary Γ(K) is inclined

sufficiently toward the x-plane. In particular, if

|nx|
|nt| <

1√
N maxi ‖Ai‖

,

(2.2) will be satisfied. With such a construction, we have the relation for the L2 norms
of u over Γin(K) and Γout(K)

|u|2Γout(K) ≤
µ

γ
|u|2Γin(K),

implying that the solution on Γout(K) is determined solely by data on Γin(K). The
same is true of the solution within K. We may therefore regard u as moving across
K from Γin(K) to Γout(K), i.e., in the direction of increasing t. Thus, we will use
the condition (2.2) to guarantee that the mesh is explicitly configured with respect to
domain of dependence. A second condition, which we will require for a local stability
result, is that

(2.3) each element K is convex or has a total number of inflow and outflow faces
exceeding n, the degree of the polynomial approximate solution within K.

In general, our elements will be unions of simplices, and these unions may not be
convex. An example illustrating this will be presented later in the section.

It is useful to represent the domain of dependence relations among elements by
a directed graph. The nodes are the elements K and there is an edge from K to K ′

if Γout(K) ∩ Γin(K ′) 6= ∅. Condition (2.2) ensures that this directed graph is acyclic,
thus guaranteeing that it can be traversed in accordance with the precedence relations
given by its edges. Equivalently, the elements can be ordered explicitly with respect
to domain of dependence. In general, there would be many such orderings. It will be
convenient for us to think of the solution as evolving in layers Si defined by

S1 = {K|Γin(K) ⊂ Γin(ΩT )} ,
Si =

{
K|Γin(K) ⊂ Γin(ΩT )− Γin

(∪j<iSj) ∪ Γout

(∪j<iSj)} , i = 2, 3, . . . .
(2.4)

We also denote by Fi the “front” to which the solution has advanced after it has
evolved through ∪j≤iSj . Note that the solution can be developed in parallel over the
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(a) (b)

Fig. 2.1.

elements within each layer. In our analysis, we assume there are O(h−1) layers in ΩT .
Our mesh construction strategy will produce such a mesh.

As a simple illustration of these ideas, consider a wave equation problem with
Ω ⊂ R1:

utt − uxx = f, x ∈ (0, 1), t > 0.

Equivalently,

ut +

(
0 −1
−1 0

)
ux =

(
0
f

)
, u ≡

(
ux
ut

)
.

Here M = sign{nt}
(
nt −nx−nx nt

)
and λ(M) = sign{nt}(nt ± nx). Thus (2.2) will be

satisfied if |nx| < |nt| on all interelement boundaries. Two such meshes are depicted
in Figure 2.1. Figure 2.1(a) shows a partition of the space-time domain into time
slabs, each consisting of congruent isosceles triangles, numbered by the layers Si to
which they belong. Figure 2.1(b) illustrates the possibility of local mesh refinement
(by means of a four-for-one subdivision), a potentially important capability. This
contrasts with the more customary numerical approach of first semidiscretizing in
space and then advancing the solution from one discrete time to the next using a
time-stepping scheme. If the spatial discretization is highly nonuniform, an explicit
time integration scheme may require an inordinately small time step, while use of
an implicit method may yield poor resolution in the refined region. Note that a
conforming mesh is not needed for our finite element method since it generates a
discontinuous approximation.

By removing all horizontal interfaces in Figure 2.1, we obtain alternative meshes
depicted in Figure 2.2. Here the solution would not be brought to discrete times {tn};
however, we now have half as many elements as before and only one generic interior
element: a rhombus standing on end, suitably compressed in the t-direction so as to
satisfy (2.2).

We next consider the case Ω ⊂ R2. Starting from a given triangulation of Ω,
we will show how to obtain space-time elements {K} whose surfaces (except those
contained by Γ(Ω) × [0, T ]) have outer normal n = (nx, nt) satisfying

|nx|/|nt| ≤ θ(2.5)

for arbitrary θ > 0. By choosing θ small enough, the explicitness condition (2.2) will
be guaranteed to hold. The mesh generation scheme we shall present is readily man-
ageable computationally, supports the use of local mesh refinement, and is extendable
to domains Ω of arbitrarily high dimension.
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(a) (b)

Fig. 2.2.

Fig. 2.3.

As our first two-space-dimensional example, we consider a domain Ω which ad-
mits a uniform equilateral triangulation, as shown in Figure 2.3, and indicate how a
corresponding time slab Ω × [0,∆t] can be partitioned. We denote by X the vertices
of the triangulation and refer to x,x′ ∈ X as neighbors, denoted by x′ ∈ N (x) (or
x ∈ N (x′)), if some triangle contains both of them. In Figure 2.3, each vertex has been
assigned a “color” c(x) ∈ {1, 2, 3} in such a way that x′ ∈ N (x) =⇒ c(x′) 6= c(x).
This coloring condition cannot be satisfied with fewer than three colors; hence the
indicated coloring is minimal.

Now choose an arbitrary vertex x∗ ∈ X with c(x∗) = 1. Our first (macro)element
K in the space-time domain will be the convex hull of (x∗, 0), (x∗,∆t), and {(x′, 0) :
x′ ∈ N (x∗)}, consisting of six tetrahedra with a common edge (x∗, t), 0 ≤ t ≤ ∆t.
The outer normal to K satisfies |nx|/|nt| ≤ (2/

√
3)(∆t/h); thus (2.5) can be achieved

by taking ∆t = (
√

3/2)hθ. This is the maximum local time step consistent with
(2.5). Note that a solution can be developed simultaneously in all such elements K
centered about vertices of color 1, since these are nonintersecting for t > 0. Thus
these elements comprise S1 as defined in (2.4). At the completion of this step, the
space-time mesh will have advanced to the front F1, a piecewise planar surface with
vertex set V = {(x, t(x))|x ∈ X}, where t(x) = ∆t if c(x) = 1 and t(x) = 0 if
c(x) 6= 1.

In the second step, the mesh is advanced to t = ∆t at each vertex having color
2. Suppose c(x∗) = 2; the corresponding element is then the convex hull of (x∗, 0),
(x∗,∆t), {(x′,∆t)|x′ ∈ N (x∗), c(x′) = 1}, and {(x′, 0)|x′ ∈ N (x∗), c(x′) > 1}, again
a union of 6 tetrahedra (with noncoplanar bases) having a common edge (x∗, t), 0 ≤
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Fig. 2.4. Macroelement of color 1.

Fig. 2.5. Macroelement of color 2.

Fig. 2.6. Macroelement of color 3.

t ≤ ∆t. The maximum value of |nt| for these elements will be the same as for
elements in S1. After this step, the solution will have advanced to F2, with vertex set
V = {(x, t(x))|x ∈ X}, where t(x) = ∆t if c(x) ≤ 2 and 0 otherwise. In an analogous
third step, the space-time mesh can be brought up to t = ∆t at the remaining (color
3) vertices in X . (An alternative third step would be to raise the mesh to time t = 2∆t
at color 3 vertices with an element twice as large.) Elements for steps 1, 2, and 3,
as described, all have the same volume: (3/4)h3θ; those in steps 1 and 3 are convex,
while those in step 2 are nonconvex and have 12 faces. Note that to satisfy (2.3), the
polynomial approximation within the nonconvex element would have to be of degree
< 12. Elements of the 3 types described above are depicted in Figures 2.4, 2.5, and
2.6, respectively. In Figure 2.5, the element lies above the solid faces shown and below
the faces indicated by the solid lines.

In Figure 2.7, a developing mesh is shown, just after the formation of elements of
colors 1 and 2. Note that an element of color 3 is now needed to bring the mesh up
to the next time level.

We now give several other examples of space-time meshes that can be derived
in an analogous way from particular triangulations of the spatial domain. For the
regular right isosceles triangulation shown in Figure 2.8, the corresponding graph is
3-colorable, as indicated, and each color may again be regarded as corresponding to
a layer of elements as previously described. Here elements of colors 1, 2, and 3 again
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Fig. 2.7. Developing mesh.

Fig. 2.8.

Fig. 2.9.

consist of 6, 6, and 6 tetrahedra, and (2.5) will be satisfied if ∆t ≤ (1/
√

2)hθ.
Figure 2.9 depicts a mesh refinement situation, with two subregions of equilateral

triangles of side length h and h/2 and an interface between them. A (minimal) 4-
coloring is given. As before, the elements in S1 will be unions of tetrahedra centered
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about vertices of color 1. These separate into three classes: those in the regular mesh
on the left (which may extend to a maximum height ∆t = (

√
3/2)hθ), those to the

right of the interface (having height ∆t/2), and those on the interface (which consist
of fewer than six tetrahedra and also have height ∆t/2). The situation is similar for
vertices of colors 2, 3, and 4. At the completion of the first four parallel steps, the
space-time mesh will have advanced to time ∆t to the left of the interface and ∆t/2
to the right. An additional three steps in the latter region will bring the mesh to
t = ∆t at all vertices.

The same basic mesh construction scheme can be used for the general case of
an unstructured X . Each front Fi—as before a piecewise planar surface in R3—
is characterized by its vertex set V = {(x, t(x))|x ∈ X}. The next layer Si+1 is
composed of elements K associated with particular members of X . The element
corresponding to x∗ ∈ X advances the mesh to a later time at x∗ but at no other
x ∈ X . A coloring of X will indicate which elements can be generated and processed
concurrently. One can also add to or delete from X as the mesh advances in order to
resolve a moving transient; this was done in the mesh of Figure 2.1(b).

We conclude this discussion with a generalization to the case Ω ⊂ R2 of the mesh
depicted in Figure 2.2(a). Returning to t = 0 and the spatial configuration of Figure
2.3, suppose we raise vertices of color 1 to t = ∆t in the first step and advance vertices
of color 2 to t = 2∆t in the second step. The maximum ∆t consistent with (2.5) is
∆t = (1/2)hθ. If, in the third step, we raise vertices of color 3 to t = 3∆t, then
the corresponding elements in this step are hexahedra, which can be visualized as the
result of “balancing” a cube on one of its vertices and then compressing sufficiently
in the t direction to satisfy (3.1). Moreover, in the next step, we have the analogous
situation, in which vertices of color 1 are brought to t = 4∆t with the same hexahedral
elements as in the previous step, etc. This scheme produces one generic hexahedral
element in contrast with three different elements for the time slab scheme. The
volume of the hexahedron is

√
3 times that of the time slab elements, so that fewer

elements would be needed to cover a given domain ΩT . Local mesh refinement can
be accomplished by a one-into-eight subdivision of elements.

3. Stability of the approximation scheme. We begin by defining

L∗v ≡ −∂v
∂t
−

N∑
i=1

Ai
∂v

∂xi
+

[
B∗ −

N∑
i=1

∂Ai
∂xi

]
v.

Then we have the following identity.
Lemma 3.1.

(3.1) a(u,v) = (u,L∗v)K −
∫

Γin(K)

[Mv
] · u− 1

2

∫
Γ∗(K)

(N −D)v · u

+

∮
Γ(K)−Γ∗(K)

Mu− · v−sign{nt}+

∫
Γin(K)

M[u] · [v] +
1

2

∫
Γ∗(K)

(N +N ∗)u · v.

Proof. Integrating by parts, we obtain

a(u,v) = (u,L∗v)K +

∫
Γout(K)

Mu− · v− −
∫

Γin(K)

Mu+ · v+

+

∫
Γin(K)

[Mu] · v+ +
1

2

∫
Γ∗(K)

(N +D)u · v.
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The integrand along Γin(K) can be written

−Mu+ · v+ + [Mu] · v+ = −Mu− · v+

= −Mu− · (v− + [v])

= −Mu− · v− −M(u+ − [u]) · [v]

= −Mu− · v− −Mu+ · [v] +M[u] · [v]

= −Mu− · v− − [Mv] · u+ +M[u] · [v].

In addition, along Γ∗(K),

(N +D)u · v = −(N −D)v · u+ (N +N ∗)u · v.
Hence

a(u,v) = (L∗v,u)K−
∫

Γin(K)

[Mv] ·u+− 1

2

∫
Γ∗(K)

(N −D)v ·u+

∫
Γout(K)

Mu− ·v−

−
∫

Γin(K)

Mu− · v− +

∫
Γin(K)

M[u] · [v] +
1

2

∫
Γ∗(K)

(N +N ∗)u · v,

which proves the result.
It follows immediately from (3.1) that

(3.2)

a(u,u) =
1

2

([
B +B∗ −

N∑
i=1

∂Ai
∂xi

]
u,u

)
K

+
1

2

∮
Γ(K)−Γ∗(K)

Mu− · u− sign{nt}

+
1

2

∫
Γin(K)

M[u] · [u] +
1

4

∫
Γ∗(K)

(N +N ∗)u · u

≥ 1

2

∮
Γ(K)−Γ∗(K)

Mu− · u− sign{nt}+
γ

2
|[u]|2Γin(K) +

1

4

∫
Γ∗(K)

(N +N ∗)u · u.

Lemma 3.2. uh is well defined in K and satisfies, for h sufficiently small, the
local bound

‖uh‖K ≤ C
(√

h|u−h |Γin(K) + h‖f‖K
)
.(3.3)

Proof. Scaling the inner product conditions (1.5) to an element K̂ with diameter
one, we get

(3.4)

(
(ûh)t̂ +

N∑
i=1

Âi(ûh)x̂i + hB̂ûh, v̂h

)
K̂

+

∫
Γin(K̂)

M̂û+
h · v̂h

+
1

2

∫
Γ∗(K̂)

(N̂ − D̂)ûh · v̂h =

∫
Γin(K̂)

M̂û−h · v̂h + h(f̂ , v̂h)K̂ ,

where quantities marked “ˆ” are defined on K̂. By selecting a basis for P n(K̂), (3.4)
can be reduced to a linear algebraic system of the form

Âû = b̂,(3.5)
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where

‖b̂‖∞ ≤ C(|û−h |∞,Γin(K̂) + h‖f̂‖∞,K̂) ≤ C(h−N/2|u−h |Γin(K) + h(1−N)/2‖f‖K),

‖uh‖K ≤ Ch(N+1)/2‖û‖∞.

(3.6)

If we can show that Âû = 0 has only the trivial solution û ≡ 0, it will follow that
uh is well defined. This is equivalent to showing that if u−h = 0 on Γin(K) and f = 0
in K, then uh = 0 in K, i.e., if

(3.7)

(
(uh)t +

N∑
i=1

Ai(uh)xi +Buh,vh

)
K

+

∫
Γin(K)

Mu+
h · vh

+
1

2

∫
Γ∗(K)

(N −D)uh · vh = 0 all vh ∈ P n(K),

then uh = 0 in K. Taking vh = uh in (3.7), noting the left side of (3.7) is a(uh,vh)
(since u−h = 0 on Γin(K)), and applying (3.2), we get

1

2

∫
Γout(K)

Mu−h · u−h +
1

2

∫
Γin(K)

Mu+
h · u+

h

+
1

4

∫
Γ∗(K)

(N +N ∗)uh · uh +
1

2

([
B +B∗ −

N∑
i=1

∂Ai
∂xi

]
uh,uh

)
K

= 0.

From (1.3), (1.4), and (2.2), we infer that |u−h |Γout(K) = |u+
h |Γin(K) = 0.

Now let Γk be a face of Γin(K), with unit outer normal (nx,k, nt,k), and define

ξk(x, t) = − ( x−xkt−tk
) · (nx,knt,k

)
,

where (xk, tk) is an arbitrary point of Γk. Note that |ξk(x, t)| is the distance from
(x, t) to the hyperplane containing Γk, and if K is convex, ξk > 0 in K. Since u+

h = 0
on Γin(K), uh in K can be written

uh = ξkwh, wh ∈ P n−1(K),(3.8)

where ξk = 0 on Γk and wh = 0 on Γin(K)∪Γout(K)−Γk. In fact, if Γin(K)∪Γout(K)
consists of m faces, uh has the representation uh = ξwh, where ξ ∈ Pm(K),wh ∈
P n−m(K), and ξ = 0 on Γin(K)∪Γout(K). Thus if m > n (one of the alternatives of
assumption (2.3)), then uh ≡ 0 in K.

To complete the proof, we show that the same conclusion holds if K is convex
(the other alternative of assumption (2.3)). Applying (3.7) with uh = ξwh (as in
(3.8)) and vh = wh, and using the fact that u+

h = 0 on Γin(K), we get(
L(ξkwh),wh

)
K

+
1

2

∫
Γ∗(K)

(N −D)ξkwh ·wh = 0.

We have(
L(ξkwh),wh

)
K

=

(
(ξkwh)t +

N∑
i=1

Ai(ξkwh)xi +B(ξkwh),wh

)
K

=

([
(ξk)t +

N∑
i=1

(ξk)xiAi + ξkB

]
wh,wh

)
K

+

(
ξk

[
(wh)t +

N∑
i=1

Ai(wh)xi

]
,wh

)
K
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and(
ξk

[
(wh)t +

N∑
i=1

Ai(wh)xi

]
,wh

)
K

=
1

2

(
ξk, (|wh|2)t +

N∑
i=1

(wT
hAiwh)xi −wT

h

N∑
i=1

(Ai)xiwh

)
K

=
1

2

∮
Γ(K)

ξkw
T
h

[
ntI +

N∑
i=1

niAi

]
wh

−1

2

([
(ξk)tI +

N∑
i=1

(ξk)xiAi + ξk

N∑
i=1

(Ai)xi

]
wh,wh

)
K

.

Combining and taking into account the fact that ξkwh = 0 on Γin(K) ∪ Γout(K), we
get

1

2

({
(ξk)tI +

N∑
i=1

(ξk)xiAi + ξk

[
2B −

n∑
i=1

(Ai)xi

]}
wh,wh

)
K

+
1

2

∫
Γ∗(K)

ξkNwh·wh = 0.

Since we are dealing with the case where K is convex, ξk > 0 in K, so

ξk

[
2B −

N∑
i=1

(Ai)xi

]
wh ·wh = (

√
ξkwh)T

[
B +B∗ −

N∑
i=1

(Ai)xi

]√
ξkwh ≥ 0.

Since from (2.2),

(ξk)tI +

N∑
i=1

(ξk)xiAi = −nt,kI −
N∑
i=1

nxi,kAi =M|Γk > 0,

we obtain

1

2
(M|Γkwh,wh) ≤ 1

2

({
(ξk)tI +

N∑
i=1

(ξk)xiAi + ξk

[
2B −

n∑
i=1

(Ai)xi

]}
wh,wh

)
K

+
1

2

∫
Γ∗(K)

ξkNwh ·wh = 0.

Hence, wh ≡ 0, implying uh ≡ 0 in K.
To establish the bound (3.3), we return to (3.5) and write Â = Â0 +δÂ, where Â0

is the matrix obtained by replacing B with zero and Â1, . . . , ÂN with their average
values over K̂. Note that Â0 is independent of h and that ‖δÂ‖ → 0 as h → 0. We
know from the previous uniqueness argument that both Â−1 and Â−1

0 exist. We infer

that ‖Â−1
0 ‖ is bounded, independent of h. Moreover, ‖Â−1‖ → ‖Â−1

0 ‖ as h → 0,

and ‖Â−1‖ is also bounded, independent of h. The desired result (3.3) now follows
directly from (3.6).

Lemma 3.3. There exist γ > 0, µ > 0 such that

(3.9)

∫
Γout(K)

Mu−h · u−h + γ|[uh]|2Γin(K) + µ‖uh‖2K

≤ (1 + Ch)

∫
Γin(K)

Mu−h · u−h + C‖f‖2K .
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Proof. Taking vh = uh in (1.5) and applying (3.2), we obtain

∫
Γ(K)−Γ∗(K)

Mu−h · u−h sign{nt}+ γ|[uh]|2Γin(K) ≤ 2(f ,uh)K ≤ ‖uh‖2K + ‖f‖2K .
(3.10)

Adding to (3.10) a sufficiently large multiple of the square of (3.3) gives (3.9).
To obtain a global stability result, we shall need the following lemma.
Lemma 3.4. If {xi} satisfies

xi + ai ≤ (1 + λh)xi−1 + bi, i = 1, 2, . . . ,(3.11)

where λ, h, x0, and all ai’s and bi’s are nonnegative, then

xm +

m∑
i=1

ai ≤ eλmh
(
x0 +

m∑
i=1

bi

)
.

Proof. The solution of 3.11 is

xm ≤
m∑
i=1

(1 + λh)m−i(bi − ai) + (1 + λh)mx0

≤ (1 + λh)m
m∑
i=1

bi −
m∑
i=1

ai + (1 + λh)mx0,

and the result follows from the fact that (1 + λh)m < eλmh.
Finally, we combine the previous estimates and use our assumption that there are

O(h−1) layers in ΩT to establish the following global stability result.
Theorem 3.5. The approximate solution uh satisfies the bound

|u−h |2Γout(ΩT ) + ‖uh‖2ΩT +
∑
K⊂ΩT

|[uh]|2Γin(K) ≤ C
(
|u−h |2Γin(ΩT ) + ‖f‖2ΩT

)
.

Proof. Applying (3.9) over a layer of elements Si (as described in section 2) gives∫
Fi
Mu−h ·u−h + γ

∑
K⊂Si

|[uh]|2Γin(K) +µ‖uh‖2Si ≤ (1 +Ch)

∫
Fi−1

Mu−h ·u−h +C‖f‖2Si .

Application of Lemma 3.4 then yields the desired result.

4. Error estimate. In this section we shall establish the following error estimate
between the true solution u and the approximate solution uh.

Theorem 4.1. The error e ≡ u− uh satisfies

|e−|2Γout(ΩT ) +
∑
K⊂ΩT

|[e]|2Γin(K) + ‖e‖2ΩT ≤ Ch2n+1
(
‖u‖2n+1,ΩT + ‖u‖2n+1,4,Ω′T

)
,

where Ω′T consists of the union of all elements K for which Γ∗(K) is (a) nonempty and
(b) does not lie in a single hyperplane, and ‖ · ‖m,p,Ω denotes the norm in Wm,p(Ω).
When N = 1, Ω′T is empty and the last term on the right may be dropped.

Proof. Letting uI denote an appropriate interpolant of u, and observing that the
exact solution u satisfies

a(u,vh) = (f ,vh)K for all vh ∈ P n(K),
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we easily obtain the error equation

a(eh,vh) = a(eI ,vh) for all vh ∈ P n(K),(4.1)

where eh = uh−uI and eI = u−uI . First consider the test function vh = eh. Using
(3.2), we have

(4.2)

a(eh, eh) = a(eI , eh) = (eI ,L∗eh)K −
∫

Γin(K)

[Meh] · eI − 1

2

∫
Γ∗(K)

(N −D)eh · eI

+

∫
Γ(K)−Γ∗(K)

Me−I ·e−h sign{nt}+

∫
Γin(K)

M[eI ] · [eh] +
1

2

∫
Γ∗(K)

(N +N ∗)eI ·eh.

We now define a specific interpolant uI . To do this, we must distinguish three possi-
bilities for Γ∗(K). The first case is when Γ∗(K) is empty: here we define uI to be the
L2(K) projection of u onto P n(K). In the second case, where Γ∗(K) lies in a single
hyperplane (this occurs only at boundary vertices), we define uI by the conditions:

(u− uI ,vh)K = 0 for all vh ∈ P n−1(K),∫
Γ∗(K)

(u− uI) · vh = 0 for all vh ∈ P n(Γ∗(K)).

It is not difficult to check that this is an optimal order interpolant. Finally, there is
the remaining case in which Γ∗(K) is contained by more than one hyperplane, which
occurs at boundary vertices where the normal to ΩT is not constant. In this case, we
again define uI to be the L2(K) projection of u onto P n(K). When Ω is an interval
in R1, only the first two cases arise and the second case arises only at each of the two
endpoints of Ω, where Γ∗(K) consists of a single edge. If Ω is a polygon in R2, then
case 2 arises at mesh vertices which lie on ∂Ω, except at the corners of the polygon.
Case 3 occurs at precisely the corners of the polygon. It is case 3 which causes some
extra technicalities in the analysis below.

We denote by L∗0 the operator obtained by replacing the coefficients Ai and B
in L∗ by their average values on each element K, and by N0 and D0 the operators
obtained by replacing N and D, respectively, by their average values over Γ∗(K). Via
standard inverse inequalities and approximation results, we obtain

|(eI ,L∗eh)K | ≤ |(eI ,L∗0eh)K |+ |(eI ,L∗eh − L∗0eh)K | ≤ C‖eI‖K‖eh‖K

for all K. In case 2 (Γ∗(K) lying in a single hyperplane), we obtain∣∣∣∣ ∫
Γ∗(K)

(N−D)eh ·eI
∣∣∣∣ ≤ ∣∣∣∣ ∫

Γ∗(K)

(N0−D0)eh ·eI
∣∣∣∣+∣∣∣∣ ∫

Γ∗(K)

(N−N0−D+D0)eh ·eI
∣∣∣∣

≤ Ch|eh|Γ∗(K)|eI |Γ∗(K) ≤ Ch1/2‖eh‖K |eI |Γ∗(K),

and, in case 3 (Γ∗(K) not lying in a single hyperplane),∣∣∣∣ ∫
Γ∗(K)

(N −D)eh · eI
∣∣∣∣ ≤ C|eh|Γ∗(K)|eI |Γ∗(K) ≤ Ch−1/2‖eh‖K |eI |Γ∗(K).
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Hence, using (4.2) and (3.2), we get that

1

2

∫
Γ(K)−Γ∗(K)

Me−h · e−h sign{nt}+
γ

2
|[eh]|2Γin(K) +

1

4

∫
Γ∗(K)

(N +N ∗)eh · eh

≤ C (|[eh]|Γin(K)|e−I |Γin(K) + |[eh]|Γin(K)|[eI ]|Γin(K) + hα‖eh‖K |eI |Γ∗(K)

)
+

∫
Γ(K)−Γ∗(K)

Me−I ·e−h sign{nt}+1

2

[ ∫
Γ∗(K)

(N+N ∗)eI ·eI
]1/2[ ∫

Γ∗(K)

(N+N ∗)eh·eh
]1/2

,

where α = 1/2 when Γ∗(K) lies in a single hyperplane, α = −1/2 when Γ∗(K) does
not lie in a single hyperplane, and the term involving hα is omitted when Γ∗(K) is
empty. After applying the arithmetic-geometric mean inequality, we obtain

1

2

∫
Γ(K)−Γ∗(K)

Me−h · e−h sign{nt}+
γ̃

2
|[eh]|2Γin(K) ≤

∫
Γ(K)−Γ∗(K)

Me−I · e−h sign{nt}

+ ‖eh‖2K + C
(
|e−I |2Γin(K) + |[eI ]|2Γin(K) + (1 + h2α)|eI |2Γ∗(K)

)
.

We complete the square on the Γ(K)−Γ∗(K) integrals, write eh = eI − e, and make
repeated use of the Schwarz inequality to obtain

1

2

∫
Γ(K)−Γ∗(K)

Me− · e−sign{nt}+
γ̃

2
|[e]|2Γin(K) ≤ 2‖e‖2K + CRK(eI),

where

RK(eI) ≡ |e−I |2Γin(K) + |e−I |2Γout(K) + |[eI ]|2Γin(K) + (1 + h2α)|eI |2Γ∗(K).

Using standard results from approximation theory, it easily follows that

RK(eI) ≤ Ch2n+1+min(0,2α)‖u‖2n+1,K .

Thus

(4.3)

∫
Γout(K)

Me− · e− + γ̃|[e]|2Γin(K)

≤
∫

Γin(K)

Me− · e− + 4‖e‖2K + Ch2n+1+min(0,2α)‖u‖2n+1,K .

To gain control of e inside element K, we write (4.1) as

a(eh,vh) = (F,vh)K ,

where F is defined through the inner product conditions:

(F,vh)K = a(eI ,vh) = (LeI ,vh)K +

∫
Γin(K)

M[eI ] · vh +
1

2

∫
Γ∗(K)

(N −D)eI · vh.

Using standard results from approximation theory,

|(F,vh)K | ≤ Chn‖u‖n+1,K‖vh‖K ,
which implies

‖F‖K ≤ Chn‖u‖n+1,K .
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Applying (3.3), we get

‖eh‖K ≤ C(
√
h|e−h |Γin(K) + hn+1‖u‖n+1,K).

Replacing eh by eI − e leads to

‖e‖K ≤ C(
√
h|e−|Γin(K) + hn+1‖u‖n+1,K).(4.4)

We now add 5 times the square of (4.4) to (4.3) to obtain

(4.5)

∫
Γout(K)

Me− · e− + γ̃|[e]|2Γin(K) + ‖e‖2K

≤ (1 + Ch)

∫
Γin(K)

Me− · e− + Ch2n+1+min(0,2α)‖u‖2n+1,K .

Applying this over a layer of elements Si gives

(4.6)

∫
Fi
Me− · e− + γ̃

∑
K⊂Si

|[e]|2Γin(K) + ‖e‖2Si

≤ (1 + Ch)

∫
Fi−1

Me− · e− + Ch2n+1‖u‖2n+1,Si + Ch2n‖u‖2n+1,S′i
,

where S′i denotes the set of elements in Si for which α = −1/2. Application of
Lemma 3.4 yields

|e−|2Γout(ΩT ) +
∑
K⊂ΩT

|[e]|2Γin(K) + ‖e‖2ΩT ≤ Ch2n+1‖u‖2n+1,ΩT + Ch2n‖u‖2n+1,Ω′T
.

Since meas(Ω′T ) ≤ Ch2,

‖Dαu‖2Ω′T =

∫
Ω′T

|Dαu|2 ≤ meas(Ω′T )1/2

(∫
Ω′T

|Dαu|4
)1/2

≤ Ch‖Dαu‖20,4,Ω′T .

Hence,

(4.7) ‖u‖2n+1,Ω′T
=

∑
|α|≤n+1

‖Dαu‖2Ω′T ≤ Ch
∑

|α|≤n+1

‖Dαu‖20,4,Ω′T

≤ Ch
( ∑
|α|≤n+1

12

)1/2( ∑
|α|≤n+1

‖Dαu‖40,4,Ω′T

)1/2

≤ Ch‖u‖2n+1,4,Ω′T
.

The desired result follows immediately from this estimate.

5. A numerical example. In this section, we present the results of some nu-
merical computations. We use as our test problem the wave equation in two space
dimensions, written as a first order system as in section 1. We take Ω to be the square
0 < x < 2π, 0 < y < 2π and impose periodic boundary conditions. At t = 0 we take

u1 = u2 = 0, u3 =
√

2 sinx sin y.
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Table 5.1

N |uh − u|t=1 |uh − u|t=2

6 .270 .438
12 .951(-1) [2.89] .150 [2.92]
24 .202(-1) [4.71] .289(-1) [5.19]
48 .440(-2) [4.51] .527(-2) [5.48]
96 .104(-2) [4.23] .112(-2) [4.71]
192 .257(-3) [4.05] .266(-3) [4.21]
384 .640(-4) [4.02] .655(-4) [4.06]

The exact solution for t > 0 is then

u1 = cosx sin y sin
√

2t, u2 = sinx cos y sin
√

2t, u3 =
√

2 sinx sin y cos
√

2t.

Our space-time mesh is based on a regular subdivision of Ω into right isosceles trian-
gles, as shown in Figure 2.8. Each space-time element is a union of six tetrahedra,
analogous to those described in the text accompanying Figure 2.8. The condition for
“explicitness” of this mesh for the wave equation is ∆t/h ≤ .707. In our numerical
experiments, we use linear approximation with ∆t/h = .637. In Table 5.1, L2 errors
in uh are given at t = 1 and t = 2 vs. N , the number of subintervals into which [0, 2π]
is divided. These results indicate an optimal O(h2) rate of convergence, in contrast
to our theoretical estimate of O(h1.5). This h1/2 gap between theoretical and actual
convergence rates is typical for the discontinuous Galerkin method (cf. [10] and [11]).
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