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The construction of projection operators, which commute with the exterior derivative and at the same time
are bounded in the proper Sobolev spaces, represents a key tool in the recent stability analysis of finite ele-
ment exterior calculus. These so-called bounded cochain projections have been constructed by combining a
smoothing operator and the unbounded canonical projections defined by the degrees of freedom. However,
an undesired property of these bounded projections is that, in contrast to the canonical projections, they
are nonlocal. The purpose of this article is to discuss a recent alternative construction of bounded cochain
projections, which also are local. A key tool for the new construction is the structure of a double complex,
resembling the Čech-de Rham double complex of algebraic topology. © 2014 Wiley Periodicals, Inc. Numer
Methods Partial Differential Eq 000: 000–000, 2014

Keywords: cochain projections; finite element exterior calculus; stability analysis

I. INTRODUCTION

The construction of projection operators onto finite element spaces which commute with the
governing differential operators has always been a central feature of the analysis of mixed finite
element methods, cf. Refs. [1, 2]. However, the fact that the canonical projections, defined from
the degrees of freedom, are usually not bounded in the natural Sobolev norms has resulted in addi-
tional complexity of the stability arguments for such methods. In fact, for a long time, it was not
known how to construct commuting projections which also are bounded in spaces like H(curl)
and H(div), without making extra regularity assumptions. However, during the last decade rather
general constructions of such projections have been given, leading to elegant and compact stability
proofs.
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2 FALK AND WINTHER

The first successful construction was given by Schöberl in [3], where a smoothing operator,
constructed by perturbing the mesh, is combined with the canonical projection to obtain a commut-
ing projection operator which also is bounded. In a related paper, Christiansen [4] proposed to use
a more standard smoothing operator defined by a mollifier function. In the setting of finite element
exterior calculus, variants of such constructions, all based on a proper combination of smoothing
and canonical projections, are analyzed in [5, Section 5], [6, Section 5], and [7]. These operators
are bounded in the appropriate norms and commute with the exterior derivative. However, these
projections lack another key property of the canonical projections; they are not locally defined. In
fact, it has not been clear if it is possible to construct bounded and commuting projections which
are locally defined. In recent work, such projections were constructed in [8]. The construction is
inspired by the well-known Clément operator [9], which is based on local projection operators
defined on macroelements. In its original form, where the finite element space consists of con-
tinuous piecewise polynomial subspaces of the Sobolev space H1, the Clément operator is not
a projection. However, by modifying the Clément operator, such that the local projections are
defined with respect to piecewise polynomial spaces, a projection is easily obtained. The more
challenging part, successfully addressed in Ref. [8], is to obtain commuting projections.

The construction proposed in Ref. [8] is discussed in the setting of exterior calculus and the de
Rham complex on bounded domains in R

n, and covers all orders of the basic finite element spaces
described in Refs. [5, 6]. However, the lowest order case, corresponding to the Whitney elements
[10], represents in many ways the most challenging part of the construction. A key difficulty is
to relate the projection onto the space of Whitney k-forms, constructed from local projections
on macroelements defined from subsimplexes of the mesh of dimension k, to the corresponding
projection onto Whitney (k + 1)-forms, constructed by local projections on the corresponding
macroelements associated to (k + 1)-dimensional subsimplexes. In Ref. [8], a double complex
structure, which resembles the Čech-de Rham double complex, cf. Ref. [11], is introduced as
a tool to handle this difficulty. Such structures were apparently first introduced by Weil in his
proof of de Rham’s theorem, cf. Ref. [12]. As far as we know, the construction given in Ref. [8]
represents the first time a double complex has been utilized in numerical analysis. The purpose
of the present article is to explain the construction given in [8] in the simplest possible setting.
In particular, we want to motivate why double complexes seems to be a natural tool for general-
izing Clément type operators, based on local projections on macroelements, to obtain bounded
commuting projections. In the discussion below, we will therefore restrict the discussion to the
lowest-order case of Whitney elements and to the case of two space dimensions.

II. THE DE RHAM COMPLEX AND ITS DISCRETIZATION

For a given polygon � ⊂ R
2, we consider the associated de Rham complex of the form

H 1(�)
grad−→ H (rot, �)

rot−→ L2(�). (2.1)

Here the operator rot is given by rot v := ∂x2v1 − ∂x1v2, mapping a vector field v into scalar
fields. The space H (rot, �) is the space of all vector fields v ∈ L2(�)2 with rot v ∈ L2(�), while
H 1(�) is the corresponding Sobolev space consisting of all u ∈ L2(�) with grad u ∈ L2(�)2.
The sequence (2.1) is a complex since rot ◦ grad = 0. To enhance readability, we will continue
to use bold typeface for vector-valued quantities and for operators returning vector fields.

We will consider the simplest finite element subsimplex of (2.1). Hence, for a given triangula-
tion Th of �, we let W(Th) ⊂ H 1(�) be the corresponding space of continuous piecewise linear
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DOUBLE COMPLEXES AND LOCAL COCHAIN PROJECTIONS 3

functions and P0(Th) ⊂ L2(�) the space of piecewise constants. The space N (Th) ⊂ H (rot, �)

is frequently referred to as the rotated Raviart–Thomas space in the numerical analysis literature.
It consists of all piecewise rigid motions with continuous tangential components on all edges
of Th. Alternatively, the spaces W(Th), N (Th), and P0(Th) correspond to the space of Whitney
forms of order 0, 1, and 2, respectively. It is a simple fact that

W(Th)
grad−→ N (Th)

rot−→ P0(Th) (2.2)

is a subcomplex of (2.1). In particular, grad(W(Th)) ⊂ N (Th) and rot(N (Th)) ⊂ P0(Th). Our
goal is to define projection operators π 0

h , π 1
h, and π 2

h such that the diagram

H 1(�)
grad−→ H (rot, �)

rot−→ L2(�)

↓ π 0
h ↓ π 1

h ↓ π 2
h

W(Th)
grad−→ N (Th)

rot−→ P0(Th)

commutes. In addition, the projections πi
h will be local and bounded in the norms of

H 1(�), H (rot, �), and L2(�), respectively.

III. THE PROJECTION π0
h

We will first define the projection π 0
h . We let �j(Th) be the set of subsimplexes of Th of dimension

j. In other words, �0(Th) is the set of vertices, �1(Th) the set of edges, and �2(Th) the set of
triangles, while �(Th) is the union of the three sets. For each subset f ∈ �(Th), the associated
macroelement �f is given by

�f := ∪ {T | T ∈ Th, f ∈ �(T ) } .

A vertex macroelement and an edge macroelement are shown in Fig. 1.
If u ∈ H 1(�), then the piecewise linear function π 0

hu is determined by its values at each vertex,
since

π 0
hu =

∑
y∈�0(Th)

π 0
hu(y)λy ,

where λy is the piecewise linear hat function associated to the vertex y, that is, λy(y) = 1 and
λy ≡ 0 on the complement of the macroelement �y . Hence, to determine π 0

hu, it is enough to

FIG. 1. (a) Vertex macroelement and (b) edge macroelement.
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4 FALK AND WINTHER

determine π 0
hu(y) for all y ∈ �0(Th). However, since functions u ∈ H 1(�) in general do not

have point values, we cannot take π 0
hu(y) to be u(y). Instead, the idea of the Clément operator is to

compute π 0
hu(y), for all y ∈ �0(Th), from a local projection Py applied to u. The local projections

Py are defined by solving discrete Laplace–Neumann problems on the macroelements �y .
We let W(Ty,h) be the restriction of the space W(Th) to �y , that is, W(Ty,h) is the space of

piecewise linear functions on �y . The solution operator for the discrete Laplace–Neumann prob-
lem can naturally be separated into two parts, a mean value contribution and a second part which
only depends on the gradient of the function u. More precisely, we define Pyu by

Pyu = |�y |−1

∫
�y

u dx + Q0
yu,

where |�y | = ∫
�y

dx. The operator Q0
y maps H 1(�y) into W(Ty,h) such that the mean value of

Q0
yv over �y is zero, and

∫
�y

grad(Q0
yv − v) · grad w dx = 0, w ∈ W(Ty,h).

This defines Q0
yv uniquely. The operator π 0

h is then defined by the condition π 0
hu(y) = Pyu(y)

for each y ∈ �0(Th). Alternatively,

π 0
hu =

∑
y∈�0(Th)

Pyu(y)λy .

The operator π 0
h is bounded in H 1(�). Furthermore, it is straightforward to check that it is a

projection, that is, π 0
hu = u if u ∈ W(Th), since we obviously have Pyu(y) = u(y) in this case.

IV. THE PROJECTION π1
h

In this section, we will construct the projection π 1
h. In addition to the macroelements �f , we will

also need extended macroelements �e
f given by

�e
f =

⋃
y∈�0(f )

�y .

FIG. 2. The extended macroelement �e
f for f = [y0, y1].
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DOUBLE COMPLEXES AND LOCAL COCHAIN PROJECTIONS 5

Alternatively, �e
f is the union of all triangles of Th which intersect f. An example of an extended

macroelement is shown in Fig. 2.
In the special case that dimf = 0, that is, f is a vertex, then �e

f = �f . In general, if
f , g ∈ �(Th) with g ∈ �(f ) then

�f ⊂ �g and �e
g ⊂ �e

f .

We let T e
f ,h be the restriction of Th to �e

f . We will assume throughout that all the macroelements
�e

f are simply connected. On these macroelements, we utilize discrete complexes of the form

W̊ (T e
f ,h)

curl−→ R̊T (T e
f ,h)

div−→ P̊0(T e
f ,h). (4.1)

Here curl denotes the two-dimensional curl-operator, that is, the operator which maps a
scalar field u to the vector field curlu = (−∂x2u, ∂x1u). The complex property follows since
div ◦ curl = 0. The spaces W̊ (T e

f ,h) and P̊0(T e
f ,h) consist of piecewise linear and piecewise con-

stant functions on �e
f , and restricted to vanishing boundary values in the piecewise linear case, and

to vanishing integral over �e
f in the piecewise constant case. Finally, the space R̊T (T e

f ,h) is the
lowest order Raviart–Thomas space on �e

f with vanishing normal components on the boundary.
Since the macroelements �e

f are simply connected, it follows that the complex given in (4.1) is

exact. This means that any element in P̊0(T e
f ,h) can be expressed as div v, where v ∈ R̊T (T e

f ,h),

and any divergence free element of R̊T (T e
f ,h) is equal to curl w for a unique w ∈ W̊ (T e

f ,h).
Recall that the projection π 1

h is required to satisfy the commuting property

π 1
h grad u = grad π 0

hu, u ∈ H 1(�). (4.2)

Since the left hand side of this identity only depends on grad u, so must the right hand side.
Furthermore, since we want π 1

h to be local, we need to see that grad π 0
hu depends locally on

grad u. We introduce the mean value operator, M0
h : L2(�) → W(Th), by

M0
hu =

∑
y∈�0(Th)

(∫
�y

u z0
y dx

)
λy ,

where z0
y = |�y |−1. Then we have that

π 0
hu = M0

hu +
∑

y∈�0(Th)

Q0
yu(y)λy . (4.3)

From the definition of the operator Q0
y , we see that the second term here already depends on

grad u. Furthermore, we observe that

grad M0
hu =

∑
y∈�0(Th)

(∫
�y

uz0
y dx

)
grad λy .

Let f = [y0, y1] ∈ �1(Th) be a fixed edge with vertices y0 and y1, and consider the tangential
component of grad M0

hu on f. We have

∫
f

grad M0
hu · (y1 − y0) ds = |f |

(∫
�y1

uz0
y1

dx −
∫

�y0

uz0
y0

dx

)
= −|f |

∫
�e

f

u(δz0)f dx,

Numerical Methods for Partial Differential Equations DOI 10.1002/num



6 FALK AND WINTHER

where (δz0)f = z0
y0

− z0
y1

and |f | is the length of f. Here, we assume that the functions z0
y are

extended by zero outside �y , such that (δz0)f is a piecewise constant function on the extended
macroelement �e

f , and with integral equal to zero. In other words, (δz0)f belongs to the space

P̊0(T e
f ,h), and by the exactness of the complex (4.1), it follows that there is a unique function

z1
f ∈ R̊T (T e

f ,h) such that

div z1
f = (δz0)f , and

∫
�e

f

z1
f · curl w dx = 0, w ∈ W̊ (T e

f ,h).

Hence, from integration by parts we obtain

∫
f

grad M0
hu · (y1 − y0) ds = −|f |

∫
�e

f

u div z1
f dx = |f |

∫
�e

f

grad u · z1
f dx.

Recall that functions in N (Th) are uniquely determined by the integrals of the tangential
components over all edges. From the calculations above, we can therefore conclude that

grad M0
hu =

∑
f ∈�1(Th)

(∫
�e

f

grad u · z1
f dx

)
φf , (4.4)

where φf ∈ N (Th) is the Whitney 1-form associated to the edge f = [y0, y1], scaled such that∫
f

φf · (y1 − y0) ds = |f |. In other words,

φf = λy0 grad λy1 − λy1 grad λy0 ,

and any v ∈ N (Th) admits a representation of the form

v =
∑

f =[y0,y1]∈�1(Th)

|f |−1

∫
f

v · (y1 − y0) ds φf .

For any v ∈ L2(�)2, we now define M1
hv ∈ N (Th) by

M1
hv =

∑
f ∈�1(Th)

(∫
�e

f

v · z1
f dx

)
φf .

The identity grad M0
hu = M1

h grad u follows from (4.4). For each y ∈ �0(Th), we introduce the
operator Q1

y,− : L2(�y)
2 → W(Ty,h) defined by

∫
�y

(grad (Q1
y,−v) − v) · grad w dx = 0, w ∈ W(Ty,h),

with the mean value of Q1
y,−v set to zero. Hence, by construction, we have

Q1
y,− grad u = Q0

yu. (4.5)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



DOUBLE COMPLEXES AND LOCAL COCHAIN PROJECTIONS 7

Therefore, if we define an operator S1
h : L2(�)2 → N (Th) by

S1
hv = M1

hv +
∑

y∈�0(Th)

Q1
y,−v(y) grad λy ,

then the desired commuting relation grad π 0
hu = S1

h grad u follows, cf. (4.3) and (4.5). However,
the operator S1

h will in general not be a projection onto the space N (Th). Therefore, the operator
π 1

h will instead be of the form

π 1
hv = S1

hv +
∑

f =[y0,y1]∈�1(Th)

(
|f |−1

∫
f

(I − S1
h)Q

1
f v · (y1 − y0) ds

)
φf ,

where Q1
f is a local projection defined with respect to the extended macroelement �e

f . The
operator Q1

f : H (rot, �e
f ) → N (T e

f ,h) is defined by

∫
�e

f

(Q1
f v − v) · grad w dx = 0, w ∈ W(T e

f ,h),

∫
�e

f

rot(Q1
f v − v)rot ψ dx = 0, ψ ∈ N (T e

f ,h). (4.6)

These conditions determine Q1
f v ∈ N (T e

f ,h) uniquely as a consequence of the exactness of
the complex (2.2) restricted to the domain �e

f . Furthermore, the operator Q1
f is a local projection.

In fact, the operator Q1
f admits the decomposition

Q1
f v = grad Q0

f v + Q2
f rot v, (4.7)

where the operators Q0
f and Q2

f are defined by subsystems of (4.6). More precisely, Q0
f v ∈

W(T e
f ,h) has integral zero over �e

f and satisfies

∫
�e

f

(grad Q0
f v − v) · grad w dx = 0, w ∈ W(T e

f ,h),

while Q2
f u ∈ N (T e

f ,h) is determined by

∫
�e

f

Q2
f u · grad w dx = 0, w ∈ W(T e

f ,h),

∫
�e

f

(rot Q2
f u − u) rot ψ dx = 0, ψ ∈ N (T e

f ,h),

for any u ∈ L2(�e
f ).

The operator π 1
h is a projection onto N (T e

f ,h), since for any v ∈ N (T e
f ,h), we have

π 1
hv =

∑
f =[y0,y1]∈�1(Th)

(
|f |−1

∫
f

Q1
f v · (y1 − y0) ds

)
φf = v.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



8 FALK AND WINTHER

On the other hand, it follows from (4.7) that for w ∈ H 1(�e
f ), Q1

f grad w = grad Q0
f grad w,

and this implies that on f,

S1
hQ

1
f grad w = S1

h grad Q0
f grad w = grad π 0

hQ0
f grad w

= grad Q0
f grad w = Q1

f grad w.

Therefore, it follows that for any f = [y0, y1] ∈ �1(Th) and w ∈ H 1(�e
f ),

(I − S1
h)Q

1
f grad w · (y1 − y0) = 0 onf , (4.8)

and as a consequence,

π 1
h grad w = S1

h grad w = grad π 0
hw.

We have therefore seen that π 1
h is a projection operator, which is local and satisfies the desired

commuting relation (4.2).

V. THE DOUBLE COMPLEX

In the construction of the projection π 1
h above, we have already implicitly used a double complex

structure. To see this more clearly, consider the direct sum over all y ∈ �0(Th) of the complexes
of the form (4.1). This gives the exact complex

⊕
fy∈�0(Th)

W̊ (T e
f ,h)

curl−→
⊕

y∈�0(Th)

R̊T (T e
f ,h)

div−→
⊕

y∈�0(Th)

P̊0(T e
f ,h).

Here the differential operators curl and div are applied to each component in the sum. The
operator δ = δ0, introduced in the construction of the operator π 1

h above, represents another
operator naturally acting on these spaces. The operator δ0 is of the form

δ0 :
⊕

y∈�0(Th)

V0(y) →
⊕

f ∈�1(Th)

V1(f ), (δ0u)f = uy0 − uy1 iff = [y0, y1].

Here the space Vm(f ) is a substitute for any of the local spaces W̊ (T e
f ,h), R̊T (T e

f ,h), or P̊0(T e
f ,h)

for f ∈ �m(Th). Furthermore, it is implicitly assumed that the functions uy are extended by zero
outside �y . In fact, if u ∈ ⊕

y∈�0(Th)P̊0(Ty,h) and all the components of u = {
uy |y ∈ �0(Th)

}
have the same mean value with respect to �y , the function δ0u will be in

⊕
f ∈�1(Th)P̊0(T e

f ,h).

This was exactly what we utilized above to define z1 = {
z1

f

} ∈ ⊕
f ∈�1(Th)R̊T (T e

f ,h) such that
div z1 = δz0. We similarly define an operator δ = δ1 :

⊕
g∈�1(Th)V1(g) → ⊕

f ∈�2(Th)V2(f ) by

(δ1u)f = u[y1,y2] − u[y0,y2] + u[y0,y1] iff = [y0, y1, y2],

Numerical Methods for Partial Differential Equations DOI 10.1002/num



DOUBLE COMPLEXES AND LOCAL COCHAIN PROJECTIONS 9

where the notation [·, . . . , ·] is used to denote convex combination. We obtain a double complex
of the form ⊕

f ∈�0(Th)

W̊ (T e
f ,h)

curl−→ ⊕
f ∈�0(Th)

R̊T (T e
f ,h)

div−→ ⊕
f ∈�0(Th)

P̊0(T e
f ,h)

↓ δ0 ↓ δ0 ↓ δ0⊕
f ∈�1(Th)

W̊ (T e
f ,h)

curl−→ ⊕
f ∈�1(Th)

R̊T (T e
f ,h)

div−→ ⊕
f ∈�1(Th)

P̊0(T e
f ,h)

↓ δ1 ↓ δ1 ↓ δ1⊕
f ∈�2(Th)

W̊ (T e
f ,h)

curl−→ ⊕
f ∈�2(Th)

R̊T (T e
f ,h)

div−→ ⊕
f ∈�2(Th)

P̊0(T e
f ,h)

This is a double complex in the sense that each row and each column is a complex. In particular,
δ1 ◦ δ0 = 0. Furthermore, the operators δ0 and δ1 commute with the differential operators curl
and div, that is,

δicurl = curl ◦ δi and δidiv = div ◦ δi .

In particular, consider the function δ1z
1 ∈ ⊕

f ∈�2(Th)R̊T (T e
f ,h), where z1 = {

z1
f

}
f ∈�1(Th)

is

the function introduced above to define the operator M1
h. This function is divergence free, since

divδ1z
1 = δ1div z1 = δ1 ◦ δ0z

0 = 0.

As a consequence of the exactness of the last row of the double complex above, we conclude
that there is a unique z2 ∈ ⊕

f ∈�0(Th)W̊ (T e
f ,h) such that curl z2 = δ1z

1. The components of the
function z2 will be utilized in the construction of the operator π 2

h below.

VI. THE PROJECTION π2
h

It remains to construct the locally defined projection π 2
h onto P0(Th) such that

π 2
h rot v = rot π 1

hv.

We start by computing rot S1
hv = rot M1

hv. We have

rot M1
hv =

∑
f ∈�1(Th)

(∫
�e

f

v · z1
f dx

)
rot φf .

Let T = [y0, y1, y2] ∈ �2(Th), where the vertices are ordered counter clockwise. The function
rot M1

h is a constant on T and the only nonzero contributions in the sum above on T arise from
the three edges [y1, y2], [y0, y2], and [y0, y1]. From the edge f = [y1, y2] we have∫

T

rot φ [y1,y2] dx = |f |−1

∫
[y1,y2]

φ [y1,y2] · (y2 − y1) ds = 1.

Similar calculations show∫
T

rot φ[y0,y2] dx = −1, and
∫

T

rot φ[y0,y1] dx = 1.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 FALK AND WINTHER

We therefore obtain that∫
T

rot M1
hv dx =

∫
�e

T

v · (δ1z
1)T dx =

∫
�e

T

v · curl z2
T dx =

∫
�e

T

(rot v)zT
2 dx.

For any u ∈ L2(�), we now define M2
hu by

M2
hu =

∑
T ∈�2(Th)

∫
�e

T

u z2
T dx.

The identity M2
h rot v = rot M1

hv = rot S1
hv is a consequence of the calculations above. From

the definition of the operator π 1
h, we now obtain

rot π 1
hv = M2

h rot v +
∑

f =[y0,y1]∈�1(Th)

(
|f |−1

∫
f

(I − S1
h)Q

1
f v · (y1 − y0) ds

)
rot φf

= M2
h rot v +

∑
f =[y0,y1]∈�1(Th)

(
|f |−1

∫
f

(I − S1
h)Q

2
f rot v · (y1 − y0) ds

)
rotφf ,

where the last identity follows by combining (4.7) and (4.8). Hence, if we define S2
h : L2(�) →

P0(Th) by

S2
hu = M2

hu +
∑

f =[y0,y1]∈�1(Th)

(|f |−1

∫
f

(I − S1
h)Q

2
f u · (y1 − y0) ds) rot φf ,

then the identity S2
h rot v = rot π 1

hv follows by construction. However, in the present case, the
operator S2

h is also a projection. To see this, let u ∈ P0(Th). It is enough to show that∫
T

S2
hu dx =

∫
T

u dx, T ∈ �2(Th). (6.1)

However, due to the exactness of the complex (2.2), restricted to �e
T , there is a v ∈ N (T e

T ,h) such
that rot v = u on �e

T . Therefore, by the projection property of the operator π 1
h we obtain∫

T

S2
hu dx =

∫
T

S2
h rot v dx =

∫
T

rot π 1
hv dx =

∫
T

rot v dx =
∫

T

u dx.

We therefore define πh
2 to be the operator S2

h .

VII. CONCLUSIONS

We have constructed Clément-type projection operators for discretization of the de Rham complex
in two space dimensions. Only the lowest-order finite element spaces, that is, the Whitney forms,
are considered. The projections are locally defined, they commute with the differential operators
of the de Rham complex, and they are bounded in the natural Sobolev norms. A discussion in the
general case, covering higher-order piecewise polynomial spaces and arbitrary space dimensions,
can be found in the recent paper [8].
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