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1 Introduction

In this paper, we consider the approximation of the equations of linear elas-
ticity in the case when the body is an isotropic, homogeneous, linearly elastic
plate. To describe the geometry of the plate, it will be convenient to con-
sider the plate as occupying the region Pt = Ω × (−t/2, t/2), where Ω is a
bounded domain in R2 and t ∈ (0, 1]. We are interested in the case when the
∗ This work supported by NSF grants DMS03-08347 and DMS06-09755. 9/8/07.
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plate is thin, so that the thickness t will be small. We denote the union of
the top and bottom surfaces of the plate by ∂P±

t = Ω × {−t/2, t/2} and the
lateral boundary by ∂PL

t = ∂Ω × (−t/2, t/2) (see Fig. 1). We suppose that
the plate is loaded by a surface force density g : ∂P±

t → R3 and a volume
force density f : Pt → R3, and is clamped along its lateral boundary. The
resulting stress σ∗ : Pt → R3×3

sym and displacement u∗ : Pt → R3 then satisfy
the boundary-value problem

Aσ∗ = ε(u∗), −div σ∗ = f in Pt,

σ∗n = g on ∂P±
t , u∗ = 0 on ∂PL

t . (1)

t

∂P±
t ∂PL

t

Fig. 1. The two-dimensional domain Ω and plate domain Pt

Here ε(u∗) denotes the infinitesimal strain tensor associated to the dis-
placement vector u∗, namely the symmetric part of its gradient, and div σ
denotes the vector divergence of the symmetric matrix σ taken by rows. The
compliance tensor A is given by Aτ = (1 + ν)τ/E − ν tr(τ)δ/E, with E > 0
Young’s modulus, ν ∈ [0, 1/2) Poisson’s ratio, and δ the 3×3 identity matrix.

A plate model seeks to approximate the solution of the elasticity prob-
lem (1) in terms of the solution of a system of partial differential equations
on the two-dimensional domain Ω without requiring the solution of a three-
dimensional problem. The passage from the 3-D problem to a plate model is
known as dimensional reduction.

By taking odd and even parts with respect to the variable x3, the three-
dimensional plate problem splits into two decoupled problems which corre-
spond to stretching and bending of the plate. The most common plate stretch-
ing models are variants of the equations of generalized plane stress. The most
common plate bending models are variants of the Kirchhoff-Love biharmonic
plate model or of the Reissner-Mindlin plate model. We speak of variants
here, because the specification of the forcing functions for the 2-D differential
equations in terms of the 3-D loads g and f differs for different models to
be found in the literature, as does the specification of the approximate 3-D
stresses and displacements in terms of the solutions of the 2-D boundary-value
problems. Moreover, there is a coefficient in the Reissner-Mindlin model, the
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so-called shear correction factor, which is given different values in the litera-
ture. So there is no universally accepted basic two-dimensional model of plate
stretching or bending.

2 A variational approach to dimensional reduction

The Hellinger-Reissner principle gives a variational characterization of the
solution to the three-dimensional problem (1). We will consider two forms of
this principle.

2.1 The first variational approach

To state the first form of the Hellinger-Reissner principle, which we label HR,
we define

Σ• = L2(Pt), V • =
{
v ∈ H1(Pt) : v = 0 on ∂PL

t

}
.

Then HR characterizes (σ∗, u∗) as the unique critical point (namely a saddle
point) of the HR functional

J(τ , v) =
1
2

∫
Pt

Aτ : τ dx−
∫

Pt

τ : ε(v) dx +
∫

Pt

f · v dx +
∫

∂P±t

g · v dx∼

on Σ•×V •. Equivalently, (σ∗, u∗) is the unique element of Σ•×V • satisfying
the weak equations∫

Pt

Aσ∗ : τ dx−
∫

Pt

ε(u) : τ dx = 0 for all τ ∈ Σ•, (2)∫
Pt

σ : ε(v) dx =
∫

Pt

f · v dx +
∫

∂P±t

g · v dx∼ for all v ∈ V •. (3)

Plate models may be derived by replacing Σ• and V • in HR with subspaces
Σ and V which admit only a specified polynomial dependence on x3 and then
defining (σ, u) as the unique critical point of J over Σ×V . This is equivalent
to restricting the trial and test spaces in the weak formulation to Σ × V . We
insure a unique solution by requiring that ε(V ) ⊂ Σ. Here we shall consider
only one of these models, which we denote HR(1). Define the two-dimensional
analogue of the compliance tensor by Aτ∼∼ = (1+ ν)τ∼∼/E− ν tr(τ∼∼) δ∼∼/E. It can
be shown that the HR(1) solution is given by

u(x) =

(
η
∼

(x∼)

0

)
+

(
−φ
∼

(x∼)x3

ω(x∼)

)
,

σ(x) =

(
A−1 ε∼∼(η

∼
) 0

0 0

)
+

(
−A−1 ε∼∼(φ

∼
)x3

E
2(1+ν) (∇∼ω − φ

∼
)

E
2(1+ν) (∇∼ω − φ

∼
)T 0

)
,
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where η
∼

is determined by a classical generalized plane stress problem and φ
∼

and ω by a Reissner-Mindlin problem. Specifically,

−t div∼ A−1 ε∼∼(η
∼

) = 2g
∼

0 + f
∼

0 in Ω, η
∼

= 0 on ∂Ω, (4)

− t3

12
div∼ A−1 ε∼∼(φ

∼
) + t

E

2(1 + ν)
(φ
∼
−∇∼ω) = −t(g

∼
1 + f

∼
1) in Ω, (5)

t
E

2(1 + ν)
div(φ

∼
−∇∼ω) = 2g0

3 + f0
3 in Ω, (6)

φ
∼

= 0, ω = 0 on ∂Ω. (7)

In the above, (and in this section only for clarity), we use ∼ and ∼∼ to denote
two-dimensional vectors and 2 × 2 matrices and and to denote three-
dimensional vectors and 3× 3 matrices, respectively. We also define

g0
3(x∼) =

1
2
[
g3(x∼, t/2) + g3(x∼,−t/2)

]
, g1

3(x∼) =
1
2
[
g3(x∼, t/2)− g3(x∼,−t/2)

]
,

f0
3 (x∼) =

∫ t/2

−t/2

f3(x∼, x3) dx3, f1
3 (x∼) =

∫ t/2

−t/2

f3(x∼, x3)
x3

t
dx3,

with g
∼

0, g
∼

1, f
∼

0, and f
∼

1 defined analogously. The verification of these equa-
tions is straightforward, but tedious.

In the case of a purely transverse bending load, the system (5)–(7) is the
classical Reissner-Mindlin system with shear correction factor 1. When the
bending is also affected by nonzero g

∼
1 or f

∼
1, then these appear as an applied

couple in the Reissner-Mindlin system. Thus we see that the HR(1) method is
a simple approach to deriving generalized plane stress and Reissner-Mindlin
type models. There is an alternative approach, however, that produces models
that are both more accurate and more amenable to rigorous justification than
the methods based on HR discussed above. We discuss this approach below.

2.2 An alternative variational approach

A second form of the Hellinger-Reissner principle, which we shall call HR′,
leads to somewhat different plate models. For HR′ we define

Σ∗
g

=
{
σ ∈ H(div, Pt) | σn = g on ∂P±

t

}
, V ∗ = L2(P ).

Then HR′ characterizes (σ∗, u∗) as the unique critical point (again a saddle
point) of the HR′ functional

J ′(τ , v) =
1
2

∫
Pt

Aτ : τ dx +
∫

Pt

div τ · v dx +
∫

Pt

f · v dx

on Σ∗
g
×V ∗. Equivalently, (σ∗, u∗) is the unique element of Σ∗

g
×V ∗ satisfying

the weak equations
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Pt

Aσ∗ : τ dx +
∫

Pt

u · div τ dx = 0 for all τ ∈ Σ∗
0
,∫

Pt

div σ · v dx = −
∫

Pt

f · v dx for all v ∈ V ∗.

Here Σ∗
0

=
{
σ ∈ H(div, Pt) | σn = 0 on ∂P±

t

}
. Note that the displacement

boundary conditions, which were essential to the first form of the Hellinger-
Reissner principle, are natural in this setting, while the reverse situation holds
for the traction boundary conditions.

By restricting J ′ to subspaces of Σ∗
g

and V ∗ with a specified polynomial
dependence on x3, we also obtain a variety of plate models. Here we shall
consider only one of these, which we denote HR′(1). The HR′(1) solution is:

u(x) =

(
η
∼

(x∼)

%(x∼)x3

)
+

(
−φ
∼

(x∼)x3

ω(x∼) + ω2(x∼)r(x3)

)
,

σ(x) =

(
σ∼∼

0(x∼) 2x3
t g
∼

0(x∼)
2x3

t g
∼

0(x∼)T
g1
3(x∼) + σ0

33(x∼)q(x3)

)

+

(
σ∼∼

1(x∼)x3
t g

∼
1(x∼) + σ∼

0(x∼)q(x3)

g
∼

1(x∼)T + σ∼
0(x∼)T q(x3) g0

3(x∼) 2x3
t + σ1

33(x3)s(x3)

)
,

where the coefficient functions η
∼

, %, φ
∼

, ω, ω2, σ∼∼
0, σ0

33, σ∼∼
1, σ∼

0, and σ1
33 are

functions of x∼ which we shall describe, and the polynomials q, r, and s are
given by q(z) = 3/2 − 6z2/t2, r(z) = 6z2/t2 − 3/10, and s(z) = (5/2)z/t −
10z3/t3.

The stretching portion of the solution is determined by the solution to the
boundary-value problem

−t div∼ A−1 ε∼∼(η
∼

) = l∼1
+ t

ν

1− ν
∇∼l2 in Ω, η

∼
= 0 on ∂Ω, (8)

where l∼1
= 2g

∼
0 + f

∼
0, l2 = g1

3 +
t

6
div g

∼
0 + f1

3 .

With η
∼

uniquely determined by (8), the remaining solution quantities are

σ∼∼
0 = A−1 ε∼∼(η

∼
) +

ν

1− ν
l2 δ∼∼, σ0

33 =
t

6
div g

∼
0 + f1

3 ,

% =
1
E

[
−ν tr(σ∼∼

0) +
6
5
σ0

33 + g1
3

]
.

The bending portion of the solution is determined by the solution to the
boundary-value problem

− t3

12
div∼ A−1 ε∼∼(φ

∼
) + t

5
6

E

2(1 + ν)
(φ
∼
−∇∼ω) = tk∼1

− t2

12
∇∼k2 in Ω,

t
5
6

E

2(1 + ν)
div(φ

∼
−∇∼ω) = k3 in Ω, φ

∼
= 0, ω = 0 on ∂Ω, (9)
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where k∼1
= −5

6
g
∼

1 − f
∼

1, k2 =
ν

1− ν

[
t

5
div g

∼
1 +

12
5

g0
3 + f2

3

]
,

f2
3 (x∼) =

∫ t/2

−t/2

f3(x)r(x3) dx3, k3 =
t

6
div g

∼
1 + 2g0

3 + f0
3 .

The boundary value problem (9) determining the bending solution is a some-
what different version of the Reissner-Mindlin equations than (5)–(7), which
arose from the HR(1) model. Not only are the formulas for the applied load
and couple more involved, but a shear correction factor of 5/6 has been intro-
duced. With φ

∼
and ω determined by (9), we find

σ∼∼
1 = −tA−1 ε∼∼(φ

∼
) + k2 δ∼∼, σ∼

0 =
5
6

[
E

2(1 + ν)
(−φ
∼

+∇∼ω)− g
∼

1

]
,

σ1
33 =

t

5
div g

∼
1 +

2
5
g0
3 + f2

3 , ω2 =
t

E

[
1
6
g0
3 +

5
42

σ1
33 −

ν

12
tr(σ∼∼

1)
]
.

For this model, it is possible to use the “two-energies principle” to derive
rigorous error estimates between the solution of the three-dimensional model
and the two-dimensional reduced model as a function of the plate thickness
(see [1] for details).

3 The Reissner–Mindlin model

From the previous section, we see that if we introduce the tensor C = A−1

and scale the right hand side, then the Reissner-Mindlin equations may be
written in the form

−div C E(θ)− λt−2(gradw − θ) = −f ,

−div(gradw − θ) = λ−1t2g,

with λ a constant depending on the particular version of the model that is
chosen. We also have a Reissner-Mindlin energy

J(θ, w) =
1
2

∫
Ω

C E(θ) : E(θ) +
1
2
λt−2

∫
Ω

|gradw − θ|2 −
∫

Ω

gw +
∫

Ω

f · θ,

(10)
for which the above equations are the Euler equations. As both a theo-
retical and computational tool, it is useful to introduce the shear stress
γ = λt−2(gradw − θ). Then we have the equivalent Reissner-Mindlin sys-
tem

−div C E(θ)− γ = −f , (11)
−div γ = g, (12)

gradw − θ − λ−1t2γ = 0, (13)
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For simplicity we restrict our attention to the case of a clamped plate, i.e.,
we consider the boundary conditions θ = 0 and w = 0 on the boundary ∂Ω.
A weak formulation of the Reissner–Mindlin model is then given by:

Find θ ∈ H̊
1
(Ω), w ∈ H̊1(Ω), γ ∈ L2(Ω) such that

a(θ,φ) + (γ,grad v − φ) = (g, v)− (f ,φ), φ ∈ H̊
1
(Ω), v ∈ H̊1(Ω), (14)

(gradw − θ,η)− λ−1t2(γ,η) = 0, η ∈ L2(Ω), (15)

where a(θ,φ) = (C E(θ), E(φ)).

4 Properties of the solution

As t → 0, θ → θ0 and w → w0, where θ0 = gradw0. One can then show
that w0 satisfies the limit problem: Find w0 ∈ H̊2(Ω) = {v ∈ H2(Ω) : v =
∂v/∂n = 0 on ∂Ω} such that

a(gradw0,grad v) = (g, v)− (f ,grad v), v ∈ H̊2(Ω).

This is the weak form of the equation: div div C E(gradw0) = g+div f , which
after the application of some calculus identities becomes:

D ∆2 w0 = g + div f , D =
E

12(1− ν2)
. (16)

Hence, the limiting problem is the biharmonic problem.
To understand this limiting behavior and also to derive the regularity

results presented in the next section, it is useful to introduce the Helmholtz
decomposition, and rewrite the Reissner-Mindlin system as a perturbed Stokes
equation. For some r ∈ H̊1(Ω) and p ∈ Ĥ1(Ω), we can write

γ = λt−2(gradw − θ) = grad r + curl p.

Then it is easy to check that problem (14)-(15) is equivalent to the system:
Find (r,θ, p, w) ∈ H̊1(Ω)× H̊

1
(Ω)× Ĥ1(Ω)× H̊1(Ω) such that

(grad r,gradµ) = (g, µ), µ ∈ H̊1(Ω), (17)

a(θ,φ)− (curl p,φ) = (grad r,φ)− (f ,φ), φ ∈ H̊
1
(Ω), (18)

−(θ, curl q)− λ−1t2(curl p, curl q) = 0, q ∈ Ĥ1(Ω), (19)

(gradw,grad s) = (θ + λ−1t2 grad r,grad s), s ∈ H̊1(Ω). (20)

We then define (θ0, p0, w0) ∈ H̊
1
(Ω)×Ĥ1(Ω)×H̊1(Ω) as the solution of (17)-

(20) with t = 0. Note that for r known and t = 0, (18)-(19) is the ordinary
Stokes system for (θ0

2,−θ0
1, p

0).
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5 Regularity results

A key issue in the approximation of the Reissner-Mindlin plate problem is the
regularity of the solution and especially its dependence on the plate thickness
t. For this problem, there is a boundary layer, whose strength depends on the
particular boundary condition. There are a number of physically interesting
boundary conditions:

θ · n = θ · s = w = 0 hard clamped (hc),
θ · n = Ms(θ) · s = w = 0 soft clamped (sc),

Mn(θ) = θ · s = w = 0 hard simply supported (hss),
Mn(θ) = Ms(θ) = w = 0 soft simply supported (sss),

Mn(θ) = Ms(θ) = ∂w/∂n− θ · n = 0 free (f),

where n and s denote the unit normal and counterclockwise unit tangent
vectors, respectively, and Mn(θ) = n · C E(θ)n, Ms(θ) = s · C E(θ)n. In the
case of a domain with smooth boundary, it is shown in [12] and [13] that for
all boundary conditions, the transverse displacement and all its derivatives
are bounded uniformly in t, i.e., ‖w‖s ≤ C, s ∈ R. Estimates showing the
boundary layers, ordered from weakest to strongest, are given below.

‖θ‖s ≤ Ctmin(0,7/2−s), ‖γ‖s ≤ Ctmin(0,3/2−s), s ∈ R, (sc)

‖θ‖s ≤ Ctmin(0,5/2−s), ‖γ‖s ≤ Ctmin(0,1/2−s), s ∈ R, (hc), (hss),

‖θ‖s ≤ Ctmin(0,3/2−s), ‖γ‖s ≤ Ctmin(0,−1/2−s), s ∈ R, (sss), (f).

Additional results can be found in [10].
We will also need estimates that show the precise dependence on the data

of the problem and which are valid when Ω is a convex polygon, the case we
consider in the derivation of error estimates for finite element approximation
schemes. We establish such estimates below for the case of the clamped plate.

Theorem 5.1 Let Ω be a convex polygon or a smoothly bounded domain in
the plane. For any t ∈ (0, 1], f ∈ H−1(Ω), and g ∈ H−1(Ω), there exists a
unique solution (r,θ, p, w) ∈ H̊1(Ω)×H̊

1
(Ω)×Ĥ1(Ω)×H̊1(Ω) satisfying (17)-

(20). Moreover, if f ∈ L2(Ω), then θ ∈H2(Ω) and there exists a constant C
independent of t, f , and g, such that

‖θ‖2 + ‖r‖1 + ‖p‖1 + t‖p‖2 + ‖w‖1 + ‖γ‖0 ≤ C(‖f‖0 + ‖g‖−1), (21)

If, in addition, g ∈ L2(Ω), then r and w ∈ H2(Ω) and

‖r‖2 + ‖w‖2 + t‖γ‖1 + ‖div γ‖0 ≤ C(‖g‖0 + ‖f‖0). (22)

Finally, if (θ0, w0) denotes the solution of (17)-(20) with t = 0, then

‖θ − θ0‖1 ≤ Ct(‖f‖0 + ‖g‖−1), ‖w − w0‖2 ≤ Ct(‖f‖0 + ‖g‖−1 + t‖g‖0),

‖w0‖3 ≤ C(‖f‖0 + ‖g‖−1). (23)
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Proof. Existence and uniqueness are easy to establish using the equivalence of
this system to (14)-(15) and standard results, so we concentrate on the regu-
larity estimates. We first observe that standard regularity results for Poisson’s
equation gives

‖r‖1 ≤ C‖g‖−1, ‖r‖2 ≤ ‖g‖0.

We next recall a regularity result for the Stokes system, valid both for the
case of a domain with smooth boundary and for a convex polygon.

‖θ0‖2 + ‖p0‖1 ≤ C(‖f‖0 + ‖r‖1) ≤ C(‖f‖0 + ‖g‖−1).

Now from (18) and (19), and the corresponding equations for θ0 and p0, we
get

a(θ−θ0,φ)−(curl(p−p0),φ)+(θ−θ0, curl q)+λ−1t2(curl(p−p0), curl q)

= −λ−1t2(curl p0, curl q), (φ, q) ∈ H̊
1
(Ω)× Ĥ1(Ω).

Choosing φ = θ − θ0 and q = p− p0, we obtain

‖θ − θ0‖2
1 + t2‖ curl(p− p0)‖2

0 ≤ Ct2‖p0‖1‖ curl(p− p0)‖0.

It easily follows that

‖θ − θ0‖1 + t‖p− p0‖1 ≤ Ct‖p0‖1 ≤ Ct(‖f‖0 + ‖g‖−1), (24)

which establishes the first estimate in (23). We also get that

‖p‖1 ≤ C(‖f‖0 + ‖g‖−1).

Applying standard estimates for second order elliptic problems to (18), we
further obtain

‖θ‖2 ≤ C(‖p‖1 + ‖r‖1 + ‖f‖0) ≤ C(‖f‖0 + ‖g‖−1).

Now from (19) and the definition of θ0, we get

λ−1t2(curl p, curl q) = −(θ, curl q) = (θ0 − θ, curl q), q ∈ Ĥ1(Ω).

Thus p is the weak solution of the boundary value problem

−∆ p = λt−2 rot(θ0 − θ) in Ω, ∂p/∂n = 0 on ∂Ω.

Applying elliptic regularity and (24), we get

‖p‖2 ≤ Ct−2‖θ0 − θ‖1 ≤ Ct−1(‖f‖0 + ‖g‖−1).

The estimate for w in (21) now follows directly from (20) and the estimate
for γ in (21) follows immediately from its definition and the estimates for r
and p. The estimate (22) follows directly from the regularity result for r, the
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definition of γ, elliptic regularity of w, and the previous results. Finally, it
remains to establish the last two estimates in (23). Subtracting the analogue
of (20) from (20), we get that

(grad(w − w0),grad s) = (θ − θ0 + λ−1t2 grad r,grad s), s ∈ H̊1(Ω).

This is the weak form of the equation

−∆(w − w0) = −div(θ − θ0)− λ−1t2 ∆ r.

Combining standard regularity estimates for Poisson’s equation with our pre-
vious results, we get

‖w − w0‖2 ≤ C(‖θ − θ0‖1 + t2‖r‖2) ≤ Ct(‖f‖+ ‖g‖−1 + t‖g‖0).

Finally, using the fact that w0 satisfies the biharmonic equation (16), together
with the boundary conditions w0 = ∂w0/∂n = 0, we get the estimate

‖w0‖3 ≤ C‖g + div f‖−1 ≤ C(‖g‖−1 + ‖f‖0).

6 Finite element discretizations

The challenge in devising finite element approximation schemes for the
Reissner-Mindlin plate model is to find schemes whose approximation ac-
curacy does not deteriorate as the plate thickness becomes very small. For
example, if one minimizes the Reissner-Mindlin energy over subspaces con-
sisting of low order finite elements, then the resulting approximation suffers
from the problem of “locking.” This problem is most easily described by re-
calling that as t → 0, the minimizer (θ, w) of (10) approaches (θ0, w0), where
θ0 = gradw0. If we discretize the problem directly by seeking θh ∈ Θh and
wh ∈ Wh minimizing J(θ, w) over Θh × Wh, then as t → 0 we will have
(θh, wh) → (θ0

h, w0
h) where, again, θ0

h = gradw0
h. The locking problem oc-

curs because, for low order finite element spaces, this last condition is too
restrictive to allow for good approximations of smooth functions. In particu-
lar, if continuous piecewise linear functions are chosen to approximate both
variables, then θ0

h ≡ gradw0
h would be continuous and piecewise constant,

with zero boundary conditions: Only the choice θ0
h = 0 can satisfy all these

conditions. Hence, unless the combination of finite element spaces is chosen
carefully, this problem is likely to occur.

Many of the successful locking-free finite element schemes have taken the
following approach. Let Θh ⊂ H̊

1
(Ω), Wh ⊂ H̊1(Ω), Γ h ⊂ L2(Ω), where

gradWh ⊂ Γ h. Let ΠΓ be an interpolation operator mapping H̊
1
(Ω) to Γ h.

Then consider finite element approximation schemes of the form:
Find θh ∈ Θh, wh ∈ Wh, γh ∈ Γ h such that
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a(θh,φ) + (γh,grad v −ΠΓφ) = (g, v)− (f ,φ), φ ∈ Θh, v ∈ Wh,

(gradwh −ΠΓ θh,η)− λ−1t2(γh,η) = 0, η ∈ Γ h. (25)

The point of introducing the operator ΠΓ is that now as t → 0, we will get
that gradwh,0 → ΠΓθh,0. If ΠΓ is chosen properly, this condition may be
much easier to satisfy, while still maintaining good approximation properties
of each subspace.

We will also consider some nonconforming discretizations in which the ei-
ther the space Θh or Wh consists of functions which belong to H1 on each
triangle, but not globally. In the first case, the operator E entering into the
definition of the bilinear form a must be replaced with Eh, the operator ob-
tained by applying E piecewise on each triangle. Similarly, in the second case,
the operator grad must be replaced by its piecewise counterpart, gradh.

7 Abstract error analysis

In order to analyze approximation schemes using a common framework, we
first prove several abstract approximation results. These results will make use
of the following assumptions about the approximation properties of the finite
dimensional subspaces and the operator ΠΓ that define the various methods.

gradWh ⊂ Γ h, (26)

‖η −ΠΓ η‖ ≤ ch‖η‖1, η ∈H1(Ω), (27)

for some constant c independent of h. Letting M r denote the space of discon-
tinuous piecewise polynomials of degree ≤ r, we also define r0 ≥ −1 as the
greatest integer r for which

(η −ΠΓη, ζ) = 0, ζ ∈M r. (28)

Of course this relation trivially holds for r = −1. We then let Π0 denote the
L2 projection into M r0 .

The following basic result is close to Lemma 3.1 of Durán and Liberman
[33].

Theorem 7.1 Let θI ∈ Θh, wI ∈ Wh be arbitrary, and define γI =
λt−2(gradwI −ΠΓ θI) ∈ Γ h. Then

‖θ − θh‖1 + t‖γ − γh‖0 ≤ C(‖θ − θI‖1 + t‖γ − γI‖0 + h‖γ −Π0γ‖0).

Proof. Clearly

a(θ − θh,φ) + (γ − γh,grad v −ΠΓφ) = (γ, [I −ΠΓ ]φ), (29)

for all φ ∈ Θh and v ∈ Wh, so
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a(θI − θh,φ) + (γI − γh,grad v −ΠΓφ) = a(θI − θ,φ)

+ (γI − γ,grad v −ΠΓφ) + (γ, [I −ΠΓ ]φ).

Taking φ = φI−φh and v = wI−wh, noting that gradwI−ΠΓ θI = λ−1t2γI

and gradwh −ΠΓ θh = λ−1t2γh, and using (28), we get the identity

a(θI − θh,θI − θh) + λ−1t2(γI − γh,γI − γh) = a(θI − θ,θI − θh)

+ λ−1t2(γI − γ,γI − γh) + (γ, [I −ΠΓ ][θI − θh]).

Using Schwarz’s inequality, and (27) and (28), we can bound the last term:

|(γ, [I −ΠΓ ][θI − θh])| ≤ Ch‖γ −Π0γ‖0‖θI − θh‖1.

The theorem then follows easily.

Note that if we apply this theorem in a naive way, then the error estimates we
obtain will blow up as t → 0. More specifically, if we use the simple estimate

t‖γ − γI‖ = λt−1‖grad(w − wI)− (θ −ΠΓ θI)‖
≤ λt−1(‖grad(w − wI)‖+ ‖θ −ΠΓ θI‖),

and use approximation theory to bound each of the terms on the right sepa-
rately, then the bound will contain the term t−1.

The key idea to using this theorem to obtain error estimates that are
independent of the plate thickness t is to find functions θI ∈ Θh and wI ∈ Wh

that satisfy
γI = λt−2(gradwI −ΠΓ θI) = ΠΓγ. (30)

We then have the following corollary.

Corollary 7.2 If θI ∈ Θh and wI ∈ Wh satisfy (30), then

‖θ − θh‖1 + t‖γ − γh‖0 ≤ C(‖θ − θI‖1 + t‖γ −ΠΓγ‖0 + h‖γ −Π0γ‖0).

If we also make assumptions about the approximation properties of the
functions θI , wI , and ΠΓγ, we immediately obtain order of convergence
estimates. One such result is the following.

Theorem 7.3 Let n ≥ 1 and assume for each θ ∈ Hn+1(Ω) ∩ H̊
1
(Ω) and

w ∈ Hn+2(Ω)∩ H̊1(Ω), there exists θI ∈ Θh and wI ∈ Wh satisfying (30). If
for 1 ≤ r ≤ n,

‖θ − θI‖1 ≤ Chr‖θ‖r+1, (31)

‖γ −ΠΓγ‖0 ≤ Chr‖γ‖r, (32)

then

‖θ − θh‖1 + t‖γ − γh‖0 ≤ C
(
hr‖θ‖r+1 + hrt‖γ‖r + hr0+2‖γ‖r0+1

)
.
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Proof. The proof follows immediately from the hypotheses of the theorem and
standard approximation properties of Π0.

We now state and prove an abstract estimate for the L2 errors for the
rotation and the transverse displacement. To do so, we first define an appro-
priate dual problem. Given F ∈ L2(Ω) and G ∈ L2(Ω), define ψ, u, and ζ to
be the solution to the auxiliary problem

a(φ,ψ) + (grad v − φ, ζ) = (φ,F ) + (v,G), φ ∈ H̊
1
, v ∈ H̊1(Ω), (33)

(η,gradu−ψ)− λ−1t2(η, ζ) = 0, η ∈ L2(Ω). (34)

Then by the regularity results (21) and (22),

‖ψ‖2 + ‖u‖2 + ‖ζ‖+ t‖ζ‖1 + ‖div ζ‖0 ≤ c(‖F ‖0 + ‖G‖0). (35)

With these definitions we have the following estimate.

Theorem 7.4 If the hypotheses of Theorems 7.1 and 7.3 are satisfied, then

‖θ − θh‖2/2 + ‖w − wh‖2
0/2 ≤ Ch2(‖θ − θh‖2

1 + t2‖γ − γh‖2
0)

+ ([I −ΠΓ ]θh, ζ) + (γ, [I −ΠΓ ]ψI). (36)

Proof. Let F = θ−θh and G = (w−wh). Then, setting φ = θ−θh, v = w−wh

in (34) and using the definitions of γ and γh we get

‖θ−θh‖2
0+‖w−wh‖2

0 = a(θ−θh,ψ)+λ−1t2(γ−γh, ζ)+([I−ΠΓ ]θh, ζ). (37)

Now, the error equation (29) gives

a(θ − θh,ψI) + λ−1t2(γ − γh, ζI) = (γ, [I −ΠΓ ]ψ̄).

where ζI = λt−2(graduI −ΠΓψI), so (37) becomes

‖θ − θh‖2 + ‖w − wh‖2
0 = a(θ − θh,ψ −ψI)

+ λ−1t2(γ − γh, ζ − ζI) + ([I −ΠΓ ]θh, ζ) + (γ, [I −ΠΓ ]ψI). (38)

The first two terms on the right side of (38) are easily bounded by

C(‖θ − θh‖1‖ψ −ψI‖1 + t2‖γ − γh‖0‖ζ − ζI‖0)
≤ Ch(‖θ − θh‖1 + t‖γ − γh‖0)(‖ψ‖2 + t‖ζ‖1)

≤ Ch(‖θ − θh‖1 + t‖γ − γh‖0)(‖θ − θh‖0 + ‖w − wh‖0). (39)

Application of the arithmetic-geometric mean inequality establishes the result.

Remark 1. Bounds on the last two terms will depend on the particular method
being analyzed.
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Next, we establish an abstract estimate for the approximation of the
derivatives of the transverse displacement.

Theorem 7.5 For all wI ∈ Wh, we have

‖grad[w − wh]‖0

≤ C(‖grad[w − wI ]‖0 + ‖[I −ΠΓ ]θ‖0 + h‖θ − θh‖1 + ‖θ − θh‖0).

Proof. Choosing η = grad vh, vh ∈ Wh, we get for all wI ∈ Wh,

(grad[wI −wh],grad vh) = (grad[wI −w],grad vh) + (θ−ΠΓ θh,grad vh).

Then choosing vh = wh − wI , it easily follows that

‖grad[wI − wh]||0 ≤ ‖grad[wI − w]‖0 + ‖θ −ΠΓ θh‖0

≤ ‖grad[wI − w]‖0 + ‖[I −ΠΓ ]θ‖0 + ‖[I −ΠΓ ][θh − θ]‖0 + ‖θ − θh‖0

≤ ‖grad[wI − w]‖0 + ‖[I −ΠΓ ]θ‖0 + Ch‖θ − θh‖1 + ‖θ − θh‖0.

The result follows from the triangle inequality.

In some cases, it is also possible to establish improved estimates for the
shear stress γ in negative norms. We will not derive such estimates here, but
will state known results in some cases.

8 Applications of the abstract error estimates

Most of our discussion will be centered on triangular elements. We will hence-
forth assume that Ω is a convex polygonal domain in the plane, and we let
Th denote a triangulation of Ω. Let V and E denote the set of vertices and
edges, respectively in the mesh Th. We will use the following finite element
spaces based on the mesh Th.

Mk(Th) : arbitrary piecewise polynomials of degree ≤ k,

M l
k(Th) : Mk ∩ Cl(Ω),

M∗
k (Th) : elements of Mk continuous at k Gauss-points

of each interelement edge,

Bk(Th) : elements of M0
k which vanish on interelement edges,

RT⊥k (Th) : Raviart–Thomas discretization of order k to H(rot),

BDM⊥
k (Th) : Brezzi-Douglas-Marini discretization

of order k to H(rot),

BDFM⊥
k (Th) : Brezzi-Douglas-Fortin-Marini discretization

of order k to H(rot).
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When there is no risk of confusion, we write Mk for Mk(Th), etc. For the
scalar-valued function spaces in this list, we have vector-valued analogues in
the obvious way. For example, Mk := Mk ×Mk. Note that Bk = 0 for k < 3.
For convenience, we interpret M−1 as the zero space.

The degrees of freedom for each space determine an interpolation operator
from C∞(Ω) or C∞(Ω) into the corresponding space. We denote these oper-
ators ΠMk , etc. The operators ΠMk and ΠBk extend boundedly to L2; the
operators ΠM0

k extend boundedly to W 1
p (Ω) for any p > 2; the other interpo-

lation operators extend boundedly to H1 or H1. (These are not the largest
possible domain spaces.) With each space we have a corresponding space in
which all degrees of freedom associated with edges or vertices contained in
the boundary are set equal to zero. Thus M̊k = Mk ∩ H̊1.

We will now consider some specific choices of the subspaces in the general
method (25).

8.1 The Durán–Liberman element

[33] (see also [25], p.145). This element corresponds to the choices

Θh = {φ ∈ M̊
0

2 |φ · n ∈ P1(e), e ∈ E }, Wh = M̊0
1 , Γ h = RT⊥0 ,

depicted in the element diagram below. We then take ΠΓ to the usual inter-
polant into RT⊥0 defined for γ ∈H1(Ω) by∫

e

ΠΓγ · s ds =
∫

e

γ · s ds, e ∈ E.

Θh Wh Γ h

Durán–Liberman
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We then get the following error estimate.

Theorem 8.1

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1 ≤ Ch(‖f‖0 + ‖g‖0).

Proof. Using standard approximation properties of the space Θh, we may
find a function θI satisfying (31) with n = 1 and the condition

∫
e
θI · s ds =∫

e
θ · s ds. on each edge e. Then∫

e

ΠΓ θI · s ds =
∫

e

θI · s ds =
∫

e

θ · s ds =
∫

e

ΠΓ θ · s ds,

so
ΠΓ θI = ΠΓ θ.
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Next observe that if ΠW w is the standard piecewise linear interpolant of w,
and e is the edge joining vertices va and vb, then∫

e

gradΠW w · s ds =
∫

e

∂ΠW w/∂s ds = ΠW w(vb)−ΠW w(va)

= w(vb)− w(va) =
∫

e

∂w/∂sds =
∫

e

gradw · s ds, (40)

so
gradΠW w = ΠΓ gradw.

If we choose wI = ΠW w, then γI = ΠΓγ, so (30) is satisfied and Theorem 7.3
is satisfied with n = 1. Since (28) is satisfied with r0 = −1, the first two
estimates of the theorem follow directly from Theorem 7.3 and the a priori
estimate (21). The final estimate is an easy consequence of Theorem 7.5.

To obtain L2 estimates, we apply Theorem 7.4. In this regard, the following
technical lemma will be useful.

Lemma 8.2 (cf. [32]) For ψ ∈ H̊
1
(Ω), denote by ψc a piecewise linear ap-

proximation to ψ satisfying

‖ψc‖1 ≤ C‖ψ‖1, ‖ψ −ψc‖1 ≤ Ch‖ψ‖2.

Then for all ζ ∈H(div, Ω)

|(ζ,ψc −Π
Γψc)| ≤ Ch2‖div ζ‖0‖ψ‖1.

Theorem 8.3

‖θ − θh‖0 + ‖w − wh‖0 ≤ Ch2(‖f‖0 + ‖g‖0).

Proof. Estimates for the first two terms on the right side of (36) are given
by Theorem 8.1. For the third term in (36), let θc be an approximation to θ
satisfying the hypotheses of Lemma 8.2 and write

([I −ΠΓ ]θh, ζ) = ([I −ΠΓ ][θh − θc], ζ) + ([I −ΠΓ ]θc, ζ).

From Lemma 8.2 we have

([I −ΠΓ ]θc, ζ) ≤ Ch2‖div ζ‖0‖θ‖1,

and using Lemma 8.2 and Theorem 8.1, we have

([I −ΠΓ ][θh − θc], ζ) ≤ Ch‖ζ‖0‖θh − θc‖1

≤ Ch‖ζ‖0(‖θh − θ‖1 + ‖θ − θc‖1) ≤ Ch2(‖θ‖2 + ‖f‖0 + ‖g‖0)‖ζ‖0.

Combining these results and applying (21) and (35), we get
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|([I −ΠΓ ]θh, ζ)| ≤ Ch2(‖f‖0 + ‖g‖0)‖θ − θh‖0.

We bound the last term in (36) in an analogous manner, obtaining

|(γ, [I −ΠΓ ]ψI)| ≤ Ch2(‖f‖0 + ‖g‖0)‖θ − θh‖0.

The theorem follows directly by combining these results.

We note that it is also possible to show that

‖γ − γh‖−1 ≤ Ch(‖f‖0 + ‖g‖0).

8.2 The MITC triangular families

See [23], [25], and [44] for analysis of these methods and [19] for some experi-
mental results. There are three triangular families considered in [25], defined
for integer k ≥ 2. For each of these families, the space Θh is chosen to be

Θh = M̊
0

k +Bk+1, k = 2, 3, Θh = M̊
0

k, k ≥ 4.

We then define

Family I: Wh = M̊0
k , Γ h = RT⊥k−1,

Family II: Wh = M̊0
k + Bk+1, Γ h = BDFM⊥

k ,

Family III: Wh = M̊0
k+1 Γ h = BDM⊥

k ,

and choose ΠΓ to be the usual interpolant into each Γ h space.
The MITC elements are based on a common idea expressed in [23], i.e.,

“to combine in a proper way some known results on the approximation of
Stokes problems with other known results on the approximation of linear
elliptic problems.” This combination is summarized in a list of five properties
relating the spaces Θh, Wh, Γ h, and an auxiliary space Qh (not part of the
method). These properties are:

P1 gradWh ⊂ Γ h.
P2 rotΓ h ⊂ Qh.
P3 rotΠΓφ = Π0 rotφ, for φ ∈ H̊

1
(Ω), with Π0 : L2

0(Ω) 7→ Qh denoting
the L2-projection (L2

0(Ω) denotes functions in L2(Ω) with mean value
zero.)

P4 If η ∈ Γ h satisfies rotη = 0, then η = grad v for some v ∈ Wh.
P5 (Θ⊥

h , Qh) is a stable pair for the Stokes problem, i.e.,

sup
0 6=φ∈Θh

(rotφ, q)
‖φ‖1

≥ C‖q‖0, q ∈ Qh.
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For each of the three families described above, the space

Qh = {q ∈ L2
0(Ω) : qT ∈ Pk−1(T ), T ∈ Th}.

For this choice, the fact that the pair of spaces (Θh, Qh) satisfies P5 follows
from the corresponding results known for the Stokes equation.

Although these families are only defined for k ≥ 2, it is interesting to see
what the difficulties are in extending them to the case k = 1. Most obvious
is that Bk+1 is only defined for k ≥ 2, so this space must be replaced. A
suitable replacement space for Θh in Family I is the one chosen in the Durán–
Liberman element. With this choice, the Durán–Liberman element also fits
this general framework, with k = 1. For Family II, a similar problem occurs
for the choice of Wh and in addition BDFM⊥

1 = RT⊥0 , so the method needs
substantial change and does not give anything new. For Family III, the choices
Wh = M̊0

2 and Γ h = BDM⊥
1 make sense, and one can choose Θh = M̊

0

2.
This would correspond to the choice of piecewise constants for Qh and the
P 2 − P0 Stokes element. An element of this type is mentioned in [23] (page
1798). This element, which we label MITC6 is depicted below along with
MITC7, the k = 2 element of Family II.

Θh Wh Γ h
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We give an analysis in this section only for Family I:

Θh =

{
M̊

0

k +Bk+1 k = 2, 3

M̊
0

k k ≥ 4
, Wh = M̊0

k , Γ h = RT⊥k−1.

The analysis of the other two families can be done in a similar manner.

Theorem 8.4 For the MITC family of index k ≥ 2, we have for 1 ≤ r ≤ k

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1 ≤ Chr (‖θ‖r+1 + t‖γ‖r + ‖γ‖r−1) .

Proof. Using standard results about stable Stokes elements, we can find an
interpolant θI of θ ∈ Θh satisfying (31) with n = k and∫

Ω

rot(θ − θI) q dx = 0, ∀q ∈ M−1
k−1.

By the definition of ΠΓ , we have ∀q ∈ M−1
k−1
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0 =
∫

Ω

rot(θ − θI) q dx =
∫

Ω

rotΠΓ (θ − θI) q dx.

Choosing q = rotΠΓ (θ − θI) implies rotΠΓ (θ − θI) = 0. Hence,

ΠΓ (θ − θI) = grad vI , for some vI ∈ Wh.

Let ΠW w ∈ Mk
0 be the interpolant of w defined for each vertex x, edge e and

triangle T by

ΠW w(x) = w(x),
∫

e

ΠW w p ds =
∫

e

w p ds, for all p ∈ Pk−2(e), (41)∫
T

ΠW wp dx =
∫

T

wp dx, for all p ∈ Pk−3(T ). (42)

It is easy to check that ΠΓ (gradw) = gradΠW w. Hence, (30) is satisfied
with wI = ΠW w − vI . By the definition of the space Γ h, (32) is satisfied
with n = k and (28) is satisfied with r0 = k − 2. The estimate for the first
two terms follows directly from Theorem 7.3. The final estimate is an easy
consequence of Theorem 7.5.

Theorem 8.5 For the MITC family of index k ≥ 2, we have for 1 ≤ r ≤ k

‖θ − θh‖0 + ‖w − wh‖0 ≤ Chr+1 (‖θ‖r+1 + t‖γ‖r + ‖γ‖r−1) .

Proof. Estimates for the first two terms on the right side of (36) are given by
Theorem 8.4. To estimate the third term, we write

([I −ΠΓ ]θh, ζ) = ([I −ΠΓ ][θh − θ], ζ) + ([I −ΠΓ ]θ, ζ).

= ([I −ΠΓ ][θh − θ], ζ)− λ−1t2(I −ΠΓ )γ, ζ) + ([I −ΠΓ ]gradw, ζ)

= ([I −ΠΓ ][θh − θ], ζ)− λ−1t2([I −ΠΓ ]γ, ζ)

+ (gradw − gradΠW w, ζ)

= ([I −ΠΓ ][θh − θ], ζ)− λ−1t2([I −ΠΓ ]γ, [I −ΠM0
]ζ)

− (w −ΠW w,div ζ).

Hence,

|([I −ΠΓ ]θh, ζ)| ≤ ‖[I −ΠΓ ][θh − θ]‖0‖ζ‖0

+ λ−1t2‖[I −ΠΓ ]γ‖0‖[I −ΠM0
]ζ‖0 + ‖w −ΠW w‖0‖div ζ‖0

≤ Ch
(
‖θh − θ‖1‖ζ‖0 + t‖[I −ΠΓ ]γ‖0t‖ζ‖1

+h−1‖w −ΠW w‖0‖div ζ‖0

)
.

To estimate the final term, we write



20 Richard S. Falk

(γ, [I −ΠΓ ]ψI) = ([I −Π0]γ, [I −ΠΓ ]ψI).

= ([I −Π0]γ, [I −ΠΓ ][ψI −ψ]) + ([I −Π0]γ, [I −ΠΓ ]ψ]).

Hence,

|(γ, [I −ΠΓ ]ψI)|
≤ C‖[I −Π0]γ‖0(‖[I −ΠΓ ][ψI −ψ]‖0 + ‖[I −ΠΓ ]ψ]‖0)

≤ Ch2‖[I −Π0]γ‖0‖ψ‖2.

The theorem now follows by combining these results and applying (35) and
standard estimates.

8.3 The Falk-Tu elements with discontinuous shear stresses [35]

For k = 2, 3, . . . we choose

Θh = M̊
0

k−1 +Bk+2, Wh = M̊0
k , Γ h = Mk−1,

and ΠΓ to be the L2 projection into Γ h. See also the related element of
Zienkiewicz–Lefebvre [52]. The element diagram for the lowest order Falk–Tu
element (k = 2) is depicted below.
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Theorem 8.6 For the discontinuous shear stress family of index k ≥ 2, we
have for 1 ≤ r ≤ k − 1

‖θ − θh‖1 + t‖γ − γh‖0 ≤ Chr (‖θ‖r+1 + ‖w‖r+2 + t‖γ‖r + ‖γ‖r−1) .

For k = 2 and r = 1, we also have the estimate

‖θ − θh‖1 + t‖γ − γh‖0

≤ Ch
(
‖θ‖2 + ‖w0‖3 + ‖γ‖0 + t‖γ‖1 + t−1‖w − w0‖2

)
≤ Ch (‖f‖0 + ‖g‖0) .

Proof. For 1 ≤ r ≤ k − 1, let ΠW w be a standard interpolant of w satisfying

‖w −ΠW w‖0 + h‖w −ΠW w‖1 ≤ Chr+2‖w‖r+2

and ΠMθ ∈ M̊
k−1

0 a standard interpolant of θ satisfying

‖θ −ΠMθ‖0 + h‖θ −ΠMθ‖1 ≤ Chr+1‖θ‖r+1.
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Define ΠB(θ, w∗) ∈ Bk+3 by

ΠΓΠB(θ, w∗) = ΠΓ θ −ΠΓΠMθ −ΠΓ gradw∗ + gradΠW w∗,

where w∗ shall be chosen as either w or w0, the limiting transverse displace-
ment obtained from the Reissner-Mindlin system when t = 0. We then set
wI = ΠW w and θI = ΠMθ +ΠB(θ, w∗). In this case, θI is not an inter-
polant of θ, since it depends on w∗ also. Hence, (31) does not hold. However,
we will show (the proof is postponed until after the completion of the proof
of the theorem) that for 1 ≤ r ≤ k − 1,

‖θ − θI‖1 ≤ Chr
(
‖θ‖r+1 + ‖w∗‖r+2

)
. (43)

Using the definitions given above, we also get

γI = λt−2(gradwI −ΠΓ θI)

= λt−2(gradwI −ΠΓΠMθ −ΠΓΠB(θ, w∗))

= λt−2(gradwI −ΠΓ θ +ΠΓ gradw∗ − gradΠW w∗)

= λt−2[ΠΓ (gradw − θ) +ΠΓ grad(w∗ − w)− gradΠW (w∗ − w)]

= ΠΓγ + λt−2ΠΓ grad([I −ΠW ][w∗ − w]).

Note that if we choose w∗ = w, then (30) will be satisfied, while the choice
w∗ = w0 does not satisfy (30). The need for the second choice is a technical
one, namely the fact that on a convex polygon, we do not have an a priori
bound for ‖w‖3, but do have a bound for ‖w0‖3. If we had been working on a
domain with smooth boundary, the simpler choice w∗ = w would be sufficient.
By the definition of the space Γ h, (32) is satisfied with n = k − 1 and (28) is
satisfied with r0 = k − 2. Choosing w∗ = w, the first estimate of the theorem
now follows from a simple modification of Theorem 7.3, in which we replace
(31) by (43).

To establish the second estimate in the theorem, we choose k = 2, r = 1,
and w∗ = w0, and first apply Theorem 5.1 to obtain

‖θ − θI‖1 ≤ Ch
(
‖θ‖2 + ‖w0‖3

)
≤ Ch(‖f‖0 + ‖g‖0). (44)

Since (30) does not hold in this case, we cannot obtain an error estimate by
the same simple modification of Theorem 7.3 used above. Instead, we return
to Theorem 7.1 and estimate each of the terms. From our approximability
assumption on the space Wh and Theorem 5.1, we get that

t‖γ − γI‖ ≤ t‖γ −ΠΓγ‖+ λt−1‖ΠΓ grad([I −ΠW ][w0 − w]‖
≤ t‖γ −ΠΓγ‖+ Ct−1‖grad([I −ΠW ][w0 − w]‖

≤ Ch(t‖γ‖1 + t−1‖w0 − w‖2) ≤ Ch(‖f‖0 + ‖g‖0).

The estimate of the final term is straightforward, i.e.,



22 Richard S. Falk

‖γ −Π0γ‖ ≤ ‖γ‖ ≤ C(‖f‖0 + ‖g‖−1).

Inserting the above estimates into Theorem 7.1, we obtain the second estimate
of the theorem.

Finally, it remains to prove (43).

Lemma 8.7 For 1 ≤ r ≤ k − 1,

‖θ − θI‖1 ≤ Chr
(
‖θ‖r+1 + ‖w∗‖r+2

)
.

Proof. We first note that it is easy to show that if ψ ∈ Bk+2 and ΠΓ denotes
the L2 projection into Mk−1, then

‖ψ‖0 ≤ C‖ΠΓψ‖0. (45)

Hence, we have

‖ΠΓΠB(θ, w∗)‖0 = ‖ΠΓ θ −ΠΓΠMθ −ΠΓ gradw∗ + gradΠW w∗‖0

≤ ‖ΠΓ (θ −ΠMθ)‖0 + ‖(ΠΓ − I)gradw∗‖0 + ‖grad(w∗ −ΠW w∗)‖0

≤ C
(
‖θ −ΠMθ‖0 + ‖(ΠΓ − I)gradw∗‖0 + ‖grad(w∗ −ΠW w∗)‖0.

(46)

Now by the triangle inequality, standard approximation theory, (45), and (46):

‖θ − θI‖1 = ‖θ −ΠMθ −ΠB(θ, w∗)‖1 ≤ ‖θ −ΠMθ‖1 + ‖ΠB(θ, w∗)‖1

≤ ‖θ −ΠMθ‖1 + Ch−1‖ΠB(θ, w∗)‖0

≤ ‖θ −ΠMθ‖1 + Ch−1‖ΠΓΠB(θ, w∗)‖0

≤ C
[
‖θ −ΠMθ‖1 + h−1

(
‖θ −ΠMθ‖0

+ ‖(ΠΓ − I)gradw∗‖0 + ‖grad(w∗ −ΠW w∗)‖0

)]
.

Applying our approximation theory results, we get for 1 ≤ r ≤ k − 1

‖θ − θI‖1 ≤ Chr
(
‖θ‖r+1 + ‖w∗‖r+2

)
.

Using a slightly modified version of Theorem 7.4, (due to the fact that θI

depends on both θ and w∗), one can derive L2 error estimates for θ−θh and
then error estimates for w − wh. We state the results below.

Theorem 8.8 For the discontinuous shear stress family of index k ≥ 2, we
have for 1 ≤ r ≤ k − 1

‖θ − θh‖0 + ‖w − wh‖1 ≤ Chr+1 (‖θ‖r+1 + ‖w‖r+2 + t‖γ‖r + ‖γ‖r−1) .

For k = 2 and r = 1, we also have the estimate

‖θ − θh‖0 + ‖w − wh‖1 ≤ Ch2 (‖f‖0 + ‖g‖0) .

We note that we do not obtain a higher order of convergence for ‖w − wh‖0.
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8.4 Linked interpolation methods

There are a number of formulations of the linked interpolation method. One
approach is to use the mixed formulation (25), but replace the space Θh×Wh

by a space V h in which the two spaces are linked by a constraint. The simplest
example of such a method is the one introduced by Xu [51] and Auricchio and
Taylor [16, 49], and analyzed in [41, 39, 15]. In this method, we choose

Θh = M̊
0

1 +B3, Wh = M̊0
1 , Γ h = M0,

V h = {(φ, v + Lφ) : φ ∈ Θh, v ∈ Wh},

where following [41], we may define LT = L|T as a mapping from H1(T ) onto
P2,−(T ) by ∫

e

[(gradLTφ− φ) · s] ∂v

∂s
ds = 0, v ∈ P2,−(T ), (47)

for every edge e of T , where P2,−(T ) is the space of piecewise quadratics which
vanish at the vertices of T .

We then seek an approximation (θh, w∗
h;γh) ∈ V h × Γ h such that (25)

holds for all (φ, v∗; ) ∈ V h × Γ h. Equivalently, we can write this method in
terms of the usual spaces, but with a modified bilinear form, i.e., we seek
(θh, wh,γh) ∈ Θh ×Wh × Γ h such that

a(θh,φ) + λ−1t2(γh,grad(v + Lφ)− φ) = (g, v + Lφ)− (f ,φ),
φ ∈ Θh, v ∈ Wh,

(grad(wh + Lθh)− θh,η)− λ−1t2(γh,η) = 0, η ∈ Γ h.

Note that we can write this discrete variational formulation as a slight per-
turbation of the formulation (25), by defining ΠΓ = Π0(I − gradL) (where
Π0 denotes the L2 projection onto Γ h), and replacing the term (g, v) by
(g, v + Lφ). We omit the element diagram for this method, since depicting
only the three basic spaces, without the additional space P2,−(T ), is somewhat
misleading.

We shall analyze this method using the usual spaces and the interpolation
operator ΠΓ defined above. We first observe that from [41],

|(g, Lφ)|T ≤ ‖g‖0,T ‖LTφ‖0,T ≤ ChT ‖g‖0,T ‖∇LTφ‖0,T ≤ Ch2
T ‖g‖0,T ‖φ‖1,T ,

so this term is a high order perturbation and may be dropped. To apply our
previous error estimates, we first define wI = ΠW w, the continuous piecewise
linear interpolant of w, and θI = ΠMθ + ΠBθ, where ΠMθ denotes an
interpolant of θ satisfying

‖θ −ΠMθ‖0 + ‖θ −ΠMθ‖1 ≤ Chs‖θ‖s, s = 1, 2,

and ΠBθ ∈ B3 is defined by:
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Π0ΠBθ = Π0[(I − gradL)(θ −ΠMθ)]. (48)

We note that

‖Π0ΠBθ‖0 ≤ ‖(I − gradL)(θ −ΠMθ)‖0 ≤ ‖θ −ΠMθ‖0

+ ‖gradL(θ −ΠMθ)‖0 ≤ ‖θ −ΠMθ‖0 + Ch‖θ −ΠMθ‖1.

Since ‖ΠBθ‖0 ≤ C‖Π0ΠBθ‖0, we easily obtain for s = 1, 2 that

‖θ − θI‖0 ≤ C(‖θ −ΠMθ‖0 + h‖θ −ΠMθ‖1 ≤ Chs‖θ‖s.

Using the inverse inequality ‖ΠBθ‖1 ≤ Ch−1‖ΠBθ‖0, we then obtain

‖θ − θI‖1 ≤ C(‖θ −ΠMθ‖1 + h−1‖θ −ΠMθ‖0) ≤ Ch‖θ‖2.

Hence, hypotheses (31) and (32) of Theorem 7.3 are satisfied with r = 1 and
r0 = −1. Thus, it only remains to show that (30) is satisfied. Applying (47)
with φ = grad(w − wI), and noting that (LT grad−I)(w − wI) = 0 at the
vertices of T , we get

0 =
∫

e

[(gradLT − I)grad(w − wI)] · sdv

ds
ds

=
∫

e

d

ds

[
(LT grad−I)(w − wI)

] dv

ds
ds

= −
∫

e

(LT grad−I)(w − wI)
d2v

ds2
ds, v ∈ P2,−(T ).

Since d2v/ds2 is a constant on the edge e, we get for all q ∈ P 0(T ),∫
T

(gradL− I)grad(w −wI) · q dx =
∫

T

grad(Lgrad−I)(w −wI) · q dx

= −
∫

∂T

(Lgrad−I)(w − wI)q · nds = 0,

and so

ΠΓ grad(w − wI) = Π0(gradLT − I)grad(w − wI) = 0.

Finally, from (48) and the fact that LΠBθ = 0, we get

ΠΓ (θ − θI) = Π0(gradLT − I)(θ −ΠMθ −ΠBθ) = 0.

If we drop the term (g, Lφ) from the right hand side of the method, then
we get immediately from Theorems 7.3 and 7.5 the following estimate:

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1

≤ Ch(‖θ‖2 + t‖γ‖1 + ‖γ0 + ‖w‖2) ≤ Ch(‖g‖0 + ‖f‖0).
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A simple extension of this argument gives the same final result with this term
included (the term h2‖g‖0 would need to be added to the intermediate result).

We note that the method of [53] analyzed in [34] is also of this type.
The analysis given in [34] proceeds by comparing the method to the Durán–
Liberman element described above. The two methods have the same choices
for the spaces Θh and Γ h,

8.5 The nonconforming element of Arnold and Falk [11]

See also [29].

Θh = M̊
0

1 +B3, Wh = M̊∗
1 , Γ h = M0

where ΠΓ is the L2 projection into Γ h.
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Since the space Wh is not contained in H̊1(Ω), grad must be replaced by
gradh and some modifications need to be made in the basic error estimates
proved earlier. Rather than prove a general abstract version of these results
taking into account several types of nonconformity, we simply modify the
proofs for the particular method being analyzed. We begin by first stating a
standard result basic to the analysis of nonconforming methods.

Lemma 8.9 (cf. [28]). Let φ ∈H1(Ω) and v ∈ Wh. Then∣∣∣∣∣∑
T∈τ

∫
∂T

vφ · nT

∣∣∣∣∣ ≤ Ch‖φ‖1‖gradh v‖0.

Using this result, we can derive the following energy norm error estimate.

Theorem 8.10

‖θ − θh‖1 + t‖γ − γh‖0 + ‖gradh[w − wh]‖0 ≤ Ch(‖f‖0 + ‖g‖0).

Proof. Since Wh /∈ H1
0 (Ω), we cannot apply Theorems 7.1 and 7.3 directly. In

particular, the error equation (29) must be replaced by a modified equation
which contains an additional term for the consistency error.

a(θ− θh,φ) + (γ−γh,gradh v−ΠΓφ) = (γ, [I −ΠΓ ]φ) +
∑
T∈τ

∫
∂T

vγ ·nT ,

(49)
for all φ ∈ Θh and v ∈ Wh. Following the proof of Theorem 7.1, we obtain
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‖θI − θh‖2
1 + t2‖γI − γh‖2

0 ≤ C
(
‖θ − θI‖2

1 + t2‖γ − γI‖2
0

+ h2‖γ −Π0γ‖2
0 +

∣∣∣∑
T∈τ

∫
∂T

(wI − wh)γ · nT

∣∣∣). (50)

In this case, Π0 is L2 projection into piecewise constants, so we can use the
trivial estimate ‖γ −Π0γ‖0 ≤ ‖γ‖0. As in Theorem 7.3, we need to define
θI and wI and hence γI to satisfy (30) and (31). The choice of θI is the same
as that used for the MINI element for the Stokes problem. This satisfies (31)
with n = 1 (and the 1-norm replaced by the discrete 1-norm) and also the
condition ΠΓ θI = ΠΓ θ. Hence, to satisfy (30), we need only to find wI such
that

gradh wI = ΠΓ gradw. (51)
This is easily accomplished by choosing wI to satisfy

∫
e
wI =

∫
e
w on each

edge e. Then for all η ∈ Γ h∫
T

gradw · η dx =
∫

∂T

wη · nT ds =
∫

∂T

wIη · nT ds =
∫

T

gradwI · η dx,

which implies (51). Then (32) is satisfied with n = 1.
It only remains to estimate the term arising from the nonconforming

approximation. Unfortunately, we cannot estimate this term by applying
Lemma 8.9 directly, since the result would then contain the term ‖γ‖1 which
is not bounded independent of the thickness t. Instead, we use the Helmholtz
decomposition to write γ = grad r + curl p with r ∈ H̊1(Ω) and p ∈ H1(Ω).
Recalling that

gradh(wI − wh) = λ−1t2(γI − γh) +ΠΓ (θI − θh),

we first use Lemma 8.9 to get∣∣∣∑
T∈τ

∫
∂T

(wI − wh)grad r · nT ds
∣∣∣ ≤ Ch‖r‖2‖gradh(wI − wh)‖0

≤ Ch‖r‖2

(
t2‖γI − γh‖0 + ‖ΠΓ (θI − θh)‖0

)
≤ Ch‖r‖2

(
t2‖γI − γh‖0 + ‖θI − θh‖0

)
.

Now for all pI ∈ M0
1 ,∑

T∈τ

∫
∂T

(wI − wh) curl p · nT ds =
∑
T∈τ

∫
T

grad(wI − wh) · curl p dx

=
∑
T∈τ

∫
T

grad(wI − wh) · curl(p− pI) dx

= λ−1t2(γI − γh, curl[p− pI ]) + (ΠΓ [θI − θh], curl[p− pI ])

= λ−1t2(γI − γh, curl[p− pI ]) + ([ΠΓ − I](θI − θh), curl[p− pI ])

+ (rot[θI − θh], p− pI).
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Choosing pI to satisfy

‖p− pI‖0 + h‖p− pI‖1 ≤ Chs‖pI‖s, s = 1, 2,

(e.g., the Clement interpolant), we have by standard estimates that∣∣∣∑
T∈τ

∫
∂T

(wI − wh) curl p · nT ds
∣∣∣

≤ C
(
t2‖γI − γh‖0h‖p‖2 + h‖θI − θh‖1‖p‖1

)
.

Combining these results, we obtain∣∣∣∑
T∈τ

∫
∂T

(wI − wh)γ · nT dx
∣∣∣

≤ Ch
(
t‖γI − γh‖0 + ‖θI − θh‖1

)
(‖r‖2 + ‖p‖1 + t‖p‖2) .

The first two estimates of the theorem now follow by combining all these
results and using the a priori estimate (21). To obtain an error estimate on
the transverse displacement, we need a nonconforming version of Theorem 7.5.

Choosing η = gradh vh, vh ∈ Wh, we get for all wI ∈ Wh,

(gradh[wI − wh],gradh vh) = (gradh[wI − w],grad vh)

+ (θ −ΠΓ θh,gradh vh) +
∑
T

∫
∂T

vh
∂w

∂n
ds. (52)

Then choosing vh = wh − wI , it easily follows using Lemma 8.9 that

‖gradh[wI − wh]‖0 ≤ ‖gradh[wI − w]‖0 + ‖θ −ΠΓ θh‖0 + Ch‖w‖2

≤ ‖gradh[wI−w]‖0+‖[I−ΠΓ ]θ‖0+‖[I−ΠΓ ][θh−θ]‖0+‖θ−θh‖0+Ch‖w‖2

≤ ‖gradh[wI−w]‖0 +‖[I−ΠΓ ]θ‖0 +Ch‖θ−θh‖1 +‖θ−θh‖1 +Ch‖w‖2.

The desired result now follows from the triangle inequality and standard es-
timates.

Using a nonconforming version of Theorem 7.4, we can also establish the
following L2 error estimate.

‖θ − θh‖0 + ‖w − wh‖0 ≤ Ch2(‖f‖0 + ‖g‖0).

See also [36] and [30] for a modification of this element, and [2] for a
relationship between these two approaches.
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9 Some rectangular Reissner–Mindlin elements

Now let Th denote a rectangular mesh of Ω and R an element of Th. We
denote by Qk1,k2 the set of polynomials of separate degree ≤ k1 in x and
≤ k2 in y and set Qk = Qk,k. We also define the serendipity polynomials
Qs

k = Pk⊕xky⊕xyk. Finally, we will also use the rotated versions of the rect-
angular Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-
Marini spaces, which we define locally for k ≥ 1 as follows.

RT⊥k−1(R) = {η : η = (Qk−1,k(R), Qk,k−1(R))},
BDM⊥

k (R) = {η : η ∈ P k(R)⊕∇(xyk+1)⊕∇(xk+1y)},
BDFM⊥

k (R) = {η : η = (Pk(R) \ {xk}, Pk(R) \ {yk})}.

9.1 Rectangular MITC elements and generalizations

[20, 17, 23, 48]. In the original MITC family, we choose for k ≥ 1,

Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ Qk(R)}, Wh = {v ∈ H̊1(Ω) : v|R ∈ Qs

k(R)},
Γ h = {η ∈ L2(Ω) : η|R ∈ BDFM⊥

k (R)}.

The auxiliary pressure space

Qh = {q ∈ L2
0(Ω) : q|R ∈ Pk−1}

and the reduction operator ΠΓ is defined by∫
e

(ΠΓγ − γ) · s pk−1(s) ds = 0, ∀e, ∀pk−1 ∈ Pk−1(e),∫
R

(ΠΓγ − γ) · pk−2 dxdy = 0, ∀R, ∀pk−2 ∈ P k−2(R).

The lowest order element (k = 1) is called MITC4. In this case, the space
BDFM⊥

1 (R) has the form (a+by, c+dx) and coincides with the lowest order
rotated rectangular Raviart-Thomas element RT⊥0 (R). The space Qs

1(R) =
Q1(R). The MITC4 element was proposed in [20] and analyzed in [17], [18],
[33], and most recently in [31], where the proof is extended to more general
quadrilateral meshes using a macro-element technique and the results obtained
under less regularity than previously required. For rectangular meshes, this
method coincides with the T1 method of Hughes and Tezuyar [38]. The k = 2
method is known as MITC9 and has been analyzed in [23] and [33].

For k ≥ 3, it is shown in [48] and [45] that it is possible to reduce the
number of degrees of freedom in the rotation space Θh without affecting the
locking-free convergence. In particular, one can choose

Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ [Qk(R) ∩ P k+2(R)]}.



Finite Elements for the Reissner-Mindlin Plate 29

Another possibility (cf. [48]) is to choose for k ≥ 2

Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ [Qk(R) ∩ P k+2(R)]},

Wh = {v ∈ H̊1(Ω) : v|R ∈ Qs
k+1(R)},

Γ h = {η ∈ L2(Ω) : η|R ∈ BDM⊥
k (R)}.

The auxiliary pressure space is again Qh = {q ∈ L2
0(Ω) : q|R ∈ Pk−1} and the

reduction operator ΠΓ is defined by∫
e

(ΠΓγ − γ) · s pk(s) ds = 0, ∀e, ∀pk ∈ Pk(e),∫
R

(ΠΓγ − γ) · pk−2 dxdy = 0, ∀R, ∀pk−2 ∈ P k−2(R).

A fourth possibility discussed in [48] is to choose for k ≥ 2

Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ [Qk+1(R),φ|e ∈ P k(e)]},

Wh = {v ∈ H̊1(Ω) : v|R ∈ Qs
k(R)},

Γ h = {η ∈ L2(Ω) : η|R ∈ RT⊥k−1(R)}.

In this case, the auxiliary pressure space is now Qh = {q ∈ L2
0(Ω) : q|R ∈

Qk−1} and the reduction operator ΠΓ is defined by∫
e

(ΠΓγ − γ) · s pk−1(s) ds = 0, ∀e, ∀pk−1 ∈ Pk−1(e),∫
R

(ΠΓγ − γ) · rk−2 dxdy = 0, ∀R, ∀rk−2 ∈ Qk−1,k−2(R)×Qk−2,k−1(R).
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One can also consider a low order element, associated with the choice

Wh = {v ∈ H̊1(Ω) : v|R ∈ Qs
2(R)}, Γ h = {η ∈ L2(Ω) : η|R ∈ BDM⊥

1 (R)},

where we choose Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ Qs

2(R)}. This element, MITC8
(cf. [21]), is depicted below.
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9.2 DL4 method [31]

The DL4 method is the extension to rectangles of the Durán–Liberman trian-
gular element defined previously. The spaces Wh and Γ h are the same as those
chosen for the MITC4 method, while the space of rotations is now chosen to
be:

Θh = {φ ∈ H̊
1
(Ω) : φ|K ∈ Q1(K)⊕ 〈b1, , b2, b3, b4〉, ∀K ∈ Th},

where bi = bisi, with si the counterclockwise unit tangent vector to the edge
ei of K and bi ∈ Q2(K) vanishes on the edges ej , j 6= i.

Θh Wh Γ h

DL4r r
r r

-

�

6
? b b

b b
-

�

6
?

9.3 Ye’s method

Ye’s method is the extension to rectangles of the Arnold-Falk element. This
is not completely straightforward, since the values at the midpoints of the
edges of a rectangle are not a unisolvent set of degrees of freedom for a bi-
linear function (consider (x − 1/2)(y − 1/2) on the unit square). Hence, the
nonconforming space Wh must be chosen differently.

Θh = {φ ∈ H̊
1
(Ω) : φ|R ∈ Q2(R)},

Γ h = {η ∈ L2(Ω) : η|R = (b + dx, c− dy) ≡ S}.
Wh = {v ∈ H̊1(Th) : v|R = a + bx + cy + d(x2 − y2)/2},

and ΠΓ is the L2 projection.

Θh Wh Γ h

Yer r
r r

r
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bb b S

10 Extension to quadrilaterals

Meshes of rectangular elements are very restrictive, so one would like to ex-
tend the elements defined above to quadrilaterals. To do so, we let F be an
invertible bilinear mapping from the reference element K̂ = [0, 1] × [0, 1] to
a convex quadrilateral K. For scalar functions, if v̂(x̂) is function defined on
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K̂, we define v(x) on K by v = v̂ ◦F−1. Then, for V̂ a set of shape functions
given on K̂, we define

VF (K) = {v : v = v̂ ◦ F−1, v̂ ∈ V̂ }.

For all the examples given previously, the space Wh may be defined in this
way, beginning with the shape functions denoted in the figures. This preserves
the appropriate interelement continuity when the usual degrees of freedom
are chosen. The same mapping, applied to each component, can be used with
minor exceptions to define the space Θh. One exception occurs for the Durán-
Liberman element, where one now defines the edge bubbles bi = (b̂i ◦F−1)si

where si denotes the unit tangent on the ith edge of K. There is also the
possibility of using a different mapping to define the interior degrees of freedom
for the space Θh, since this will not affect the interelement continuity.

To define the space Γ h, we use a rotated version of the Piola transform.
Letting DF denote the Jacobian matrix of the transformation F , if η̂ is a
vector function defined on K̂, we define η on K by

η(x) = η(F (x̂)) = [DF (x̂)]−tη̂(x̂),

where A−t denotes the transpose of the inverse of the matrix A. Then if V̂ is
a set of vector shape functions given on K̂, we define

V F (K) = {η : η = [DF ]−tη̂ ◦ F−1, η̂ ∈ V̂ }.

For w ∈ Wh, gradw = DF−t ˆgrad ŵ. Hence, if on the reference square
ˆgrad ŵ ⊆ V̂ , we will also have gradw ⊆ Γ h, a key condition in our analysis.
Although the extensions to quadrilaterals are in most cases straightfor-

ward to define, the question is whether the method retains the same order
of approximation as in the rectangular case. The problem, as discussed in
[3, 6, 5, 4], is that the approximation properties of some of the elements can
deteriorate, depending on the way that the mesh is refined. Thus, much of the
existing analysis for quadrilateral elements is restricted to the case of paral-
lelograms (e.g., [48]), where the mapping F is affine, or to elements that are
O(h2) perturbations of parallelograms. Another possibility is to restrict the
refinement strategy to produce asymptotically affine meshes, so that the de-
terioration in approximation is also avoided. Error estimates are obtained for
the DL4 method for shape-regular quadrilateral meshes and for the MITC4
method for asymptotically parallelogram meshes in [31]. However, numerical
experiments do not indicate any deterioration of convergence rates for MITC4,
even for more general shape regular meshes.

The MITC8 element approximates both θ and w by spaces obtained from
mappings of the quadratic serendipity space. Since this space does not contain
all of Q2 , (i.e, it is missing the basis function x2y2), we expect to see only
O(h) convergence. The space Γ h is obtained by mapping the BDM⊥

1 space,
which also degrades in convergence after a bilinear mapping. The MITC9
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element uses the full Q2 approximation for θ, but the use of the Q2 serendipity
space to approximate w and the BDFM⊥

2 space to approximate γ will cause
degradation in the convergence rate on general quadrilateral meshes.

11 Other approaches

So far, all the finite element methods discussed have basically followed the
common approach of modifying the original variational formulation only by
the introduction of the reduction operator ΠΓ . However, there are a num-
ber of other approaches that produce locking-free approximation schemes by
modifying the variational formulation in other ways. Although we will not
analyze these methods in detail, the main ideas are presented for a sampling
of such methods in the following subsections.

11.1 Expanded mixed formulations

One of the first approaches to developing locking-free finite elements for the
Reissner-Mindlin plate problem was the method proposed by Brezzi and
Fortin [24], based on the expanded mixed formulation (17)-(20). There are
now four variables to approximate and piecewise linear functions are used to
approximate r, p, and w, while piecewise linears plus cubic bubble functions
are used to approximate θ. The key idea was that equations (18)-(19) are
perturbations of the stationary Stokes equations, and so a stable conforming
approximation is obtained by Stokes elements with continuous pressures (note
that (19) requires p ∈ H1(Ω)). The choice made for these two variables was
the mini element. In fact, the Arnold-Falk method presented earlier was de-
veloped as a modification of this method that had the added feature that the
finite element method was also equivalent to a method using only the primi-
tive variables θ and w. The new idea in [11] was to use a discrete Helmholtz
decomposition of piecewise constant functions as the element-wise gradient of
nonconforming piecewise linear functions plus the curl of continuous piecewise
linear functions to reduce the discrete expanded mixed formulation back to a
discrete formulation using only the primitive variables.

11.2 Simple modification of the Reissner-Mindlin energy

In this method by Arnold and Brezzi [7], the definition of the variable γ is
modified to be

γ = λ(t−2 − 1)(θ − gradw)

and a new bilinear form is defined:

a(θ, w;φ, v) = (C E(θ), E(φ)) + λ(θ − gradw,ψ − grad v).
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Then a modified weak formulation of the Reissner-Mindlin equations is to find
(θ, w,γ) ∈ H̊

1
(Ω)× H̊1(Ω)×L2(Ω) such that

a(θ, w;φ, v) + λ−1t2(γ,φ− grad v) = (g, v)− (f ,φ),

φ ∈ H̊
1
(Ω), v ∈ H̊1(Ω),

(gradw − θ,η)− t2

λ(1− t2)
(γ,η) = 0, η ∈ L2(Ω).

When this formulation is discretized by finite elements, we no longer need
the condition that gradWh ⊂ Γh, since the form a(θ, w;φ, v) is coercive over
H̊

1
(Ω) × H̊1(Ω). Hence, greater flexibility is allowed in the design of stable

elements. Using this formulation, the choice

Θh = M̊
0

1 +B3, Wh = M̊0
2 , Γ h = M0.

gives a stable discretization and the error estimate

‖θ − θh‖1 + t‖γ − γh‖0 + ‖w − wh‖1 ≤ Ch(‖f‖0 + ‖g‖0).

11.3 Least-squares stabilization schemes

In this approach by Hughes-Franca [37] and Stenberg [47], the bilinear forms
defining the method are modified by adding least-squares type stabilization
terms. The approach of Stenberg is simpler and we present that here. A weak
formulation of the Reissner-Mindlin equations without the introduction of the
shear stress is to find (θ, w) ∈ H̊

1
(Ω)× H̊1(Ω) such that

B(θ, w;φ, v) = (g, v)− (f ,φ), ψ ∈ H̊
1
(Ω), v ∈ H̊1(Ω), (53)

where
B(θ, w;φ, v) = a(θ,φ) + λt−2(θ − gradw,φ− grad v).

In the stabilized scheme, we define

Bh(θ, w;φ, v) = a(θ,φ)− α
∑

T∈Th

h2
T (Lθ,Lψ)T

+
∑

T∈Th

(λ−1t2 + αh2
T )−1(θ − gradw + αh2

TLθ,φ− grad v + αh2
TLφ)T ,

where Lθ = div C E(θ), and then seek an approximate solution (θh, wh) ∈
Θh ×Wh such that

Bh(θh, wh;φ, v) = (g, v)− (f ,φ), ψ ∈ Θh, v ∈ Wh,

The new bilinear form Bh is constructed so that the new formulation is both
consistent and stable independent of the choice of finite element spaces. Dic-
tated by approximation theory estimates with respect to the norms used, the
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choices Θh = M0
k, Wh = M0

k+1 are considered for k ≥ 1. In the lowest order
case k = 1, Lφ|T = 0 for all T ∈ Th and all φ ∈ Θh and hence the bilinear
form reduces to:

Bh(θh, wh;φ, v) = a(θ,φ) +
∑

T∈Th

(λ−1t2 + αh2
T )−1(θ− gradw,φ− grad v)T ,

a method proposed in Pitkäranta [46]. Under the hypothesis 0 < α < CI (for
an appropriately chosen constant CI), it is shown that

‖θ − θh‖1 + ‖w − wh‖1 ≤ Chk(‖w‖k+2 + ‖θ‖k+1),

Estimates in other norms and for additional quantities are also obtained.
A modification of this method is also considered in [25]. In the modified

method, Θh = M̊
0

1, Wh = M̊0
1 , and the term (θ − gradw,φ − grad v) is

modified to (ΠΓ θ − gradw,ΠΓφ − grad v) by adding the interpolation
operatorΠΓ into the spaceRT⊥0 . Thus, the method uses only linear elements.
We also note that a stabilized version of the MITC4 element is proposed and
analyzed in [42].

In Lyly [41], it is shown that the linked interpolation method discussed
previously has close connections (and in some cases is equivalent) to the sta-
bilized method of [25] and also to a stabilized linked method proposed by
Tessler and Hughes [50]. The connection to the method of [25] is established
by proving that for φ ∈ M̊

1

0, φ − gradLφ = ΠΓ φ, where ΠΓ denotes the
usual interpolant in RT 0

⊥. Connections to the stabilized methods are then
established by using static condensation to eliminate the cubic bubble func-
tions.

11.4 Discontinuous Galerkin methods [9], [8]

In this approach, the bilinear forms are modified to include terms that allow
the use of totally discontinuous elements. We use the notation Hs(Th) to
denote functions whose restrictions to T belong to Hs(T ) for all T ∈ Th. To
define the modified forms, we first define the jump and average of a function
in H1(Th) as functions on the union of the edges of the triangulation. Let e
be an internal edge of Th, shared by two elements T+ and T−, and let n+

and n− denote the unit normals to e, pointing outward from T+ and T−,
respectively. For a scalar function ϕ ∈ H1(Th), its average and jump on on e
are defined respectively, by

{ϕ} =
ϕ+ + ϕ−

2
, [|ϕ|] = ϕ+n+ + ϕ−n−.

Note that the jump is a vector normal to e. The jump of a vector φ ∈H1(Th)
is the symmetric matrix-valued function given on e by:

[|φ|] = φ+ � n+ + φ− � n−,
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where φ�n = (φ⊗n+n⊗φ)/2 is the symmetric part of the tensor product of
φ and n. On a boundary edge, the average {ϕ} is defined simply as the trace
of ϕ, while for a scalar-valued function, we define [|ϕ|] to be ϕn (with n the
outward unit normal), and for a vector-valued function we define [|φ|] = φ�n.

To obtain a DG discretization, we have to choose finite dimensional sub-
spaces Θh ⊂ H2(Th), Wh ⊂ H1(Th), and Γ h ⊂ H1(Th). The method then
takes the form:

Find (θh, wh) ∈ Θh ×Wh and γh ∈ Γ h such that

(C Eh(θh), Eh(φ))− 〈{C Eh(θh)}, [|φ|]〉 − 〈[|θh|], {C Eh(φ)})〉
+ (γh,gradh v − φ)− 〈{γh}, [|v|]〉

+ pΘ(θh,φ) + pW (wh, v) = (g, v)− (f ,φ), (φ, v) ∈ Θh ×Wh,

(gradh wh − θh,η)− 〈[|wh|], {η}〉 − t2(γh,η) = 0, η ∈ Γ h.

We make a standard choice for the interior penalty terms pΘ and pW :

pΘ(θ,φ) =
∑
e∈Eh

κΘ

|e|

∫
e

[|θ|] : [|φ|] ds, pW (w, v) =
∑
e∈Eh

κW

|e|

∫
e

[|w|] · [|v|] ds,

so that pΘ(φ,φ), (pW (v, v), resp.) can be viewed as a measure of the deviation
of φ (v, resp.) from being continuous. The parameters κΘ and κW are positive
constants to be chosen; they must be sufficiently large to ensure stability. In
the case when Wh consists of continuous elements, the penalty term pW will
not be needed.

In the simplest of such methods, one chooses for k ≥ 1, Wh = M̊0
k+1,

i.e., continuous piecewise polynomials of degree ≤ k + 1. We then choose
wI = ΠW w, where ΠW is defined as for the MITC elements. Since the space
Θh need not be continuous, we can now choose Θh so that condition (30) is
satisfied without the need for a reduction operatorΠΓ . The simplest choice is
Θh = BDM⊥

k−1. We note that gradWh ⊂ Θh. We next define θI = ΠΘθ,
where ΠΘ : H1(Ω) 7→ Θh is defined by the conditions:∫

e

(φ−ΠΘφ) · s q ds = 0, q ∈ Pk−1(e),∫
T

(φ−ΠΘφ) · q dx = 0, q ∈ RT k−3(T ),

where RT k−3 is the usual (unrotated) Raviart-Thomas space of index k − 3.
We note that the interior degrees of freedom are not the original degrees of
freedom defined for these spaces. However, the natural interpolant defined by
these modified degrees of freedom satisfies the additional and key property
that

ΠΘ gradw = gradΠW w.

From this condition, we get
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γI = λt−2(gradwI − θI) = λt−2(gradΠW w −ΠΘθ)

= λt−2ΠΘ(gradw − θ) = ΠΘγ.

11.5 Methods using nonconforming finite elements

In the nonconforming element of Oñate, Zarate, and Flores [43], one chooses

Θh = M̊
∗
1, Wh = M̊0

1 , Γ h = RT⊥0 .

In this case, Θh is not contained in H̊
1
(Ω), and so E must be replaced by

Eh. The main problem with this method is that ‖ Eh(θh)‖2
0 is not a norm on

Θh because Korn’s inequality fails for nonconforming piecewise linear func-
tions. To partially compensate for this fact, one can use the following result,
established in [14]. Define

Zh =
{

(ψ,η) ∈ M̊
∗
1 × Γ h : λ−1t2 rotη = rothψ

}
. (54)

Lemma 11.1 There exists a constant c independent of h and t such that

ah(ψ,ψ) + λ−1t2(η,η) ≥ c[min(1, h2/t2)‖ψ‖2
1,h + ‖ Ehψ‖2

0

+ t2‖η‖2
0 + h2t2‖ rotη‖2

0] for all (ψ,η) ∈ Zh.

Note that the bilinear form is not uniformly coercive. It is then possible to
establish the following error estimates (cf. [14]).

Theorem 11.2 There exists a constant C independent of h and t such that

‖θ − θh‖1,h + t2‖ rot(γ − γh)‖2
0 ≤ Ch max(1, t2/h2)‖g‖0,

‖ E(θ − θh)‖2
0 + t‖γ − γh‖0 ≤ Ch max(1, t/h)‖g‖0.

‖θ − θh‖0 + ‖w − wh‖0 ≤ C max(h2, t2)‖g‖0.

Note that this theorem does not imply convergence of the method. If h ∼ t,
however, the error will be small.

In the method proposed by Lovadina [40],

Θh = M̊
∗
1, Wh = M̊∗

1 , Γ h = M0,

so two of the spaces are nonconforming. Hence, both E and grad are replaced
by their element-wise counterparts. In addition, the bilinear form a(θ,φ) is
replaced by

ah(θ,φ) =
∑

T∈Th

aT (θ,φ) + pΘ(θ,φ), aT (θ,φ) =
∫

T

C E θ) : E(φ) dx,

where pΘ has the same definition as in the discontinuous Galerkin method.
By adding the term pΘ, one is able to establish a discrete Korn’s inequality.
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This method is a simplified version of a method proposed earlier by Brezzi-
Marini [26]. Using a similar formulation, they made the choices

Θh = M̊
∗
1 +B∗

2, Wh = M̊∗
1 + B∗

2 , Γ h = M0 + gradh B∗
2 ,

where B∗
2 denotes the nonconforming quadratic bubble function that vanishes

at the two Gauss points of each edge of a triangle. See also [27] for L2 estimates
for the method of [40].

11.6 A negative-norm least squares method

This method, proposed by Bramble-Sun [22], begins with the expanded mixed
formulation used by Brezzi-Fortin. The problem is then reformulated as a
least squares method using a special minus one norm developed previously by
Bramble, Lazarov, and Pasciak. Only continuous finite elements are needed
to approximate all the variables, and piecewise linears can be used. Opti-
mal order error estimates are established uniformly in the thickness t. The
stability result also gives a natural block diagonal preconditioner, using only
standard preconditioners for second order elliptic problems, for the solution
of the resulting least squares system.

12 Summary

We have treated in these notes only a selection of the finite element methods
that have been developed for the approximation of the Reissner-Mindlin plate
problem, concentrating on those for which there is a mathematical analysis.
There are many other methods available in the engineering literature, and the
list is too long to give proper citations.
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