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Abstract. The bubble transform is a procedure to decompose differential
forms, which are piecewise smooth with respect to a given triangulation of

the domain, into a sum of local bubbles. In this paper, an improved version

of a construction in the setting of the de Rham complex previously proposed
by the authors is presented. The major improvement in the decomposition is

that unlike the previous results, in which the individual bubbles were rational

functions with the property that groups of local bubbles summed up to pre-
serve piecewise smoothness, the new decomposition is strictly space-preserving

in the sense that each local bubble preserves piecewise smoothness. An im-

portant property of the transform is that the construction only depends on
the given triangulation of the domain and is independent of any finite element

space. On the other hand, all the standard piecewise polynomial spaces are
invariant under the transform. Other key properties of the transform are that

it commutes with the exterior derivative, is bounded in L2, and satisfies the

stable decomposition property.

1. Introduction

The present paper is a continuation of the earlier papers [5] and [6] of the authors.
While the first paper was devoted to scalar valued functions, the second paper, [6],
develops a theory for decomposing differential forms into a sum of functions, or
bubbles, which have local support on domains defined by a given simplicial mesh
of the domain. The decomposition, which we refer to as the bubble transform,
commutes with the exterior derivative, and has the additional property that all
the standard piecewise polynomial spaces utilized in the finite element exterior
calculus (FEEC), cf. [1, 2, 3], are in some sense invariant. However, the piecewise
polynomial spaces are not strictly invariant for the decomposition constructed in [6].
In general, each individual bubble is a rational function, but with the property that
groups of the local bubbles sum up to preserve the desired polynomial structure.
The purpose of the theory presented here is to refine the earlier theory, so that
we obtain a transform which is strictly space-preserving in the sense that each
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local bubble preserves piecewise smoothness and the standard piecewise polynomial
spaces of FEEC.

The development of the bubble transform is partly motivated by the hp-finite
element method, i.e., where both piecewise polynomials of arbitrary high degree and
arbitrary small mesh cells are allowed. While the analysis of finite element methods
based on mesh refinements and a fixed polynomial degree, i.e., the h-method, is
by now well understood, the corresponding analysis for the p-method, where the
polynomial degree is unbounded, is so far less canonical. However, the bubble
transform represents a theory where the decomposition itself, and the associated
operator bounds, are obtained independently of any finite element space. The
entire construction only depends on a given triangulation of the domain. In fact,
the decomposition is also stable with respect to mesh refinements, and therefore
the results will apply to general hp-methods. As a consequence, the decomposition
represents a new tool for understanding hp-methods. As an example, consider the
analysis of overlapping Schwarz preconditioners. In [7], it is established how to
construct such preconditioners for second order elliptic problems in the setting of
hp-refinements. But so far, the corresponding verification for more general Hodge-
Laplace problems appears to be open. In fact, the key obstacle for establishing such
a bound is to verify the so-called stable decomposition property, i.e., to establish
the existence of a bounded decomposition, cf. [9, Chapter 2] and references given
therein. Such a bound is simply a special case of the bounds we derive here.
Although the discussion in the present paper will be restricted to the basic theory
of the bubble transform, a more thorough motivation can be found in [6].

In order to describe the main results of this paper, it is first necessary to introduce
some basic notation. Throughout this paper, Ω will be a bounded polyhedral
domain in Rn, and for 0 ≤ k ≤ n, the space of smooth differential k-forms on Ω will
be denoted Λk(Ω). The construction of the bubble transform is based on a simplicial
mesh T of Ω. The corresponding space, Λk(T ), is the space of k–forms on Ω which
are piecewise smooth with respect to T . More precisely, the elements of Λk(T ) are
smooth on the closed simplices T in the triangulation and have single-valued traces
on each subsimplex of T . For the piecewise polynomial subspaces of Λk(T ), we will
adopt the standard notation of FEEC, cf. [1, 2, 3], i.e., PrΛk(T ) denotes the space
of piecewise polynomial forms of degree less than or equal to r, while P−r Λk(T ) is
the corresponding space of trimmed polynomials. The set of all subsimplices of T
is denoted ∆(T ), while ∆m(T ) is the set of simplices of dimension m. For each
f ∈ ∆(T ), the macroelement Ωf consists of the union of all n–simplices in ∆(T )
containing f as a subsimplex. Furthermore, Tf is the restriction of the mesh T
to the macroelement Ωf , and Λ̊k(Tf ) is the subspace of Λk(T ) consisting of forms
which have support on Ωf , i.e., which vanish on Ω \ Ωf .

For given u ∈ Λk(T ), the bubble transform leads to a decomposition of the form

(1.1) u = W ku+
∑

f∈∆(T )

Bkfu = W ku+

n∑
m=0

∑
f∈∆m(T )

Bkfu,

where the bubbles Bkfu belong to Λ̊k(Tf ), and where W ku is a trimmed piecewise

linear k-form. More precisely, we will show how to construct linear operators W k :
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Λk(T ) → P−1 Λk(T ) and local operators Bkf : Λk(T ) → Λ̊k(Tf ) which commute
with the exterior derivative d, i,e.,

dW k = W k+1d, and dBkf = Bk+1
f d, 0 ≤ k ≤ n− 1.

In fact, if we let Bk denote the collection of all the operators {Bkf }f∈∆(T ), such
that we can view

Bk : Λk(T )→
∏

f∈∆(T )

Λ̊k(Tf ) := Λ̊k(T ,∆),

we can summarize and state that the diagram

Λk(T )
d−−→ Λk+1(T )y(Wk,Bk)

y(Wk+1,Bk+1)

P−1 Λk(T )× Λ̊k(T ,∆)
d−−→ P−1 Λk+1(T )× Λ̊k+1(T ,∆)

commutes. We will also show that the operators W k and Bkf can be extended to

bounded operators in L2. Furthermore, the polynomial preserving property of the
bubble transform can simply be expressed by the fact that

(1.2) Bkf (PrΛk(T )) ⊂ P̊rΛk(Tf ) and Bkf (P−r Λk(T )) ⊂ P̊−r Λk(Tf )

for all f ∈ ∆(T ) and r ≥ 1, where P̊rΛk(Tf ) = PrΛk(T ) ∩ Λ̊k(Tf ) and with
corresponding definition for the P−r -spaces.

The individual bubbles, Bkfu, introduced above, will not correspond to the bub-

bles constructed in [6]. However, a key part of the analysis given in [6] is the study of
a family of trace preserving operators, Ckm : Λk(T )→ Λk(T ), where 0 ≤ m ≤ n−1.
These operators are explicitly given in formula (2.20) below. A key property of
these operators is that if f ∈ ∆m(T ), where m ≥ k, then

(1.3) trf C
k
mu = trf u,

cf. [6, Lemma 2.2]. Here trf is the trace operator. Furthermore, these operators
commute with the exterior derivative and they preserve piecewise smoothness and
the standard spaces of piecewise polynomials, cf. [6, Proposition 7.1]. It was
also shown how the global functions Ckmu can be decomposed into a sum of local
bubbles, but these bubbles were rational functions leading to the apparent defect
of the theory of [6]. However, in the analysis below, where we will overcome the
problems just mentioned, the operators Ckm will still play an essential part. In fact,
the new decomposition of u ∈ Λk(T ) will be initialized by expressing u as

u = (u− Ckn−1u) + Ckn−1u.

It follows from (1.3) above that u − Ckn−1u is a global piecewise smooth func-
tion which has zero trace on elements of ∆n−1(T ). As a consequence, we can
decompose this function as u − Ckn−1u =

∑
f∈∆n(T )B

k
fu, where each local bub-

ble, Bkfu := trf (u − Ckn−1u), is piecewise smooth, and with support in f = Ωf ,

for f ∈ ∆n(T ). Furthermore, the operators {Bkf }f∈∆n(T ) will commute with the
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exterior derivative and preserve the piecewise polynomial spaces. We can conclude
that we have decomposed u into

(1.4) u =
∑

f∈∆n(T )

Bkfu+ Ckn−1u, Bkfu = trf (u− Ckn−1u),

where the first part is a sum of local bubbles. The task for the rest of the construc-
tion will be to show that the second part, the function Ckn−1u, also admits such a
decomposition.

The present paper is organized as follows. In the next section, we list some
assumptions we will make, recall some standard notation and properties of differ-
ential forms and simplicial complexes, and define some of the basic operators that
we will use in the construction of our decomposition. We end Section 2 with an
outline of the construction we will present in the remainder of the paper, and state
the main results, cf. Theorem 2.3. To motivate the general theory, we discuss the
decomposition in the case of scalar-valued functions in Section 3. In Section 4,
we define various local functions depending on the given mesh T . The delicate
recursive construction of these mesh functions, which represents a completely new
approach as compared to the construction performed in [6], can be seen as the
main new tool utilized to obtain the improved results of this paper. In particular,
the new mesh functions are used to define families of order reduction operators in
Section 5, and these operators are then used to define the local bubbles Bkf , cf.

Section 6. In Section 7, we focus on the operator Ckm − Ckm−1, and show that this
operator admits a decomposition into local bubbles with desired properties. By
utilizing a telescoping series argument, we will then obtain a similar decomposition
for the operator Ckn−1. In the final section, we show that all the operators of the
decomposition (1.1) are bounded in L2.

2. Preliminaries

In this section, we introduce the basic assumptions, notation, and concepts that
will be used in the construction below, and give an outline of the complete theory.

2.1. Assumptions. We assume that Ω ⊂ Rn is a bounded polyhedral Lipschitz
domain which is partitioned into a finite set of n simplices, ∆n(T ). The simplicial
mesh T is assumed to be a simplicial decomposition of Ω, i.e., the union of the
simplices in ∆n(T ) is the closure of Ω and the intersection of any two is either
empty or a common subsimplex of each. The set of all such simplices of dimension
m is denoted ∆m(T ), while ∆(T ) =

⋃
0≤m≤n ∆m(T ). Furthermore, below we will

frequently write ∆ instead of ∆(T ) and ∆m instead of ∆m(T ).

2.2. Notation. The space of smooth differential k-forms on Ω will be denoted
Λk(Ω). More precisely, for each x ∈ Ω, ux ∈ Altk, where Altk is the space of
alternating k -linear maps Rn × · · · × Rn → R. We recall that a projection, skw,
mapping k-linear forms to Altk, is given by

(skw u)(v1, . . . , vk) =
1

k!

∑
σ

sign(σ)u(vσ(1), . . . , vσ(k)),
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where the sum is over all permutations of {1, . . . , k}. In our discussion below, we
will encounter both the tensor product, ⊗, and the wedge product, ∧, of differential
forms. If u1 ∈ Λj(Ω) and u2 ∈ Λk(Ω), then u1 ∧ u2 ∈ Λj+k(Ω), and the identity

(2.1) u1 ∧ u2 =

(
k + j

k

)
skw(u1 ⊗ u2)

holds. The exterior derivative will be denoted d = dk : Λk(Ω)→ Λk+1(Ω). Further-
more, if F :M→M′ is a smooth map between manifolds, then the corresponding
pullback F ∗ is a map from Λk(M′) → Λk(M). In particular, when M is a sub-
manifold ofM′, then the pullback by the inclusion map, Λk(M′)→ Λk(M), is the
trace map trM. The notation HΛk(Ω) refers to the Sobolev space

HΛk(Ω) = {u ∈ L2Λk(Ω) : du ∈ L2Λk+1(Ω)},
where u ∈ L2Λk(Ω), if for all vectors v1, . . . , vk ∈ Rn, the function ux(v1, . . . , vk) ∈
L2(Ω) as a function of x. The corresponding space of piecewise smooth k-forms with
single valued traces with respect to T , Λk(T ), will then be a subspace of HΛk(Ω).
Furthermore, the set of piecewise polynomial k-forms of order r, PrΛk(T ), and the
corresponding space of trimmed piecewise polynomials, P−r Λk(T ), will satisfy

Pr−1Λk(T ) ⊂ P−r Λk(T ) ⊂ PrΛk(T ) ⊂ Λk(T ) ⊂ HΛk(Ω).

If f ∈ ∆m(T ), then f corresponds to an ordered subset of the vertices, ∆0(T ). We
assume that all the vertices are numbered by a set of integers I = {0, 1, . . . , N(T )}
such that

∆0(T ) = {xi : i ∈ I }.
Any f ∈ ∆m(T ) is of the form f = [xj0 , xj1 , . . . xjm ], where j0 < j1 < . . . < jm
and I(f) := {j0, j1, . . . , jm} ⊂ I. Here we have used the notation [·, · · · , ·] to
denote convex combinations. Furthermore, the statement g ∈ ∆(f) means that g
is a subsimplex of f , and with increasingly ordered vertices. We define the map
σf : ∆0(f)→ {0, . . . ,m} by

σf (xji) = i.

In other words, σf (y) gives the internal numbering of a vertex y relative to the
simplex f . The number of vertices in f is denoted |f |, i.e., |f | = m+1 if f ∈ ∆m(T ).
If e, f ∈ ∆(T ), with a disjoint set of vertices, and such that the union of the vertices
defines a simplex, then although e and f are increasingly ordered, the simplex
[e, f ] will not necessarily be increasingly ordered. We then denote by 〈e, f〉 the
increasingly ordered simplex composed of the vertices of e and f . The set ∆̄(f)
contains the emptyset, ∅, in addition to the elements of ∆(f), and ∅ is the single
element of ∆−1(T ). Since the ordering of a simplex f = [xj0 , xj1 , . . . xjm ] ∈ ∆m(T )
is inherited from the global numbering of the vertices, the various simplices are not
necessarily equally oriented. If m = n, we define the orientation of f , o(f), by

o(f) = sign det
(
xj1 − xj0 , . . . , xjm − xj0

)
,

i.e., it is the sign of the determinant of a nonsingular n× n matrix.

In the analysis that follows, we will make use of some concepts from simplicial
complexes, e.g., see [8]. The k-chains defined by the mesh T is a vector space
consisting of linear combinations of the form

∑
f∈∆k

cff . We will let Ck denote the

corresponding space of vector representations, i.e., if c ∈ Ck then c = {cf}f∈∆k
,

cf ∈ R. In fact, in the development of the theory below, we will consider k-chains
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with values in a finite dimensional vector spaces X, by which we mean spaces of
the form Ck ⊗X. In particular, X will be a subspace of P−1 Λk(T ). The boundary
operator is a chain map,

f 7→
∑
i∈I(f)

(−1)σf (xi)f(x̂i),

where the hat is used to indicate a suppressed argument. Using vector represen-
tations, the corresponding operator ∂k : Ck ⊗ X → Ck−1 ⊗ X can be expressed
as

(∂kc)f =
∑
i∈I

c[xi,f ] ≡
∑
i∈I

(−1)σ〈xi,f〉(xi)c〈xi,f〉, f ∈ ∆k−1(T ), 1 ≤ k ≤ n,

where c〈xi,e〉 = 0 if 〈xi, e〉 is not an element of ∆k(T ). We can also identify C−1⊗X
as X, corresponding to the single element ∅ of ∆−1(T ), and ∂0 : C0 ⊗X → X by
∂0c =

∑
i∈I cxi

.

The corresponding coboundary operators are cochain maps δk : Ck⊗X → Ck+1⊗
X given by

(δkc)f =
∑
i∈I(f)

(−1)σf (xi)cf(x̂i), f ∈ ∆k+1(T ),

for −1 ≤ k ≤ n − 1. If X and Y are finite dimensional vector spaces, then these
definitions lead to the identity

(2.2)
∑

f∈∆k−1(T )

(∂kc)f ⊗ c̃f =
∑

f∈∆k(T )

cf ⊗ (δk−1c̃)f , c ∈ Ck ⊗X, c̃ ∈ Ck−1 ⊗ Y,

i.e., ∂ is the adjoint of δ with respect to the inner product on Ck. Furthermore, the
operators ∂ and δ will satisfy the complex properties ∂2 = δ2 = 0.

Associated to any vertex xi ∈ ∆0(T ), we denote by λi(x) the nonnegative
piecewise linear function equal to one at xi and zero at all other vertices. More
generally, if f is a ordered subset of ∆0(T ), but not necessarily increasingly or-
dered, then φf will denote the Whitney form associated to f . More precisely, if
f = [xj0 , xj1 , . . . , xjm ], then φf is given by

φf = m!

m∑
i=0

(−1)iλjidλj0 ∧ . . . ∧ d̂λji ∧ . . . ∧ dλjm .

In particular, for f = [xi], φf = λi. If m > 0, then
∫
g
φf is plus or minus one if

g = f , and zero if g ∈ ∆m(T ), g 6= f . The forms {φf}f∈∆m(T ) span the space

P−1 Λm(T ) and they are local with support in Ωf . It can also be easily checked that

(2.3) dφf = (m+ 1)!dλj0 ∧ . . . ∧ dλjm =
∑
j∈I

φ[xj ,f ] = (∂m+1φ)f ,

where φ[xj ,f ] = 0 if [xj , f ] does not correspond to a subsimplex of T . Here the
operator ∂m+1 has the interpretation given above, where {φf} for f ∈ ∆m+1(T )
should be seen as an element of Cm+1⊗P1Λm+1(T ). Furthermore, if u ∈ P−1 Λm(T )
is expanded, such that u =

∑
f∈∆m(T ) cfφf , then

(2.4) du =
∑

f∈∆m(T )

cf (∂m+1φ)f =
∑

f∈∆m+1(T )

(δmc)fφf .
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It is also a consequence of the definition of φf and (2.3) that

(2.5) φ[xi,f ] =
(
λid−mdλi ∧

)
φf , f ∈ ∆m−1(T ).

If 0 ≤ m ≤ n, then associated to the simplex f = [xj0 , xj1 , . . . , xjm ], we define the
standard simplex Sf by

Sf =
{
λ = (λj0 , λj1 , . . . , λjm) ∈ Rm+1 :

m∑
i=0

λji = 1, λji ≥ 0
}
,

while Scf is the set of all convex combinations between Sf and the origin, i.e.,

Scf = [0,Sf ]. Alternatively,

Scf =
{
λ = (λj0 , λj1 , . . . , λjm) ∈ Rm+1 :

m∑
i=0

λji ≤ 1, λji ≥ 0
}
.

If f = [xj0 , xj1 , . . . xjm ] ∈ ∆m(T ), then Lf : Ω→ Scf will be the map

Lf (x) =
(
λj0(x), λj1(x), . . . , λjm(x)

)
.

In the special case f = ∅, we let S∅ = Sc∅ = {0} and Lf (Ω) = 0. In the construction

below, we will frequently use the pullback L∗f mapping Λk(Scf ) to Λk(T ), i.e., L∗f
maps smooth forms on Scf to piecewise smooth forms on Ω, and also polynomial

forms to piecewise polynomial forms. More precisely, if g ∈ ∆(f), then

(2.6) L∗g

(
PΛk(Scf )

)
⊂ PΛk(T ),

where P is either Pr or P−r . Another key tool we will utilize below is the piecewise
linear function ρf , defined by

ρf (x) = 1−
∑
i∈I(f)

λi(x),

which can be seen as a distance function between f ∈ ∆̄(T ) and x ∈ Ω. Note
that 0 ≤ ρf (x) ≤ 1 and ρf ≡ 1 if f = ∅. Alternatively, we have ρf = L∗fb, where

b = bf : Scf → R is the distance to the origin, i.e., b(λ) = 1−
∑m
i=0 λji .

2.3. The macroelements. We recall that for any f ∈ ∆(T ), we denote by Ωf
the union of the simplices in ∆n(T ) containing f as a subsimplex, while Tf is
the restriction of the mesh T to Ωf . We refer to Ωf as the macroelement of f ,
or alternatively, as the star of f . The domain Ωf is contractible with respect
to any x ∈ f . If f ∈ ∆m−1(T ) and T ∈ ∆n(Tf ), we let f∗(T ) ∈ ∆n−m(T )
be the subsimplex of T opposite f . The link of f , denoted by f∗, is given as
f∗ =

⋃
T∈∆n(Tf ) f

∗(T ) (e.g., see [4]). More precisely,

f∗ = {x ∈ Ωf : λi(x) = 0, i ∈ I(f)}.

The link f∗ can be viewed as an n−m dimensional oriented manifold composed of
the simplices f∗(T ), where f∗(T ) has an orientation, o(f∗(T ), T ), induced by the
n-simplex T . More precisely, if f = [xj0 , . . . , xjm−1 ], then

o(f∗(T ), T ) = o(T )

m−1∏
i=0

(−1)σTi
(xji

),
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where Ti = T (x̂j0 , . . . , x̂ji−1
) ∈ ∆n−i(T ). Any x ∈ Ωf can be written uniquely as a

convex combination of the points xi, i ∈ I(f), and points in f∗, i.e., Ωf = [f, f∗].
In the special case when m = n − 1, the manifold f∗ will be reduced to two
vertices, or only one close to the boundary, while in the special case f = ∅, we
have Ωf = f∗ = Ω. Below we will also encounter the extended macroelement, ΩEf ,

defined by ΩEf = ∪i∈I(f)Ωxi .

x2

x3

x4

x5

x0

x1

Figure 2.1. The macroelement Ωf ⊂ R3, where f = [x0, x1] and
f∗ is the closed curve connecting the vertices x2, x3, x4, and x5.

We define Ck(f∗) as the space of vector representations of k-chains defined on the
manifold f∗, i.e., if c ∈ Ck(f∗) then c = {cf}f∈∆k(f∗). The corresponding boundary
and coboundary operators, ∂k(f∗) and δk(f∗), are defined as the operators ∂k and
δk above, but by restricting to the manifold f∗. In the construction performed later
in this paper, we will utilize the fact that for any f ∈ ∆m−1(T ), 1 ≤ m ≤ n − 1,
the cochain complex

(2.7) R −−→ C0(f∗)
δ−−→ C1(f∗)

δ−−→ · · · δ−−→ Cn−m(f∗)
δ−−→ R

is exact, where δ = δ(f∗), and where the special operator δn−m(f∗) : Cn−m(f∗)→
R will be defined below. This exactness is a consequence of the corresponding
property for the trimmed linear forms restricted to f∗. Since f∗ is a piecewise flat
submanifold of the boundary of Ωf , defined by the mesh T , we can consider the
trace spaces P−1 Λk(f∗), defined as trf∗ P−1 Λk(T ). If f is an interior simplex, such
that f∗ is a manifold without a boundary, the complex

(2.8) R −−→ P−1 Λ0(f∗)
d−−→ P−1 Λ1(f∗)

d−−→ · · · P−1 Λn−m(f∗) −−→ R
is exact, where the final arrow represents the integral over f∗. If f is a boundary
simplex, the manifold f∗ may have a boundary, and in this case the last arrow in
(2.8) is redundant. By expanding the elements of P−1 Λk(f∗) in the basis functions,
and using the identity (2.4), we obtain the equivalent complex (2.7). More specif-
ically, the map lk : P−1 Λk(f∗) → Ck(f∗) given by

∑
e∈∆k(f∗) ceφe 7→ ce gives the

commuting relation δk(f∗) ◦ lk = lk+1 ◦ d. As a consequence, the exactness of the
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complex (2.7) follows from the exactness of (2.8). The special operator δn−m(f∗)
is defined by

(2.9) δn−m(f∗)c =
∑

e∈∆n−m(f∗)

o(e, Te)ce, Te = 〈e, f〉.

Note that this operator is always well-defined, but that the last arrow in (2.7) may
be redundant if f intersects the boundary of Ω. Since ∂ is the adjoint of δ with
respect to the inner product of C(f∗), the following result is a consequence of the
exactness of the complex (2.7).

Lemma 2.1. Let f ∈ ∆m−1(T ) and 0 ≤ k < n − m. If c ∈ Ck(f∗) satisfies
∂k(f∗)c = 0, then there is a c̃ ∈ Ck+1(f∗) such that c = ∂k+1(f∗)c̃. Furthermore, c̃
is uniquely determined if we require δk+1(f∗)c̃ = 0.

Below we will use Lemma 2.1 in a generalized sense, where we consider Ck with
values in a finite dimensional vector space X, cf. Sections 3 and 4.1.

2.4. The average operators and their generalizations. A key tool for our
construction below is a family of average operators, Akf , where f ∈ ∆, which map

piecewise smooth k-forms on Ωf to smooth k-forms on Scf . The operators Akf will
be defined by a function Gf : Ωf × Scf → Ωf , given by

Gf (y, λ) =
∑
i∈I(f)

λixi + b(λ)y,

Note that if x ∈ f then, since b(Lfx) = 0, we have

(2.10) Gf (y, Lfx) = x, x ∈ f.
For each fixed y ∈ Ωf , Gf (y, λ) is linear with respect to λ. The corresponding
derivative with respect λ, DGf (y, ·), is therefore an operator mapping tangent
vectors of Scf , TScf , into TΩf which is independent of λ. It is given by

DGf (y, ·) =
∑
i∈I(f)

(xi − y)dλi.

Since for each y, the map Gf (y, ·) maps Scf to Ωf , the corresponding pullback,

Gf (y, ·)∗, maps Λk(Ωf ) to Λk(Scf ). As a further consequence, an average of these

maps over Ωf with respect to y will also map Λk(Ωf ) to Λk(Scf ). In order to define
the averages we want, we will introduce a family of piecewise constant n-forms,
zf ∈ P−1 Λn(Tf ), with the property that zf has support in Ωf and

(2.11)

∫
Ωf

zf =

∫
Ω

zf = 1.

The operator Akf is then defined for f ∈ ∆m by

Akfu =

∫
Ω

Gf (y, ·)∗u ∧ zf .

Since pullbacks commute with the exterior derivative, so do the operators Akf , i.e.,

dAkf = Ak+1
f d, and from (2.10), we obtain that for f ∈ ∆m,

trf L
∗
fA

k
f = trf , m ≥ k.
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Of course, the properties of the operators Akf will also depend on the choice of the
functions zf . For f ∈ ∆n, these functions are defined to be

(2.12) zf =
κf
|Ωf |

vol,

where κf is the characteristic function of Ωf , while for f ∈ ∆m, 0 ≤ m < n, the
functions zf are defined recursively by the relation

(2.13) zf =
1

|f∗|
∑

i∈I(f∗)

z〈xi,f〉.

We note that it follows by construction that all the functions zf have support in
Ωf and satisfy relation (2.11). Furthermore, it is a consequence of Lemma 2.1 of [6]
that the operators Akf map Λk(Tf ) to Λk(Scf ) and also map piecewise polynomial
forms to polynomial forms. More precisely, we have for f ∈ ∆,

(2.14) Akf (PrΛk(Tf )) ⊂ PrΛk(Scf ), Akf (P−r Λk(Tf )) ⊂ P−r Λk(Scf ).

Remarks. In the argument given in [6], it was assumed that the functions zf were
given by (2.12) for all f . However, the modification we need to cover the more
general average functions zf introduced above is straightforward.

Consider the case of scalar valued functions, i.e., the case k = 0. Since all the
functions zf satisfy the identity (2.11), it follows that for f ∈ ∆, and e ∈ ∆1(f),

(δA0u)e,f :=
∑
i∈I(e)

(−1)σe(xi)A0
f(x̂i)

u

will be zero when u is a constant. Therefore, this expression only depends on
du. Below we will construct a corresponding operator R1, mapping one-forms to
zero-forms, such that

(2.15) R1du = (δA0u)e,f , e ∈ ∆1(f).

A natural choice seems to be to label this operator by the simplex pair (e, f). In
fact, this was the choice used in [6]. However, for the theory developed in this
paper, it appears more appropriate to use the equivalent label, (e, f ∩ e∗), where
f ∩ e∗ belongs to e∗ and vice versa.

More generally, we introduce the sets ∆j,m = ∆j,m(T ) of pairs of simplices,
given by

∆j,m := {(e, f) : f ∈ ∆m(T ), e ∈ ∆j(f
∗) }

for −1 ≤ m ≤ n and 0 ≤ j < n − m. For (e, f) ∈ ∆j,m, j ≥ 0, we will define
operators Rke,f mapping k-forms to (k − j)-forms. We will refer to these operators
as order reduction operators. To define them, we recall that the map Gf maps
Ωf × Scf to Ωf , and as a consequence, the corresponding pullback, G∗f , is a map

G∗f : Λk(Ωf )→ Λk(Ωf × Scf )

and we can express

Λk(Ωf × Scf ) =

k∑
j=0

Λj(Ωf )⊗ Λk−j(Scf ).
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Furthermore, for each 0 ≤ j ≤ k, there is a canonical map Πj : Λk(Ωf × Scf ) →
Λj(Ωf )⊗ Λk−j(Scf ) such that

∑k
j=0 Πj is the identity. We refer to [6, Section 5.1]

for more details. As in [6], all the operators Rke,f will be of the form

(2.16) (Rke,fu)λ =

∫
Ω

(ΠjG
∗
fu)λ ∧ ze,f , λ ∈ Scf ,

where the functions ze,f are trimmed linear n− j forms for (e, f) ∈ ∆j,m, and with
support in Ωf ∩ ΩEe . The construction of the functions {ze,f}, given in Section 4
below, will deviate from the corresponding construction given in [6]. In fact, the
careful construction of these functions below represents the main tool for obtaining
the improved results we derive in this paper, as compared to the results presented
in [6].

For pairs (e, f) ∈ ∆0,m, i.e., when e is a vertex, we define ze,f = −z〈e,f〉, where
the n-forms z〈e,f〉 are defined by (2.12) and (2.13). As a consequence, for any

e ∈ ∆0(f∗), we have Rke,f = −Ak〈e,f〉. The functions {ze,f} will be constructed to

satisfy the relation

(2.17) dze,f = (−1)j+1(δz)e,f , (e, f) ∈ ∆j,m,

for j ≥ 1, where the generalized coboundary operator defined for pairs of simplices
in {∆j,m} is given by

(δz)e,f =
∑
i∈I(e)

(−1)σe(xi)ze(x̂i),f .

Remarks. The identity, Rke,f = −Ak〈e,f〉 and the definition of the δ operator appear

to deviate from the corresponding relations in [6]. However, as stated above, in the
present paper it is more convenient to use a different, but equivalent, labeling of the
z functions and R operators as compared to the previous paper. More precisely, the
operators Rke,f introduced above were labeled by the pair (e, 〈e, f〉) in [6], and this
causes minor differences in the relations above, and also at a few occurrences below.

As a consequence of the definition of the operators Rke,f , given by (2.16) and

(2.17), the operators Rke,f will satisfy the relation

(2.18) Rk+1
e,f du = (−1)jdRke,fu− (δRku)e,f , (e, f) ∈ ∆j,m, 0 ≤ j ≤ k + 1,

where ∆j,m is defined to be the emptyset if j ≥ n−m. Furthermore, (δRku)e,f is
taken to be zero for e ∈ ∆0. When e ∈ ∆k+1(f∗), Rke,fu = 0 and (2.18) reduces to

(2.19) Rk+1
e,f du = −(δRku)e,f , (e, f) ∈ ∆k+1,m,

which is consistent with (2.15). We refer to Section 5.3 of [6] and Section 5 below
for more details.

The following lemma generalizes the mapping properties (2.14) of the average
operators Akf to similar results for the order reduction operators. In fact, this result

corresponds to Proposition 5.2 of [6].

Lemma 2.2. Assume that (e, f) ∈ ∆j,m(T ).

i) If u ∈ Λk(Tf ), then b−jRke,fu ∈ Λk−j(Scf ).
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ii) If u ∈ PrΛk(Tf ), then b−jRke,fu ∈ PrΛk−j(Scf ).

iii) If u ∈ P−r Λk(Tf ), then b−jRke,fu ∈ P−r Λk−j(Scf ).

Remarks. The proof of Proposition 5.2 of [6] carries over directly to the present
setting, even if the definition of the weight functions ze,f will be modified below.
Therefore, we omit the proof here.

2.5. An outline of the construction. In the present notation, the trace preserv-
ing operators Ckm, introduced in [6, Section 6], admit the representation

(2.20) Ckmu =
∑
f∈∆m

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
k
fu

+
∑

(e,f)∈∆j,m−1

0≤j≤n−m

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

where 0 ≤ m ≤ n − 1, and where we recall that Rke,f = 0 if e ∈ ∆j , j > k.

The definition of the operator Ckm contains the rational terms φe/ρg. However,
it is established in [6], cf. Lemma 2.2 and Proposition 7.1 of that paper, that the
operator Ckm commutes with the exterior derivative, preserves piecewise smoothness
and the piecewise polynomial spaces PrΛk(T ) and P−r Λk(T ), and preserves the
trace of u on all f ∈ ∆m if m ≥ k.

Remarks. The fact that the operator Ckm preserves the trace of u on all f ∈ ∆m

if m ≥ k, can be derived easily from the definition above. In fact, by combining the
first term in (2.20) and the second term with j = 0, we obtain the primal operator
studied in Section 4 of [6]. This operator can be rewritten as

(2.21) Ckm(primal) =
∑
f∈∆m

∑
g∈∆̄(f)

(−1)|f |−|g|
ρf
ρg
L∗gA

k
fu.

By arguing as in the proof of [6, Lemma 4.1], using the cancellation property with
respect to g, we can conclude that this operator preserves the trace on all elements
of ∆m if m ≥ k. Furthermore, for the second term in (2.20) with a fixed f ∈ ∆m−1

and e ∈ ∆j(f
∗), we can argue in the same way that the resulting function has

support in Ωe ∩ Ωf = Ω〈e,f〉. As a consequence, if j > 0, such that the simplex
〈e, f〉 ∈ ∆s for s > m, these functions have vanishing trace on all m-simplices.
Hence, the trace property of Ckm follows. The commuting property of the operator
Ckm can also be shown directly from the properties of the operators Akf and Rke,f , cf.
Section 2.4 above, while the space preserving properties require a deeper analysis,
performed in [6, Section 7]. In fact, an alternative proof of the space preserving
properties follows as a corollary of the analysis given in this paper.

We will derive the desired decomposition (1.1) of functions u ∈ Λk(T ) from the
telescoping identity

(2.22) u = Ck0u+

n∑
m=1

(Ckm − Ckm−1)u,



13

where Ckn is the identity operator. We have already observed, cf. (1.4), that

(Ckn − Ckn−1)u = u− Ckn−1u =
∑
f∈∆n

Bkfu,

where Bkfu = trf (u− Ckn−1u) is a sum of piecewise smooth local bubbles. For the
special case m = 0, there are no rational functions present in the definition of the
operator Ck0 . In fact, by utilizing that the range of the operator L∅ is a single point,
i.e., the origin, it follows that L∗∅ maps forms of order greater than zero, to zero.

As a consequence, we can represent the operator Ck0 as

(2.23) Ck0u =
∑
f∈∆0

(
L∗fA

k
fu− L∗∅A

k
fu
)

+ (−1)k−1
∑
e∈∆k

φe ∧ L∗∅R
k
e,∅u.

In particular, from the definition of the operator Rke,∅, it follows that the second

term in (2.23) can be expressed as

W ku := (−1)k−1
∑
e∈∆k

φe

(∫
Ω

u ∧ ze,∅
)
,

which is an element of P−1 Λk(T ). In other words, W k is an operator which maps
piecewise smooth k-forms into the simplest class of piecewise polynomial k forms,
i.e., into trimmed linear forms. In particular, we recall that for e ∈ ∆k, the functions
ze,∅ are elements of P−1 Λn−k(T ), with support in ΩEe . We define the local operators

Kk
0,f by

Kk
0,fu = L∗fA

k
fu− L∗∅A

k
fu.

The functions Kk
0,fu will have support on Ωf , and by using these operators, the

identity (2.23) can be written as

Ck0u =
∑
f∈∆0

Kk
0,fu+W ku.

As a consequence of the fact that the operators Akf commute with the exterior de-

rivative, it follows that the operators Kk
0,f will also commute with d. Furthermore,

the operator W k also commutes with the exterior derivative. In fact, from (2.3),
we have

dW ku = (−1)k−1
∑
e∈∆k

(∂φ)e

(∫
Ω

u ∧ ze,∅
)
,

and from (2.2), (2.4), (2.17), and the Leibniz rule, we obtain

∑
e∈∆k

(∂φ)e

(∫
Ω

u ∧ ze,∅
)

=
∑

e∈∆k+1

φe

(∫
Ω

u ∧ (δz)e,∅

)
= (−1)k

∑
e∈∆k+1

φe

(∫
Ω

u ∧ dze,∅
)

= −
∑

e∈∆k+1

φe

(∫
Ω

du ∧ ze,∅
)
,

which implies that dW k = W k+1d.

We will also show below in Section 8 that W k can be extended to a bounded
linear operator on L2.
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Since we have obtained desired decompositions of the operators Ckn −Ckn−1 and

Ck0 , it remains to decompose the functions (Ckm − Ckm−1)u for 1 ≤ m ≤ n − 1, cf.
(2.22). In fact, the main contribution of this paper is to show that these operators
admit the representation

(2.24) (Ckm − Ckm−1)u =
∑
f∈∆j

j=m,m−1

Kk
m,fu, 1 ≤ m ≤ n− 1,

cf. Proposition 7.3 below, where the functions Kk
m,fu have support in Ωf . Fur-

thermore, each operator Kk
m,f commutes with the exterior derivative and preserves

piecewise smoothness and the piecewise polynomial spaces PrΛk(T ) and P−r Λk(T ).
Our derivation below of the identity (2.24) depends on a careful construction of the
family of operators {Rke,f}, or more precisely of the functions {ze,f} defining these

operators, cf. (2.16). As a consequence of the identity (2.24), we obtain the de-
sired decomposition (1.1), since the function u−W ku can be decomposed into local
bubbles of the form

u−W ku =
∑
f∈∆

Bkfu,

where each function Bkfu has support on Ωf . More precisely, if we let Kk
n,f = 0 for

each f ∈ ∆n−1, then

(2.25) Bkf = Kk
m,f +Kk

m+1,f , f ∈ ∆m, 0 ≤ m ≤ n− 1,

while for f ∈ ∆n,

(2.26) Bkfu = trf (u− Ckn−1u) = trf

(
u− (W ku+

∑
g∈∆m

0≤m≤n−1

Bkgu)
)
.

We can summarize the main results we will obtain for the construction outlined
above in the following theorem.

Theorem 2.3. For 0 ≤ k ≤ n, there exist operators W k : Λk(T ) → P−1 Λk(T )

and for each f ∈ ∆m(T ), 0 ≤ m ≤ n, local operators Bkf : Λk(T ) → Λ̊k(Tf ) such

that the decomposition (1.1) holds. The operators Bkf can be extended to bounded

operators from L2Λk(Ωf ) to itself if 0 ≤ m < n, and from L2Λk(ΩEf ) to L2Λk(Ωf )
when m = n. Furthermore, all these operators commute with the exterior derivative,
and satisfy the invariant property (1.2). Finally, the decomposition given by (1.1)
satisfies the stable decomposition property, detailed in Proposition 8.1.

3. The case of scalar-valued functions

To motivate the general theory developed later in this paper, we will discuss the
decomposition (1.1) in the case k = 0. In fact, to derive the decomposition (1.1),
we only need to establish the identity (2.24) for 1 ≤ m ≤ n − 1. A key ingredient
in the derivation of (2.24) is to rely on two slightly different representations of the
operator C0

m. For k = 0, the expression (2.20) can be written as

(3.1) C0
mu =

∑
f∈∆m

∑
g∈∆̄(f)

(−1)|f |−|g|
[
L∗gA

0
fu−

∑
i∈I(f∩g∗)

λi
ρg
L∗gA

0
fu
]
,
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where we recall that the operator Rke,fu = −Ak〈e,f〉u when (e, f) ∈ ∆0,m−1. Alter-

natively, we also have

(3.2) C0
mu =

∑
f∈∆m

∑
g∈∆̄(f)

(−1)|f |−|g|
ρf
ρg
L∗gA

0
fu,

cf. (2.21). Motivated by the first term in (3.1), we will define the operators K0
m,f

by

(3.3) K0
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
0
fu, f ∈ ∆m(T ).

From the properties of the average operators, cf. (2.14), it follows that the operators
K0
m,fu have domain of dependence Ωf , preserve piecewise smoothness and the

piecewise polynomial spaces, and have support on Ωf . The latter property follows
from a standard cancellation argument. To see this, consider an index i ∈ I(f).
For each g ∈ ∆(f) such that i /∈ I(g), we have that the two terms

L∗gA
0
fu, and L∗〈xi,g〉A

0
fu

cancel, when λi(x) = 0. By repeating this argument, we see that K0
m,fu ≡ 0 for

all x such that λi(x) = 0 for all i ∈ I(f). However, this means that the function
K0
m,fu has support on Ωf . From (3.1), it follows that

C0
mu−

∑
f∈∆m

K0
m,fu = −

∑
g∈∆̄

∑
f∈∆m
f⊃g

(−1)|f |−|g|
∑

i∈I(f∩g∗)

λi
ρg
L∗gA

0
fu.

However, for each fixed g ∈ ∆̄, we have∑
f∈∆m
f⊃g

∑
i∈I(f∩g∗)

=
∑

i∈I(g∗)

∑
f∈∆m
f⊃xi,g

=
∑

i∈I(g∗)

∑
f ′∈∆m−1(x∗i )

f ′⊃g

=
∑

f ′∈∆m−1

f ′⊃g

∑
i∈I((f ′)∗)

,

where we have introduced f ′ = f(x̂i). As a consequence, we obtain

C0
mu−

∑
f∈∆m

K0
m,fu =

∑
f∈∆m−1

∑
g∈∆̄(f)

(−1)|f |−|g|
∑

i∈I(f∗)

λi
ρg
L∗gA

0
〈xi,f〉u.

Furthermore, from (2.13) and (3.2), we also have

C0
m−1u =

∑
f∈∆m−1

∑
g∈∆̄(f)

(−1)|f |−|g|
ρf
|f∗|ρg

∑
i∈I(f∗)

L∗gA
0
〈xi,f〉u.

By combining these representations of C0
m and C0

m−1, we obtain the identity

(3.4) (C0
m − C0

m−1)u−
∑
f∈∆m

K0
m,fu

=
∑

f∈∆m−1

∑
g∈∆̄(f)

(−1)|f |−|g|ρ−1
g

∑
i∈I(f∗)

[(
λi −

ρf
|f∗|

)
L∗gA

0
〈xi,f〉u

]
.

Therefore, if we define the operators K0
m,f by

(3.5) K0
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|ρ−1
g

∑
i∈I(f∗)

[(
λi −

ρf
|f∗|

)
L∗gA

0
〈xi,f〉u

]
,
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for f ∈ ∆m−1, we obtain that (3.4) simply reads

(3.6) (C0
m − C0

m−1)u =
∑
f∈∆j

j=m,m−1

K0
m,fu,

which is the desired identity (2.24) for k = 0.

It remains to see that the operatorsK0
m,f , f ∈ ∆m−1, have the desired properties.

Again, by the properties of the map A0
f , the operators L∗gA

0
〈xi,f〉 and hence K0

m.f

will have domain of dependence Ωf . In addition, we need to show that the operators
K0
m,f , given by (3.5), preserve piecewise smoothness and piecewise polynomials, and

that the target function has local support. In fact, the property that the functions
K0
m,fu are supported on the macroelements Ωf follows by a cancellation argument

similar to the one given above. However, formula (3.5) contains rational functions,
and therefore, at first glance, it seems unlikely that the corresponding operators
K0
m,f will preserve piecewise smoothness. On the other hand, since suppK0

m,fu ⊂
Ωf , we can restrict the analysis of the functions K0

m,fu to the domain Ωf , and on
this domain we will rely on an alternative representation of the operators.

To derive the alternative representation of K0
m,f , we recall that when f ∈ ∆m−1,

the manifold f∗ is of dimension n − m, and since we assume that m ≤ n − 1,
the manifold f∗ is of dimension greater or equal to one. For xi ∈ f∗, we define a
corresponding piecewise linear function, βxi = βxi(f) by

βxi
= λi −

ρf
|f∗|

.

The collection {βxi
(f)}i∈I(f∗) can be seen as an element in C0(f∗) ⊗ P1(T ). Fur-

thermore, on the domain Ωf , we have that

∂0β =
∑

i∈I(f∗)

βxi
=
( ∑
i∈I(f∗)

λi

)
− ρf = 0,

where ∂0 = ∂0(f∗). From Lemma 2.1, we therefore conclude that there is a unique
element µ = µ(f) = {µe(f)}e∈∆1(f∗) ∈ C1(f∗)⊗ P1(T ), such that the identities

(3.7) (∂µ)xi
= λi −

ρf
|f∗|

= βxi
, i ∈ I(f∗), and δµ = 0,

hold on Ωf , where ∂ = ∂1(f∗) and δ = δ1(f∗). Note that when n−m = 1, there is
no space C2(f∗) (see Figure 2.1) and hence we define δ1(f∗) by (2.9).

We can use the piecewise linear functions, {µe(f)}e∈∆1(f∗), to obtain an alterna-

tive representation of the operators K0
m,f . In fact, we have, using (2.2) and (2.19),

that∑
i∈I(f∗)

(∂µ)xi
∧ L∗gA0

〈xi,f〉u = −
∑

i∈I(f∗)

(∂µ)xi
∧ L∗gR0

xi,fu

= −
∑

e∈∆1(f∗)

µe ∧ L∗g(δR0u)e,f =
∑

e∈∆1(f∗)

µe ∧ L∗gR1
e,fdu.

As a consequence, we obtain that the alternative representation,

K0
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|
∑

e∈∆1(f∗)

[
µe(f) ∧ L∗gb−1R1

e,fdu
]
,
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holds on Ωf . However, from this alternative representation, the mapping properties
of the operators K0

m,f follow directly from the corresponding properties of the

operators R1
e,f , given in Lemma 2.2.

We close the discussion given in this section by summarizing the results we have
obtained for the operators K0

m,f .

Lemma 3.1. Let 1 ≤ m ≤ n−1 and f ∈ ∆j(T ), where j = m,m−1. Assume that
the corresponding operators K0

m,f are defined by (3.3) and (3.5). Then the identity

(3.6) holds, suppK0
m,fu ⊂ Ωf , and the operators K0

m,f have the mapping properties

K0
m,f (Λ0(Tf )) ⊂ Λ0(Tf ), K0

m,f (Pr(Tf )) ⊂ Pr(Tf ).

4. The local structure of the mesh

Key tools for decomposing the operators Ckm−Ckm−1 into a sum of local operators
with local target space will be various local functions derived from the given mesh,
T . To describe these functions, we introduce the space P−1 Λk(T , f∗) as the subset
of P−1 Λk(T ) corresponding to degrees of freedom on f∗. More precisely,

P−1 Λk(T , f∗) = spane∈∆k(f∗) φe.

4.1. The functions µe(f). Let m be an index, 1 ≤ m ≤ n, and f ∈ ∆m−1, such
that the associated manifold, f∗, will be of dimension n −m. In the special case
when m = n, the manifold f∗ will be of dimension zero, and consist of one or two
points depending on the location of f relative to the boundary of Ω. Since this case
is special, we will first assume that m ≤ n− 1 such that the manifold f∗ is a least
one dimensional.

In the previous section, we constructed functions {µe(f)}e∈∆1(f∗) such that the
identity (3.7) holds, where we can consider the collection {µe(f)} as an element of
C1(f∗)⊗ P−1 Λ0(T , f∗). In fact, we will construct the collection {µe(f)}e∈∆j(f∗) ∈
Cj(f

∗)⊗ P−1 Λj−1(T , f∗) for 1 ≤ j ≤ n. This will be done by an inductive process
with respect to j. For e ∈ ∆0(f∗), we define µe(f) to be the constant −1/|f∗|,
such that {µe(f)}e∈∆0(f∗) can be viewed as an element of C0(f∗)⊗P−1 Λ−1(T , f∗),
where P−1 Λ−1(T , f∗) is identified as R. Below we will apply the difference op-
erators, ∂(f∗) and δ(f∗), to elements of Cj(f

∗) ⊗ P−1 Λk(T , f∗). This is done
with respect to Cj(f

∗), while the polynomial space P−1 Λk(T , f∗) is considered
fixed. For example, the operator ∂(f∗) maps elements of Cj(f

∗) ⊗ P−1 Λk(T , f∗)
to Cj−1(f∗)⊗P−1 Λk(T , f∗). On the other hand, the exterior derivative, d, will map
elements of Cj(f

∗)⊗ P−1 Λk(T , f∗) to Cj(f
∗)⊗ P−1 Λk+1(T , f∗).

In addition to the collection of functions {µe(f)}, we will introduce the associated
collection of functions {βe} = {βe(f)}e∈∆j(f∗) as elements of Cj(f

∗) ⊗ P−1 Λj(T )
for 0 ≤ j ≤ n−m. The function βe(f) is defined from the corresponding function
µe(f) by

(4.1) βe := ρj+1
f d

(µe
ρjf

)
+ (−1)jφe, e ∈ ∆j(f

∗),
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if 1 ≤ j ≤ n−m. In fact, if we let the exterior derivative d−1 be the inclusion map
from constants to P1Λ0(T , f∗), then the definition (4.1) also holds when j = 0, cf.
(3.7). We observe that if we restrict to the domain Ωf , such that ρf =

∑
i∈I(f∗) λi,

then βe(f) also admits the representation

(4.2) βe =
∑

i∈I(f∗)

(λid− jdλi∧)µe + (−1)jφe, e ∈ ∆j(f
∗).

It then follows that

µe ∈ P−1 Λj−1(T , f∗) =⇒ trΩf
βe ∈ P−1 Λj(Tf , f∗),

where P−1 Λj(Tf , f∗) = trΩf
P−1 Λj(T , f∗). Furthermore, the relation (3.7) can be

rephrased as βe = (∂(f∗)µ)e on Ωf for e ∈ ∆0(f∗).

Lemma 4.1. Let f ∈ ∆m−1(T ), where 1 ≤ m ≤ n − 1, and j an index such that
1 ≤ j ≤ n −m. Assume that {µe} = {µe(f)} ∈ Cs(f

∗) ⊗ P−1 Λs−1(T , f∗) has been
defined for s = j − 1, j such that the identity

(4.3) βe(f) = (∂(f∗)µ)e,

holds on Ωf for e ∈ ∆j−1(f∗). Then (∂(f∗)β)e = 0 for all e ∈ ∆j−1(f∗), and if
j < n −m, there exist {µe} = {µe(f)} ∈ Cj+1(f∗) ⊗ P−1 Λj(T , f∗) such that (4.3)
holds on Ωf for all e ∈ ∆j(f

∗). Furthermore, {µe} ∈ Cj+1(f∗) ⊗ P−1 Λj(T , f∗) is
uniquely determined by the condition δ(f∗)µ = 0.

Proof. Throughout the proof, all the identities should be considered to hold on
the domain Ωf , and the operators ∂ and δ are defined with respect to f∗. By
assumption, we have

βe = ρjd
( µe
ρj−1

)
+ (−1)j−1φe = (∂jµ)e, e ∈ ∆j−1(f∗),

where ρ = ρf . Since d2 = 0 and d commutes with ∂j , this gives

(∂jd
( µ
ρj

)
)e = (−1)j−1d

(φe
ρj

)
, e ∈ ∆j−1(f∗).

Hence, it follows from (4.1) that for e ∈ ∆j−1(f∗)

(∂jβ)e = ρj+1(∂jd
( µ
ρj

)
)e + (−1)j(∂jφ)e = (−1)j−1[ρj+1d

(φe
ρj

)
− (∂jφ)e].

However, a direct computation, using (2.5) and ρf =
∑
i∈I(f∗) λi on Ωf , shows

ρ(j+1)d
(φe
ρj

)
=

∑
i∈I(f∗∩e∗)

(λid− jdλi∧)φe =
∑

i∈I(f∗∩e∗)

φ[xi,e] = (∂jφ)e.

As a consequence, (∂jβ)e = 0 for e ∈ ∆j−1(f∗). If j < n − m, it follows from
Lemma 2.1 that there exist a uniquely determined {µe} ∈ Cj+1(f∗)⊗P−1 Λj(Tf , f∗)
such that βe = (∂j+1µ)e on Ωf , for all e ∈ ∆j(f

∗) and δj+1µ = 0. Further-
more, each function µe ∈ P−1 Λj(Tf , f∗) can be uniquely extended to a function in
P−1 Λj(T , f∗). �
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It remains to discuss the case m = n. In this case, f ∈ ∆n−1, so f∗ will only
consist of one or two points, and there is no element in ∆1(f∗). In fact, we will
have |f∗| = 1 if f is a boundary simplex, and otherwise |f∗| = 2. On the other
hand, by adopting the interpretation above of d−1 as the inclusion operator and
µe(f) = −1/|f∗| for e ∈ ∆0(f∗), we obtain

βe(f) := − ρf
|f∗|

+ φe, e ∈ ∆0(f∗),

and ∂0(f∗)β = 0.

From Lemma 4.1 and an induction argument with respect to j, we obtain the
following result.

Corollary 4.2. Let f ∈ ∆m−1(T ), where 1 ≤ m ≤ n. For all e ∈ ∆j(f
∗), 0 ≤

j ≤ n −m, there exists functions µe(f) ∈ P−1 Λj−1(T , f∗) and βe(f) ∈ P−1 Λj(T ),
uniquely defined by the inductive procedure above, satisfying ∂j(f

∗)β = 0 on Ωf .
Furthermore, if j < n−m, then the identity (4.3) holds on Ωf for all e ∈ ∆j(f

∗).

Remarks. An alternative view of the construction of the functions {µe(f)} given
above can be given by expanding the function µe ∈ P−1 Λj−1(T , f∗) in the form

(4.4) µe =
∑

e′∈∆j−1(f∗)

ae,e′φe′ ,

where the real coefficients {ae,e′} can be identified with an element ae ∈ Cj−1. It
follows from (2.3), (2.5), and (4.2), that if we restrict to Ωf , then the function
βe = βe(f) admits the representation

(4.5) βe − (−1)jφe =
∑

e′∈∆j(f∗)

i∈I(e′)

(−1)σe′ (xi)ae,e′(x̂i)φe′ =
∑

e′∈∆j(f∗)

(δae,·)e′φe′ ,

for e ∈ ∆j(f
∗). As a consequence, the equation (4.3) for e ∈ ∆j(f

∗) can be
represented by the algebraic system

(4.6) (∂j+1a·,e′)e = (δj−1ae,·)e′ + (−1)j1e,e′ , e′ ∈ ∆j(f
∗),

where ∂ = ∂(f∗), and 1e,e′ = 1 if e′ = e and equals zero otherwise. Furthermore,
the condition δj+1(f∗)µ = 0 is equivalent to

(4.7) δj+1a·,e′ = 0, e′ ∈ ∆j(f
∗).

If (e, f) ∈ ∆j,m−1 and g ∈ ∆̄(f), then ρg − ρf =
∑
i∈I(f∩g∗) λi, which leads to

ρj+1
g d

(µe(f)

ρjg

)
= ρj+1

f d
(µe(f)

ρjf

)
+

∑
i∈I(f∩g∗)

(
λid− jdλi ∧

)
µe(f).

In the analysis below, the functions ψe,g(f) ∈ P−1 Λj(T , g∗), defined by

(4.8) ψe,g(f) = (−1)j−1
∑

i∈I(f∩g∗)

(
λid− jdλi ∧

)
µe(f),

will be useful. We observe that ψe,f (f) = 0, and it follows from (4.1), that

(4.9) ρj+1
g d

(µe(f)

ρjg

)
+ (−1)j [φe + ψe,g(f)] = βe(f).
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Also observe that in the special case when e ∈ ∆0(f∗), then

(4.10) ψe,g(f) =
1

|f∗|
∑

i∈I(f∩g∗)

λi =
1

|f∗|
(ρg − ρf ).

4.2. Construction of the weight functions ze,f . We recall from Section 2.4
that the weight functions ze,f are an essential ingredient for the construction of the
order reduction operators Rke,f . This section is devoted to an inductive process for
constructing the functions ze,f . In fact, as a preliminary step, we will first construct
a family of local functions we,f , and then the functions ze,f will be constructed as

(4.11) ze,f = (δ+w)e,f .

Here the operator δ+ is a variant of the coboundary operator defined for pairs of
simplices, given by

(δ+w)e,f =
∑
i∈I(e)

(−1)σe(xi)we(x̂i),〈xi,f〉, (e, f) ∈ ∆j,m.

This operator will satisfy the complex property, (δ+)2 = 0, and from [6, Lemma
5.2], we recall that δ ◦ δ+ = −δ+ ◦ δ. For the construction below, we will utilize
exactness of the complex of trimmed linear forms with support on Ωf . Recall

that in Section 1, we introduced the space P̊−1 Λk(Tf ) as the subspace of P−1 Λk(T )
consisting of functions which vanish on Ω\Ωf . However, if f is a boundary simplex,
then functions in this space will in general not have vanishing trace on the boundary

of Ωf . Therefore, we introduce the notation P−1 Λk(Tf ) to denote the subspace of

P̊−1 Λk(Tf ) with vanishing trace on ∂Ωf . The two spaces are equal if f is an interior

simplex, but in general P−1 Λk(Tf ) ⊂ P̊−1 Λk(Tf ). We also recall from (2.4) that if
w =

∑
g∈∆j

cgφg ∈ P−1 Λj(T ), then dw =
∑
g∈∆j+1

(δjc)gφg. In particular, if w has

support on Ωf for f ∈ ∆, then the sum can be restricted to all simplices g such

that g ⊃ f . Motivated by this, we define d∗f : P−1 Λj(Tf )→ P−1 Λj−1(Tf ), by

(4.12) d∗fw =
∑

g∈∆j−1

g⊃f

(∂jc)gφg.

Below we will utilize exactness of the complex (P−1 Λ(Tf ), d) to conclude that a

function w ∈ P−1 Λj(Tf ) is uniquely determined by dw and d∗fw.

The functions we,f will be defined inductively with respect to m for all pairs

(e, f) ∈ ∆j,m, for 0 ≤ m ≤ n and −1 ≤ j < n−m as functions in P−1 Λn−j−1(Tf ).
We start the induction process with m = n, and hence only j = −1 is allowed. The
set ∆−1,n consists of pairs of the form (∅, f), where f ∈ ∆n. In this case, we define
w∅,f = −zf = −(κf/|Ωf |)vol. For the general case, when 0 ≤ m < n, we will use

a variational approach utilizing tensor product spaces of the form P−1 Λj(T , f∗) ⊗
P−1 Λn−j−1(T ), i.e., we consider products of elements in the two functions spaces
and with independent spatial variables. We assume, as an induction hypothesis,

that we,f ∈ P−1 Λn−j−1(Tf ) for all (e, f) ∈ ∆j,m and −1 ≤ j < n−m, have already
been constructed. Furthermore, we assume that these functions satisfy

(4.13) (δ+dw)e,f ∈ range(δ), (e, f) ∈ ∆n−m,m−1(f∗).
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In the case m = n, the functions of the form w∅,〈xi,f〉, involved in (4.13), have
support in Ω〈xi,f〉 ⊂ Ωf . Since we will utilize exactness of the complex consisting
of trimmed differential forms with boundary conditions, the exterior derivative in
(4.13), in the case m = n, should be interpreted as the integral, and for (xi, f) ∈
∆0,n−1, we have

(δ+dw)xi,f = d(δ+w)xi,f =

∫
Ω

w∅,〈xi,f〉 = −1 =

∫
Ω

w∅,f = (δdw)xi,f .

Therefore, property (4.13) holds initially.

For a fixed f ∈ ∆m−1 and −1 ≤ j < n−m, we,f ∈ P−1 Λn−j−1(T ) is defined by

(4.14)
∑

e∈∆j(f∗)

φe ⊗ we,f = (−1)j
∑

e∈∆j+1(f∗)

µe(f)⊗ (δ+w)e,f ,

where we observe that all functions on the right hand side are already constructed.
Since µe(f) ∈ P−1 Λj(T , f∗) for e ∈ ∆j+1(f∗), we can view the right hand side of
(4.14) as an element of P−1 Λj(T , f∗) ⊗ P−1 Λn−j−1(T ), i.e, it is a trimmed linear
j-form with values in P−1 Λn−j−1(T ). Therefore, the coefficients we,f of the left
hand side are uniquely determined as functions in P−1 Λn−j−1(T ). Furthermore,
since all the domains of the form {Ωxi,f}, i ∈ I(f∗) are contained in Ωf , we

can conclude from the induction hypothesis that (δ+w)e,f ∈ P−1 Λn−j−1(Tf ) and

hence the function we,f ∈ P−1 Λn−j−1(Tf ) for (e, f) ∈ ∆j,m−1. In particular, since
µe(f) = −1/|f∗| for e ∈ ∆0(f∗), we obtain that the function w∅,f , f ∈ ∆m−1

satisfies the recurrence relation

w∅,f =
1

|f∗|
∑

i∈I(f∗)

w∅,〈xi,f〉.

Let 0 ≤ j ≤ n−m. For the discussion below, it will be useful to observe that the
function just defined satisfies∑

e∈∆j(f∗)

φe ⊗ (δw)e,f =
∑

e∈∆j−1(f∗)

(∂φ)e ⊗ we,f

=
∑

i∈I(f∗)

(λid− jdλi∧)
∑

e∈∆j−1(f∗)

φe ⊗ we,f

= (−1)j−1
∑

i∈I(f∗)

(λid− jdλi∧)
∑

e∈∆j(f∗)

µe ⊗ (δ+w)e,f ,

where we have used (2.2) and (2.5), in addition to (4.14). Alternatively, from (4.2)
we have

(4.15)
∑

e∈∆j(f∗)

[
φe ⊗ (δw)e,f −

(
φe + (−1)j−1βe

)
⊗ (δ+w)e,f

]
= 0,

where f ∈ ∆m−1 and 0 ≤ j ≤ n−m, and where the spatial variable for φe and βe
is restricted to Ωf .

The set up above defines the functions we,f for all (e, f) ∈ ∆j,m−1, where −1 ≤
j < n−m, from the corresponding functions defined for elements in ∆j,m. However,
we will also need the functions we,f for (e, f) ∈ ∆n−m,m−1. In this case, the right
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hand side of (4.14) is not well defined since there are no elements in ∆n−m,m.
Instead, for f ∈ ∆m−1(T ) and j = n−m, we will require we,f to satisfy

(4.16)
∑

e∈∆j(f∗)

φe ⊗ dwe,f =
∑

e∈∆j(f∗)

βe(f)⊗ (δ+w)e,f ,

and d∗fwe,f = 0. In (4.16), the spatial variables are restricted to Ωf × Ω, i.e.,

φe and βe(f) mean the restrictions of these quantities to Ωf . It follows from the
induction hypothesis and the fact that trΩf

βe(f) ∈ P−1 Λn−m(Tf , f∗), that the right

hand side of (4.16) can be viewed as an element of P−1 Λn−m(Tf , f∗)⊗ P−1 Λm(T ).
Furthermore, from the hypothesis (4.13), combined with (2.2), we obtain that∑

e∈∆j(f∗)

βe(f)⊗ (δ+dw)e,f = 0,

since ∂β(f) = 0. As a consequence, from the exactness of the complex (P−1 Λ(Tf ), d),

we obtain that there exist elements we,f ∈ P−1 Λm−1(Tf ) such that (4.16) holds.
Finally, since we require d∗fwe,f = 0, the functions we,f are uniquely determined.

To complete the induction argument, we need to verify that the assumption
(4.13) is preserved by the induction step, i.e., that the identity (4.13) holds with m
replaced by m − 1. However, by combining (4.15) and (4.16), we obtain that the
identity

(4.17) dwe,f = (−1)j+1[(δw)e,f − (δ+w)e,f ]

holds for (e, f) ∈ ∆j,m−1, j = n − m. As a further consequence of the complex
property of δ+, and the identity δ+ ◦ δ = −δ ◦ δ+, we then obtain

(δ+dw)e,f = (−1)n−m+1(δ ◦ δ+w)e,f ,

for (e, f) ∈ ∆n−m+1,m−2. Hence, property (4.13) at level m− 1 is verified.

We summarize the properties of the construction above.

Lemma 4.3. The inductive procedure above uniquely specifies the functions we,f ∈
P−1 Λn−j−1(Tf ) for all (e, f) ∈ ∆j,m, where 0 ≤ m ≤ n and −1 ≤ j < n−m.

Next we will establish that the functions we,f , introduced above, satisfy the
identity (4.17) more generally, i.e., not only for (e, f) ∈ ∆n−m,m−1.

Lemma 4.4. The functions we,f satisfy the identity (4.17) for all (e, f) ∈ ∆j,m,
where 0 ≤ m ≤ n− 1 and 0 ≤ j < n−m.

Proof. The proof will be done by induction with respect to m. For m = n− 1, the
only possible value of j is j = 0. In this case, the desired identity has already been
verified above. Next, we assume that the identity holds for all (e, f) ∈ ∆j,m, where
0 ≤ j < n−m. Note that the case (e, f) ∈ ∆n−m,m−1 is already established above.
Therefore, we can assume that j < n −m, and from the support property of the
functions we,f , it is enough to show this identity on Ωf . It follows from (4.15) that
the desired identity will follow if we can show that

(4.18)
∑

e∈∆j(f∗)

βe ⊗ (δ+w)e,f =
∑

e∈∆j(f∗)

φe ⊗ dwe,f , f ∈ ∆m−1,
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when φe and βe are restricted to Ωf . If 0 ≤ j < m− n, then from Corollary 4.2 we
have the identity βe = (∂µ)e which gives∑

e∈∆j(f∗)

βe ⊗ (δ+w)e,f =
∑

e∈∆j(f∗)

(∂µ)e ⊗ (δ+w)e,f

= −
∑

e∈∆j+1(f∗)

µe ⊗ (δ+ ◦ δw)e,f = (−1)j
∑

e∈∆j+1(f∗)

µe ⊗ (δ+dw)e,f

=
∑

e∈∆j(f∗)

φe ⊗ dwe,f ,

where we have used the fact that δ ◦ δ+ = −δ+ ◦ δ, (4.14), and the induction
hypothesis (4.17) with f ′ = {xi, f} ∈ ∆m and e′ = e(x̂i) ∈ ∆j((f

′)∗). This
establishes the identity (4.18), and therefore the proof is completed. �

The desired weight functions ze,f are defined from the corresponding w functions
by the relation (4.11). More precisely, the functions ze,f are defined by (4.11) for
(e, f) ∈ ∆j,m for −1 ≤ m < n and 0 ≤ j < n−m. In particular, for (e, f) ∈ ∆0,n−1,
we have ze,f = −z〈e,f〉. Recall also that a key property of these functions is that

they satisfy the identity (2.17), i.e., dz = (−1)j+1δz for (e, f) ∈ ∆j,m.

Lemma 4.5. The functions ze,f , where (e, f) ∈ ∆j,m for −1 ≤ m ≤ n − 1 and
0 ≤ j < n−m belong to P−1 Λn−j(T ), and with support in Ωf∩ΩEe . In addition, ze,f
has vanishing trace on the boundary of Ω. Furthermore, for j > 0, the identities
(2.17) and (δ+z)e,f = 0 hold.

Proof. That the functions ze,f belong to P−1 Λn−j(T ) follows from the fact that
we,f are elements of P−1 Λn−j−1(T ). Furthermore, since δ+ satisfies the complex
property, we obtain that δ+z = 0, and from (4.17) we have

(dz)e,f = (δ+dw)e,f = (−1)j(δ+ ◦ δw)e,f = (−1)j+1(δ ◦ δ+w)e,f = (−1)j+1(δz)e,f ,

where, as above, we have used the fact that δ ◦ δ+ = −δ+ ◦ δ.

From the support property of the w functions given in Lemma 4.3, we have for
(e, f) ∈ ∆j,m and i ∈ I(e) that

suppwe(x̂i),〈xi,f〉 ⊂ Ω〈xi,f〉 = Ωf ∩ Ωxi
,

which implies that

supp ze,f ⊂
⋃

i∈I(e)

(
Ωf ∩ Ωxi

)
= Ωf ∩ ΩEe .

Finally, since all functions {we,f} have vanishing trace on the boundary of Ω, this
property will also hold for all the functions {ze,f}. �

Recall that the functions ψe,g(f), defined by (4.8), where (e, f) ∈ ∆j,m−1 and
g ∈ ∆̄(f), satisfy the relation (4.9). The following relation between the functions
ψe,g(f) and the weight functions ze,f will be crucial in our analysis below.
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Lemma 4.6. Let 0 ≤ m ≤ n − 1 and 0 ≤ j < n −m. For any g ∈ ∆s(T ), where
−1 ≤ s ≤ m− 1, the identity

(4.19)
∑

(e,f)∈∆j,m

f⊃g

ψe,g(f)⊗ ze,f =
∑

(e,f)∈∆j,m−1

f⊃g

φe ⊗ ze,f ,

holds.

Proof. Since z = δ+w, we can reformulate the right hand side of the identity as∑
(e,f)∈∆j,m−1

f⊃g

∑
i∈I(e)

(−1)σe(xi)φe ⊗ we(x̂i),〈xi,f〉 =
∑

(e,f)∈∆j−1,m

f⊃g

∑
i∈I(f∩g∗)

φ[xi,e] ⊗ we,f .

On the other hand, using the definition of ψe,g(f), (2.5), and (4.14), for e ∈ ∆j−1,
the left hand side can be rewritten as

(−1)j−1
∑
f∈∆m
f⊃g

∑
i∈I(f∩g∗)

(λid− jdλi∧)
∑

e∈∆j(f∗)

µe ⊗ (δ+w)e,f

=
∑
f∈∆m
f⊃g

∑
i∈I(f∩g∗)

(λid− jdλi∧)
∑

e∈∆j−1(f∗)

φe ⊗ we,f

=
∑

(e,f)∈∆j−1,m

f⊃g

∑
i∈I(f∩g∗)

φ[xi,e] ⊗ we,f ,

and hence the desired identity is verified. �

5. The order reduction operators

We recall from Section 2.4 above that the order reduction operators, Rke,f , are

defined for (e, f) ∈ ∆j,m from corresponding functions ze,f by

(Rke,fu)λ =

∫
Ω

(ΠjG
∗
fu)λ ∧ ze,f , λ ∈ Scf ,

cf. (2.16). The functions ze,f will be taken to be the weight functions constructed in
the previous section. In particular, ze,f ∈ P−1 Λn−j(Tf ) for (e, f) ∈ ∆j,m, and with
support in Ωf∩ΩEe , while the function Gf , defined above, maps the product Ωf×Scf
to Ωf . Since Gf is defined on a product space, the target space for the pullback,
G∗f , can be represented as the sum of tensor products, and Πj is the canonical map

of Λk(Ωf × Scf ) to Λj(Ωf ) ⊗ Λk−j(Scf ). By construction, the operators Rke,f map

k-forms to (k − j)-forms for (e, f) ∈ ∆j,m, 0 ≤ j ≤ k. Furthermore, Rke,f ≡ 0 for
j > k.

The commuting property dG∗fu = G∗fdu, where u is k-form on Ωf , can in the
present setting be expressed by

(5.1) dΩΠj−1G
∗
fu+ (−1)jdSΠjG

∗
fu = ΠjdG

∗
fu = ΠjG

∗
fdu, j = 1, . . . , k,

where dΩ and dS denote the exterior derivative with respect to the spaces Ω and
Scf , respectively. By combining this with property (2.17), cf. Lemma 4.5, we
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derive, exactly as in the proof of [6, Proposition 5.4], that the operators Rke,f satisfy

the fundamental relation (2.18). Furthermore, from the fact that δ+z = 0, cf.
Lemma 4.5, we obtain that (δ+Rk)e,f = 0.

Next we will use Lemma 4.6 to obtain the following property of the operators
Rke,f .

Lemma 5.1. Let 0 ≤ m ≤ n − 1 and 0 ≤ j < n −m. For any g ∈ ∆s(T ), where
−1 ≤ s ≤ m− 1, the identity

(5.2)
∑

(e,f)∈∆j,m

f⊃g

ψe,g(f) ∧ L∗gRke,fu =
∑

(e,f)∈∆j,m−1

f⊃g

φe ∧ L∗gRke,fu,

holds.

Proof. We consider the simplex g to be fixed. Since ψe,g(f) ∈ P−1 Λj(T , g∗), it fol-
lows that there exist constants {ae,e′(f)} such that ψe,g(f) =

∑
e′∈∆j(g∗) ae,e′(f)φe′ .

As a consequence, the identity (4.19) can be expressed as∑
(e,f)∈∆j,m−1

f⊃g

φe ⊗ ze,f =
∑

e∈∆j(g∗)

φe ⊗
∑

(e′,f)∈∆j,m

f⊃g

ae′,e(f)ze′,f ,

which implies that∑
f∈∆m−1(e∗)

f⊃g

ze,f =
∑

(e′,f)∈∆j,m

f⊃g

ae′,e(f)ze′,f , e ∈ ∆j(g
∗).

From the definition of the order reduction operators Rke,f , we then obtain the cor-
responding identity∑

f∈∆m−1(e∗)
f⊃g

Rke,f =
∑

(e′,f)∈∆j,m

f⊃g

ae′,e(f)Rke′,f , e ∈ ∆j(g
∗).

By applying L∗g and then reversing the steps above, we obtain the desired identity.
�

In addition to the operators Rke,f , we will also use the operators Qke,f , defined
from the functions we,f . More precisely,

(Qke,fu)λ =

∫
Ω

(Πj+1G
∗
fu)λ ∧ we,f , (e, f) ∈ ∆j,m,

where 0 ≤ m ≤ n and −1 ≤ j < n−m. We recall that for e ∈ ∆j(f
∗), the functions

we,f are trimmed linear (n−j−1)-forms with support in Ωf , and as a consequence,
the operator Qke,f maps k-forms to (k − j − 1)-forms. In particular, if k < j + 1,

then Qke,f ≡ 0. Since ze,f = (δ+w)e,f , we also have ,

(5.3) (δ+Qku)e,f = Rke,fu.
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Since the operators Qke,f are constructed from a similar procedure as the operators

Rke,f , the new operators will also preserve piecewise smoothness and the piecewise

polynomial spaces. In particular, we have for (e, f) ∈ ∆j,m that

(5.4) b−(j+1)Qke,f (PΛk(Tf )) ⊂ PΛk(Scf ),

where P can either be Pr or P−r . Here, the extra factor b−1, as compared to the
mapping properties of the corresponding operators Rke,f given in Lemma 2.2, is due
to the fact that the order of the forms we,f are reduced by one as compared to the
forms ze,f . We refer to the proof of Proposition 5.2 of [6] for further details.

Lemma 5.2. Let 1 ≤ m ≤ n and j = n − m. Assume that f ∈ ∆m−1(T ) and
g ∈ ∆̄(f). The identity∑

e∈∆j(f∗)

φe ∧ L∗g
(

(−1)j+1Qk+1
e,f du− dQ

k
e,fu

)
=

∑
e∈∆j(f∗)

βe(f) ∧ L∗gRke,fu,

holds on Ωf .

Proof. For a fixed e ∈ ∆j(f
∗), we have

(−1)j+1Qk+1
e,f du− dQ

k
e,fu =

∫
Ω

(
(−1)j+1Πj+1G

∗
fdu− dSΠj+1G

∗
fu
)
∧ we,f

= (−1)j+1

∫
Ω

dΩΠjG
∗
fu ∧ we,f =

∫
Ω

ΠjG
∗
fu ∧ dwe,f ,

where we have used the identity (5.1), and the local support of we,f . However, from
(4.16) we have that∑

e∈∆j(f∗)

φe ⊗ L∗g
∫

Ω

ΠjG
∗
fu ∧ dwe,f =

∑
e∈∆j(f∗)

βe(f)⊗ L∗gRke,fu

on Ωf , and hence the desired identity follows from (2.1). �

6. The local operators Kk
m,f

We recall that the operators {Bkf }f∈∆, appearing in the decomposition (1.1), will

be defined by the operator W k, mapping into the space of trimmed linear k-forms,
and from the local operators {Kk

m,f}f∈∆j , j = m,m−1, by formulas (2.25)–(2.26).

The purpose of this section is to define the operators {Kk
m,f}. For each value of m,

1 ≤ m ≤ n− 1, we define the operators Kk
m,f , for f ∈ ∆m, by

(6.1) Kk
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
k
fu.

This is the obvious generalization of the corresponding operators defined for k = 0
in Section 3 above. From the properties of the operators Akf , cf. Section 2.4, it

follows that the operator L∗gA
k
f , and hence Kk

m,f , has domain of dependence Ωf .

Furthermore, the operator (6.1) commutes with the exterior derivative, preserves
piecewise smoothness and the piecewise polynomial spaces, and by the cancellation
argument, cf. Section 3, we obtain that the functions Kk

m,fu have support on Ωf .
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For f ∈ ∆m−1, the generalization of the operators K0
m,f , introduced in Section 3,

to the case of k-forms is less obvious. In this case, we define Kk
m,f by an alternating

sum of the form

(6.2) Kk
m,f =

∑
g∈∆̄(f)

(−1)|f |−|g|Kk
m,f,g,

where

(6.3) Kk
m,f,gu = −L∗gAkfu+

n−m∑
j=0

(−1)j−1

ρj+1
g

∑
e∈∆j(f∗)

(
φe + ψe,g(f)

)
∧ L∗gRke,fu

+
∑

e∈∆n−m(f∗)
j=n−m

(−1)j
(
d
φe

ρj+1
g

)
∧ L∗gQke,fu.

These operators reduce to the corresponding operators K0
m,f if k = 0. To see

this, observe that all the operators Q0
e,f are identically zero. Similarly, R0

e,f = 0

if (e, f) ∈ ∆j,m, j > 0, and if j = 0 then R0
e,f = −A0

〈e,f〉. As a consequence, we

obtain from (6.2) and (6.3) that

K0
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|
[
− L∗gA0

fu+ ρ−1
g

∑
i∈I(f∗)

(
λi + ψxi,g(f)

)
∧ L∗gA0

〈xi,f〉u
]

=
∑

g∈∆̄(f)

(−1)|f |−|g|ρ−1
g

[ ∑
i∈I(f∗)

(
λi −

ρf
|f∗|

)
∧ L∗gA0

〈xi,f〉u
]
,

where we have used (2.13) and (4.10). Hence, we can conclude that the definition
above agrees with the definition given in Section 3 when k = 0, cf. formula (3.5).
We note that the domain of dependence of all the operators in (6.3) is Ωf and hence
the domain of dependence of Kk

m,f is Ωf . Furthermore, it follows from (4.8) that

trλi=0 ψe,g(f) = trλi=0 ψe,〈xi,g〉(f), xi ∈ f ∩ g∗.
By the cancellation argument introduced in Section 3, it is then easy to see that
the functions Kk

m,fu have support on Ωf . In fact, if g ∈ ∆̄(f) and i ∈ I(f ∩ g∗),
then

trλi=0

(
Kk
m,f,〈xi,g〉u−K

k
m,f,gu

)
= 0,

which shows that Kk
m,fu has support on Ωxi . Furthermore, since i ∈ I(f) is

arbitrary, the support of Kk
m,fu must be limited to

Ωf =
⋂

i∈I(f)

Ωxi .

A key step to show that the operator Kk
m,f commutes with the exterior derivative

and preserves piecewise smoothness is the following alternative expression of the
first part of the operator Kk

m,f,g.

Lemma 6.1. Assume that 1 ≤ m ≤ n− 1. For each f ∈ ∆m−1(T ) and g ∈ ∆̄(f),
the identity

(6.4) − Lg∗Akfu+

n−m∑
j=0

(−1)j−1

ρj+1
g

∑
e∈∆j(f∗)

(
φe + ψe,g

)
∧ L∗gRke,fu
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=

n−m∑
j=1

∑
e∈∆j(f∗)

[
d(µe∧L∗gb−jRke,fu)+µe∧L∗gb−jRk+1

e,f du
]
−

∑
e∈∆j(f∗)
j=n−m

βe

ρj+1
g

∧L∗gRke,fu

holds on Ωf . Here, the functions µe, βe, ψe,g are all associated to the simplex f .

The proof of the lemma above is partly technical. Therefore, we delay the proof,
and we will first use the identity to prove the following key result.

Lemma 6.2. Let 1 ≤ m ≤ n − 1 and assume f ∈ ∆j(T ), j = m,m − 1. The
function Kk

m,fu has domain of dependence Ωf and support on Ωf . Furthermore, the

operator Kk
m,f commutes with the exterior derivative and maps the spaces Λk(Tf ),

P−r Λk(Tf ), and PrΛk(Tf ) to themselves.

Proof. Following the discussion above, it remains to show that the operator defined
by (6.2) and (6.3) preserves piecewise smoothness and, in particular, the piecewise
polynomial spaces, and that this operator commutes with the exterior derivative.
In fact, we will show that each of the operators Kk

m,f,g has these properties, where

g ∈ ∆̄(f). Furthermore, due to the support property of the functions Kk
m,fu already

verified, it is enough to establish these properties on the domain Ωf .

It is a consequence of the identity of Lemma 6.1 that the operator Kk
m,f,g admits

the alternative representation

Kk
m,f,gu =

n−m∑
j=1

∑
e∈∆j(f∗)

(
d(µe ∧ L∗gb−jRke,fu) + µe ∧ L∗gb−jRk+1

e,f du
)

+
∑

e∈∆j(f∗)
j=n−m

(
(−1)j

(
d
φe

ρj+1
g

)
∧ L∗gQke,fu−

βe

ρj+1
g

∧ L∗gRke,fu
)
.

However, by Lemma 5.2, the two last terms can be rewritten in the form∑
e∈∆j(f∗)
j=n−m

[
(−1)j

(
d
φe

ρj+1
g

)
∧ L∗gQke,fu−

φe

ρj+1
g

∧ L∗g
(

(−1)j+1Qk+1
e,f du− dQ

k
e,fu

)]

=
∑

e∈∆j(f∗)
j=n−m

(−1)j
(
d
( φe

ρj+1
g

∧ L∗gQke,fu
)

+
φe

ρj+1
g

∧ L∗gQk+1
e,f du

)
.

As a consequence, it follows that the operator Kk
m,f,g can be expressed as

Kk
m,f,gu =

n−m∑
j=1

∑
e∈∆j(f∗)

(
d(µe(f) ∧ L∗gb−jRke,fu) + µe(f) ∧ L∗gb−jRk+1

e,f du
)

+
∑

e∈∆j(f∗)
j=n−m

(−1)j
(
d
(
φe ∧ L∗gb−(j+1)Qke,fu

)
+ φe ∧ L∗gb−(j+1)Qk+1

e,f du
)
.
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From this representation, commuting with the exterior derivative is obvious, and
the space preserving properties follow from (2.6) and the space preserving properties
of the operators Rke,f and Qke,f given in Lemma 2.2 and (5.4). In particular, for the

trimmed piecewise polynomial spaces, we use the fact that P−1 Λj ∧ P−r−1Λk−j ⊂
P−r Λk, cf. [2, Section 3.3]. �

Next, we will establish Lemma 6.1.

Proof. (of Lemma 6.1) From the identity (4.9), we obtain

n−m∑
j=0

∑
e∈∆j(f∗)

(−1)j−1

ρj+1
g

(
φe + ψe,g

)
∧ L∗gRke,fu

=

n−m∑
j=0

∑
e∈∆j(f∗)

[
d
(µe
ρjg

)
− βe

ρj+1
g

]
∧ L∗gRke,fu

=
∑

e∈∆j(f∗)
j=n−m

[
d
(µe
ρjg

)
− βe

ρj+1
g

]
∧ L∗gRke,fu

+

n−m−1∑
j=0

∑
e∈∆j(f∗)

[
d
(µe
ρjg

)
− (∂µ)e

ρj+1
g

]
∧ L∗gRke,fu.

where we have used the identity βe = (∂µ)e from Lemma 4.1, and where ∂ = ∂(f∗).
Recall also that for e ∈ ∆0(f∗), we obtain from (2.13) that∑

e∈∆0(f∗)

dµe ∧ L∗gRke,fu = L∗gA
k
fu,

since dµe = −1/|f∗| and Rke,fu = −Ak〈e,f〉. Hence, the left hand side of (6.4) is

given by

(6.5)
∑

e∈∆j(f∗)
j=n−m

[
d
(µe
ρjg

)
− βe

ρj+1
g

]
∧ L∗gRke,fu−

∑
e∈∆0(f∗)

(∂µ)e
ρg

∧ L∗gRke,fu

+

n−m−1∑
j=1

∑
e∈∆j(f∗)

[
d
(µe
ρjg

)
− (∂µ)e

ρj+1
g

]
∧ L∗gRke,fu.

On the other hand, it follows from (2.18) and the Leibniz rule for the wedge product,
that

d(µe ∧ L∗gb−jRke,fu) + µe ∧ L∗gb−jRk+1
e,f du

=
(
d
µe

ρjg

)
∧ L∗gRke,fu+ µe ∧ L∗gb−j((−1)j−1dRke,fu+Rk+1

e,f du)

=
(
d
µe

ρjg

)
∧ L∗gRke,fu− µe ∧ L∗gb−j(δRku)e,f ,

for e ∈ ∆j(f
∗), 0 ≤ j ≤ n −m. As a consequence, the right hand side of (6.4) is

given by
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=

n−m−1∑
j=1

∑
e∈∆j(f∗)

(
d
µe

ρjg

)
∧ L∗gRke,fu+

∑
e∈∆j(f∗)
j=n−m

[(
d
µe

ρjg

)
− βe

ρj+1
g

]
∧ L∗gRke,fu

−
n−m−1∑
j=0

∑
e∈∆j(f∗)

∂µe ∧ L∗gb−(j+1)(Rku)e,f ,

where we have used (2.2) to rewrite the last term. If we combine terms and compare
this with (6.5), we obtain (6.4). �

The definitions of the operators {Kk
m,f}, given above, combined with the opera-

tors {W k} introduced in Section 2.5, complete the construction of all the operators
required for the decomposition (1.1), cf. (2.25) and (2.26).

Proposition 6.3. The operators {Bkf }, defined by (2.25) and (2.26), have domain

of dependence Ωf if f ∈ ∆m, m < n, and ΩEf if m = n. Furthermore, the functions

Bkfu have support in Ωf .

Proof. All these properties follow directly from the corresponding properties of
the operators {Km,f} given in Lemma 6.2, except for the domain of dependence
property in the case f ∈ ∆n. However, it is a consequence (2.26) that in this case
the operator Bkf has a domain of dependence included in( ⋃

e∈∆k(f)

ΩEe
)
∪
( ⋃
g∈∆(f)

Ωg
)
⊂ ΩEf .

�

To complete the proof of the main theorem of the paper, Theorem 2.3, it remains
to verify the identity (2.24) and to establish the desired operator bounds. This will
be done in the two next sections.

7. Verifying the fundamental identity

The purpose of this section is to establish the fundamental identity (2.24), i.e.,

Ckmu−
∑
f∈∆j

j=m,m−1

Kk
m,fu = Ckm−1u, 1 ≤ m ≤ n− 1.

Therefore, we have to study sums of the operators Kk
m,f introduced in the previous

section. As a preliminary step, we study sums of expressions corresponding to a
part of the definition (6.3).

Lemma 7.1. Assume that 1 ≤ m ≤ n− 1. Then

(7.1)
∑

(e,f)∈∆j.m−1

0≤j≤n−m

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
ψe,g(f)

ρg
∧ L∗gb−jRke,fu
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= −
∑

(e,f)∈∆j.m−2

0≤j≤n−m

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

Proof. Recall from (4.8) that ψe,g(f) = 0 if g = f . Therefore, by changing the order
of summation and then using (5.2), the left hand side of (7.1) can be rewritten as

∑
g∈∆s

−1≤s≤m−2

(−1)m−|g|
n−m∑
j=0

(−1)j−1

ρj+1
g

∑
(e,f)∈∆j,m−1

f⊃g

ψe,g(f) ∧ L∗gRke,fu

=
∑
g∈∆s

−1≤s≤m−2

(−1)m−|g|
n−m∑
j=0

(−1)j−1
∑

(e,f)∈∆j,m−2

f⊃g

φe
ρg
∧ L∗gb−jRke,fu,

where the right hand side corresponds exactly to the right hand side of (7.1). �

Next, we consider a corresponding sum of the last term of the definition (6.3).

Lemma 7.2. Assume that 1 ≤ m ≤ n− 1. Then

(7.2)
∑

(e,f)∈∆j,m−1

j=n−m

∑
g∈∆̄(f)

(−1)|f |−|g|
(
d
φe

ρj+1
g

)
∧ L∗gQke,fu

= −
∑

(e,f)∈∆j,m−2

j=n−m+1

∑
g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

Proof. Let f ∈ ∆m−1 and g ∈ ∆̄(f) be fixed. Since Ωf ⊂ Ωg, it follows that
ρg =

∑
i∈I(g∗) λi on Ωf . Since dim f∗ = n − m and e ∈ ∆n−m(f∗), φ[xi,e] = 0

unless i ∈ I(f) and so we have

d
( φe

ρn−m+1
g

)
=

1

ρn−m+2
g

∑
i∈I(f∩g∗)

φ[xi,e], on Ωf .

As a consequence, when we restrict to Ωf , we can conclude that∑
e∈∆j(f∗)
j=n−m

(
d
φe

ρj+1
g

)
∧ L∗gQke,fu

=
∑

i∈I(f∩g∗)

∑
e∈∆j(f(x̂i)

∗)
e⊃xi

j=n−m+1

(−1)σe(xi)
φe
ρg
∧ L∗gb−jQke(x̂i),f

u.

Next, if we sum over all g ∈ ∆̄(f) we obtain

(7.3)
∑

g∈∆̄(f)

(−1)|f |−|g|
∑

e∈∆j(f∗)
j=n−m

(
d
φe

ρj+1
g

)
∧ L∗gQke,fu
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=
∑

g∈∆̄(f)

(−1)|f |−|g|
∑

i∈I(f∩g∗)

∑
e∈∆j(f(x̂i)

∗)
e⊃xi

j=n−m+1

(−1)σe(xi)
φe
ρg
∧ L∗gb−jQke(x̂i),f

u.

This identity obviously holds on Ωf , and by the cancellation argument, it also holds
on Ω \ Ωf , since both sides of the identity vanish there. Furthermore, if we sum
(7.3) over all f ∈ ∆m−1, and use the fact that f = 〈xi, f(x̂i)〉 for i ∈ I(f), we
obtain that the left hand side of (7.2) can be expressed as∑

g∈∆s
−1≤s≤m−2

(−1)m−|g|
∑

f∈∆m−1

f⊃g

∑
i∈I(f∩g∗)

∑
e∈∆j(f(x̂i)

∗)
e⊃xi

j=n−m+1

(−1)σe(xi)
φe
ρg
∧ L∗gb−jQke(x̂i),f

u

=
∑
g∈∆s

−1≤s≤m−2

(−1)m−|g|
∑

f∈∆m−2

f⊃g

∑
e∈∆j(f∗)
j=n−m+1

φe
ρg
∧ L∗gb−j

∑
i∈I(e)

(−1)σe(xi)Qke(x̂i),〈xi,f〉u

= −
∑

(e,f)∈∆j,m−2

j=n−m+1

∑
g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−j(δ+Qku)e,f ,

where we have used the fact that for g fixed, we have∑
f∈∆m−1

f⊃g

∑
i∈I(f∩g∗)

∑
e∈∆j(f(x̂i)

∗)
e⊃xi

=
∑

f∈∆m−2

f⊃g

∑
e∈∆j(f∗)

∑
i∈I(e)

.

However, by (5.3), the final term above is exactly the right hand side of (7.2). �

The main result of this section now follows from the two lemmas above.

Proposition 7.3. Let 1 ≤ m ≤ n− 1. Then the identity (2.24) holds.

Proof. It follows from (2.20) and (6.1) that

Ckmu−
∑
f∈∆m

Kk
m,fu =

∑
(e,f)∈∆j,m−1

0≤j≤n−m

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

On the other hand, it follows from (6.2), (6.3), and the two identities (7.1) and
(7.2) derived above, that∑

f∈∆m−1

Kk
m,fu = −

∑
f∈∆m−1

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
k
fu

+
∑

(e,f)∈∆j,m−1

0≤j≤n−m

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

−
∑

(e,f)∈∆j,m−2

0≤j≤n−m+1

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

Therefore, by comparing the two formulas above, we obtain that
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Ckmu−
∑
f∈∆j

j=m,m−1

Kk
m,fu =

∑
f∈∆m−1

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
k
fu

+
∑

(e,f)∈∆j,m−2

0≤j≤n−m+1

(−1)j−1
∑

g∈∆̄(f)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu,

and by (2.20), the right hand side is exactly Ckm−1u. This completes the proof. �

8. Bounding the operator norms

To complete the proof of Theorem 2.3, it remains to show that all the operators,
W k and Bkf , of the decomposition (1.1) are bounded in L2Λk(Ω), and satisfy a
stable decomposition property. This will be achieved by Proposition 8.1 below. In
fact, since these operators commute with the exterior derivative, they will also be
bounded on the Sobolev space HΛk(Ω).

The various constants that appear in the bounds below only depend on the mesh
T through the shape-regularity constant cT , defined by

cT = max
T∈∆n(T )

diam(T )

diam(BT )
,

where BT is the largest ball contained in T . The consequence of this is that if we
consider a family of meshes, {T h}, parametrized by a real parameter h ∈ (0, 1],
typically obtained by mesh refinements, the bounds will be uniform with respect
to h as long as we restrict to a family with a uniform bound on the constants
{cT h}. In the bounds we derive below, the various constants that appear will
depend on the space dimension n and the domain Ω, in addition to the dependence
explicitly stated. Throughout this section, we will assume that the operators under
investigation are applied to piecewise smooth differential forms. However, since the
space Λk(T ) is dense in L2Λk(Ω), it a consequence of the domain of dependence
result in Proposition 6.3 and the bound obtained in Proposition 8.1 below, that
all the operators Bkf , where f ∈ ∆m, can be extended to bounded operators from

L2Λk(Ωf ) to itself if 0 ≤ m < n, and from L2Λk(ΩEf ) to L2Λk(Ωf ) when m = n. To
bound the norms of the operators comprising the new decomposition of the bubble
transform developed in this paper, we will basically follow the approach developed
in [6, Section 8]. We recall that the decomposition (1.1) takes the form

u = W ku+

n∑
m=0

∑
f∈∆m

Bkfu,

The main result of this section is the following bound.

Proposition 8.1. There exists a constant c, depending on the shape-regularity
constant cT , such that for 0 ≤ k ≤ n, we have

‖W ku‖L2(Ω),
( ∑
f∈∆(T )

‖Bkfu‖2L2(Ωf )

)1/2

≤ c‖u‖L2(Ω).
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To establish the bounds in Proposition 8.1, we will need some preliminary results.
We define the overlap of a set of subdomains as the smallest upper bound for the
number of domains which will contain any fixed element T ∈ ∆n. The overlap of the
set of macroelements, {Ωf}f∈∆m

, will only depend on m and the space dimension
n, while the overlap for the set of extended macroelements, {ΩEf }, will depend on
the mesh T . Another important property of the extended macroelements is the
variation of the size of the elements. We define hf = maxT∈∆n(T E

f ) diam(T ), where

T Ef is the restriction of the mesh T to ΩEf . The following result, established in

Lemmas 8.2 and 8.3 of [6], shows that these domains allow bounded overlap and
local quasi-uniformity in the following sense.

Lemma 8.2. There is a constant c, depending on T only through the shape-
regularity constant cT , which bounds the overlap of the domains {ΩEf }f∈∆(T ). Fur-
thermore,

(8.1) hf ≤ c min
T∈∆n(T E

f )
diam(T ), f ∈ ∆(T ).

From the definitions of the operators Kk
m,f , given by (6.1)–(6.3), we will need

appropriate bounds for the functions φe, ψe,g(f), and also for the functions we,f and
ze,f which are used to define the order reduction operators Qke,f and Rke,f . All these

functions are trimmed linear forms with local support. In particular, if (e, f) ∈ ∆j,m

and g ∈ ∆̄(f), then ψe,g(f) belongs to P−1 Λj(T , g∗), we,f ∈ P−1 Λn−j−1(Tf ), and

ze,f ∈ P−1 Λn−j(Tf ) ∩ P−1 Λn−j(T Ee ). In general, if w is any trimmed linear form,
say w ∈ P−1 Λj(T ), then w admits a unique expansion of the form

w =
∑
e∈∆j

ceφe,

where {ce} are real coefficients. If maxe∈∆j |ce| can be bounded by a quantity which
only depends on the mesh T through the mesh regularity constant, we will say that
w admits a uniformly bounded expansion. It is a consequence of the bound (8.1)
that for g ∈ ∆̄(f) and e ∈ ∆j(f

∗) we have

(8.2) ‖φe/ρg‖L∞(Ω) ≤ ch−je ,

where c depends on the shape-regularity constant. Note, in particular, that g = ∅
gives a bound on the L∞-norm of φe. Next, recall that the coefficients {ae,e′} =
{ae,e′(f)} of functions {µe(f)}, given by (4.4), can be computed recursively with re-
spect to increasing values of j by the algebraic systems (4.6), (4.7). There are no ex-
plicit mesh dependent quantities present in the systems (4.6), (4.7). Only the num-
ber of equations depends on the mesh through the number of elements in ∆j(f

∗),
and this number can be bounded by the shape-regularity constant. Therefore, since
ae,∅(f) = −1/|f∗| for e ∈ ∆0(f∗), we can conclude that all functions {µe(f)} admit
uniformly bounded expansions. Furthermore, since the functions {trΩf

βe(f)} and
{ψe,g(f)} are explicitly defined from {µe(f)}, through (4.2) and (4.8), the same
conclusion holds for these function classes. Hence, it follows from (4.4) (4.8), and
(8.2) that the forms µe ∈ P−1 Λj−1(T , f∗) and ψe,g(f) ∈ P−1 Λj(T , g∗) satisfy

(8.3) ‖µe(f)‖L∞(Ω) ≤ ch−j+1
e , ‖ψe,g(f)/ρg‖L∞(Ω) ≤ ch−je ,

where (e, f) ∈ ∆j,m and g ∈ ∆̄(f) for 0 ≤ m ≤ n− 1, 0 ≤ j < n−m.
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The following lemma below is a key ingredient to establish Proposition 8.1.

Lemma 8.3. The trimmed linear differential forms we,f and ze,f admit uniformly
bounded expansions.

We will delay the proof of this result to the end of the section. However, from this
bound, combined with (8.2) and Lemma 8.2, we immediately obtain the estimates

(8.4) h−1
f ‖we,f‖L∞(Ω), ‖ze,f‖L∞(Ω) ≤ chj−nf , (e, f) ∈ ∆j,m,

where the constant c depends on the shape regularity constant.

Lemma 8.4. The operator W k maps L2(Ω) to itself, and with an operator norm
bounded by the shape-regularity constant.

Proof. We recall that the operator W k is given by

W ku = (−1)k−1
∑
e∈∆k

φe

(∫
Ω

u ∧ ze,∅
)
,

Since the function ze,∅ is supported on ΩEe we obtain from (8.4) that∫
Ω

u ∧ ze,∅ ≤ chn/2e ‖ze,∅‖L∞(ΩE
e )‖u‖L2(ΩE

e ) ≤ chk−n/2e ‖u‖L2(ΩE
e ),

where here, and below, the constant c depends on the shape-regularity constant,
but is not necessarily the same at each occurrence. Furthermore, since the function
φe has support on Ωe, we obtain from (8.2) that |

∫
Ω
φ2
e| ≤ chn−2k. Finally, the fact

that φe = φeκe, where κe is the characteristic function of Ωe, implies that( ∑
e∈∆k

φe
( ∫

Ω

u ∧ ze,∅
))2

≤
∑
e∈∆k

φ2
e

( ∫
Ω

u ∧ ze,∅
)2 ∑

e∈∆k

κe.

Putting this together, we obtain

‖W ku‖2L2(Ω) ≤ c
∫

Ω

( ∑
e∈∆k

φe
( ∫

Ω

u ∧ ze,∅
))2

≤ c
( ∑
e∈∆k

‖u‖2L2(ΩE
e )

)(
‖
∑
e∈∆k

κe‖L∞(Ω)

)
≤ c‖u‖2L2(Ω),

where the final inequality follows from the overlap properties of the domains {Ωe}
and {ΩEe }, cf. Lemma 8.2. This completes the proof. �

In addition to the L2-bound for the operator W k, we will need corresponding
bounds for all the operators Kk

m,f . We observe from the definitions (6.1), (6.2), and

(6.3) of these operators that we will also need appropriate bounds for operators of
the form Akf , Rke,f , and Qke,f , composed with the pullback L∗g for g ∈ ∆̄(f). In
fact, the three operators A,Q,R are all of the same form. In general, let f ∈ ∆m,
and assume that w is a fixed function in Λ̊n−j(Tf ). Consider the corresponding
operator, Qkj (w) : Λk(Tf )→ Λk−j(Scf ), given by

Qkj (w)u =

∫
Ω

ΠjG
∗
fu ∧ w.
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By following the steps of the derivation of the bound (8.11) of [6], but where we
retain the L∞-norm of w instead of replacing it by an upper bound, we obtain the
following result.

Lemma 8.5. Assume that f ∈ ∆m(T ), 0 ≤ m ≤ n − 1, and that 0 ≤ j ≤ k. If

w ∈ Λ̊n−j(Tf ) then the bound

‖L∗gb−jQkj (w)u‖L2(Ωf ) ≤ chnf ‖w‖L∞(Ωf )‖u‖L2(Ωf ),

holds for any g ∈ ∆̄(f), where the constant c only depends on T through the shape-
regularity constant cT .

With the help of the results obtained above, the proof of Proposition 8.1 is
straightforward.

Proof. (of Proposition 8.1) Consider a typical term in the definition (6.3) of the
operator Kk

m,f for f ∈ ∆m−1 given by(φe + ψe,g(f)

ρg

)
∧ L∗gb−jRke,fu,

where 1 ≤ m ≤ n− 1, 0 ≤ j ≤ min(n−m, k), e ∈ ∆j(f
∗), and g ∈ ∆̄(f). Since the

operator Rke,f can be identified as Qkj (ze,f ), it follows from (8.2), (8.3), (8.4) and

Lemma 8.5 that the L2(Ωf )-norm of this term can be bounded by

‖
(φe + ψe,g(f)

ρg

)
‖L∞(Ωf ) · ‖L∗gb−jRke,fu‖L2(Ωf ) ≤ c‖u‖L2(Ωf ),

when g ∈ ∆̄(f). For each f ∈ ∆, there are a finite number of such terms in the
definition of the operator Kk

m,f and it therefore follows that

‖Kk
m,fu‖L2(Ωf ) ≤ c‖u‖L2(Ωf ).

From this bound and the finite overlap property of the domains {Ωf}, we then
obtain

n−1∑
m=0

∑
f∈∆s

s=m,m−1

‖Kk
m,fu‖2L2(Ωf ) ≤ c

n−1∑
m=0

∑
f∈∆s

s=m,m−1

‖u‖2L2(Ωf ) ≤ c‖u‖
2
L2(Ω).

However, as a consequence of Lemma 8.4 and (2.25)–(2.26), this bound implies the
desired bound on

∑
f B

k
f . �

Finally, the proof below will complete the discussion of this section.

Proof. (of Lemma 8.3) Recall that the functions {we,f} and {ze,f} are defined
inductively with respect to decreasing values of m through the relations (4.11),
(4.14), and (4.16). We recall that w∅,f = −(κf/Ωf )vol for f ∈ ∆n, corresponding
to the case m = n. As an induction hypothesis, we assume that all the functions
{we,f}, for (e, f) ∈ ∆j,m, −1 ≤ j < n−m, admit a uniformly bounded expansion.
As a consequence of (4.11), we then have that the same property holds for all {ze,f}
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for (e, f) ∈ ∆j,m−1. Furthermore, by expanding the functions µe(f), we derive from
(4.11) and (4.14) that for (e, f) ∈ ∆j,m−1, −1 ≤ j < n−m,

(8.5) we,f = (−1)j
∑

e′∈∆j+1(f∗)

ae′,eze′,f ,

where the coefficients ae′,e are obtained from µe′(f), cf. (4.4), i.e., µe′ =
∑
e ae′,eφe.

Hence, we can conclude by the induction hypothesis and the fact that µ′e has a
uniformly bounded expansion, that the left hand side of (8.5) also has a uniformly
bounded expansion.

It remains to bound we,f for (e, f) ∈ ∆n−m,m−1. It follows from (4.5) that the
expansion of βe = βe(f) is given from the corresponding expansion for µe(f) by

βe =
∑

e′∈∆j(f∗)

be,e′φe′ , be,e′ = (δae,·)e′ + (−1)j1e,e′ ,

where j = n−m, and we obtain from (4.16) that

(8.6) dwe,f =
∑

e′∈∆j(f∗)

be′,eze′,f , j = n−m.

As above, we already know that the right hand side of (8.6) admits a uniformly

bounded expansion. Furthermore, since we,f ∈ P̊−1 Λm−1(T ), it can be expanded
in the form

we,f =
∑

g∈∆m−1

g⊃f

cgφg =⇒ dwe,f =
∑
g∈∆m
g⊃f

(δm−1c)gφg,

where we have used (2.4). As a consequence , the coefficients δm−1c are uniformly
bounded. Also by definition, d∗fwe,f = 0, which means that ∂m−1c = 0, cf. (4.12).

Recall that by local exactness, the coefficients {cg} are uniquely determined by ∂c
and δc. Furthermore, there are no mesh dependent quantities present in the matrix
representation of the operators δ and ∂, just 1,−1, 0. Therefore, since the number
of simplices in Tf is bounded by the shape-regularity constant, we can conclude
that

max
g∈∆m−1

g⊃f

|cg| ≤ c max
g∈∆m
g⊃f

(δc)g,

where also the constant c is bounded by the shape-regularity constant. This com-
pletes the induction step and hence the proof of the Lemma. �

acknowledgement

The authors are grateful to Snorre H. Christiansen for helpful discussions re-
garding the background material presented in Section 2.

References

1. D. N. Arnold, Finite Element Exterior Calculus, CBMS-NSF Regional Conf. Ser. in Appl.
Math. 93, SIAM, Philadelphia, 2018. xi+120 pp.

2. D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological
techniques, and applications, Acta Numerica 15 (2006), 1–155.



38 RICHARD S. FALK AND RAGNAR WINTHER

3. , Finite element exterior calculus: from Hodge theory to numerical stability, Bull.

Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354.

4. J. L. Bryant, Piecewise linear topology, in R. Daverman and R. Sher, eds, Handbook of Geo-
metric Topology, Chapter 5, 2001, North-Holland, Amsterdam.

5. R. S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element

methods, Found. Comput. Math., vol. 16 (2016), no. 1, 297-328.
6. R. S. Falk and R. Winther, The Bubble Transform and the de Rham Complex, Found. Comput.

Math., (2022), https://doi.org/10.1007/s10208-022-09589-1.
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