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LOCAL ERROR ESTIMATES FOR A FINITE ELEMENT METHOD
FOR HYPERBOLIC AND CONVECTION-DIFFUSION EQUATIONS*

RICHARD S. FALKt AND GERARD R. RICHTER$

Abstract. Local error estimates of near optimal order are derived for a finite element method
for hyperbolic and convection dominated convection-diffusion equations in a domain f C R2. The
method generates, in an explicit fashion, a continuous piecewise polynomial approximation of de-
gree n _> 2 over a triangulation of 12. The scheme is shown to propagate disturbances a distance
O(/log -) in the crosswind direction, where h is the meshsize. The analysis uses test functions
which depend only on the crosswind variable. It is also shown to be applicable, in a parallel fash-
ion, to the discontinuous Galerkin method, thus underscoring the close interrelationship of the two
methods.
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1. Introduction. In this paper, we continue the analysis of a continuous finite
element method for hyperbolic equations that was begun in [3] and later extended
to convection dominated convection-diffusion equations in [15], [16]. Here we derive
local error estimates for the method. We show how our analysis can be applied, in a
parallel fashion, to the discontinuous Galerkin method, and develop a close relationship
between the two methods. For ease of exposition, we shall deal only with constant
coefficient problems; the extension to variable coefficients involves only minor but
potentially diversionary technical details.

We first consider the case of a pure hyperbolic equation

c.Vu= f inf,,
u g on Pin(),

where f C R2 is a polygon with boundary F and c is a unit vector. Here Fin(f) is
the inflow part of F, defined by {x E Fla. n < 0}, where n denotes the unit outer
normal. Let f be triangulated by a quasi-uniform mesh of size h, with minimum angle
bounded away from zero, in such a way that la" nl 0 for all triangle sides. The
triangles then divide into two categories: those with one inflow side and two outflow
sides (type I), and vice versa (type II). In addition, they can then be ordered explicitly
with respect to domain of dependence (cf. [11]), creating the possibility that a finite
element approximation can be generated in an explicit fashion, element by element.
Two such methods originated in the neutron transport literature in an article by Reed
and Hill [14]. One yields a discontinuous approximation, the other a continuous one.

In the discontinuous Galerkin method, the approximate solution Uh, of degree
n _> 0, is taken to be an interpolant (perhaps discontinuous) of the given initial data
g on I’in(f). The triangles are then processed in an explicit order, with the following
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LOCAL ERROR ESTIMATES 731

inner product relations enforced in individual triangles T:

f
(1.1) (or. VUh, Vh) ] (U+h U-)VhO ndT (f Vh) for all Vh e Pn(T).

ia(T)

Here Pk(T) denotes the space of polynomials of degree <_ k over T, and u; (uh+)
denotes the upstream (downstream) limit of Uh on interelement boundaries, the latter
parameterized by arclength T. The continuous method is similar, except that n _> 2,
the interpolant of g on Fin(fl) must be continuous, and the inner product relations
(1.1) are changed to

(1.2) (o. VUh, Vh) (f, Vh) for all Vh E Pn-(T),

where denotes the number of inflow sides that T has. The test spaces are thus dif-
ferent for type I and type II triangles, reflecting the different number of degrees of
freedom remaining for Uh in the two types of triangles. An advantage of this method is
the reduced number of unknowns to be solved for in the approximate solution. In the
vicinity of a discontinuity, however, the additional degrees of freedom of the discon-
tinuous Galerkin method could be potentially useful. We remark that the continuous
method is also applicable over rectangular meshes (see [21]).

The discontinuous Galerkin method was first analyzed by Lesaint and Raviart
[11], and subsequently by Johnson and Pitkiranta [9], who established the error esti-
mates

Here and throughout the paper, C denotes a generic constant, independent of u and
h, and IIn, Irout(), and IIk,n denote the norms on L2(),L2(Fout()),
and Hk(), respectively. In [8], a methodology is given which can be used to extend
(1.3) and (1.4) to a corresponding set of local error estimates, showing that crosswind
propagation of the numerical solution is limited to a distance O(x/ log -). The con-
tinuous finite element method (1.2) was analyzed in [3], where the following global
bounds were derived:

(1.5)
(1.6)
(1.7)

In deriving these estimates, it was assumed that c. n is uniformly bounded away
from zero and that Uh can be computed layer by layer (a precise characterization is
given in 3) in O(h-) steps. These assumptions are retained here. (We remark that
although one can construct a mesh which violates the latter assumption, we view such
a situation as anomalous.) Local versions of (1.5), (1.6), and (1.7), indicating the
same O(vf log -) crosswind spread as for the discontinuous method, will be obtained
in this paper. The existence of such local error estimates is an important attribute of
a numerical method for hyperbolic equations, indicating a correspondence in domain
of dependence properties of the discrete and continuous problems.
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732 RICHARD S. FALK AND GERARD R. RICHTER

For a convection-diffusion equation dominated by convection, the standard Ga-
lerkin method typically exhibits instabilities (see, for example [4]), and an appropri-
ate remedy is to instead use a finite element discretization geared to the hyperbolic
limit. Both the continuous and discontinuous Galerkin methods can be extended to
convection-diffusion equations in ways that preserve their explicitness and yield similar
global error estimates, provided the diffusion term is of strength no greater than O(h),
where h is the mesh size. These extensions are given for the continuous method in [15],
[16] and for the discontinuous method in [17]. For the continuous method, the simplest
option is to include the additional diffusion term in the inner product relations (1.2),
otherwise implementing the method exactly as in the diffusionless limit. Alternatively,
for either method, we may treat diffusion in a way analogous to the discontinuous Ga-
lerkin discretization of the convection term in (1.1), resulting in an integral over Fin(T)
involving the diffusion term. These schemes will not use any boundary data given for
u on Iout() since they are explicit. The resulting outflow boundary layer, whose
width is of the order of the diffusion coefficient [20], will therefore not be present in

Uh.

Another finite element method that can be applied to convection dominated
convection-diffusion problems is the streamline diffusion method, developed by Hughes
and Brooks [5]. This method is like the standard Galerkin method except that the test
functions are augmented by a multiple of their streamline derivatives. The resulting
discrete system is implicit, and has the same connectivity as the standard Galerkin dis-
cretization. Johnson et al. [6], [7], [8] have shown that for nth degree polynomials, the
resulting finite element approximation Uh has O(hn+l/2) accuracy for u 6 Hn+().
They have also shown [8] that such an estimate holds locally in regions of smoothness,
with crosswind numerical spread limited to a layer of width O(v/- log -). For a diffu-
sion coefficient of size < O(h), improved estimates of crosswind spread were obtained
in [10] for the case of linear approximation, in part by adding an artificial crosswind
diffusion term. Pointwise error estimates were also given in [10], with further refine-
ments in [12]. The survey paper [4] contains additional references on the streamline
diffusion method.

Our purpose in this paper is to establish local error estimates for the continuous
method of Reed and Hill via an approach that is also applicable to the discontinu-
ous Galerkin method, and which facilitates the elucidation of basic interrelationships
between the two methods. In 2, we state our basic assumptions and notation, and
derive some preliminary results pertaining to the weighting function to be used later
in obtaining local error estimates. In 3 we give unified, parallel analyses of the dis-
continuous and continuous methods (1.1) and (1.2), extending work begun in [18]. We
use as independent variables the characteristic and crosswind variables s and t, respec-
tively, and apply rather simple test functions depending only on the crosswind variable
t. This will lead directly to stability results, expressed in terms of this variable, on
triangle boundaries. It will be seen that an important feature of both methods is the
role of L2 projections across the boundaries of type II triangles. For the continuous
method, this analysis is a considerable simplification over that given in [3].

In 4 and 5, we derive local error estimates for the continuous method (1.2).
Since the method is explicit, numerical effects cannot propagate upwind; thus only
the crosswind direction needs to be dealt with. To obtain local error estimates, we fol-
low the basic approach in [8]. However, our task is facilitated by the crosswind variable
analysis of 3, which lends itself naturally to the introduction of a t-dependent weight-
ing function. For a strip D c t contained between two characteristics, and a larger
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LOCAL ERROR ESTIMATES 733

subset D+ of f consisting of points lying a distance no greater than O(vflog(1/h))
from D, we derive the following "local" analogue of (1.5):

and similar analogues of (1.6) and (1.7). Here Dh+ _= {T e alT 1 D+ 7 0}. These
localization results generalize (1.5)-(1.7).

In 6, we show how the analysis can be extended to convection-diffusion equations
of the form . Vu- (auxx + buxy + cuvy) f in f,

with appropriate boundary conditions specified for u on the boundary of D. We
assume the diffusion coefficients a, b, c are of magnitude no greater than O(h), and
that c, as before, is a unit vector. In addition, we require that the diffusion-term,
when expressed in terms of s and t, have a dominant nonnegative utt coefficient. Our
framework includes as special cases the elliptic and parabolic equations

Vu e A u f, a:ut + au eu f,

where e O(h). We shall obtain local error estimates for the method

(" VUh --(a(Uh)xx + b(uh)xy + C(Uh)yy), Vh) (f, Vh) for all Vh e Pn-(T).

The result will be a pair of local error estimates, of the type (1.8), analogous to (1.6)
and (1.7). Of perhaps greater significance, this section serves as an illustration of how
the crosswind variable analysis of 3 can be applied to problems with diffusion. We
believe it is also applicable to the other extensions of the continuous and discontinuous
methods alluded to previously.

2. Notation and preliminary results. For a domain f with boundary F,
we have defined Fin(), the inflow portion of F, as {(x, y) e F c.n < 0}. We
further denote by Fout(f), the outflow portion of F corresponding to points on F at
which c. n > 0. Most of the analysis of the paper will be done using the variables
8 OZlX+OZ2y, along the characteristic direction c, and t oz2x-oly, in the direction

f (c2,-c1) perpendicular to c. Note that

us o. Vu and ut fl. Vu.

In this notation, a generic triangle T may be described by

T {(s, t): s e [Sin(t), Sour(t)], t e [to, tl]}

(see Fig. 1.) and Fin(T) and rout(T) can be parameterized by t e [to, tl].
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734 RICHARD S. FALK AND GERARD R. RICHTER

FIG. 1

To simplify notation, we denote the interval [t0,tl] by L, set h tl -to, and
define for an arbitrary function v, Van(t) vlrin and your(t) Vlrout. For a function
v(t) defined on [t0, ti], we define an extension Ev to T by Ev(s,t) v(t), i.e., Ev
extends v as a constant in the characteristic direction c. We shall frequently make
use of the facts

(Ev)out(t) (Ev)i,(t) v(t),
(Ev)t Ev’,

and for any function z(t),

(2.3) E[z(t)v(t)] z(t)E[v(t)].

We assume that T satisfies a minimum angle condition independent of h. The
notation (., .) is used to denote the L2 inner product over T and I1" Ilk is used to denote
the norm in the Sobolev space Hk(T), with k omitted when it has value zero. The
L2-norm over L [to, t] is denoted by .

In our analysis, we shall make use of several interpolants and projections. Let
Pn(D) denote the space of polynomials of degree _< n over the set D. We denote by
Pn the L2 projection over T into P=(T) and Q= the L2 projection on L into Pn(L).
For u E C(gt), we define an interpolant ui S {Vh e CO(")’Vh]T e P,(T)} as
follows.

(i) ui(ai) u(ai) for all triangle vertices ai;

(ii) fr (ui U)T dT 0, 0, 1,..-, n- 2 for all triangle sides Fi;
(iii) fT(ui --u)q dx dy 0 for all q e Pn-3(T) and all triangles T.

It is straightforward to show (for example, using the techniques in [1, Chap. 3]), that
ux has the following approximation properties.

and

(2.5) lu ul,r(T) < Ch’+x/2-Jllull,+x, j O, 1,... n.
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LOCAL ERROR ESTIMATES 735

It will also be convenient to have a one-dimensional version of this interpolant
defined on the interval L [to, tl]. Let Q E P,(L) be defined by

(Q- )(t0) (Q )(t) 0,

(Q- )(t)q(t) q e Pn-2(L).dt 0 for all

Choosing q -r" (t) for r Pn(L) and integrating by parts, it follows that

(Q )’ (t)r’ (t) dt O,

and so [Q]’ Qn- ’.
In deriving local error estimates for our approximation schemes, it will also be

useful to have the following results. Consider a quasi-uniform partition of I [a, b],
comprised of subintervals Ih of width h. Letting to and tl denote the endpoints of the
subinterval Ih, define for a positive function , the weighted L2 inner product on a
typical subinterval Ih by

(f, g) Cf(t)g(t) dt

and the weighted norm on Ih by

Ifl I,i f(t)2 dt]
We shall assume that satisfies the following hypotheses:

minlh
max [’1 <- Ch-1/2 max,
Ih Ih

where C denotes a generic constant independent of h. (We note that (2.6) follows
from (2.7) for h sufficiently small.) The two choices of that we shall use, for which
the above are easily verified, are 1 and for fixed t* I,

Using (2.6) and (2.7), we find that must satisfy the following additional properties.
LEMMA 2.1. Suppose satisfies (2.6) and (2.7). If v and w are L2 orthogonal

on Ih, then

.f I/’1 + IIfll < c( Igll + IIgll), then

(2.9) Ifl / II.fll C(Iml + IIgll).
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736 RICHARD S. FALK AND GERARD R. RICHTER

Proof. To prove (2.8), we let E Ih. Then since 0 --= (t-) E P0(Ih), we get,
using (2.6) and (2.7), that

( 0)vw dt

Inequality (2.9) follows from (2.6) by observing that if Ifl + I1  11 < c( Iml +
II), then

3. An analysis of the basic methods. Our aim in this section is to explore
the relationships between the continuous and discontinuous Galerkin methods and
to show how a simple and parallel analysis of these methods can be given by using
the characteristic and crosswind variables. These results are obtained for the model
problem c. Vu f and are also intended to provide some basic motivation for the
more general, but more technical results to follow in the remainder of the paper.

We first consider the continuous method for c. Vu f:

(3.1) ((Uh)s, Vh) (f Vh), Vh e Pn-l(T).

For a type I triangle, it follows from the fact that (Uh)s e Pn-I(T) that

(Uh)s=Pn-lf.

Thus

8

(3.2) Uh(S, ) Uh,in() - Pn-lfds
in(t)

for a type I triangle.
To characterize Uh locally on a type II triangle, it is convenient to define a quantity

U(s, t), (s, t) T as the solution of the equation Us f with initial data Uin Uh,in
on Fin(T). Observe that for Vh Pn-:(T),

0 ((Uh V)s, Vh) (Uh U, (Vh)s) -c (Uh,out Uout)Vhdt.

We first take Vh -Ew’(t), where w E Pn-1 (L), and we integrate by parts to obtain

0 (th,out Uout)w’(t)dt (Uh,ou U;ut)W(t)dt,
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LOCAL ERROR ESTIMATES 737

where the fact that Uh,out Vout at t to and t tz has been used. Since U,ou E
Pn-z(L), we infer that

(3.3) Qn-1Ith,ou Vu

for a type II triangle. We next take Vh Pn-2(T) to vanish on Fout(T); (Vh)8 can
then be an arbitrary member of Pn-3(T). We conclude that

(3.4) P-3Uh P-3U.

Equation (3.3) and the given data Uh Uh,in on Fin (T) determine Uh on the boundary
of a type II triangle T. The moment conditions (3.4) then complete the specification
of a unique Uh in the interior.

We now obtain a similar characterization for the discontinuous method. For our
model problem, Uh satisfies

U+((Uh)s, Vh) 2t (h,in--U,in) Vhdt--(f, Vh), Vh e P(T).

We first consider the case of a type I triangle, where the situation is somewhat more
complicated than for the continuous method. Choosing Vh Is(t) 8in(t)]q with
q e Pn_(T), we get, from the fact that s(t)- 8in(t) 0 on Fin(T) for a type I
triangle,

(Is(t) Sin(t)](Uh)s, q) (Is(t) Sin(t)]f, q).

Since (Uh) e P-(T) and s(t)- Sin(t) _> 0 in T, we get that

(Uh)s Rn-lf,

where R_f denotes the projection of f into P_(T) with respect to the weighted
L2 inner product If, q] (Is(t)- sin(t)]f, q). Using this result and choosing Vh w(t),
we get

(Uh,in U,in)W(t dt (f Rn-lf w)

(I R-II) ds w(t) dr.

Since u/h,in- Uh,in Pn(L) on a type I triangle, we conclude that

Uh+’in Uh’in Q
Jsin(t)

(f Rn-lf) ds.

/ sNow Uh(S, t) lth,in - [Ith,in t/,-,in] - Lin(t)(Uh)s ds. Thus

?h(8, t) Uh--i -- Qn Jsin(t)
(f Rn-lf) ds +

in(t)
R_zf ds

for a type I triangle.
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738 RICHARD S. FALK AND GERARD R. RICHTER

For a type II triangle, we define U as before with Uh-,in as the given inflow data.
For Vh E Pn(T), we have

0 ((Uh U)s, Vh) T (Uh+,in Uin)vhdt

--(Uh U, (Vh)s) / (U;,ou Uout)Vhdt

after integrating by parts. Taking Vh Ew, where w E P,(L), we conclude that

(3.6) Uh-,out QnUout.

Moreover, for arbitrary Wh Pn-1 (T), we may take Vh Pn(T) to satisfy (vh)8 Wh,

Vh 0 on Four(T). Thus

(3.7) Pn-lUh Pn-lV.

It is easy to check that Uh is completely defined in a type II triangle by (3.6)-(3.7).
Note the close correspondence of (3.2)-(3.4) with (3.5)-(3.7). For the continuous
method, (3.2) and (3.3) can be used to derive a global stability result for u on
interelement boundaries, while for the discontinuous method, (3.5) and (3.6) lead to
global stability of u on interelement boundaries.

We now give an error analysis for the two methods using test functions that
depend only on the crosswind variable t. This will illustrate the basic idea of the
analysis to follow in this paper. We first consider the continuous method. The error
e -- Uh --U satisfies (es, Vh) O, Vh P,-2(T), for a triangle of either type. For
Vh -Ew’(t), where w e Pn-I(L), we get

/i )w(t)dt0 (eout ein)w’(t)dt (eout

after integrating by parts. We choose w Qn- (eout + ein) to obtain

IQn-1 2eoutl IQn_leinl2

This is equivalent to

12I: + I(/-Qn-1)eout12 + I(I Qn-1)enl2 leinout

An estimate of the error will follow upon estimating I(I- Q-l)eoutl2 and summing
over all triangles. For a type II triangle T, (I-Q-l)Uh,ou 0 since Uh,ou E Pn- (L),
so

I(I Q-) /eoutl I(I- Qn-1)Uout] < Cha-

For a type I triangle, from (3.2) and the corresponding relation for u,

(3.8) u(s, t) sin(t)+ fds,

we obtain

u’ d fs"t(t)(i_ Pn-)fds.?h,out Uout h,in Sin - J Sin(t)
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LOCAL ERROR ESTIMATES 739

Hence, since uh,in t Pn-1 (L),

fSu’(t)(I_Pn_l)fds < Chn-1/21lUlln+l,T
d

I(I-Q-l)doutl _< I(I-Q,-l)Ul+ - ,,.(t)

via standard estimates. Thus for a triangle of either type,

(3.9) leout’ 2 _< lenl2 + Ch2n-lllull+l,T"
In formulating a global error estimate, it is convenient to think of Uh evolving

in layers Si, defined by:

S {T e : ri.(T) c ri. ( <s)}, i 1,2,....

Note that Uh can be developed in parallel in the triangles within a layer. Thus we
have, in analo with (3.9), that

[, 2 2 Ch2-1 2lllls,,+l,eoulF, < oulF,_ +
where F0 Fi(G) and Fi is the "front line" to which Uh h advanced aer it h
been computed in i UjgiS. Iterating the above inequality, we obtain the global
error estimate

< Ch-lllllg,(3.10) 26out[F [6in,o +Ch2n-ll[u{[Gi,n+l ,n+l"

The discontinuous method can be treated in an analogous fhion. The error
satisfies

0 (,) (i )dt -(, ()) + (2ut i)dt.

For Vh Ew, w P(L), this becomes

(e2ut ei)wdt 0.

The choice w Q(e2u + e) thus yields

IQegutle= IQel.
Equivalently,

le2utl + I(I- Q)el lel + I(I Q)e2ul.
For a type II triangle, Uhou Pn(L), so

I(I Q)e2utl I(I Q)u2tl

This bound also applies to I(I-Q)egtl on a type I triangle, can be seen by using
(a.) nd (a.S). W thfo coud that

12 -I2+Ch2+llull2eout ein n+l,T

for a triangle of either type. The corresponding global error estimate is

(3.11) leotl, < lelo + Ch2+llull,,+l < Ch2+llluIl 2

The bic global error estimates (3.10) and (3.11) for the two methods may be
used to derive interior estimates over i. In the next section, we shall obtain such
estimates for the continuous method in a more generM weighted norm setting.
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740 RICHARD S. FALK AND GERARD It. RICHTER

4. Stability results for a single triangle. We begin our local analysis of the
continuous finite element method by deriving weighted norm stability results over a
single triangle for the simple hyperbolic problem c.Vu f. These results will provide
the basic tools for the global stability and error analysis for this problem and also for
the convection-diffusion problem in 6. As a consequence of the fact that Uh is well
defined, we have the following.

LEMMA 4.1. If uh satisfies (3.1), then

(4.1)

(4.2) IlVuhll

Proof. We will prove these bounds for 1. They will then follow for general
satisfying (2.6) and (2.7) by (2.9).
To prove (4.1), we will show that lUh,inl IIP-tfll 0 implies Uh O. The

desired result then follows by scaling, in view of the fact that Pn-lf Pn-l(Uh)s. For
a type I triangle, the representation (3.2) leads directly to this conclusion. For a type II
triangle, it is easy to see that the characterization (3.3), (3.4) of Uh remains valid for U
defined by U P,_f, U Uh,in. Moreover, if ]Uh,l IIP-2fll- 0, then U 0.
Thus by (3.3) and (3.4), lUh,outl IIPn-3uhll- O, om lUh,il luh,outl 0, we
deduce that Uh vanishes on F(T) and write

Uh /l,2/3Wh, Wh E Pn-3(T),

where Ai(s, t) e PI(T) is the distance from (s, t) to side Fi of T, 1, 2, 3. We take
the inner product of Uh with Wh and use IIPn_3Uhll 0 and the positivity of A1A2A3
inside T to conclude that Wh =-- O, implying Uh =-- O. This establishes (4.1) for a type
II triangle.

To verify (4.2), we apply (4.1) to Uh EQoUh,in to get

IlUh EQouh,inll < C (V/- uh EQouh,inl q- hllP - fll)
and use this in combination with the bounds

I[Vuhll [IV(zh- EQ0zh,in)l[ Ch-XllUh- EQouh,in]l,
lUh ZQouh,in[ Ch lu,inl.

Using Lemma 4.1, we are able to prove the following.
LEMMA 4.2. If uh satisfies (3.1), then

(4.3)
II(uh)ll + II(uh) EQn-luh,i, ll 4- X/’lUh,out Uh,i,I

< C(V/[(/- On-1)Uh,in[ q" IlP-fll).

Proof. By (2.9), it is enough to prove the result for 1. First note that

luh,outl < I(uh)lro(T) + I(uh)tlrou(T) <-- Ch-/211Vuhll
Combining this result with (4.2) (with 1), we get

(4.4) IIVuhll + luh,outl < C(x/ luh,il + IIP-zfll).
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LOCAL ERROR ESTIMATES 741

Next observe that Wh =-- uh--EQuh,i. E Pn(T) and satisfies (wh)8 (Uh)8. Applying
(4.4), with Uh replaced by Wh, we obtain

Since

and

we have that

(OnUh,in) --On-lUh,in

E(QnUh,in) EQn-lUh,in,[EQuh,in]t

II(Uh) ll + II(uh)=- EQn-lUh,inll T lUh,ou -Q,-lUh,inl
<_ C(v/- I(I Qn-1)Uh,in]-]-

The result follows by writing

Uh,ou Qn-lUh,in Uh,ou Uh,in + (I Qn_l)Uh,in

and applying the triangle inequality. [:]

Using these basic estimates, we now derive stability results for type I and type II
triangles, which have the property that they can be iterated to prove global stability for
the method. We shall make extensive use of the’test function -[EMuh]t P-2(T),
where

MUh Qn_l)Qn_l (Uh,ou -- Uh,in ).

The following lemma indicates the effect of this test function on the two terms of (3.1).
LEMMA 4.3. For a triangle of type I,

(4.5) --((Uh), [EMuhlt) >_ (1 Ch)lUh,outl -lUh,inl ClUh,ou th,inlb.
For a triangle of type II,

(4.6) 2--((Uh)s, [EMuh]t)

_
lUh,outlb (1 + Ch)lUh,inl + l(I Qn_l)Uh,inl.

For a triangle of either type,

I(f, [EMuh]t)l <_ C(h- llP - fll / IIW II ).

Proof. Integrating by parts and using the fact that Uohut Uihn at t to and
t tl, we obtain

--((Uh)s, [EMuh]t) uh[EMuh]t ndT (Uh,ou Uh,in)MUhdt
(T)

’[(Qn-lUh,out)2 (Qn-lUh,in)2] dt

-IQn_lUh,outl -IQ._lUh,inl.
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742 RICHARD S. FALK AND GERARD R. RICHTER

On a type II triangle, we have Qn-lUh,ou Uh,out, and hence using (2.8) and
the arithmetic-geometric mean inequality, we get

Inequality (4.6) follows directly. On a type I triangle, Qn_lUh,in Uh,in and hence
using (2.8) and the arithmetic-geometric mean inequality, we get

IQ._lU,outl lUh,out] --I(I Qn_l)Uh,outlh 2(Qn_lUh,out, (I Qn_z)Uh,out)

Chl/2lQn_zUh,outll(I- Qn_z)Uh,outl

Moreover, by (2.9),

I(I- I(I- Qn-1)(Uh,ou h,in)l -- ClUh,ot Uh,ilW"
Inequality (4.5) follows by combining these results.

To establish (4.7), we use the following sequence of inequalities.

The inequalities (4.5), (4.6), and (4.7) can now be used in conjunction with (4.2)
and (4.3) to obtain a global stability result for uh. Before doing so, we derive a bound
which will enable us to control Uh as well.

LEMMA 4.4. For a triangle of type I
(4.8)

2 hl/2I/,h,outlb I/,h,in]b C {h []?d,h,inlb -}- h3/21Uh,inl] q- pn- fllb q" IlPn-2fllb}
For a triangle of type II and for any positive bounded e,
(4.9)

]Uh,outlb --lUh,inlb _C eh3/21(I Qn-1)Uh,inl q- e-lh lUh,il / h3/2lUh,lD
ow
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LOCAL ERROR ESTIMATES 743

Proof. First note that

Now using (2.6) and (2.7), it follows that

II(uh)alIIIV(Uh)II <_ II(uh)II(IICVUhll +
<_ CII(uh)II(IICVuhll / h-X/211Uhll)
<_ Cll(Uh)ll(llVuhll /

Combining these results, we obtain for positive e that

[Uh,outl -lUh,in], <_ ChlI(uh)II(IlVuhlI + h-X/211uhll) + 21iPn-2flllluhll
< C[hl/211(Uh)ll / e-lh3/2llVUhll, -4-IIP-2fll

+ (1 +

Applying (4.1), (4.2), and (4.3), we get

lUh,oul -luh,in[, _< C(h3/2l(I Q,-X)Uh,inl, + -Xh5/2lUh,inl,
+ h(1 +
+ IIP.-ll + (hl/ + e-lha/2 -I-

On a type II triangle, (4.9) is now easily established. On a type I triangle, we choose
e 1 and use the fact that (I Qn-1)Uh,in 0 to obtain (4.8). [3

We now combine these results to get a single stability result for a triangle of either
type, which we shall be able to iterate to obtain global stability for the method.

LEMMA 4.5. For a triangle T of either type, there exists a positive constant
such that

(4.10)
(1 Ch) [lth,out,b -- h3/2[U’h,out,b --/hl/2,,(uh)sllb -- IIthl, -[- h3/21[Vuh,l

2_< (1 + Ch) [luh,inl + h3/21Uh,inl2] "4- C [hl/211Pn_lfl[ -3
t- h-X/2[[Pn_2fll]

Proof. Setting Vh--[EMuh]t in (3.1) and using (4.5) and (4.7), we obtain for
a type I triangle that

2(1 Ch)]Uh,outl --[Uh,inl ClUh,ou Uh,inl
<__ --((Uh)s, [EMuh]t) -(f, [EMuh]t)
<_ C(h-211P,-2fll, / IlVuhll,).
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744 RICHARD S. FALK AND GERARD It. RICHTER

Applying (4.3) to estimate lUh,out- Uh,inl and using (4.3) and (4.2) to also gain
control over II(Uh)sll and IIVUhll, we get after rearranging terms that

2(1 Ch)lUh,outl, + h-ll[(Uh)sll +
<_ (1 + Ch)lUh,inl + C(h-2llPn_2fll, +

Multiplying this result by h3/2, adding it to (4.8), and using (4.1) to also gain control
over IlUhll, we obtain (4.10) with A-- 1.

For a type II triangle, we proceed in a similar fashion, using (4.6) and (4.7) to
first obtain

lUh,outl / 1/21(1- Qn-1)Uh,inlp <- (1 + Ch)lUh,inlp -+-C(h-=llP-fll /

Again using (4.3) and (4.2) to gain control over II(uh) ll and IlVuhll, we get after
rearranging terms that

I,,ou, l + 1/21(I- Qn-1)Uh,inJp -}-h-ll()ll + IlVu,ll
< (1 + Ch)[Uh,inl -t- Ch-ellP-efll -I- Cel(I Q,-l)Uh,l2

Multiplying this result by h3/2, adding it to (4.9), and using (4.1) to also gain control
over IlUhll, we then obtain the following for e sufficiently small:

The result follows immediately.

5. Global stability and error estimates for the model problem. Using
the stability results of the previous section, it is now fairly easy to derive a global
stability result and error estimates for the model problem c. Vu f.

As was done in 3, we consider the solution Uh as developing in layers Fi. Thus
we have, in analogy with (4.10),

where again Fi is the "front line" to which Uh has advanced after it has been computed
in i Uj<iSj.

To convert this bound into a global stability result for the method, we use the
following lemma.
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LOCAL ERROR ESTIMATES 745

LEMMA 5.1. If
(1 Ch)xs + as <_ (1 + Ch)xs-1 / bs, i 1, 2,...

where 0 < h < , xo > O, and as > O, bs > 0 for all i, then

xs + 1- Ch aj

_
Msh xo + 1- Ch

bj i 1, 2,...

= =
where M e2C as h O.

Proof. The solution of the above inequality is

x < xo + (b a).1-Ch 1-Ch 1-Ch

TMs,
1 (l+Ch)[ 1 ]xi + 1- Ch aj < xo + bj

1 -Ch 1 -Ch
j:l

The desired result follows from the fact that

(1h0 1

Assuming there are at most O(h-) layers per triangulation, we apply Lemma
to obtain the following global stability result.

THEOREM 5.2. For h suciently small,

Uh,outJ 2 h3/2 J,F2 + h/2 2,, + l.,out (.)
+ ]]Uhl]2 h3/2 2

(5.1) < C[]uh,i]2 h3/2 2 h/2 2
,r() + Uh,in],r() + ]Pn-lf,

We now show how heorem g.2 may be used to derive various error estimates.
Let us first sume hat Hn+l() and let S be an interpolant of . Defining
eh Uh --I, we have, for all vh P_(T), that

((,) (I (i),) ([ I],.
Hence, we may apply (g.1) with h and f replaced by eh and (- I), respectively.
Assuming, for convenience, that h on ri(), we get

]eh,out 2 h3/2 2 hi/2 2

(.) + h/:iiW.,
< C(h-/2]]P_2(u ui)[2 h/2 2,, + (u )],,).

We shall first take ui to be the interpolant of 2. om the defining properties of this
interpolant, it follows immediately from integration by parts that

(5.3) ([u ui], Vh) 0 for all Vh e P-2(T).
Thus, using the approximation properties (2.4), (2.5) of ui, we obtain the following
error estimates for the method in the ce where the solution u is smooth.
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746 RICHARD S. FALK AND GERARD R. RICHTER

D

"d d=vfflog K

t

FIG. 2

THEOREM 5.3.

Up until this point, all our estimates apply to a general satisfying (2.6) and
(2.7). We now indicate how (5.2) can be applied locally in problems where u is not
globally smooth, for example, in a problem with a discontinuous initial condition. To
accomplish this, we now make, for fixed t*, the specific choice

For an interval I C Fin(f), let D {(s, t) e f" t e I} (see Fig. 2).
For fixed > 0, we define

D+ (s, t) e f" rain It- t’l < ,x/-log
t’ 61

and

nh+={T6 TD+0}.

Note that for t* e I and (s, t) 6 2 D+,

e-lt-t*l/V-6 < 2_e-log(1/h) < lh-X12

We shall obtain local L2(D) error estimates for Uh, assuming u e Hn+I(D+h) and
minimal regularity in f- Dh+. To get these local results, we make use of the following
lemma.
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LOCAL ERROR ESTIMATES 747

LEMMA 5.4. There is a positive constant A such that

where III denotes the length of I.
Proof.

We also have that

where

dt* >/D Jh(t)v2(s t)dsdt,,
1 It-t*l/v dt*Jh(t) 2v/

e-

A simple computation shows that if t E I It’, t"l, then

Jh(t> 1/2(1- e-(t"-t)’d-) + 1/2(1- e-(t-t’)’v) _> (1- e-lll/(2V’-))
Hence, Jh (t) is uniformly positive (independent of h) for t E I, which completes the
proof of (5.4). The proof of (5.5) is obtained in an analogous manner. [3

Because of the lack of global smoothness of the solution u, we cannot use the same
interpolant as in the smooth case. We redefine ui for this situation as follows. In Dh+,
we take ui to be the interpolant of 2, as before. At degrees of freedom which belong
neither to Dh+ nor Fin(), we use the method of Clement [2], i.e., by letting Ai denote
the support of the basis function associated with the point vi, we define UI(Vi) q(v),
where q is the L2 projection of u over Ai into Pn(Ai). Finally, at degrees of freedom
lying on Fin(t), we use the one-dimensional version of the Clement method, involving
projections of u only along Fin(). Note the similarity to the interpolant developed in
[19]. The approximation properties (2.4), (2.5) remain valid for this new interpolant.
Using standard techniques, it is not difficult to show that ui also satisfies the following
bound, whose proof we omit.

LEMMA 5.5.

Ilu llr _< C(ll llr + lulr,o(r ) +
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748 RICHARD S. FALK AND GERARD R. RICHTER

Integrating (5.2) with fi f/over t* E I and using the preceding results, we
obtain

I,oul + /=l’,oul, + "/11(,)11 + II,hll + /llWllD

)DZ + h- II(u )11=_Dz
< C (hl/ll( 1)11 )DZ + h-(llull + h-211uzll)

< C(h2+/211ul12 D+ + he-(llfll + h-211ull + h-2lul,()n+l, h

+ h-llull,D)
Again, using the approximation properties of ui, we conclude the following.

THEOREM 5.6. For > 2n + 7/2,

lUh,o Uoulff + Iluh ull + h3/2lUh,out Uoutlff + h3/211(Uh u)ll 2D
+ h/211(Uh u)ll 2

D

h
’n() + Ilfll)

where e O as h O.
These localization results generalize (1.4)-(1.6). Computational results in [18] for

n 2 show a somewhat more favorable crosswind spread, O(h.r). This corresponds
closely to the discontinuous Galerkin method with n 1, via the parallelism of 3.
For the discontinuous Galerkin method, computational estimates of crosswind spread
can be found in [13]. These results indicate a decree in crosswind spread with
increing n.

6. The general convection-diffusion problem. We next consider a cls of
convection-diffusion equations of the form

. Vu- (() + (uh) + (uh)) y,

and we consider the corresponding finite element method

(6.1) (c. VUh, Vh) (a(Uh): + b(uh)zu + C(Uh)uu, Vh) (f, Vh), Vh e Pn-t(T),

as described in the introduction.
Now since s clx + ce2y and t o2x ly, we get for any function v that

Hence, we may express

av::h + bvxyh + cvhuu [ac22 bc2 + cc12]vtht 4-[2acc2 4- b(c22 c) 2ccc2]vhts
+ [ac + b1c2 + 2 hCO2 Vss

vh + q, + ,h.
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LOCAL ERROR ESTIMATES 749

In the analysis of this problem which follows, we shall assume that the coefficients
a, 5, and /satisfy

(6.2) O

_
a

_
qh, ISl <_ Ca, I"YI <-Ca

for some constant q independent of h. As mentioned in the introduction, this frame-
work includes as special cases the parabolic and elliptic equations

a. Vu aAu f,

provided a <_ O(h). To analyze the effect of the additional terms now present, it will
be convenient to first prove some preliminary results. We begin with a stability result
for (6.1), valid over a single triangle.

LEMMA 6.1. Assuming q is su]ficiently small, (4.1) and (4.2) remain valid, and
in place of (4.3), we have

I[(Uh)sl[ -- [[(Uh)t EQn-lUh,inll W -lUh,out Uh,inl
<_ C v/l(I- Qn_l)Uh,inl + (7]l(Uh)ttll - IlP-,Yll

Proof. The convection-diffusion problem (6.1)is of the form (3.1) with f replaced
by

f + (,), + 6(,), +().
Via repeated use of inverse inequalities, we have

_< IIP-zfll + Cqlluhll
<_ IlP,-flt + Cqh-[lUhll.

Using the above three bounds together with (4.3), (4.2), and (4.1), respectively, we
obtain the desired results.

The next three lemmas contain some technical results which will facilitate the
analysis.

LEMMA 6.2. Let Vh and Wh E Pn(T). Then

II(vh)t + (Wh)ll <_ C (h-lllvh + Cwhll + h-X/2maxllwhll)
Proof. Let 0 denote the average value of on T. Then

[l(Vh)t + (Wh)tll < II(vh + OWh)tll + I1( o)(Wh)tll
Ch-1]lVh + 20Wh[l --I1(- 2/)O)(Wh)tll

<_ Ch-lllvh + Whll + Ch-ll( 0)WhlI
+ I1( o)(wh)tll.

Now using (2.7) and standard inverse estimates,

It(C-0)Whll <_ Chmax l’lllWhll < ChX/2 maxllwhll,
I1(--o)(wh)tll < Ch max l’ lll(wh)tll <_ Ch-X/2 max llWhll.

Combining these results establishes the lemma.
Recalling that Muh Qn-Q,-(Uh,out + Uh,in), we next prove the following.
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750 RICHARD S. FALK AND GERARD It. RICHTER

LEMMA 6.3.

IMuh 2Qn_lUh,inl <_ Cmax lUh,out Uh,inl -- hl/21Uh,inl

Proof. Letting o again denote the average value of on [to, tl], we have that

Now

I(I Qn-)( o)Qn-uh,inl <_ Cl( o)Qn-luh,inl_
Chmax l’llQn-lUh,inl

<_ Ch/2 max

Combining these results, we obtain

IMuh 2Q,-Uh,inl <_ C maxlQn- (Uh,out
+hi2 max lQn_lUh,inl

<_ Cmax lUh,out Uh,inl -- hl/21Uh,inl

LEMMA 6.4.

II-l[EMuh]t 2(Uh)ttll <_ C(ql](Uh)ttll + h-1/2R),

where
R- I(I- Qn-1)Uh,inl + hl/21Uh,inl +

Proof. Using Lemma 6.2 and the triangle inequality, we have

II-[EMuh]t
<_ max -ll[EMuh]t
_< Cmax-1 [h-lllEMuh 2(Uh)tll +
<_ Cmax2- h-llEMuh 2ECQn_luh,inll

+2h-ll(h)t E,-1,11 + h-1/2 maxll(h)tll

Now using Lemma 6.3 and standard inverse estimates, we get

IIEMuh 2ECQ_Uh,inll <_ Chl/21Muh 2Qn_lUh,inl
<_ Cmax hl/2lUh,ou Uh,inl -- hlU’h,inl
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LOCAL ERROR ESTIMATES 751

Using (2.2) and (2.3), we get

[l)(Uh)t E)Qn-iU’h,in]] [[/)(Uh)t CEQn-lUh,in[[
<_ maxll(Uh) E,_Uh,il].

Combining these results and using Lemma 6.1, we obtain

]-[EMuh]t 2(Uh)u]]

C h-=/21Uh,ou Uh,i,] + lUh,i] + h-ll(uh)=

+ h-1/21l(Uh)til]

he lemma follows immediately.
Using these results, we now proceed in 4, deriving, for a single triangle,

stability result that can be iterated to obtain a global stability result for the method.
To avoid technical problems involving terms which are no central to the analysis of
ghe new diffusion terms, we limit our stability result to the derivagive of h, rather
than also include h itself. The key result is then to obtain an analogue of Lemma
and the essential new feature of the analysis is the handling of the erms
((/ +(+(,[1) ((+e(l +(),[])

and (f, [EMh]t). The next lemma contains the neccessary estimates for these terms.
LMMa 6.g. For rbitrr (T) nd q sucientl small, we hve

(a(Uh)tt + e(Uh)t + ?(Uh)ss + a, [EMuh]t) all(Uh)ttil C(qR2 + 1111).
Proof. Using Lemma 6.4, the triangle inequality, and the arithmetic-geometric

mean inequality, we get, for arbitrary e > 0,

(a(Uh)tt, [EMuh]t) 2al(Uh)ttl + (a(Uh)tt, -l[EMuh]t 2(Uh)tt)
2all(Uh)ttll Call(Uh)ttl(h-/2R + qll(Uh)ttll)

=ll(-)ll(e Cq) C(II(-.)II)(R)
=11(-.)1( Cq ) C-qR:.

Now using Lemma 6.4, the triangle inequality, and the fact that q O(1), we infer

ll-l[EMuh]tl C(l(Uh)ttll + h-/2R).
Using this result, together with Lemma 6.1, the arithmetic-geometric mean inequality,
and the fact that ah-1 q, we get

l((Uh)t + 7(Uh)s + a, [EMuh]t)l
(ll5(Uh)t + ?(Uh)ll + alll)ll-l[EMuh]tll
C(ah-lll(Uh)l + alll)(l](Uh)ttll + h-1/2R)
C(ah-1/2R + qal](Uh)ttll + alll])(ll(Uh)ttl] + h-/2R)
C(R + qll(-)ll + 111)(11(-)11 + R)
(=1(-)1 + qR:) + C-l(qR: + q:=ll(-.)ll + =111)

< ( + Cq:-l)=ll(u.)ll + ( + C-l)qR: +
The lemma follows by combining these results and choosing first e and then q suffi-
ciently small.

Using Lemma 6.5, we get the following analogue of Lemma 4.5 when f fl +af2.
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752 RICHARD S. FALK AND GERARD R. RICHTER

that
LEMMA 6.6. For a triangle of either type, there exists a positive constant such

(1 -Ch)lU’h,outl + h-lll(Uh) I1 -i-- IlVUhll -4r 1/2o’ll(’ah)ttll 2

(<_ (1 + Ch)l?h,inl2 -t-C h-llP,_fll + h-21lPn_2fll] -!-allf2ll

Proof. From Lemma 6.5 and the definition of R, we have
(6.3)
((u). + (u) +-() +,[EM])

> all(Uh)ttll Cq I(I- Qn_)Uh,il + hlUh,i,12 + h-lllP,_fll

For a type II triangle, we get from (4.6), (4.7), and Lemma 6.1 that

(6.4)

--((Uh)8 fl, [EMuh]t)
2> (1 ch)lu,,out I, (1 + Ch)lu,ilI

( )+ 51(1- Q,-l)Uh,l C h-2llP,_2fll[ IlP_2fll

2Combining these results via (6.1) and then using Lemma 6.1 to also control IIVUhll
and adding a suitably small positive multiple of h-lll(Uh)s]l, we obtain

(l_Ch)lUh,outl+(2 _Cq_Ce))l(i_Q, 1)Uh,il+(l_Ce)all(Uh)ttll+eh-ll](Uh)ll’ 2

+ IIVu,ll, < (1 + Ch)lu’,.l + c (h-211Pn_2Slll + h-ll[Pn-2Sl[ nt- (71[f21[b)
The desired inequality now follows on a type II triangle by choosing q and e sufficiently
small.

For a type I triangle, we use (4.5), (4.7), and Lemma 6.1 to get, in place of (6.4),

--((Uh) f, [EMuhlt)
2

_
(1 Ch) lUh,outl (1 + Ch) lUh,inl

C (qall(Uh)ttl] + h-211gn-2flllb nt-

Combining this result with (6.3) via (6.1), and again using Lemma 6.1 to also control

IIVUhll and a suitably small positive multiple of h-ill(Uh)sll2, we obtain

(1 Ch)lUh,outl + IlVull, + eh-lll(un)ll, + (1 Cq C)oll().ll,
( )< (1 + Ch)lUh,inl + C h-211P,_2flll + h-lllp,_lfll + ollf211,

The desired inequality now follows on a type I triangle by again choosing q and e
sufficiently small. I::]

As in 5, this result may now be converted to an analogous result along fronts
and then iterated using Lemma 5.1. When summed over layers, we get the following
global stability result, analogous to Theorem 5.2.
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LOCAL ERROR ESTIMATES 753

THEOREM 6.7. For h su.tficiently small,
(6.5)

,F, + h-111 (Uh)s + +
< c[.,.l,r,.() + h-llP-fgl,,, + h-lP-f

where we use the notation

I1"11,,, I111:

The reason for introducing this notation is that some of the terms in the estimate
do not belong to L2 (i).

To obtain error estimates, we again set eh -- Uh --UI. It easily follows that for
Vh E P,_,(T),

(()., v) (.(). + (). + "r()..,
([,, ,,].,,,) ([u u,], + [ ,,]. + "r[, ,]..,,,).

Hence, we may apply (6.5) with

From (5.3), we have that Pn-2fl 0. Again assuming Uh ui on Fin(ft), and using
(6.2), (6.5)gives

Thus, using the approximation properties (2.4), (2.5) of ui, we obtain the following
error estimates for the method in the case of a smooth solution u.

THEOREM 6.8.

Local estimates can also be obtained from (6.6), following the method used in 5.
Since the main ideas are essentially the same, we only give a statement of the main
result.

THEOREM 6.9. For > 2n + 7/2,

where e -- 0 as h -- O.
We have thus established a crosswind spread of O(v/log-) for the continuous

method (6.1) for convection-diffusion equations with an O(h) diffusion term. The
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754 RICHARD S. FALK AND GERARD R. RICHTER

same crosswind spread was shown for the streamline diffusion method [8] and later
improved, for the case of linear approximation, to O(hJ/a log -) for a hJ/2 [10].
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