
A WEIGHTED ESTIMATE FOR TWO DIMENSIONAL SCHRÖDINGER,
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Abstract. We study the two dimensional Schrödinger operator, H = −∆ + V , in the

weighted L1(R2) → L∞(R2) setting when there is a resonance of the first kind at zero

energy. In particular, we show that if |V (x)| . 〈x〉−4− and there is only s-wave resonance

at zero of H, then∥∥w−1(eitHPacf − 1

πit
Ff

)∥∥
∞ ≤

C

|t|(log |t|)2 ‖wf‖1, |t| > 2,

with w(x) = log2(2+ |x|). Here Ff = − 1
4
ψ〈ψ, f〉, where ψ is an s-wave resonance function.

We also extend this result to wave and matrix Schrödinger equations with potentials under

similar conditions.

1. Introduction

Recall the propagator of the free Schrödinger equation:

e−it∆f(x) =
1

(−4πit)n/2

∫
Rn
e−i|x−y|

2/4tf(y)dy(1)

which satisfies the dispersive estimate

‖e−it∆f‖∞ . t−n/2‖f‖1(2)

for any n ≥ 1. There are many works concerning the validity of such an estimate for the

perturbed Schrödinger operator H = −∆ + V , where V (x) is a real-valued and bounded

potential with sufficient decay at infinity. See, for example, [35, 46, 25, 22, 26, 57, 19, 9, 12].

Since H may have eigenvalues on (−∞, 0], the inequality (2) cannot hold in general.

Therefore, we consider eitHPac(H), where Pac(H) is the orthogonal projection onto the

absolutely continuous subspace of L2(Rn). It was observed that the time decay of the

operator eitHPac(H) is affected by resonances or an eigenvalue at zero energy (see, e.g.,

[44, 33, 42, 31, 32, 17, 56, 22, 3, 13]).
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Recall that, in two dimensions, a distributional solution of Hψ = 0 is called an s-wave

resonance if ψ ∈ L∞(R2), but ψ /∈ Lp(R2) for any p <∞; and it is called a p-wave resonance

if ψ ∈ Lp(R2) for 2 < p ≤ ∞, but ψ 6∈ L2(R2). We also say there is a resonance of the first

kind at zero if there is only an s-wave resonance at zero but there are no p-wave resonances

or an eigenvalue at zero. It is important to recall that in this case, there is only one s-

wave resonance function up to a multiplicative constant. There are similar definitions for

resonance in dimensions n = 1, 3, 4, and there are no zero energy resonances in dimensions

n ≥ 5 .

We note that by these definitions, the constant function ψ = 1 is an s-wave resonance

in dimension two for the free Schrödinger operator. In addition, using the formula (1), one

can easily prove that∥∥w−1
(
e−it∆f +

1

4πit
ψ〈ψ, f〉

)∥∥
L∞(R2)

.
1

t log2 t
‖wf‖L1(R2).(3)

Here we define w(x) := log2(1+ |x|) and use w(x) with this definition throughout the paper.

This suggests that the perturbed Schrödinger evolution should satisfy a similar weighted

estimate with an integrable decay rate in the case of an s-wave resonance. Indeed, our main

result in this paper is the following.

Theorem 1.1. Let |V (x)| . 〈x〉−2β− for some β > 2,. If there is a resonance of the first

kind at zero for H = −∆ + V , then we have∥∥w−1
(
eitHPacf −

1

πit
Ff
)∥∥
L∞(R2)

≤ C

|t|(log |t|)2
‖wf‖L1(R2), |t| > 2.

Here F is a rank 1 projection onto the one-dimensional space of resonances:

Ff = −1

4
ψ〈ψ, f〉,

where ψ is the canonical s-wave resonance function satisfying ψ − 1 ∈ Lp for all p > 2.

We then, extend this result to the matrix Schrödinger operator and to the low-energy

evolution of the solution of the two-dimensional wave equation, [see Theorem 1.3 and 1.4].

The dispersive estimate

‖eitHPacf‖L∞(Rn) ≤ C|t|−
n
2 ‖f‖L1(Rn)(4)

in dimensions one and two were studied in [25, 48, 23, 36, 41, 13, 14]. In fact, (4) is

established by Goldberg-Schlag for n = 1 in [25] and Schlag for n = 2 in [48], assuming zero

is regular, that is, when there is neither a resonance nor an eigenvalue at zero. The result
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in dimension two is then improved by Erdoğan-Green to a more general case. They showed

the same estimate when there is a resonance of the first kind at zero.

The main concern for these estimates is that they are not integrable in time at infinity. An

estimate which is integrable at infinity is very useful in the study of nonlinear asymptotic

stability of (multi-)solitons in lower dimensions. See [49, 36, 42, 7, 52, 43, 54] for other

applications of weighted dispersive estimates to nonlinear PDEs.

The earliest integrable decay rate in dimensions one and two was established by Murata

in weighted L2 spaces. In [42, Theorem 7.6], Murata proved the following statement in

polynomially weighted spaces by assuming sufficient decay on V : If zero is a regular point

of the spectrum, then for |t| > 2,

‖w−1
1 eitHPac(H)f‖L2(R) ≤ Ct−

3
2 ‖w1f‖L2(R) and(5)

‖w−1
2 eitHPac(H)f‖L2(R2) ≤

C

|t|(log |t|)2
‖w2f‖L2(R2).(6)

In [50], Schlag improved Murata’s 1 dimensional result (5) to weighted L1 → L∞ setting

and he showed that if zero is regular, then

‖〈x〉−1eitHPac(H)f‖L∞(R) ≤ Ct−
3
2 ‖〈x〉f‖L1(R2),

provided that |V | . 〈x〉−4.

The fact that constant functions are resonance in dimension one, together with (3), led

Goldberg to ask whether a similar estimate as in Theorem 1.1 can be obtained when zero

is not regular. In [23], Goldberg showed that if (1 + |x|)4V ∈ L1(R), then

‖(1 + |x|)−2(eitHPacH − (−4πit)−
1
2 )F )f‖L∞ . t−

3
2 ‖(1 + |x|2)f‖1,(7)

where F is a projection on a bounded function f0 satisfying Hf0 = 0 and limx→∞(|f0(x)|+
|f0(−x)|) = 2.

Murata’s two dimensional result (6) was also improved by Erdoğan-Green. In [14], they

showed that if zero is regular, then

‖w−1eitHPac(H)f‖L1(R2) ≤
C

|t|(log |t|)2
‖wf‖L∞(R2)(8)

provided |V | . 〈x〉−β, for β > 3. Theorem 1.1 was motivated by (7) and (8) of Goldberg,

and Erdoğan-Green, respectively.

The Schrödinger operator in dimensions n = 3, 4 and n > 4 has also been studied. For

more details about these dimensions one can see [50, 17, 18, 16, 27, 28].
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Letting L2,σ = {f : 〈x〉σf ∈ L2(Rn)} and H2,σ = {f : Dαf ∈ L2,σ(Rn)}, we define

the resolvent operator R±V (λ2) : L2,σ → H2,σ as R±V (λ2) = limε→0+(H − (λ2 ± iε))−1. By

Agmon’s limiting absorption principle [2], R±V (λ2) is well-defined. The proof of Theorem 1.1

relies on expansions of R±V around zero energy and Stone’s formula for self-adjoint operators:

Let χ be an even smooth cut-off function supported in [−λ1, λ1] for a fixed, sufficiently small

λ1 > 0 such that χ(λ) = 1 if |λ| ≤ λ1
2 . Then, one has

eitHPac(H)χ(H)f(x) =
1

πi

∫ ∞
0

eitλ
2
λχ(λ)[R+

V (λ2)−R−V (λ2)]f(x)dλ, f ∈ S(R2).(9)

Note that in our analysis, we assume V has enough decay to ensure that H has finitely

many eigenvalues of finite multiplicity on (−∞, 0], with σac(H) = [0,∞). See [45].

We also extend our result to the non-self-adjoint matrix Schrödinger operator. The non-

self-adjoint matrix Schrödinger operator is defined as

H = H0 + V =

[
−∆ + µ 0

0 ∆− µ

]
+

[
−V1 −V2

V2 V1

]
(10)

on L2(R2)× L2(R2), where µ > 0 and V1, V2 are real valued potentials. Conjugation of H

by the matrix

[
1 i

1 −i

]
gives H '

[
0 iL

iL+ 0

]
. Hence, by Weyl’s criterion and some

decay assumptions on V1 and V2, σess(H) = (−∞,−µ] ∪ [µ,∞).

We need the following assumptions for the matrix case,

A1) −σ3V is a positive matrix, where σ3 is the Pauli spin matrix

σ3 =

[
1 0

0 −1

]
;

A2) L = −∆ + µ− V1 + V2 ≥ 0;

A3) |V1|+ |V2| . 〈x〉−2β− for some β > 2;

A4) There are no embedded eigenvalues in (−∞,−µ) ∪ (µ,∞).

It is known that the first three assumptions are to hold in the case when the Schrödinger

equation is linearized about a positive ground state standing wave ψ(t, x) = eitµφ(x). We

need the fourth assumption to be able to define the spectral measure from Xσ to X−σ,

where Xσ = L2,σ × L2,σ. For more details one can see [18] and [15].

Dispersive estimates for the operator (10) are studied in [10, 47, 51, 17, 11, 39, 29]. In

the case when thresholds ±µ are regular, the following result is obtained in dimension two.
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Theorem 1.2. [15, Theorem 1.1] Under the assumptions A1) − A4), if ±µ are regular

points of H = H0 + V , we have

‖eitHPacf‖L∞×L∞ .
1

|t|
‖f‖L1×L1 , and(11)

‖w−1eitHPacf‖L∞×L∞ .
1

|t|(log |t|)2
‖wf‖L1×L1 , |t| > 2.(12)

Our main result for the matrix Schrödinger operator is Theorem 1.3 below. Recall that

there is an s-wave resonance at µ for H = H0 + V if Hψ = µψ for some ψ = (ψ1, ψ2) ∈
L∞ × L∞, but ψ 6∈ Lp × Lp for any p < ∞ (see e.g. [15]) . A distributional solution of

Hψ = µψ is called a p-wave resonance if ψ ∈ Lp ×Lp for 2 < p ≤ ∞, but ψ 6∈ L2 ×L2. We

also say there is a resonance of the first kind at µ if there is only an s-wave resonance at µ

but there are no p-wave resonances or an eigenvalue.

Theorem 1.3. Under the conditions A1)-A4), if there is a resonance of the first kind at

the threshold µ, then we have

‖eitHPacf‖L∞×L∞ .
1

|t|
‖f‖L1×L1 ,

and

‖w−1
(
eitHPacf −

eitµ

πit
Ff
)
‖L∞×L∞ .

C

|t|(log |t|)2
‖wf‖L1×L1 , |t| > 2.

Here F is a rank one operator whose range is the one-dimensional space of resonances:

Ff(x) = −1

4
ψ(x)〈σ3ψ, f〉,

where ψ is the canonical s-wave resonance function satisfying ψ − (1, 0)T ∈ Lp × Lp for all

p > 2.

A similar statement holds if there is a resonance of the first kind at −µ.

The resolvent expansions we obtain to prove Theorem 1.1 for the Schrödinger evolution

are also applicable to the two-dimensional wave equation with a potential. Recall that the

perturbed wave equation is given as

(13) utt −∆u+ V (x)u = 0, u(x, 0) = f(x), ut(x, 0) = g(x),

with the solution formula

u(x, t) = cos(t
√
H)f(x) +

sin(t
√
H)√

H
g(x)
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for any f ∈W 2,1 and g ∈W 1,1. By Stone’s formula, we have the representations

cos(t
√
H)Pacf(x) =

1

πi

∫ ∞
0

cos(tλ)λ[R+
V (λ2)−R−V (λ2)]f(x)dλ and(14)

sin(t
√
H)√

H
Pacg(x) =

1

πi

∫ ∞
0

sin(tλ)[R+
V (λ2)−R−V (λ2)]g(x)dλ.(15)

For low energy, that is, when 0 < λ� 1, this representation leads us to a similar result as

in Theorem 1.1. On the other hand, for large energy, i.e., when λ & 1, one needs regularizing

powers of 〈H〉−α for some α > 0 which reflects the loss of derivatives of initial data. See,

e.g., [29].

In dimension two, dispersive estimates for the wave equation are studied in [8, 41, 37, 30].

The decay rate |t|−
1
2 for high energy is first established in [8] between ’regularized’ Lp spaces

(
√
H)−

α
2 for α > 0. Moulin in [41], improved this result to the ’regularized’ L1 → L∞ setting

with H−
3
4
−ε for 0 < ε � 1. Then Kopylova [37] obtained the decay rate (t log2 t)−1 in the

weighted Hilbert space setting for large t when zero is regular. Finally, in [30], Green proved

that if there is a resonance of the first kind at zero, then for t > 0,∥∥ cos(t
√
H)〈H〉−3/4−Pacf(x)

∥∥
L∞
. |t|−

1
2 ‖f‖L1 , and∥∥sin(t

√
H)√

H
〈H〉−1/4−Pacf(x)

∥∥
L∞
. |t|−

1
2 ‖f‖L1 .

(16)

Also, if zero is regular, then for t > 2,∥∥〈x〉− 1
2
− cos(t

√
H)〈H〉−3/4−Pacf(x)

∥∥
L∞
. (t log2 t)−1‖〈x〉

1
2

+f‖L1 , and∥∥〈x〉− 1
2
− sin(t

√
H)√

H
〈H〉−1/4−Pacf(x)

∥∥
L∞
. (t log2 t)−1‖〈x〉

1
2

+f‖L1 .
(17)

For more results in other dimensions, one can see [21, 5, 6, 38, 4].

These two results of Green suggest that the techniques we present below to obtain The-

orem 1.1 for the Schrödinger evolution can be adapted to the wave evolution. In fact, one

can obtain

Theorem 1.4. Let |V (x)| . 〈x〉−2β− for some β > 2. If there is a resonance of first kind

at zero, then we have∥∥〈x〉− 1
2
− cos(t

√
H)χ(H)Pacf

∥∥
L∞
≤ C

|t|(log |t|)2
‖〈x〉

1
2

+f‖L1 , and

∥∥〈x〉− 1
2
−(sin(t

√
H)√

H
χ(H)Pacg −

1

πit
Fg
)∥∥
L∞
≤ C

|t|(log |t|)2
‖〈x〉

1
2

+f‖L1 ,

for |t| > 2. Here F (x, y) = −1
2ψ〈ψ1, f〉 where ψ is the canonical s-wave resonance function

satisfying ψ − 1 ∈ Lp for all p > 2.
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Theorem 1.4 is valid only for the low energy part, but by including regularizing powers

and combining it with the high energy result (16) of Green, we can extend it to all energies.

2. Scalar case

In this section we prove that

Theorem 2.1. Let |V (x)| . 〈x〉−3−2α. Then, we have for t > 2

(18)

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)[R+

V (λ2)−R−V (λ2)](x, y)dλ− 1

t
F (x, y)

∣∣∣∣ .
√
w(x)w(y)

t log2(t)
+
〈x〉

3
2 〈y〉

3
2

t1+α

where 0 < α < min(1
4 , β −

3
2) and F (x, y) = −ψ(x)ψ(y)

4 where ψ is the canonical s-wave

resonance function satisfying ψ − 1 ∈ Lp for all p > 2.

We combine (18) with the high energy result obtained in [14]:

Theorem 2.2. [14, Theorem 5.1] Let |V (x)| . 〈x〉−2β for some β > 3/2 and χ̃ := 1 − χ.

We have

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ̃(λ)χ(λ/L)[R+

V (λ2)−R−V (λ2)](x, y)dλ

∣∣∣∣ . 〈x〉 32 〈y〉 32t3/2

for |t| > 2.

This combination together with Stone’s formula (9) gives us

∣∣eitHPac(H)(x, y)− 1

πit
F (x, y)

∣∣ . √w(x)w(y)

t log2(t)
+
〈x〉

3
2 〈y〉

3
2

t1+α
.

Interpolating this with ∣∣eitHPac(H)(x, y)
∣∣ . 1

t

from [13] which is satisfied when there is a resonance of the first kind at zero and using the

inequality, see, e.g., [14]:

min
(
1,
a

b

)
.

log2(a)

log2(b)
, a, b > 2,

we obtain ∣∣eitHPac(H)(x, y)− 1

πit
F (x, y)

∣∣ . w(x)w(y)

t log2(t)
, t > 2.

This implies Theorem 1.1.
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2.1. The Free Resolvent and Resolvent expansion around zero when there is a

resonance of the first kind at zero. This subsection is devoted to obtain an expansion

for the spectral density [R+
V (λ2) − R−V (λ2)](x, y). Recall that in Rn the integral kernel of

the free resolvent is given by Hankel functions, see [34].

For n = 2 we have

R±0 (λ2)(x, y) = ± i
4
H±0 (λ|x− y|) = ± i

4

[
J0(λ|x− y|)± iY0(λ|x− y|)

]
.(19)

Here J0(z) and Y0(z) are Bessel functions of the first and second kind of order zero. We use

the notation f = Õ(g) to indicate

dj

dλj
f = O(

dj

dλj
g), j = 0, 1, 2, ...., .(20)

If (20) is satisfied only for j = 1, 2, 3, .., k we use the notation f = Õk(g).

For |z| � 1, we have the series expansions for Bessel functions, see, e.g., [1, 13],

J0(z) = 1− 1

4
z2 +

1

64
z4 + Õ6(z6),(21)

Y0(z) =
2

π
log(z/2) +

2γ

π
+ Õ(z2 log(z)).(22)

For any C ∈ {J0, Y0} we also have the following representation if |z| & 1.

C(z) = eizω+(z) + e−izω−(z), ω±(z) = Õ
(
(1 + |z|)−

1
2
)
.(23)

We prove two lemmas on the behavior of R±0 (λ2)(x, y) for sufficiently small λ.

Lemma 2.3. Let χ be a smooth cutoff for [−1, 1], and χ̃ = 1−χ. Define J̃0(z) := χ̃(z)J0(z).

Then

|J̃0(λ|z|)| . λ1/2|z|1/2, |∂λJ̃0(λ|z|)| . λ−1/2|z|1/2, |∂2
λJ̃0(λ|z|)| . λ−1/2|z|3/2.

Similarly, the same bound is satisfied when J̃0(z) is replaced with Ỹ0(z) := χ̃(z)Y0(z) or

H̃0(z) := χ̃(z)H0(z).

Proof. Using (23) we have

J̃0(λz) =
∣∣∣Õ( eiλ|z|

(1 + λ|z|)1/2

)∣∣∣ . |λz|0+ . λ1/2|z|1/2,

|∂λJ̃0(λz)| = Õ
( zeiλz

(1 + λz)1/2
+

zeiλz

(1 + λz)3/2

)
. (λ−1|z|)

1
2
[
eiλz +

eiλz

λz
] . λ−

1
2 |z|

1
2 ,

|∂2
λJ̃0(λz)| = Õ

( z2eiλz

(1 + λz)1/2
+

z2eiλz

(1 + λz)3/2
+

z2eiλz

(1 + λz)5/2

)
. λ−1/2|z|3/2.

�



A WEIGHTED ESTIMATE WHEN ZERO IS THE RESONANCE OF THE FIRST KIND 9

Define

G0f(x) := (−∆)−1(x, y) = − 1

2π

∫
R2

log |x− y|f(y) dy,(24)

g±(λ) := ‖V ‖1
(
± i

4
− 1

2π
log(λ/2)− γ

2π

)
.(25)

The following lemma and its corollary are Lemma 3.1 and Corollary 3.2 in [14].

Lemma 2.4. The following expansion is valid for the kernel of the free resolvent

R±0 (λ2)(x, y) =
1

‖V ‖1
g±(λ) +G0(x, y) + E±0 (λ)(x, y).

G0(x, y) is the kernel of the operator G0 in (24), and E±0 satisfies the bounds

|E±0 | . λ
1
2 |x− y|

1
2 , |∂λE±0 | . λ

− 1
2 |x− y|

1
2 , |∂2

λE
±
0 | . λ

− 1
2 |x− y|

3
2 .

Corollary 2.5. For 0 < α < 1 and b > a > 0 we have

|∂λE±0 (b)− ∂λE±0 (a)| . a−
1
2 |b− a|α|x− y|

1
2

+α.

Define U(x) as U(x) = 1 when V (x) > 0 and U(x) = −1 when V (x) ≤ 0, and v(x) =

|V (x)|1/2. Then using the symmetric resolvent identity for =λ > 0, we have

R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2),(26)

where

M±(λ) = U + vR±0 (λ2)v.(27)

Here we derive an expansion for M±(λ)−1 in a small neighborhood of zero when there is a

resonance of the first kind at zero. This derivation is similar to that in [14]. However, we

need finer control on the error term.

Let K : L2(Rn) → L2(Rn) with kernel K(x, y). We define the Hilbert-Schmidt norm of

K as

‖K‖HS :=

√∫
Rn

∫
Rn
|K(x, y)|2dydx.

Lemma 2.6. Let 0 < α < 1. For λ > 0 define M±(λ) := U + vR±0 (λ2)v. Then

M±(λ) = g±(λ)P + T + E±1 (λ).

Here T = U+vG0v where G0 is an integral operator defined in (24) and P is the orthogonal

projection onto v. In addition, the error term satisfies the bound
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0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2 (b− λ)−α|∂λE±1 (b)− ∂λE±1 (λ)|

∥∥
HS
. 1

provided that v(x) . 〈x〉−
3
2
−α−.

Proof. Note that

E±1 (λ) = M±(λ)− [g±(λ)P + T ] = vR±0 (λ2)v − g±(λ)P − vG0v = vE±0 (λ)v.

Lemma 2.4 and Corollary 2.5 yield the lemma since v(x)|x − y|kv(y) is Hilbert-Schmidt

on L2(R2) provided that k > −1 and v(x) . 〈x〉−k−1−. In our case 0 ≤ k ≤ 1
2 + α and

v(x) . 〈x〉−3/2−α−. �

The following definitions are from [48] and [34] respectively,

Definition 2.7. We say that an operator T : L2(R2) → L2(R2) with kernel T (·, ·) is

absolutely bounded if |T (·, ·)| is bounded from L2(R2) to L2(R2).

Hilbert-Schmidt operators and finite rank operators are absolutely bounded.

Definition 2.8. (1) Let Q := 1 − P , then zero is defined to be a regular point of the

spectrum of H = −∆ + V if QTQ = Q(U + vG0v)Q is invertible on QL2(R2).

(2) If zero is not a regular point of spectrum then QTQ+ S1 is invertible on QL2(R2) and

we define D0 = (QTQ+ S1)−1 as an operator on QL2(R2). Here S1 is defined as the Riesz

projection onto the Kernel of QTQ as an operator on QL2(R2).

(3) We say there is a resonance of the first kind at zero if the operator T1 := S1TPTS1 is

invertible on S1L
2(R2) and we define D1 as the inverse of T1 as an operator on S1L

2.

Remark 2.9. (1) Throughout this paper we assume that there is a resonance of the first

kind at zero. Thus, QTQ is not invertible on QL2 but QTQ+S1 and T1 := S1TPTS1

are invertible on QL2 and S1L
2 respectively.

(2) If |v(x)| . 〈x〉−2− then the range of S1−S2 (S2 being the orthogonal projection onto

Ker T1) has dimension at most one, see [34, Theorem 6.2] and [13, Lemma 5.1,

Lemma 5.2]. Since in our case S2 ≡ 0, and since zero is not regular, Range S1 has

dimension exactly one. This fact together with the next remark suggests that if there

is a resonance of the first kind at zero, then the s-wave resonance is one-dimensional.

Also, since Range S1 has dimension exactly one we write S1f = φ〈φ, f〉 for some

φ ∈ S1L
2 with ‖φ‖L2 = 1.
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(3) Theorem 6.2 in [34] also states that for v . 〈x〉−1−, if φ ∈ S1L
2, then φ = ωψ

for an s-wave resonance ψ ∈ L∞ such that Hψ = 0 in the sense of distributions.

Moreover,

ψ = c0 −G0vφ,(28)

where

c0 =
1

‖V ‖L1

〈v, Tφ〉 =
1

‖V ‖1

∫
v(x) Tφ(x)dx.(29)

(4) Denoting P (x, y) the kernel of P we have P (x, y) = ‖V ‖−1
1 v(x)v(y). Hence, in light

of second and third remarks above we obtain

T1 = S1TPTS1 = ‖V ‖−1
1 〈v, Tφ〉

2S1 = ‖V ‖1c2
0S1,

D1 = T−1
1 =

1

‖V ‖1c2
0

S1.

The following lemmas are given without proofs.

Lemma 2.10. [34, Lemma 2.1] Let A be closed operator on a Hilbert space H and S a

projection. Assume A+ S has a bounded inverse. Then A has bounded inverse if and only

if B := S − S(A+ S)−1S has a bounded inverse in SH and in this case

A−1 = (A+ S)−1 + (A+ S)−1SB−1S(A+ S)−1.

Lemma 2.11. [13, Lemma 2.5] Fix 0 < α < 1, and assume that v(x) . 〈x〉−3/2−α−.

Suppose that zero is not a regular point of the spectrum of −∆ + V , and let S1 be the

corresponding Riesz projection. Then for sufficiently small λ1 > 0, the operators M±(λ)+S1

are invertible for all 0 < λ < λ1 as bounded operators on L2(R2). And one has

(
M±(λ) + S1

)−1
= h±(λ)−1S +QD0Q+W±1 (λ),(30)

Here h±(λ) = g±(λ) + c where c ∈ R and

(31) S =

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
is a finite-rank operator with real-valued kernel. Furthermore, the error term satisfies the

bound∥∥ sup
0<λ<λ1

λ−
1
2 |W1±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λW1±(λ)|

∥∥
HS
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+
∥∥ sup

0<λ<b.λ<λ1
λ

1
2

+α(b− λ)−α|∂λW1±(b)− ∂λW1 ± (a)|
∥∥
HS
. 1.

Proposition 2.12. Fix 0 < α < 1, and assume that v(x) . 〈x〉−3/2−α−. If there is a

resonance of the first kind at zero, then B±(λ) = S1 − S1(M±(λ+ S1)−1S1 is invertible on

S1L
2(R2). Moreover,

B−1
± (λ) = − h±(λ)

c2
0‖V ‖1

S1 + a±(λ)S1,

where c0 is as in Remark 2.9, and

sup
0<λ<λ1

λ−
1
2

+|a±(λ)|+ sup
0<λ<λ1

λ
1
2
−|a′±(λ)|

+ sup
0<λ<θ.λ<λ1

λ
1
2

+α−(θ − λ)−α|a′±(θ)− a′±(ω))| . 1.

Proof. We apply Lemma 2.10 to obtain (suppressing ’±’ notation)

B(λ) = S1 − S1

(
h−1(λ)S +QD0Q+W1(λ)

)
S1 = −h−1(λ)S1SS1 − S1W1(λ)S1

= h−1(λ)S1TPTS1 − S1W1(λ)S1 = −h−1(λ)c2
0‖V ‖1S1 − S1W1(λ)S1.

The second equality follows from the identity QS1 = S1Q = S1D0 = D0S1 = S1. The third

also uses the identity PS1 = S1P = 0 and the definition of S. The last equality follows

from Remark 2.9 above.

Writing S1W1(λ)S1 = w(λ)S1 (where the function w satisfies the error bound of W1), and

noting that by definition of s-wave resonance c0 6= 0, we obtain −h−1(λ)c2
0‖V ‖1−w(λ) 6= 0

for sufficiently small λ. Therefore

B(λ)−1 =
1

−h−1(λ)c2
0‖V ‖1 − w(λ)

S1 = − h(λ)

c2
0‖V ‖1

S1 + a(λ)S1.(32)

The bounds on a(λ) follows from the definition of h and the bounds on w. �

Using (30) and (32) in Lemma 2.10, we obtain the following expansion for M±(λ)−1:

Corollary 2.13. Fix 0 < α < 1, and assume that v(x) . 〈x〉−3/2−α−. For all 0 < λ < λ1,

we have the following expansion for M±(λ)−1 in case of a resonance of the first kind

M±(λ)−1 = −h±(λ)S1

c2
0‖V ‖1

− SS1

c2
0‖V ‖1

− S1S

c2
0‖V ‖1

− SS1S

c2
0‖V ‖1h±(λ)

+QD0Q+
S

h±(λ)
+ E(λ)(x, y)

where E(λ)(x, y) is such that
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(33)
∥∥ sup

0<λ<λ1

λ−
1
2

+|E±(λ)|
∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2

+|∂λE±(λ)|
∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2

+α+(b− λ)−α|∂λE±(b)− ∂λE±(a)|
∥∥
HS
. 1.

Substituting the expansion above for M±(λ)−1 in (26), we obtain the identity

(34) R±V (λ) = R±0 (λ2) +R±0 (λ2)v
[h±(λ)S1

c2
0‖V ‖1

+
SS1

c2
0‖V ‖1

+
S1S

c2
0‖V ‖1

+
SS1S

c2
0‖V ‖1h±(λ)

−QD0Q−
S

h±(λ)
+ E±(λ)

]
vR±0 (λ2).

2.2. Proof of the Theorem 2.1.

The following proposition takes care of the contribution of the free resolvent in (34) to (9).

Proposition 2.14. [14, Proposition 4.3] We have∫ ∞
0

eitλ
2
λχ(λ)[R+

0 (λ2)−R−0 (λ2)](x, y)dλ = − 1

4t
+O

(〈x〉 32 〈y〉 32
t
5
4

)
.

Below, we obtain similar estimates for each operator included in (34). Simplifying the

boundary terms which appear as operators having 1
t decay gives us Theorem 2.1.

The following two stationary phase lemmas from [14] will be useful for further calcula-

tions.

Lemma 2.15. For t > 2, we have

∣∣∣ ∫ ∞
0

eitλ
2
λ E(λ)dλ− iE(0)

2t

∣∣∣ . 1

t

∫ t−1/2

0
|E ′(λ)|dλ+

∣∣∣E ′(t−1/2)

t3/2

∣∣∣+ 1

t2

∫ ∞
t−1/2

∣∣∣(E ′(λ)

λ

)′∣∣∣dλ.
Lemma 2.16. Assume E(0) = 0. For t > 2, we have∣∣∣ ∫ ∞

0
eitλ

2
λ E(λ)dλ

∣∣∣ . 1

t

∫ ∞
0

|E ′(λ)|
(1 + λ2t)

dλ +
1

t

∫ ∞
t−1/2

∣∣E ′(λ√1 + πt−1λ−2) − E ′(λ)
∣∣dλ.

We start with the contribution of h±(λ)S1 from (34) to (9). Recall that

h±(λ) = g±(λ) + c = a1 log λ+ a2 ±
‖V ‖1i

4
,

where c, ai ∈ R. Using the definition (19) of free resolvent, we write

(35) R1 := h+(λ)R+
0 (λ2)(x, x1)R+

0 (λ2)(y1, y)− h−(λ)R−0 (λ2)(x, x1)R−0 (λ2)(y1, y)

= 2ia log(λ)[Y0(λp)J0(λq) + J0(λp)Y0(λq)]

+
‖V ‖1i

32
[J0(λp)J0(λq) + Y0(λp)Y0(λq)],
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where p = |x−x1| and q = |y−y1|. The following proposition takes care of the contribution

of h±(λ)S1 in (34) to (9).

Proposition 2.17. For t > 2 and 0 < α < 1
4 , if v(x) . 〈x〉−

3
2
−α−, then we have∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)R1(λ, p, q)[vS1v](x1, y1)dλdx1dy1 −

1

t
F1(x, y)

∣∣∣ . 〈x〉 12+α〈y〉
1
2

+α

t1+α
,

where

F1(x, y) = −‖V ||1
16π2

∫
R4

log |x− x1|v(x1)S1(x1, y1)v(y1) log |y − y1|dx1dy1

= −‖V ||1
4

[G0vS1vG0](x, y).

We prove this proposition in a series of lemmas.

Lemma 2.18. Let 0 < α < 1/4, v(x) . 〈x〉−3/2−α−. For t > 2 we have∣∣∣∣∣
∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log(λ)Y0(λp)[vS1v](x1, y1)J0(λq)dλdx1dy1

∣∣∣∣∣ . 〈x〉
1
2

+α+〈y〉
1
2

+α+

t1+α
,(36)

∣∣∣∣∣
∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log(λ)J0(λp)[vS1v](x1, y1)Y0(λq)dλdx1dy1

∣∣∣∣∣ . 〈x〉
1
2

+α+〈y〉
1
2

+α+

t1+α
,(37)

∣∣∣∣∣
∫
R4

∫ ∞
0

eitλ
2
λχ(λ)J0(λp)[vS1v](x1, y1)J0(λq)dλdx1dy1

∣∣∣∣∣ . 〈x〉
1
2

+α+〈y〉
1
2

+α+

t1+α
.(38)

To prove Lemma 2.18 we need the following lemma from [48] and [14]. The bounds on G,

F , and their first derivatives are in [14, Lemma 3.3]. The claim on the second derivatives

follows similarly.

Lemma 2.19. Let p = |x− x1|, r = |x|+ 1, and

F (λ, x, x1) := χ(λp)Y0(λp)− χ(λr)Y0(λr),

G(λ, x, x1) := χ(λp)J0(λp)− χ(λr)J0(λr).

Then for λ ≤ λ1 and 0 ≤ τ ≤ 1, we have

|G(λ, x, x1)| . λτ 〈x1〉τ , |∂λG(λ, x, x1)| . λτ−1〈x1〉τ , |∂2
λG(λ, x, x1)| . λ−1〈x1〉.(39)

and

|F (λ, x, x1)| .
∫ 2λ1

0
|F (0+, x, x1)|+ |∂λF (λ, x, x1)|dλ . k(x, x1),

|∂λF (λ, x, x1)| . λ−1, |∂2
λF (λ, x, x1)| . λ−2+.

(40)
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Here k(x, x1) := 1 + log−(|x− x1|) + log+ |x1|, log−(x) = − log(x)χ(0,1)(x), and log+(x) =

log(x)χ(1,∞)(x).

Proof of Lemma 2.18. We only prove the assertion (36), the second and third assertions are

analogous.

Recall that we introduced two expansions to J0(λp) (or Y0(λp)); they are when λp . 1 and

when λp & 1. In order to use these expansions in the proper context we need to introduce

χ(λp) and χ(λq) where χ is the same cutoff function defined in the introduction. The

phrasing low and high energy has referred only to spectral variable λ until now. However,

in the following analysis it refers to λp and λq.

We divide the proof into three cases.

Case 1: λp . 1 and λq . 1. For low-low energy, we consider∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log(λ)Y0(λp)χ(λp)[vS1v](x1, y1)χ(λq)J0(λq)dλdx1dy1.(41)

Note that by definition S1 ≤ Q and Qv = 0. Hence, for any f ∈ L2(R2)∫
R4

f(x1)[S1](x1, y1)v(y1)dx1dy1 =

∫
R4

v(x1)[S1](x1, y1)f(y1)dx1dy1 = 0(42)

is satisfied. Using this fact, we can replace Y0(λp)χ(λp) with F (λ, x, x1); and J0(λq)χ(λq)

with G(λ, y, y1) in (41). Thus, we need a bound for∫ ∞
0

eitλ
2
λχ(λ) log(λ)F (λ, x, x1)G(λ, y, y1)dλ.(43)

Letting E(λ) = χ(λ) log(λ)F (λ, x, x1)G(λ, y, y1), we see that E(0) = 0. Then taking τ = 1
2

in Lemma 2.19, we obtain

|∂λE(λ)| . χ(λ)λ−
1
2
−k(x, x1)〈y1〉

1
2 ,(44) ∣∣∂2

λE(λ)
∣∣ . λ− 3

2
−k(x, x1)〈y1〉(45)

Using (45) and the Mean Value Theorem, we have for a > λ∣∣∂λE(a)− ∂λE(λ)
∣∣ . |a− λ|λ− 3

2
−k(x, x1)〈y1〉,

whose interpolation with (44) gives us∣∣∂λE(a)− ∂λE(λ)
∣∣ . |a− λ|αλ− 1

2
−α−k(x, x1)〈y〉

1+α
2 .(46)

Recalling that E(0) = 0, we use Lemma 2.16 and obtain

|(43)| . 1

t

∫ ∞
0

|E ′(λ)|
1 + λ2t

dλ+
1

t

∫ ∞
t−1/2

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ.



16 EBRU TOPRAK

Using (44), we can estimate the first integral as

〈y1〉
1
2k(x, x1)

t

∫ ∞
0

λ−
1
2
−

1 + tλ2
dλ .

〈y1〉
1
2k(x, x1)

t
5
4
−

.

To estimate the second integral we have,

λ
(√

1 + πt−1λ−2 − 1
)
∼ 1

tλ
.

And that gives

k(x, x1)〈y〉
1+α
2

t1+α

∫ λ1

t−1/2

λ−
1
2
−2α−dλ .

k(x, x1)〈y1〉
1
2

+α〈y〉
1
2

+α

t1+α

since 0 < α < 1
4 .

Case 2: λp . 1 and λq & 1. The case λp & 1 and λq . 1 is similar. Note that Lemma 2.19

is valid for the low energy. Therefore, we can not use (42) to exchange J0(λq)χ̃(λq) with

G(λ, y, y1). Instead, we use the large energy expansion (23) of J0(λq) and consider the

following integral ∫ ∞
0

eitλ
2
λχ(λ) log(λ)F (λ, x, x1)J̃0(λq)dλ.(47)

Let E(λ) = χ(λ) log(λ)F (λ, x, x1)J̃0(λq). Using the bounds in Lemma 2.19 and Lemma 2.3,

we have the estimates

|∂λE(λ)| . χ(λ)λ−
1
2
−〈y〉

1
2 〈y1〉

1
2k(x, x1),(48) ∣∣∂2

λE(λ)
∣∣ . λ− 3

2
−k(x, x1)〈y1〉

3
2 〈y〉

3
2 .(49)

Using the same interpolation argument in Case 1, for a > λ we obtain∣∣∂λE(a)− ∂λE(λ)
∣∣ . |a− λ|αλ− 1

2
−α−k(x, x1)〈y1〉

1
2

+α〈y〉
1
2

+α.(50)

Noting E(0) = 0, one can use (48) and (50) in Lemma 2.16 and obtain

|(47)| . k(x, x1)〈y1〉
1
2

+α〈y〉
1
2

+α

t1+α
.

Case 3: λp & 1 and λq & 1. In this case we need to use the large energy expansion for both

Y0(λp) and J0(λq), see Lemma 2.3. Therefore, we consider the following integral∫ ∞
0

eitλ
2
λχ(λ) log(λ)Ỹ0(λp)J̃0(λq)dλ.(51)



A WEIGHTED ESTIMATE WHEN ZERO IS THE RESONANCE OF THE FIRST KIND 17

Note that (51) has slightly faster decay than (47) in terms of λ. Also the largest contribution

to the weight function comes when both derivatives act on either J̃0 or Ỹ0 as 〈·〉
3
2 . One can

reduce this weight to 〈·〉
1
2

+α using the argument that leads to (46) above and obtain∣∣∂λE(a)− ∂λE(λ)
∣∣ . |a− λ|αλ−α log λ〈x1〉

1
2

+α〈y〉
1
2

+α〈y1〉
1
2

+α(52)

for E(λ) = χ(λ) log(λ)Ỹ0(λp)J̃0(λq). Using (52) in Lemma 2.16, we obtain |(51)| .
t−1−α〈y〉

1
2

+α〈x〉
1
2

+α.

Hence, combining all four cases we see that∣∣∣∣∣
∫ ∞

0
eitλ

2
λχ(λ) log(λ)Y0(λp)J0(λq)dλ

∣∣∣∣∣ . k(x, x1)〈x1〉
1
2

+α〈x〉
1
2

+α〈y〉
1
2

+α〈y1〉
1
2

+α

t1+α

for α ∈ (0, 1/4). That yields

∣∣(36)
∣∣ . 〈x〉 12+α+〈y〉

1
2

+α+

t1+α

∫
R4

k(x, x1)〈x1〉
1
2

+αv(x1)[S1](x1, y1)v(y1)〈y1〉dx1dy1

.
〈x〉

1
2

+α+〈y〉
1
2

+α+

t1+α
‖k(x, x1)〈x1〉

1
2

+αv(x1)‖L2
x1
‖|S1|‖L2→L2‖〈y1〉

1
2

+αv(y1)‖L2
y1

.
〈x〉

1
2

+α+〈y〉
1
2

+α+

t1+α
.

The last inequality follows from the the assumption v(x) . 〈x〉−
3
2
−α−, which implies

‖k(x, x1)〈x1〉
1
2

+αv(x1)‖L2
x1
. 1. We also used the fact that S1 is absolutely bounded since

it is of finite rank. �

Lemma 2.20. Let K(λ, y, y1) = χ
(
λ|y − y1|

)
− χ

(
λ(|y|+ 1)

)
. Then for any 0 ≤ τ ≤ 1, we

have

|K(λ, y, y1)| . λτ 〈y1〉τ , |∂λK(λ, y, y1)| . λ1−τ 〈y1〉τ , |∂2
λK(λ, y, y1)| . λ−1〈y1〉.

Proof. Noting that χ ∈ C∞, for the first inequality we use the mean value theorem to

conclude

|K(λ, y, y1)| =
∣∣χ(λq)− χ(λ(|y|+ 1)

)∣∣ ≤ λ〈y1〉max
x
|χ′(x)| . min(1, λ〈y1〉) . λτ 〈y1〉τ .

For the second inequality note that ∂λχ(λq) = qχ′(λq). For the third equality, we also used

that |K(λ, y, y1)| . 1.

Using the fact that χ ∈ C∞, we obtain

|∂λK(λ, y, y1)| =
∣∣∣λqχ′(λq)− λ(|y|+ 1)χ′

(
λ(|y|+ 1)

)
λ

∣∣∣ . 1

λ
min(1, λ〈y1〉) . λ1−τ 〈y1〉τ .
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Finally for the third inequality, note that χ′′(λq) is supported when λ ∼ 1
q . Using this and

the second derivative of the cut-off functions in terms of λ, we have

|∂2
λK(λ, y, y1)| ≤

∣∣q2χ′′
(
λq
)
− (|y|+ 1)2χ′′

(
λ(|y|+ 1)

)∣∣ . λ−1
∣∣q − (|y|+ 1)

∣∣.
�

Lemma 2.21. Under the same conditions of Proposition 2.17, we have

(53)

∫
R4

∫ ∞
0

eitλ
2
λχ(λ)Y0(λp)vS1vY0(λq)dλdx1dy1

= 32i

∫
R4

G0(x, x1)[vS1v](x1, y1)G0(y1, y)dx1dy1 + Õ
(
t−1−α〈x〉

1
2

+α〈y〉
1
2

+α
)
.

Proof. The proof is very similar to the proof of Lemma 2.18 except in the case when λp, λq .

1. This is because the identity (42) leads to an integral with operators F (λ, x, x1)F (λ, y, y1),

which doesn’t give better decay rate than 1/t. We have to be more careful obtaining the

term behaving like 1/t explicitly.

Using the expansion (22) of Y0(z) for small energy, we obtain

Y0(λp)Y0(λq) =
4

π2
log |x− x1| log |y − y1|+A(λ, p, q) + E1(λ, p, q) + E2(λ, p, q),

where

A(λ, p, q) := c1 log(λ)[log(λp) + log(λq)] + c2[log(λp) + log(λq)] + c3 , where cj ∈ R− {0}

and

E1(λ, p, q) := Õ
(

log(λp)(λq)2 log(λq)
)
, E2(λ, p, q) =

(
log(λp)(λp)2 log(λq)

)
.

To handle the terms in the operator A(λ, p, q), we need Lemma 2.20. Consider only the

first term in A(λ, p, q) then, we have∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log λ log(λp)χ(λp)[vS1v](x1, y1)χ(λq)dλdx1dy1.(54)

Using (42), we can subtract log(λ(|x| + 1))χ(λ(|x| + 1)) from the left side of v(x1) and

χ
(
λ(|y|+ 1)

)
from the right side of v(y1). Then, it becomes enough to bound∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log λh(λ, x, x1)[vS1v](x1, y1)K(λ, y, y1)dλdx1dy1(55)

where h(λ, x, x1) := log(λp)χ(λp) − log(λ(|x| + 1))χ(λ(|x| + 1)). However, estimating this

integral is equal to estimating the integral (41) from Lemma 2.18. This is because the term

h(λ, x, x1) satisfies the bounds in (40) from Lemma 2.19 and the bounds in Lemma 2.20 are

similar to the bounds in (39). Hence, |(54)| . t−1−αk(x, x1)〈y1〉
1
2

+α〈y〉
1
2

+α.
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For the error term E1(λ, p, q), note that using the projection property of S1 we can

subtract χ(λ(|x| + 1) log(λ(|x| + 1)) from the left side of the operator vS1v and replace

log(λp) with h(λ, x, x1). Then, using λq . 1, we have

|∂λ[(λq)2 log(λq)]| . q(λq)1− . λ−
1
2 〈y〉

1
2 〈y1〉

1
2 ,

∣∣∣∂λ(∂λ[(λq)2 log(λq)]

λ

)∣∣∣ . q2

λ
. λ−

5
2
−〈y〉

1
2 〈y1〉

1
2 .

The bound t−
5
4k(x, x1)〈y〉

1
2 〈y1〉

1
2 follows by Lemma 2.15. Similarly, the error E2(λ, p, q) can

be bounded by t−
5
4k(y, y1)〈x〉

1
2 〈x1〉

1
2 .

Finally, we consider the integral

4

π2

∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log |x− x1|χ(λp)[vS1v](x1, y1)χ(λq) log |y − y1|dλdx1dy1.(56)

Applying integration by parts once, the λ integral of (56) is equal to

− 2

iπ2t
− 1

π2t2

∫ ∞
0

eitλ
2 d

dλ

(
χ(λ)χ(λp)χ(λq)

)
dλ = − 2

iπ2t
+O

(
t−

5
4 (〈x〉〈x1〉〈y〉〈y1〉)

1
2
)
.(57)

For the second inequality note that all the cut-off functions are infinitely differentiable.

However two integration by parts would yield too large of a spatial weight. An easy calcu-

lation gives
∣∣∣ ∂∂λ(χ(λ)χ(λp)χ(λq)

)∣∣∣ . λ−
1
2 (〈x〉〈x1〉〈y〉〈y1〉)

1
2 . And for ∂λ

(∂λ(χ(λ)χ(λp)χ(λq)
)

λ

)
the most delicate term comes when all the derivatives fall on either χ(λp) or χ(λq). But

since χk(λp) for k ≥ 1 is supported when p ∼ 1
λ we have∣∣∣∣χ(λ)χ′′(λp)p2χ(λq)

λ

∣∣∣∣ . λ− 5
2 〈x〉

1
2 〈x1〉

1
2

and that applying Lemma 2.16 yields (57).

The final result is therefore obtained as

(53) = − 2

π2it

∫
R4

log |x− x1|[vS1v](x1, y1) log |y − y1|dy1dx1

+O
(〈y〉 12+α〈x〉

1
2

+α

t1+α

∫
R4

k(x, x1)〈x1〉
1
2

+α[vS1v](x1, y1)k(y, y1)〈y1〉
1
2

+αdx1dy1

)
,

which finishes the proof of Lemma 2.1. �

Multiplying the boundary term with
‖V ‖1i

32
gives F1 in Proposition 2.17.

We next consider the contribution of QD0Q, SS1, and S1S, from (34) to (9). Let

(58) R2(λ, p, q) := R+
0 (λ2)(x, x1)R+

0 (λ2)(y1, y)−R−0 (λ2)(x, x1)R−0 (λ2)(y1, y)

= − i
8

[
J0(λp)Y0(λq) + Y0(λp)J0(λq)

]
.

Note that using this expansion and the projection property of Q the contribution of QD0Q

can be handled as in Proposition 2.17. In fact, since (58) does not contain the term
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Y0(λp)Y0(λq), and since G(0, x, x1) = 0, in the application of integration by parts the

boundary term at λ = 0 is obtained as zero.

Proposition 2.22. For t > 2 and 0 < α < 1
4 if v(x) . 〈x〉−

3
2
−α−, then we have∣∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)R2(λ, p, q)[vSS1v](x1, y1)dλdx1dy1 −

1

t
F2(x, y)

∣∣∣∣ . 〈x〉 12+α〈y〉
1
2

+α

t1+α
,

∣∣∣∣ ∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R2(λ, p, q)[vS1Sv](x1, y1)dλdx1dy1 −

1

t
F3(x, y)

∣∣∣∣ . 〈x〉 12+α〈y〉
1
2

+α

t1+α
,

where

F2(x, y) =
1

4
〈v, SS1vG0(·, y)〉,

F3(x, y) =
1

4
〈v, SS1vG0(·, x)〉.

Proof. We consider the first assertion. By (58) we have the following two integrals:∫
R4

∫ ∞
0

eitλ
2
λχ(λ)Y0(λp)v(x1)[SS1](x1, y1)v(y1)J0(λq)dλdx1dy1,(59)

∫
R4

∫ ∞
0

eitλ
2
λχ(λ)J0(λp)v(x1)[SS1](x1, y1)v(y1)Y0(λq)dλdx1dy1.(60)

Here the only caveat is that we have S1 only on the right. This allows us to perform

addition and subtraction of J0(λ(|y|+ 1)) and Y0(λ(|y|+ 1)) only on the right side of SS1.

Hence, the proofs for high-low and high-high energy are not affected by this caveat. When

λp . 1, λq & 1 we have the following two integrals for (59) and (60) respectively∫
R4

∫ ∞
0

eitλ
2
λχ(λ)

[
1 + Õ

(
log(λp)

)]
χ(λp)vSS1vJ̃0(λq)dλdx1dy1,(61)

∫
R4

∫ ∞
0

eitλ
2
λχ(λ)

[
1 + Õ

(
(λp)2

)
]χ(λp)vSS1vỸ0(λq)dλdx1dy1.(62)

Letting E(λ, p, q) =
[
1 + Õ

(
log(λp)

)]
χ(λp)J̃0(λq) we have E(0) = 0. Using Lemma 2.3 and

the fact that (λp) . 1, we obtain

|∂λE(λ, p, q)| . λ−
1
2
−k(x, x1)〈y〉

1
2 〈y1〉

1
2∣∣∂2

λE(λ, p, q)
)∣∣ . λ− 3

2
−k(x, x1)〈x1〉

3
2 〈y〉

3
2 〈y1〉

3
2 .

Hence, by interpolation for b > λ we have∣∣∂λE(b)− ∂λE(λ)
∣∣ . |b− λ|αλ− 1

2
−α−k(x, x1)〈x1〉

1
2

+α〈y1〉
1
2

+α〈y〉
1
2

+α,

which gives

(61) = O
(〈x〉 12+α〈y〉

1
2

+α

t1+α−

)
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using Lemma 2.16 for α < 1/4. With a similar argument one can show that (62) satisfies

the same decay assumption with the same weight function.

For the low-low case first note that S1 being only on the right side of the operator allows

us to exchange J0(λq) with G(λ, y, y1) in (59), and Y0(λq) with F (λ, y, y1) in (60). The

decay rate of G(λ, y, y1) cancels out the singularity of log λ, which is the dominated term

in the expansion (22) of Y0. Therefore, we don’t obtain any boundary term from (59) and

can bound it by 1
t1+α

with the weight k(x, x1)〈y〉〈x〉. However, this is not the case for (60).

The following lemma evaluates the contribution of this term. �

Lemma 2.23. Under the same conditions of Proposition 2.22, for λp, λq . 1 we have

∣∣(60)− 2

it

∫
R4

v(x1)[SS1](x1, y1)v(y1)G0(y, y1)dx1dy1| .
〈x〉

1
2

+α+〈y〉
1
2

+α+

t!+α
.(63)

Proof. Note that multiplying the boundary term with − i
8 gives the the statement of Propo-

sition 2.22.

Using the expansions (21) and (22) for J0(λp) and Y0(λq) respectively, we have

J0(λp)Y0(λq) =
[
1 + Õ

(
(λp)2

)][
− 4 G0(y1, y) + c(1 + log λ) + Õ

(
(λq)2−))]

= −4 G0(y1, y) + c(1 + log λ) + Õ
(
(λq)2 log(λq)

)
+O2

(
(λp)2

)
Y0(λq).

Using this expansion in (60), we obtain∣∣∣(60) + 4

∫
R4

∫ ∞
0

eitλ
2
λχ(λ)χ(λp))[vSS1v])(x1, y1)χ(λq)G0(y1, y)dλdx1dy1

∣∣∣
.
∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)χ(λp)[vSS1v](x1, y1)χ(λq)

[
1 + log λ

]
dλdx1dy1

∣∣∣
+
∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)χ(λp)[vSS1v](x1, y1)χ(λq)(λq)2 log(λq)dλdx1dy1

∣∣∣
+
∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)χ(λp)(λp)2[vSS1v](x1, y1)F (λ, y, y1)dλdx1dy1

∣∣∣.
Note that using the property (42), we could exchange Y0(λp) with F (λ, y, y1) in the last

integral.

The first integral is similar to (57). We therefore have∫ ∞
0

eitλ
2
λχ(λ)χ(λp)χ(λq)G0(y, y1)dλ = − 2

it
G0(y1, y) +O

(
t−

5
4 (〈x〉〈x1〉〈y〉〈y1〉)

1
2k(y, y1)

)
.

The contribution of the first integral follows as A(λ, p, q) in Lemma 2.21 and it can be

bounded by t−1−α〈x1〉
1
2

+α〈y〉〈y1〉
1
2

+α. Using Lemma 2.15, the other two integrals give the

same bound that E1(λ, p, q) in Lemma 2.21 gives. The weights coming from the second
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derivative of the cut-off functions can be reduced as required using the support of χ′(λp)

and χ′(λq). Hence, we obtain the inequality (63). �

For the terms arising from h±(λ)−1SS1S and h±(λ)−1S, which are the integrals∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R3(λ, p, q)vSS1Sv(x1, y1)dλdx1dy1(64)

and ∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R3(λ, p, q)]vSv(x1, y1)dλdx1dy1,(65)

where R±3 =
R+

0 (λ2)(x, x1)R+
0 (λ2)(y, y1)

h+(λ)
− R

+
0 (λ2)(x, x1)R+

0 (λ2)(y, y1)

h−(λ)
we have the follow-

ing Proposition, which is the generalized version of Proposition 4.4 in [14].

Proposition 2.24. Let 0 < α < 1/4, v(x) . 〈x〉−3/2−α−. For any absolutely bounded

operator Γ, we have∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R3(λ, p, q)v(x1)Γ(x1, y1)v(y1)dλdx1dy1

= − 1

4 ‖V ‖1t

∫
R4

v(x1)Γ(x1, y1)v(x1)dx1dy1 +O
(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
.

Corollary 2.25. Under the same conditions, we have

∣∣(64)− 1

t
F4(x, y)

∣∣ . O(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
,

∣∣(65)− 1

t
F5(x, y)

∣∣ . O(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
,

where

F4(x, y) = − 1

4 ‖V ‖1

∫
R2

v(x1)[SS1S](x1, y1)v(y1)dx1dy1 = − 1

4 ‖V ‖1
〈v, SS1Sv〉,

F5(x, y) = − 1

4 ‖V ‖1

∫
R2

v(x1)[S](x1, y1)v(y1)dx1dy1 = − 1

4 ‖V ‖1
〈v, Sv〉.

Finally, the contribution of the error term E(λ)(x, y) can be handled as in Proposition

4.9 in [14]:

Proposition 2.26. Let 0 < α < 1/4, v(x) . 〈x〉−3/2−α. We have the bound∣∣∣∣ ∫
R4

∫ ∞
0

eitλ
2
λχ(λ)[R+

2 −R
−
2 ]v(x1)E(λ)(x1, y1)v(y1)dλdx1dy1

∣∣∣∣ . 〈x〉 12+α+〈y〉
1
2

+α+

t1+α
(66)
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Using Proposition 2.14, Proposition 2.17, Proposition 2.22, Corollary 2.25, and Proposi-

tion 2.26 in the expansion (26) for R+
V −R

−
V leads us to (18) with

F (x, y) = −1

4
+

1

c2
0‖V ‖1

4∑
i=1

Fi − F5.(67)

The next proposition calculates F (x, y) explicitly.

Proposition 2.27. Under the conditions of Theorem 1.1,

F (x, y) = −1

4
ψ(x)ψ(y)(68)

where ψ − 1 ∈ Lp for all p > 2.

Proof. Recall that S1 is a projection operator with the kernel S1(x, y) = φ(x)φ(y) for some

‖φ‖L2 = 1. Also, by Remark 2.9 if ψ is an s-wave resonance it has the representation

ψ = c0 + G0vφ. Since the operators here are linear we can divide this equality by c0 to

obtain ψ̃ − 1 = 1
c0
G0vφ ∈ ∩p>2L

p.

Using these and the definition (25) of G0f(x), F1 can be written as

F1(x, y) = −‖V ||1
4

[G0vS1vG0](x, y) = −‖V ‖1
4

[G0vφ](x)[G0vφ](y)

= −‖V ‖1
4

c2
0

(
ψ̃(x)− 1

)(
ψ̃(y)− 1

)
.

For F2 and F3 recall that

S =

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
=

[
a11 a12

a21 a22

]
.

Note that multiplying S by v from the left side cancels a21 and a22; and by S1 from the

right side cancels a11. Hence, we have

F2(x, y) =
1

4
〈v, SS1v G0(·, y)〉 = −1

4
〈v, PTQD0QS1vG0(·, y)〉

= −1

4
〈Pv, TS1vG0(·, y)〉 = −1

4
〈v, Tφ〉[G0vφ](y)

For the third equality we used the identities S1D0 = D0S1 = S1 and QS1 = S1. For the

last equality we used Pv = v and the definition of S1. Hence, recalling the definition of

c0 = ‖V ‖−1
1 〈v, Tφ〉 from Remark 2.9 we can write F2(x, y) as

F2(x, y) = −‖V ‖1
4

c2
0

(
ψ̃(y)− 1

)
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The same calculation shows that

F3(x, y) = −‖V ‖1
4

c2
0

(
ψ̃(x)− 1

)
.

Similarly, using Qv = 0, Pv = v, and S1QD0Q = QD0QS1 = S1, we calculate

F4(x, y) = − 1

4‖V ‖1
〈Sv, S1Sv〉 = − 1

4‖V ‖1
〈φTv, S1Tv〉 = − 1

4‖V ‖1
〈v, Tφ〉2 = −‖V ‖1

4
c2

0.

For F5(x, y), note that we have v(x) both on left and right side of S. Hence, except P

everything vanishes and we obtain

F5(x, y) = − 1

4‖V ‖1
〈v, Sv〉 = − 1

4‖V ‖1
〈v, Pv〉 = −1

4
.

It is easy to see that F5 cancels out the operator coming from the free resolvent in (67).

The other four sum up to − c20‖V ‖1
4 ψ̃(x)ψ̃(y) and that establishes the proof. �

Proposition 2.27 finishes the proof of Theorem 2.1.

We conclude this section by remarking that the bounds that we obtain in this section

allows us to reach a similar estimate for the solution of the wave equation with some small

modifications. Replacing Proposition 2.14, Proposition 2.22, and Proposition 2.26 with

Proposition 5.10, Proposition 5.11, and Proposition 5.15 in [30] respectively one can obtain:

∣∣∣ ∫ ∞
0

(
sin(tλ) + λ cos(tλ)χ(λ)

)
[R+

V (λ2)−R−V (λ2)](x, y)dλ− 1

t
F̃ (x, y)

∣∣∣
.

(1 + log+ |x|)(1 + log+ |y|)
t log2 t

+
〈x〉

1
2

+α〈y〉
1
2

+α

t1+α
.

This estimate gives us Theorem 1.4 with no interpolation. Note that the interpolation

with unweighted result (14) does not help us to decrease the weight function to log2(2+ |x|)
and have the decay (t log2 t)−1. This is because we need to improve the time decay from

|t|−1/2 as opposed to Schrödinger time decay |t|−1 .

Also note that we only need to subtract a finite rank operator from (15). The reason is

the following identities (Λ smooth and compactly supported)∫ ∞
0

cos(tλ)λΛ(λ)dλ = −1

t

∫ ∞
0

sin(tλ)
(
λΛ(λ)

)′
dλ,

∫ ∞
0

sin(tλ)Λ(λ)dλ = −1

t
Λ(0) +

1

t

∫ ∞
0

cos(tλ)Λ′(λ)dλ.

The boundary term in the second identity will result in the finite rank operator, as in the

proof of Theorem 1.1.
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3. MATRIX CASE

Let R±V (λ) := limε→0(H− (λ2± iε))−1 for λ ∈ (−∞, µ]∪ [µ,∞). Recall that the following

representation is valid for (f, g) ∈W 2,2 ×W 2,2 ∩X1+ under the assumptions of A1) - A4),

see Section 2 in [17]:

〈eitHPacf, g〉 =
1

2πi

∫
|λ|>µ

eitλ〈
[
R+
V (λ)−R−V (λ)

]
f, g〉dλ.(69)

Using this representation we will prove

Theorem 3.1. Under the assumptions of A1) - A4), if there is a resonance of the first

kind at µ, then we have for any t > 0

sup
x,y∈R2

∣∣∣ ∫ ∞
0

eit(λ
2+µ)λχ(λ/L)

[
R+
V −R−V

]
(λ2 + µ)(x, y)dλ

∣∣∣ . 1

|t|
.

Theorem 3.2. Under the assumptions A1)-A4), if there is a resonance of the first kind at

µ, then we have for any t ≥ 2

sup
x,y∈R2

∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ/L)

[
R+
V −R−V

]
(λ2 + µ)(x, y)dλ− 1

t
F(x, y)

∣∣∣
.

√
w(x)w(y)

t log2(t)
+
〈x〉3/2〈y〉3/2

t1+α

where 0 < α < min(1
4 ,

β−3
2 ).

The statement of Theorem 3.1 and Theorem 3.2 is established in [15] for F(x, y) = 0 when

µ is regular, see Theorem 1.2. In Section 3.1, we prove the statement of Theorem 3.2 for

λ� 1 and combine it with the high energy result of (12) from Theorem 1.2. In Section 3.2,

we extend the low energy; when λ� 1, results of (11) from Theorem 1.2 to the case when

there is a resonance of the first kind at µ. Then we conclude Theorem 1.3 by interpolation

as in the analysis of the scalar case.

Below in Section 3.1, we show that the spectral density [R+
V (λ) − R−V (λ)](x, y) has a

similar expansion to (34) from the scalar case. Because the same analysis appear in [14] we

skip the proofs and refer Section 2 in [14] to the reader.

Note that Theorem 3.1 and Theorem 3.2 are stated only for µ > 0. That is because our

analysis below is performed only on the positive branch of the spectrum [µ,∞). However,

one can perform the same analysis for negative branch taking λ2 = −λ − µ and establish

Theorem 1.3 when there is resonance of the first kind at −µ.
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3.1. The free resolvent and resolvent expansion around zero in case of s-wave

resonance.

The free resolvent R0(z) of matrix Schrödinger equation is given by

R0(z) = (H0 − z)−1 =

[
R0(z − µ) 0

0 −R0(−z − µ)

]
(70)

for z /∈ (−∞,−µ] ∪ [µ,∞). Here R0(z) is the scalar free resolvent. Writing z = µ + λ2,

where λ > 0 we have

R±0 (µ+ λ2)(x, y) =

[
R±0 (λ2)(x, y) 0

0 R2(λ2)(x, y)

]

where R2(λ2)(x, y) := − i
4H

+
0 (i
√

2µ+ λ2|x− y|).
Note that the bounds

|R2(λ2)(x, y)| . 1 + log− |x− y| . k(x, y) , |∂kλR2(λ2)(x, y)| . 1 k = 1, 2, ...(71)

can be seen directly from the large and small energy expansion of Hankel functions and the

fact that µ is strictly greater than zero.

We define the following two matrices

M11 =

[
1 0

0 0

]
, M22 =

[
0 0

0 1

]
and write

R±0 (µ+ λ2)(x, y) = R±0 (λ2)(x, y)M11 +R2(λ2)(x, y)M22(72)

for convenience.

Lemma 3.3. The following expansion is valid for the kernel of the free resolvent

R±0 (λ2 + µ)(x, y) = g±(λ)M11 + G0(x, y) + E±0 (λ)(x, y),

where

g±(λ) = ± i
4
− 1

2π
log(λ/2)− γ

2π
,

G0(x, y) =

[
G0(x, y) 0

0 − i
4H

+
0 (i
√

2µ|x− y|)

]
,

and E±0 (λ)(x, y) satisfies the bounds,

|E±0 | . 〈λ〉
1
2λ

1
2 〈x− y〉

1
2 , |∂λE±0 | . 〈λ〉

1
2λ−

1
2 〈x− y〉

1
2 , |∂2

λE±0 | . 〈λ〉
1
2λ−

1
2 〈x− y〉

3
2 .
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Corollary 3.4. For 0 < α < 1 and d > c > 0 we have,

|∂λE±0 (d)− ∂λE±0 (c)| . c−
1
2 |d− c|α〈x− y〉

1
2

+α.

We write V = −σ3vv := v1v2 where v1 = −σ3v , v2 = v, and

v =
1

2

[ √
V1 + V2 +

√
V1 − V2

√
V1 + V2 −

√
V1 − V2

√
V1 + V2 −

√
V1 − V2

√
V1 + V2 +

√
V1 − V2

]
:=

[
a b

b a

]
.

Using symmetric resolvent identity, we have

RV (µ+ λ2) = R0(µ+ λ2)−R0(µ+ λ2)v1M
±(λ)−1v2R0(µ+ λ2),

where

M±(λ) = I + v2R0(µ+ λ2)v1.

Employing Lemma 3.3,

M±(λ) = g±(λ)v2M11v1 + T + v2E±0 v1

where T has kernel T (x, y) = I + v2(x)G0(x, y)v1(y).

Lemma 3.5. Let 0 < α < 1. The following expansion is valid for λ > 0

M±(λ) = −‖a2 + b2‖L1(R2)g
±(λ)P + T + E±1 (λ),

where P is the orthogonal projection onto the span of the vector (a, b)T in L2×L2. Further,

we have∥∥ sup
0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2 (b− λ)−α|∂λE±1 (b)− ∂λE±1 (λ)|

∥∥
HS
. 1,

provided that a(x), b(x) . 〈x〉−3/2−α−.

Recall P in the scalar case is defined as projection onto v whereas in matrix case it is

defined as projection onto the span of the vector (a, b)T . In light of this difference we give

the following modified version of Definition 2.8. Let Q := 1− P .

Definition 3.6. (1) µ is defined to be a regular point of the spectrum of H = −∆ + V if

QTQ is invertible on Q(L2 × L2).

(2) If µ is not a regular point of spectrum then QTQ+ S1 is invertible on Q(L2 × L2) and

we define D0 = (QTQ+ S1)−1 as an operator on Q(L2 × L2). Here S1 is defined as Riesz

projection onto the Kernel of QTQ as an operator on Q(L2 × L2).
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(3) We say there is a resonance of the first kind at zero if the operator T1 := S1TPTS1 is

invertible on S1Q(L2 × L2) and we define D1 as the inverse of T1.

With the following lemma we can have a representation for the space S1 as in the scalar

case.

Lemma 3.7. [15, Lemma 4.4] If |a(x)| + |b(x)| . 〈x〉−1− and if φ ∈ S1( L2 ×  L2) , then

φ(x) = v2(x)ψ1(x) where ψ1 ∈ L∞ × L∞ and (H0 − µI)ψ1 = 0 in the sense of distribution.

Also we have

ψ1(x) = −G0v1φ(y) + (c0, 0)T ,

with c0 = 〈Tφ,(a,b)〉
‖a2+b2‖1 .

Remark 3.8. (1) φ(x) = v2(x)ψ1(x) implies that φ(x) = v T
1 (x)ψ2(x) where

ψ2(x) = G0(x, y)v2φ− (c0, 0)T ,

since v2ψ1 = v T
1 (−σ3)ψ1 = v T

1 ψ2.

(2) Let S2 be the orthogonal projection onto Ker T1. Then the range of S1 − S2 has di-

mension at most one. To see this, recall the representation of ψ1 from Lemma 3.7.

Note that first, if φ ∈ S2(L2 × L2) then c0 = 0, [13, Lemma 5.3]. Second, if

|a(x)|, |b(x)| . 〈x〉−2− then G0v1φ(x) ∈ Lp × Lp for any p ∈ (2,∞]. Indeed,

Lemma 5.1 of [13] suggests that the first entry of G0v1φ is in Lp for any p ∈ (2,∞].

For the second entry, recall that we analyze the free resolvent of matrix equation on

the positive branch. Hence, i
4H

+
0 (i
√

2µ|x − y|) is well-defined as an operator from

L2 to L2. Since φ is in L2 and the entries of v2 are in L2∩L∞ we can conclude that

the second entry of G0v1φ(x) is in L2. Lemma 3.7 suggests that the second entry is

also in L∞. So by interpolation G0v1φ(x) ∈ Lp × Lp for any p ∈ (2,∞].

Hence, one has that RankS1 ≤ RankS2 + 1.

(3) Since in our case S2 ≡ 0, and since zero is not regular, Range S1 has dimension

exactly one. Hence, we take ‖φ‖L2×L2 = 1 with φ ∈ S1( L2 ×  L2) and S1f =(
φ1, φ2

)
〈φ, f〉 where φ is as in the Lemma .3.7.

(4) By Lemma 3.7, we have

D1 =
1

‖a2 + b2‖1c2
0

S1.

Definition 3.6 and Lemma 3.7 give us a similar expansion for M±(λ)−1 as in the Sec-

tion 2.1. In the expansion ‖a2 + b2‖1 exchanges with ‖V ‖1 due to the definition of
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h±(λ) = −‖a2 + b2‖1g±(λ) + c where c ∈ R. Hence, for 0 < λ < λ1, we have

(73) R±V (λ) = R±0 (λ2) + R±0 (λ2)v1

[ h±
‖a2 + b2‖1c2

0

(λ)S1 +
SS1

‖a2 + b2‖1c2
0

+
S1S

‖a2 + b2‖1c2
0

+
1

‖a2 + b2‖1c2
0

h−1
± SS1S − h−1

± (λ)S −QD0Q− E±(λ)
]
v2R

±
0 (λ2)

with E(λ)(x, y) is such that

∥∥ sup
0<λ<λ1

λ−
1
2

+|E±(λ)|
∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2

+α(b− λ)−α|∂λE±(b)− ∂λE±(a)|
∥∥
HS
. 1.

Here the matrix S has the same definition (31) as in the scalar case.

3.2. Proof of the Theorem 3.2.

The proof of Theorem 3.2 is similar to the proof of Theorem 2.1. The cancellation

property Qv = 0 that we used repeatedly is replaced with

M11v1S1 = S1v2M11 = 0,(74)

which allows us to use Lemma 2.19 to gain extra time decay. Furthermore, as in the scalar

case, the boundary terms arise only in the low-low energy evolution. For this reason, we

present the proof of Theorem 3.2 for the case λp, λq . 1, and omit the cases in which

high energy is involved. For high energies one can apply the same methods that we applied

in the scalar case using the bound (71) in addition to the bound (23), see [15] for similar

arguments.

For convenience we write

R0(µ+ λ2)(x, y) = R0(λ2)(x, y)M11 +R2(λ2)(x, y)M22.(75)

The following Proposition takes care of the contribution of∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R1(λ, p, q)[v1S1v2](x1, y1)dλdx1dy1(76)

to (69) where

(77) R1(λ, p, q) := h+(λ)R+
0 (µ+ λ2)(x, x1)R+

0 (µ+ λ2)(y, y1)

− h−(λ)R−0 (µ+ λ2)(x, x1)R−0 (µ+ λ2)(y, y1).
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Proposition 3.9. Let 0 < α < 1/4. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−α−, then we have∣∣∣(76)− 1

t
F1(x, y)

∣∣∣ . 〈x〉 12+α+〈y〉
1
2

+α+

t1+α
,

where

F1(x, y) =
‖a2 + b2‖1

4

∫
R4

G0(x, x1)v1(x1)S1(x1, y1)v2(y1)G0(y1, y)dx1dy1

=
‖a2 + b2‖1

4
G0v1S1v2G0.

Proof. Using (75) in (77), R1(λ, p, q) can be calculated as

h+(λ)R+
0 (λ2)(x, x1)M11M11R

+
0 (λ2)(y1, y)− h−(λ)R−0 (λ2)(x, x1)M11M11R

−
0 (λ2)(y1, y)

+ [h+(λ)R+
0 (λ2)(x, x1)− h−(λ)R−0 (λ2)(x, x1)]M11M22R2(λ2)(y1, y)

+R2(λ2)(x, x1)M22M11[h+(λ)R+
0 (λ2)(y1, y))− h−(λ)R−0 (λ2)(y1, y))]

+ [h+(λ)− h−(λ)]M22M22R2(λ2)(x, x1)R2(λ2)(y1, y)

= A1(λ, p, q) +A2(λ, p, q) +A3(λ, p, q) +A4(λ, p, q).

Note that A1(λ, p, q) is similar to (35). Hence, using the projection property (74), its

contribution to the integral (76) can be obtained as

‖a2 + b2‖1
4t

∫
R4

G0(x, x1)M11v1S1v2M11G0(y, y1)dx1dy1 +O
(〈x〉 12+α〈y〉

1
2

+α+

t1+α+

)
.(78)

Next we consider A4(λ, p, q). First note that

[h+(λ)− h−(λ)]R2(λ2)(x, x1)R2(λ2)(y1, y) =

‖a2 + b2‖1i
32

H+
0 (i
√

2µ+ λ2 p)H+
0 (i
√

2µ+ λ2 q).

Taking E(λ, p, q) = χ(λ)H+
0 (i
√

2µ+ λ2 p)H+
0 (i
√

2µ+ λ2 q), we see that E(0)

= H+
0 (i
√

2µ|x− x1|)H+
0 (i
√

2µ|y − y1|). Also, the bounds (71) leads us to∣∣∣ ∂
∂λ

[χ(λ)H+
0 (i
√

2µ+ λ2|x− x1|)H+
0 (i
√

2µ+ λ2|y − y1|)]
∣∣∣ . k(x, x1)k(y, y1),(79) ∣∣∣∂( ∂

∂λ [χ(λ)H+
0 (i
√

2µ+ λ2|x− x1|)H+
0 (i
√

2µ+ λ2|y − y1|)]
λ

)∣∣∣ . λ−2k(x, x1)k(y, y1).(80)

Hence, using Lemma 2.15 with the bounds (79) and (80) we obtain the contribution of

A4(λ, p, q) to the λ-integral of (76) as

−‖a
2 + b2‖1
64t

H+
0 (i
√

2µ p)M22M22H
+
0 (i
√

2µ q) +O
(k(x, x1)k(y, y1)

t3/2

)
.(81)
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For A2(λ, p, q), we have

[h+(λ)R+
0 (λ2)(x, x1)− h−(λ)R−0 (λ2)(x, x1)]R2(λ2)(y1, y)

= CJ0(λp)(log(λ) + 1)R2(λ2)(y1, y)− i‖a
2 + b2‖1

8
Y0(λp)R2(λ2)(y1, y)

(82)

for some C ∈ C.

Note that we can apply (74) to the left side of this sum and replace J0(λp) withG(λ, x, x1).

Hence, Lemma 2.16 together with the bounds in (71) and in Lemma 2.19 gives us the

contribution of the left side to λ-integral of (76) as t−1−α〈x〉
1
2

+α〈x1〉
1
2

+αk(y, y1).

To find the contribution of the right side of the sum in (82) recall that Y0(λ|x − x1|) =

χ(λp)[ 2
π log(λp2 ) + c+ Õ((λp)2 log(λp))]. Multiplying this with R2(λ2)(y1, y), we have

− 4G0(x, x1)χ(λp)R2(λ2)(y1, y) + [log λ+ c]χ(λp)R2(λ2)(y1, y)

+ Õ(λp)2 log(λp)χ(λp)R2(λ2)(y1, y).

Using Lemma 2.20 and (74), the contribution of the second term to λ integral in (76) can

be obtained as 〈x1〉
1
2

+αk(y, y1)t−1−α in a similar way as in A(λ, p, q) in Lemma 2.21. And

the contribution of the third term follows as t−
5
4k(y, y1)〈x〉

1
2 〈x1〉

1
2k(y, y1) with Lemma 2.15.

Finally, for the first term we take E(λ, p, q) = −4G0(x, x1)χ(λp)R2(λ2)(y1, y) and see

E(0, p, q) = iG0(x, x1)H+
0 (i
√

2µ q). Using Lemma 2.15 with the bounds of R2(λ) and the

support of χ(λp), the contribution of A2(λ, p, q) is obtained as

(83) − i‖a2 + b2‖1
16t

∫
R4

G0(x, x1)M11[v1S1v2](x1, y1)M22H
+
0 (i
√

2µ q)dx1dy1

+O
(〈x〉 12 〈x1〉

1
2k(x, x1)k(y, y1)

t
5
4

)
.

With a similar argument the contribution of A3(λ, p, q) is

(84) − i‖a2 + b2‖1
16t

∫
R4

H+
0 (i
√

2µ p)M22[v1S1v2](x1, y1)M11G0(y, y1)dx1dy1

+O
(〈x〉 12 〈x1〉

1
2k(x, x1)k(y, y1)

t
5
4

)
.

Adding up (78), (81), (83), (84) gives the statement. �

To find the contribution of the terms SS1 and S1S to (69) we define

R2(λ, p, q) := R+
0 (λ2)(x, x1)R+

0 (λ2)(y1, y)−R−0 (λ2)(x, x1)R−0 (λ2)(y1, y).
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Proposition 3.10. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−α− where 0 < α < 1

4 , then we have

(85)
∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)R2(λ, p, q)[v1S1Sv2](x1, y1)dλdx1dy1 −

1

t
F2(x, y)

∣∣∣
.
〈x〉

1
2

+α+〈x1〉
1
2

+α+

t1+α
,

(86)
∣∣∣ ∫

R4

∫ ∞
0

eitλ
2
λχ(λ)R2(λ, p, q)[v1SS1v2](x1, y1)dλdx1dy1 −

1

t
F3(x, y)

∣∣∣
.
〈x〉

1
2

+α+〈x1〉
1
2

+α+

t1+α
,

where

F2(x, y) = −1

4
G0v1S1Sv2M11(x, y), F3(x, y) = −1

4
M11v1SS1v2G0(x, y).

Proof. We consider only (85). Note that

R+
2 (λ, p, q) = [R+

0 (λ2)(x, x1)M11M11R
+
0 (λ2)(y1, y)−R−0 (λ2)(x, x1)M11M11R

−
0 (λ2)(y1, y)]

+ [R+
0 (λ2)(x, x1)−R−0 (λ2)(x, x1)]M11M22R2(λ2)(y1, y)

+R2(λ2)(x, x1)M22M11[R+
0 (λ2)(y1, y))−R−0 (λ2)(y1, y))]

= B1(λ, p, q) +B2(λ, p, q) +B3(λ, p, q).

Again a similar kernel to B1(λ, p, q) is examined in the scalar case. It has the contribution

− 1

4t

∫
R4

G0(x, x1)M11[v1S1Sv2](x1, y1)M11dx1dy1 +O
(〈x〉 12+α+〈x1〉

1
2

+α+

t1+α

)
(87)

to the integral in (85). For B2(λ, p, q) = i
2 J0(λp)M11M22R2(λ2)(y1, y) we can use the

orthogonality property (74) on the left side of S1S and exchange J0(λp) with G(λ, x, x1).

Then, Lemma 2.15 together with the bounds in Lemma 2.19 and (71) gives us∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)B2(λ, p, q)[v1S1Sv2](x1, y1)dλ

∣∣∣ . 〈x1〉
1
2k(y, y1)

t
5
4

.(88)

Lastly, we consider B3(λ, p, q) = i
2R2(λ2)(x, x1)J0(λq)χ(λq). Applying Lemma 2.15, we

have ∫ ∞
0

eitλ
2
λχ(λ)B3(λ, p, q)dλ =

i

16t
H+

0 (i
√

2µ p)M22M11 +O
(k(x, x1)〈y〉

1
2 〈y1〉

1
2

t
5
4

)
.(89)

Hence, (87), (88), and (89) establishes the proof. �
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The following Proposition will take care of the contributions of the following two integrals:∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R3(λ, p, q)v1SS1Sv2(x1, y1)dλdx1dy1,(90)

∫
R4

∫ ∞
0

eitλ
2
λχ(λ)R3(λ, p, q)v1Sv2(x1, y1)dλdx1dy1,(91)

where

R3(λ, p, q) :=
R+

0 (µ+ λ2)R+
0 (µ+ λ2)

h+(λ)
− R−0 (µ+ λ2)R−0 (µ+ λ2)

h−(λ)
.

Proposition 3.11 (Proposition 5.5 in [15]). Let 0 < α < 1/4. If |a(x)|+|b(x)| . 〈x〉−3/2−α−

then for any absolutely bounded operator Γ we have∫
R4

∫ ∞
0

eitλ
2
R3(λ, p, q)v1Γv2(x1, y1)dλdx1dy1

=
1

4‖a2 + b2‖1

∫
R4

M11v1Γv2dx1dy1 +O
(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
.

Corollary 3.12. Under the same conditions of Proposition 3.11 we have

|(90)− 1

t
F4(x, y)| . O

(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
,

|(91)− 1

t
F5(x, y)| . O

(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
,

where

F4(x, y) =
1

4‖a2 + b2‖1
M11v1SS1Sv2M11, F5(x, y) =

1

4‖a2 + b2‖1
M11v1Sv2M11.

The contribution of E(λ)(x, y) can be handled as in Proposition 4.9 in [14] and we can

obtain the following proposition.

Proposition 3.13. Let 0 < α < 1/4. If |a(x)|+ |b(x)| . 〈x〉−3/2−α−, then we have∫ ∞
0

eitλ
2
λχ(λ)

[
R+

0 (µ+ λ2)v1Ev2R+
0 (µ+ λ2)−R−0 (µ+ λ2)v1Ev2R−0 (µ+ λ2)

]
(x, y)dλ

= O
(〈x〉 12+α〈y〉

1
2

+α

t1+α

)
.

We found the boundary terms Fi(x, y), i = 1, .., 5 that has 1
t decay for every term

appearing in the expansion (73). Also we note that the contribution of free resolvent is

calculated in [15] as∫ ∞
0

eitλ
2
λχ(λ)[R+

0 (µ+ λ2)−R−0 (µ+ λ2)](x, y)dλ = − 1

4t
M11 +O

(〈x〉 32 〈y〉 32
t
5
4

)
.(92)
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Considering this and the expansion (73) we see that the assertion of Theorem 3.2 is

satisfied for

F(x, y) = F0(x, y) +
1

‖a2 + b2‖1c2
0

4∑
i=1

Fi(x, y)− F5(x, y).

The following proposition concludes the explicit representation of F(x, y) in Theorem 3.2.

Proposition 3.14. Under the conditions of Theorem 1.3 we have

F(x, y) = −1

4
ψ(x)[σ3ψ(y)]T

where (H0 − µI)ψ = 0 in the sense of distribution and ψ − (1, 0)T ∈ ∩p>2L
p × ∩p>2L

p.

Proof. First note that G T
0 (x, y) = G0(x, y) and vT2 = v2. Then, recalling the integral kernel

of S1, which is S1(x, y) = φ(x)φT (y), we can write the operator obtained as F1 as

(93) F1(x, y) =
‖a2 + b2‖1

4
G0v1S1v2G0(x, y) =

‖a2 + b2‖1
4

[G0v1φ](x)[G0v2φ]T (y)

=
‖a2 + b2‖1

4

(
(c0, 0)T − ψ1(x)

)(
− (c0, 0)− ψT2 (y)

)
.

For the last equality we used the representation of φ from Lemma 3.7 and Remark 3.8-(1).

Note that here
(
(c0, 0)T −ψ1(x)

)
is a column vector and

(
− (c0, 0)−ψT2 (y)

)
is a row vector.

Hence, their vector product gives an operator which is represented by a 4× 4 matrix.

For F2(x, y), the definition of S1 gives us

F2(x, y) = −1

4
G0v1S1Sv2M11(x, y) = G0v1S1TPv2M11(x, y)

= −1

4
[G0v1φ](x)〈φ, TPv2M11(·, y)〉 = −1

4
[G0v1φ](x)〈φ, TP (a, b)T 〉(1, 0)

= −1

4
[G0v1φ](x)‖a2 + b2‖1(c0, 0).

For the second equality, we used the definition of S from Lemma 2.11 together with identities

Qv2M11 = 0, S1D0 = D0S1 = S1, and QS1 = S1. For the fourth equality, we used the fact

that T is symmetric and v2M11 = (a, b)T (1, 0). Hence, we have

F2 =
‖a2 + b2‖1

4

(
(c0, 0)T − ψ1(x)

)
(c0, 0).(94)

Consequently, since M11v1 = (−1, 0)T (a, b) one obtains

F3(x, y) =
‖a2 + b2‖1

4
(−c0, 0)

(
− (c0, 0)− ψT2 (y)

)
.(95)

Using the orthogonality property (74) and the definition of S, one has
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(96) F5(x, y) =
1

4‖a2 + b2‖1
M11v1Sv2M11 =

1

4‖a2 + b2‖1
M11v1Pv2M11

=
−‖a2 + b2‖1
4‖a2 + b2‖1

M11 = −1

4
M11.

With a same argument as in the Proposition 2.27 using the orthogonality property (74)

in the definition of S, we have

F4(x, y) =
1

4‖a2 + b2‖1
M11v1SS1Sv2M11 =

1

4‖a2 + b2‖1
M11v1PTS1TPv2M11

c2
0

4‖a2 + b2‖1
M11v1Pv2M11 = −‖a

2 + b2‖1
4

c2
0.

(97)

For the third equality we used the definition of PTφ from Lemma 3.7 and the fact that

T is symmetric.

Multiplying (93), (94), (95), (97), (96) with required constants and summing up together

with the boundary term (92) from the free resolvent for matrix Schrödinger operator, we

obtain
5∑
i=0

Fi(x, y) =
1

4c2
0

ψ1(x)ψT2 (y) = − 1

4c2
0

ψ1(x)[σ3ψ1(y)]T .

As in Proposition 2.27, dividing ψ1 by c0 establishes the proof. �

3.3. Proof of the Theorem 3.1.

The 1
t bound for the free resolvent, for a similar error term to E, and for the term h±(λ)−1S

were examined in [15] in Proposition 5.4, Proposition 7.5, and Proposition 7.2 respectively.

Since the proof of Proposition 7.2 requires the operator S only to be absolutely bounded it

can be extended to the term h±(λ)−1SS1S.

For the operators QD0Q, SS1, and S1S recall the expansion from Proposition 3.10 :

R+
0 (λ2)(x, x1)R+

0 (λ2)(y1, y)−R−0 (λ2)(x, x1)R−0 (λ2)(y1, y)

= B1(λ, p, q) +B2(λ, p, q) +B3(λ, p, q).

The 1
t bound for a similar kernel to B1(λ, p, q) is established in Proposition 3.11 in [13]

for the operator QD0Q, SS1, and S1S. Furthermore, Proposition 7.2 in [14] shows that

B2(λ, p, q) and B3(λ, p, q) can also be estimated by 1
t for the operator QD0Q. Since the

proof of Proposition 7.2 requires the operator QD0Q only to be absolutely bounded it can

be adopted to SS1 and S1S.

Hence, it is enough to establish the 1
t bound for the operator h±(λ)S1. The following

Proposition will conclude Theorem 3.1
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Proposition 3.15. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−, then we have∫

R4

∫ ∞
0

eitλ
2
λχ(λ)R+

1 (λ, p, q)[v1S1v2](x1, y1)dλdx1dy1 = O
(1

t

)
.

Recall the calculation from Proposition 3.9

R1(λ, p, q) = A1(λ, p, q) +A2(λ, p, q) +A3(λ, p, q) +A4(λ, p, q).

Not that Theorem 3.1 in [13] establishes the 1/t bound for a similar operator to A1(λ, p, q).

Using (74) one can adopt the same proof to A1(λ, p, q).

Using the bounds (71), the contribution of A4(λ, p, q) = i
2R2(x, x1)M22M22R2(y1, y) can

be handled as∫ ∞
0

eitλ
2
λχ(λ)

i

2
R2(λ2)(x, x1)R2(λ2)(y1, y)dλ

.
1

t

∫ 2λ1

0

∣∣∂λ[R2(λ2)(x, x1)R2(λ2)(y1, y)]
∣∣dλ . k(x, x1)k(y, y1)O

(1

t

)
.

The assertion for A4(λ, p, q) follows with ‖v1(x1)k(x, x1)‖L2
x1
. 1.

To prove the contribution of the operators A2(λ, p, q) and A3(λ, p, q) we need the following

lemma.

Lemma 3.16. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−, then we have∫

R4

∫ ∞
0

eitλ
2
λχ(λ)A2(λ, p, q)v1(x1)[S1](x1, y1)v2(y1)dλdx1dy1 = O

(1

t

)
.

The same bound is valid if A2(λ, p, q) is exchanged with A3(λ, p, q).

Proof. We have to consider the large and the small energy contribution separately.

Case 1: λ|x − x1| . 1. Recall that A2(λ, p, q) = CJ0(λp)(log(λ) + 1)R2(λ2)(y1, y) +

zY0(λp)R2(λ2)(y1, y) for some C ∈ R and z ∈ C. Taking this expansion and the pro-

jection property (74) of S1 into account it is enough to consider the contribution of the

following two integrals ∫ ∞
0

eitλ
2
λχ(λ)F (λ, x, x1)R2(λ2)(y1, y)dλ,(98)

∫ ∞
0

eitλ
2
λχ(λ) log(λ)G(λ, x, x1)R2(λ2)(y1, y)dλ.(99)

By integration by part once, we have

|98| . 1

t

∫ ∞
0

eitλ
2
χ′(λ)F (λ, x, x1)R2(λ2)(y1, y)dλ
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+
1

t

∫ 2λ1

0

∣∣∣∂λF (λ, x, x1)R2(λ2)(y1, y)
∣∣∣dλ+

1

t

∫ 2λ1

0

∣∣∣F (λ, x, x1)∂λR2(λ2)(y1, y)
∣∣∣dλ

.
k(y, y1)k(x, x1)

t
+
k(y, y1)

t

∫ 2λ1

0
|F (λ, x, x1)|dλ+

1

t

∫ 2λ1

0

∣∣∂λF (λ, x, x1)
∣∣dλ

.
k(y, y1)k(x, x1)

t
.

For the last inequality observe that by Lemma 2.19 we have |F (λ, x, x1)| . k(x, x1) and

∫ 2λ1

0

∣∣∂λF (λ, x, x1)
∣∣dλ . ∫ 2λ1

0

[
p|χ′(λp) log(λp)|+ q|χ′(λq) log(λq)|dλ . k(x, x1)

]
dλ

+

∫ 2λ1

0

1

λ
|χ(λp)− χ(λq)|dλ . k(x, x1).

To see the last equality note that first integral is bounded by a constant because of the

support of χ′. The second integral is bounded by log
(
x−x1
|x|+1

)
since the support of χ(λp) −

χ(λq) is [λ12p ,
2λ1
q ].

With a similar argument one can conclude that
∣∣99
∣∣ . 〈x1〉1/2k(y,y1)

t .

Case 2: λ|x− x1| & 1. Note that using (74) the λ-integral of∫
R4

∫ ∞
0

eitλ
2
λχ(λ) log(λ)J̃0(λp)M11[v1Sv2]M22(x1, y1)R2(λ2)(y1, y)dλdx1dy1

can be written as∫ ∞
0

eitλ
2
λχ(λ) log(λ)[J̃0(λp)− J̃0(λ(1 + |x|)]R2(λ2)(y1, y)dλ.(100)

Let s = max(|x − x1|, 1 + |x|) and r = min(|x − x1|, 1 + |x|). Using the large energy

representation (23) of Bessel functions and pulling the slower oscillation e±iλr out, (100)

can be rewritten as the sum of∫ ∞
0

eit(λ
2±λrt−1)λχ(λ) log(λ)G̃±(λ, s, r)R2(λ2)(y1, y)dλ,(101)

where

G̃±(λ, s, r) := χ̃(λs)ω±(λs)− e±iλ(s−r)χ̃(λr)ω±(λr).

By Lemma 3.7 in [13], for 0 < τ < 1 and λ ≤ 2λ1, G̃±(λ, s, r) satisfies

|G̃±(λ, s, r) . (λ|r − s|)τ
( χ̃(λr)

|λr|
1
2

+
χ̃(λs)

|λs|
1
2

)
,

|∂λG̃±(λ, s, r)| . |s− r|
( χ̃(λr)

|λr|
1
2

+
χ̃(λs)

|λs|
1
2

)
.

(102)
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In Lemma 3.8 of [13], it is proven that∫ ∞
0

eit(λ
2±λrt−1)a(λ)dλ = O

( 1

t2

)
provided

|a(λ)| . k(x, x1)〈y1〉0+λχ(λ)
( χ̃(λr)

|λr|
1
2

+
χ̃(λs)

|λs|
1
2

)
,(103)

|a′(λ)| . k(x, x1)〈y1〉λχ(λ)
( χ̃(λr)

|λr|
1
2

+
χ̃(λs)

|λs|
1
2

)
.(104)

Hence, it is enough to show that a(λ) = λχ(λ) log(λ)G̃±(λ, s, r)R2(λ2)(y1, y) satis-

fies (103) and (104), which follows immediately from the inequalities (71), (102), and

Lemma 2.19.

�
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[14] Erdoğan, M. B. and Green, W. R.A weighted dispersive estimate for Schrödinger operators in dimension

two. Comm. Math.l Phys.vol. 319, no. 3 (2013): 791-811.
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