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Introduction

Recurrence Definition

Definition

Given F : RK — R, and {xi,

..., Xk} C R, a recurrence is defined as
follows:

r,,:F(r,,,l,...,r,,_k), rn=X,...,H = Xg.

The order of the recurrence is k. Recurrence produces sequence {rn}>" ;.
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Introduction

Recurrence Definition

Definition

Given F : RK — R, and {xi,

..., Xk} C R, a recurrence is defined as
follows:

r,,:F(r,,,l,...,r,,_k), rn=X,...,H = Xg.

The order of the recurrence is k. Recurrence produces sequence {rn}>" ;.

Example:

@ The Fibonacci recurrence, f, = f,_1 + f,_2, of order 2 is defined by
F(x,y)=x+y,and x31 = xp = 1.

1,1,2,3,5,8,13,21,. ..
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Why Focus on Non-Linear?

Definition

If F is a linear function (addition and scalar multiplication) then we say
the recurrence is linear, otherwise the recurrence is non-linear.

@ Linear recurrences are very well behaved

@ Given a linear recurrence we have a closed form formula for the nt"
term in the sequence

@ No such general understanding for non-linear recurrences (not even
for quadratic)
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Three Interesting Phenomena

Global Asymptotic Stability:

@ Sequence produced by recurrence defined from function F, converges
for any set {xi,...,xx} of initial conditions.
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Three Interesting Phenomena

Global Asymptotic Stability:

@ Sequence produced by recurrence defined from function F, converges
for any set {xi,...,xx} of initial conditions.

Surprising Integer Sequences:

o {r}>2; C Z when expected to be rational
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Three Interesting Phenomena

Global Asymptotic Stability:

@ Sequence produced by recurrence defined from function F, converges

for any set {xi,...,xx} of initial conditions.
Surprising Integer Sequences:
o {r}>2; C Z when expected to be rational
Surprising Rational Sequences:

o {r}>2; C Q when expected to be complex
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Global Asymptotic Stability

Rational Difference Equation

Definition

A rational difference equation is given by the equation

Xnt1 = R(Xny Xn—1y -+ -y Xn—k)»

where R : RKt1 — R s a rational function (ratio of polynomials).
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Global Asymptotic Stability

Rational Difference Equation

Definition

A rational difference equation is given by the equation

Xnt1 = R(Xny Xn—1y -+ -y Xn—k)»

where R : RKt1 — R s a rational function (ratio of polynomials).

We require that
@ all coefficients in R are positive

@ initial conditions, x_y, ..., Xp, are positive, and
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Global Asymptotic Stability

Rational Difference Equation

Definition

A rational difference equation is given by the equation

Xn+1 = R(X,-,, Xn—1,.-- 7ank)7

where R : RKt1 — R s a rational function (ratio of polynomials).

We require that

@ all coefficients in R are positive

@ initial conditions, x_y, ..., Xp, are positive, and
Example:
4 + x,
Xp4+1 =
14 Xn—1
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Equilibrium & Stability

Definition

If x, = X for all n > —k then x is called an equilibrium.
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Equilibrium & Stability

Definition

If x, = X for all n > —k then X is called an equilibrium.

We can find an equilibrium by solving the following equation and taking a
positive solution

X =R(%,...,X)
For example
44 %
izli)_(, x =2 (or—2)
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Equilibrium & Stability

Definition

If x, = X for all n > —k then X is called an equilibrium.

We can find an equilibrium by solving the following equation and taking a
positive solution

X =R(X,...,x)

For example

Definition

If x, — X for all positive initial conditions, then X is globally
asymptotically stable (GAS).
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Approaches

o Current method to prove GAS given an R : Rkt — R is to verify
that R satisfies one of many known sufficient conditions

@ Given R; and R», two rational difference equations, their proofs of
GAS may be very different
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Approaches

o Current method to prove GAS given an R : Rkt — R is to verify
that R satisfies one of many known sufficient conditions

@ Given R; and R», two rational difference equations, their proofs of
GAS may be very different

@ My approach:

e Teach a computer how to prove GAS.
o Guarantees that given R; and R, two rational difference equations,
their proofs are “the same”. They follow the same sequence of steps.
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Approaches

o Current method to prove GAS given an R : Rkt — R is to verify
that R satisfies one of many known sufficient conditions
@ Given R; and R», two rational difference equations, their proofs of
GAS may be very different
@ My approach:
e Teach a computer how to prove GAS.

o Guarantees that given R; and R, two rational difference equations,
their proofs are “the same”. They follow the same sequence of steps.

Create an algorithm that takes as input a rational difference equation, R,
and equilibrium, x, conjectured to be GAS, and outputs a rigorous proof of
its stability.
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Notation

Instead of rational difference equation as a map, R : RK*1 — R, consider
vector valued map, Q : Rkt — R¥*+1 defined from R as follows:

Xn R(Xny -y Xn—k)
Xn—1 Xn
Q =
Xn—k Xn—k+1
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Notation

Instead of rational difference equation as a map, R : RK*1 — R, consider
vector valued map, Q : Rkt — R¥*+1 defined from R as follows:

Xn R(Xny -y Xn—k)
Xn—1 Xn
Q(Xn) - Q . - . — p+1l
Xn—k Xn—k+1
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Notation

Instead of rational difference equation as a map, R : RK*1 — R, consider
vector valued map, Q : Rkt — R¥*+1 defined from R as follows:

Xn R(Xny -y Xn—k)
Xp—1 X
Q" () = Q(X,) = Q § = ; = Xpi1
Xn—k Xn—k+1
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Global Asymptotic Stability

Notation

Instead of rational difference equation as a map, R : RK*1 — R, consider
vector valued map, Q : Rkt — R¥*+1 defined from R as follows:

Xn R(Xny -y Xn—k)
Xp—1 X
Q" () = Q(X,) = Q § = ¥ = Xpi1
Xn—k Xn—k+1

For example:

o[-0 ]
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Global Asymptotic Stability

Notation

Instead of rational difference equation as a map, R : RK*1 — R, consider
vector valued map, Q : Rkt — R¥*+1 defined from R as follows:

Xn R(Xny -y Xn—k)
Xn—1 X,
QX)) = QX)) =Q | | = ’ = Xn1
Xn—k Xn—k+1

For example:

Create an algorithm that takes as input a vectorized rational difference
equation, @, and equilibrium, X := (x, ..., X), conjectured to be GAS,
and outputs a rigorous proof of its stability.
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Global Asymptotic Stability Algorithm Part 1

A Useful Theorem

Theorem (Kruse, Nesemann 1999)

Suppose for the difference equation

Xpp1 = Q(Xn), n=0,1,2,...

with unique positive equilibrium X, there exists an integer K > 1 such
that the Kt iterate of Q satisfies

Kooy s
W <1 forall X # X with all coordinates positive.

Then X is GAS.

||I-]| is the Euclidean norm, i.e., |[{x0, ..., xk)|| = v/x02 + - - + xx2
eahogan@math.rutgers.edu
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Algorithm Ingredients

e R:RK*1 — R - rational difference equation

@ X - equilibrium, solution to x = R(x, ..., X)
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Algorithm Ingredients

e R:RK*1 — R - rational difference equation

@ X - equilibrium, solution to x = R(x, ..., X)

o Q: Rkt — R¥+1 _ vectorized rational difference equation

o X - vectorized equilibrium, (x,...,X)

Emilie Hogan eahogan@math.rutgers.edu April 7, 2011 10 / 42



Algorithm Ingredients

e R:RK*1 — R - rational difference equation

@ X - equilibrium, solution to x = R(x, ..., X)

o Q: Rkt — R¥+1 _ vectorized rational difference equation

o X - vectorized equilibrium, (x,...,X)
Find positive integer K so that

[Q7(x) — ]

= <1 forall X # X with all coordinates positive
v — ]
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Algorithm ldea

Given a positive integer K we create a polynomial:
_ o P _112
Pq.# k(X) = numerator HX - X” - HQ (x)— XH

If Po .k (X) >0 forall X # X with all coordinates positive (i.e., in the
positive orthant, RX™1) then:
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Algorithm ldea

Given a positive integer K we create a polynomial:
_ o P _112
Pq.# k(X) = numerator HX - X” - HQ (x)— XH

If Po .k (X) >0 forall X # X with all coordinates positive (i.e., in the
positive orthant, RX™1) then:

0 < numerator (HX - [leF() - )EH2)

0< x| || () - ||
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Algorithm ldea

Given a positive integer K we create a polynomial:
_ o P _112
Pq.# k(X) = numerator HX - XH - HQ (x)— XH

If Po .k (X) >0 forall X # X with all coordinates positive (i.e., in the
positive orthant, RX™1) then:

0 < numerator (HX - /1_)H2 o HQK(X) B /?H2)
0 <[l — &P - @ (x) - 9?Hz
| ) -2 < x - 2P

- <1
(R
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Polynomial Positivity

Create an algorithm that takes as input a polynomial P(X’) in m variables
(X = (x1,...,Xm)), and outputs a proof that P(X) > 0 for X € RT.
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Polynomial Positivity

Create an algorithm that takes as input a polynomial P(X’) in m variables
(X = (x1,...,Xm)), and outputs a proof that P(X) > 0 for X € RT.

Trivial algorithm (“PosCoeffs”): If all coefficients in P(X') are positive
then P(X) > 0 for X in the positive orthant.

Emilie Hogan eahogan@math.rutgers.edu April 7, 2011 12 / 42



Polynomial Positivity (cont.)

Less trivial algorithm (“SubP”): If the only negative coefficients are on
terms of the form Xx; - x; then:

Example:

Pi=x>—xy+y*+x+y+1
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Algorithm Part 2
Polynomial Positivity (cont.)
Less trivial algorithm (“SubP”): If the only negative coefficients are on

terms of the form Xx; - x; then:

o Consider the “sub-polynomial”, P, consisting of the
terms xﬁ and x; - x; for all 1 < h,i,j < m, and their
coefficients in P

Example:

Pi=x>—xy+y*+x+y+1
P=x*>—xy+y?
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Polynomial Positivity (cont.)

Less trivial algorithm (“SubP”): If the only negative coefficients are on
terms of the form Xx; - x; then:

o Consider the “sub-polynomial”, P, consisting of the
terms xﬁ and x; - x; for all 1 < h,i,j < m, and their
coefficients in P

e Consider P as quadratic form and show it is positive
definite (in 2 variables use discriminant)

Example:
P = 2—xy+y2—|—x+y—|—1

B

Disc(P)

x2 —xy+y
(-1)>-4-1-1=-3
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Polynomial Positivity (cont.)

Less trivial algorithm (“SubP”): If the only negative coefficients are on
terms of the form Xx; - x; then:

o Consider the “sub-polynomial”, P, consisting of the
terms xﬁ and x; - x; for all 1 < h,i,j < m, and their
coefficients in P

e Consider P as quadratic form and show it is positive
definite (in 2 variables use discriminant)

e If P is positive, then P(X') > 0 for X in the positive
orthant (since all other coefficients are positive)

Example:
P = 2—xy+y2—|—x+y—|—1

B

Disc(P)

x2 —xy+y
(-1)>-4-1-1=-3
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Global Asymptotic Stability Algorithm Part 2

My Algorithm in Two Dimensions

Cut the positive quadrant into 4 regions using X as the cut point:

NW NE

SwW

Create 4 new polynomials, from P, by transforming each of the 4 regions

into the positive quadrant. The new polynomials will each be defined on
the entire positive quadrant.
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Global Asymptotic Stability Algorithm Part 2

PNE(XJ.y)

PNE(X,}/): P(X+)_(7.y+)_<)
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Global Asymptotic Stability Algorithm Part 2

1 ‘ ’
Psw(x,y) =P ;
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Global Asymptotic Stability Algorithm Part 2

=l

1 1
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Global Asymptotic Stability Algorithm Part 2

=l

151
EE

i1

£y

1 1

Psw(x,y)=P| —,—
(x,y) Ty 41
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Global Asymptotic Stability Algorithm Part 2

N

11 1\ * AN
P =Pl 707 X %
sw(x,y) <x+§’y+§> <X+>_<> <y+>_<)
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Global Asymptotic Stability Algorithm Part 2

P/\/W(X,_)/) and PSE(Xay)

=l
Bl =

Emilie Hogan eahogan@math.rutgers.edu April 7, 2011

17 / 42



My Algorithm in Two Dimensions (cont.)

e If all polynomials are > 0 on the positive quadrant then P(X) > 0 on
the positive quadrant
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My Algorithm in Two Dimensions (cont.)

e If all polynomials are > 0 on the positive quadrant then P(X) > 0 on
the positive quadrant

@ Use PosCoeffs and SubP on each of the 4 polynomials to show that
they are positive on the positive quadrant

o If PosCoeffs and SubP fail for one of the polynomials then we have to
subdivide the associated region and try again
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GAS Algorithm Summary

Given a rational difference equation x,11 = R(Xpn, ..., Xn—k) and a unique
equilibrium X:
Step 0: Create the function Q : RFt1 — RA+1,

Step 1: Conjecture a K value that satisfies

@)~ | _

= 1.
|l = ]

Step 2: Create the polynomial Pg 5 x(X).

Step 3: Prove PQ«—\;’K(X) > 0 for all X # X in the positive orthant:
find subdivision of positive orthant in which all associated
polynomials (one for each sub-region) are positive in the
positive orthant.
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Global Asymptotic Stability Algorithm Part 2

Demo

Use my maple code to prove GAS of the equilibrium X = 2 in the running

example
4 + x,

1+ xp-1
Code is available on my website as a link off the page for this project:
http://math.rutgers.edu/~eahogan/GAS.html

Xn+1 =
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Global Asymptotic Stability Algorithm Part 2

Coefficients as Variables

@ So far assumed coefficients are numerical, variables are x,'s

@ Can prove some cases in which coefficients are parameters as long as
equilibrium is rational function of parameters

@ Run positivity algorithm with x,'s and parameters as variables
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Global Asymptotic Stability Algorithm Part 2

Coefficients as Variables

@ So far assumed coefficients are numerical, variables are x,'s

@ Can prove some cases in which coefficients are parameters as long as
equilibrium is rational function of parameters

@ Run positivity algorithm with x,'s and parameters as variables

Example:
If xpr1 = m for A, B > 0 then the equilibrium is

1-A

X:m.

When we create PQ,K,/’\? it will be a polynomial in x,, x,—1, A, and B.
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Select Results

Xpt1 = ‘ Parameter Values ‘ Findings
1 M2—1 M—-1>0M+1>0 i:%(M—l)isGAS
4 1+ M-1<0,M+1<0 x = —1(M+1)is GAS
Bxn 0<p<l1 x = 0is GAS
1+ 1<8 x=p—1is GAS
X"J;(ln 1<A x = 0is GAS
Xn_1 0<A<1 x=1-Ais GAS
Abxn—t 1<A % =0 is GAS
g4 Mg M—-qg<0,M+qg<0,g>0 | x=-3(M-q)is GAS
4 xn M—qg>0M+qg>0,g>0 X = %(M—i—q)lsGAS
1 M—gitax, | M—a>0,M+qg>0,g>-1 x = 3(M—q) is GAS
4 Iratx I M _g<0,M+g<0,g>—-1|x= %(M+q)isGAs
eahogan@math . rutgers . edu April 7, 2011 22/ 42



Somos Sequences

Michael Somos, in 1989, conjectured that sequence produced by
SnSn—6 = Sn—15n—5 + Sn_2Sn—a + Sp_3

with initial conditions s; = 1 for 1 < j < 6, consisted only of integers
(A006722).

1,1,1,1,1,1,3,5,9,23, 75,421, 1103, 5047, 41783, 281527, . . .

Somos’ recurrence inspired many similar recurrences that possess the
integrality property.
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Surprising Integer Sequences

Family of Recurrences Inspired by Somos

Conjecture (Heideman, H. 2008)

Consider the quadratic recurrence

XnXn—k = Xn—iXn—k+i T Xn—j + Xn—k+j
with initial conditions x,, = 1 for 1 < m < k. This recurrence produces a
sequence of integers iff one of the following holds:
O kiseven, i isodd, and j = X,
@ kiseven, iiseven andj=4%, j=% orj="*!

@ k is odd, i is odd, and j = k51,

Q kisodd, iiseven, and j = é
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Progress on Conjecture

XnXn—k = Xn—iXn—k+i T Xn—j T Xn—k+j

In 2008 paper, Heideman and | proved:
e k=2K+1,i=1andj= % = K by showing sequence also
satisfies linear recurrence with integer coefficients and initial

conditions.
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Progress on Conjecture

XnXn—k = Xn—iXn—k+i T Xn—j T Xn—k+j

In 2008 paper, Heideman and | proved:
e k=2K+1,i=1andj= % = K by showing sequence also
satisfies linear recurrence with integer coefficients and initial

conditions.
In thesis | proved:
o k=2K,i=1andj=%=K
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Progress on Conjecture

XnXn—k = Xn—iXn—k+i T Xn—j T Xn—k+j

In 2008 paper, Heideman and | proved:

—i

e k=2K+1,i=1andj= kT = K by showing sequence also
satisfies linear recurrence with integer coefficients and initial
conditions.

In thesis | proved:
o k=2K,i=1andj=%=K
e k=(2K+1)iand j=Ki
@ k=2Kiand j = Ki
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Progress on Conjecture

XnXn—k = Xn—iXn—k+i T Xn—j T Xn—k+j

In 2008 paper, Heideman and | proved:

e k=2K+1,i=1andj= % = K by showing sequence also
satisfies linear recurrence with integer coefficients and initial
conditions.

In thesis | proved:

o k=2K,i=1andj=%=K

e k=(2K+1)iand j=Ki

e k=2Kiand j = Ki

e Entire conjecture (backwards direction) using “Laurent phenomenon”:
if initial conditions are symbolic, sequence consists only of Laurent
polynomials in initial variables with integer coefficients
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Definition

Recall, recurrence of order k defined as:

Xn = F(Xn—1, -y Xn—k)-
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m-Recurrences

Definition
Recall, recurrence of order k defined as:

Xn = F(Xn—1, -y Xn—k)-

Consider m-recurrence (m an integer greater than 1) of order k:

X = F(Xpy Xn—1y -+« y Xn—k)-

Differences:

@ Allow x, as an argument to F (will assume F is a rational function,
and exponent on x, in F is strictly less than m)

@ Raise x, to integer power greater than 1
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Definition

Recall, recurrence of order k defined as:

Xn = F(Xn—1, -y Xn—k)-

Consider m-recurrence (m an integer greater than 1) of order k:

X = F(Xpy Xn—1y -+« y Xn—k)-

Differences:

@ Allow x, as an argument to F (will assume F is a rational function,
and exponent on x, in F is strictly less than m)

@ Raise x, to integer power greater than 1
e To compute x, must solve degree m equation (so get m possibilities)
@ Given initial conditions, produce infinitely many sequences

@ Expect to produce complex numbers
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Goal

Find m-recurrences that generate rational numbers:

Let {gn} - be integer (or rational) sequence

°
e Consider sequence of ratios of {g,}, obviously a rational sequence
e Find m-recurrence that annihilates sequence of ratios of {g,}

@ Generalize the m-recurrence
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Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by
_ 2
SnSn—4 = QSp—15p-3 + Bs;_»

with initial conditions s; = 1 for 1 </ < 4. This recurrence is order 4.
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m-Recurrences

Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by
2
SnSn—4 = QSp—15p-3 + Bs;_»
with initial conditions s; = 1 for 1 </ < 4. This recurrence is order 4.

Let f, := % be the sequence of ratios of ratios of s,.
n+1

Proposition (H. 2011)

The following 2-recurrence annihilates the sequence {f,}> ;:

2124+ (a— Qo+ B+ 1)fo1) fo+afp1 +5=0

Corollary of result due to Hone and Swart in 2008.
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Sequence Tree for £2 ;f2 + (1 —4f, 1) fu+f1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0
For every f,_1 there are two f,'s, so we will store them in a binary tree:

1

If A =1:

1’ +(1-4-1)h+1+1=0
ff —3Hh+2=0.

Then f, =2 or 1.
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If A =1:

1’ +(1-4-1)h+1+1=0
ff —3Hh+2=0.

Then f, =2 or 1.
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If b =2:

2224+ (1-4-2)f34+2+1=0
4} —TH+3=0.

Then f3 =1 or %.
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If b =2:

2224 (1-4-2)f3+2+1=0
4} —TH+3=0.

Then f3 =1 or %.
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If f = 3:

9 , 7
gt 2t =0.

Then f4 =2 or %.
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Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If f = 3:

9 , 7
gt 2t =0.

Then f4 =2 or %.

Emilie Hogan eahogan@math.rutgers.edu April 7, 2011 29 / 42



m-Recurrences

Sequence Tree for f2 £+ (1 —4f, 1) f,+f 1+1=0

For every f,_1 there are two f,'s, so we will store them in a binary tree:

If f, = L
169 47 23
2 f+==0.
ETRCC R
Thenf5—490r£31
1 3.2 11 3 6 3
4 _ 4
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Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let X := x, and Y := x,_1. Consider the 2-recurrence

(Y2 + ALY + A))X? + (BoY? + B1Y + B)X + (GY? + G1Y + G) = 0,

with initial condition x; = 1. The corresponding sequence tree is rational if
(i) Al = Bz, Ao = Cg, BO = C1, and
(i) (B2+B1+Bo)> —4(A1+ A+ 1)(G+ G+ Go) = ¢°, g € Q.
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(Y2 + ALY + A))X? + (BoY? + B1Y + B)X + (GY? + G1Y + G) = 0,

with initial condition x; = 1. The corresponding sequence tree is rational if
(i) Al = Bz, Ao = Cg, BO = C1, and
(i) (B2+B1+Bo)> —4(A1+ A+ 1)(G+ G+ Go) = ¢°, g € Q.

o Criteria (i) makes 2-recurrence symmetric in x, and x,_1
@ 2-recurrence satisfying (i) known as Euler-Chasles correspondence
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Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let X := x, and Y := x,_1. Consider the 2-recurrence

(Y2 + ALY + A))X? + (BoY? + B1Y + B)X + (GY? + G1Y + G) = 0,

with initial condition x; = 1. The corresponding sequence tree is rational if
(i) Al = Bz, Ao = Cg, B() = C1, and
(i) (B2+B1+Bo)> —4(A1+ A+ 1)(G+ G+ Go) = ¢°, g € Q.

o Criteria (i) makes 2-recurrence symmetric in x, and x,_1

@ 2-recurrence satisfying (i) known as Euler-Chasles correspondence

@ Generalized Somos-4 ratios of ratios: A; = B = Ag = (G =0,
Bo=C=«a Bi=—2a+5+1),and Gg=p

Y2X2 +(a—(a+B+1)Y)X+aY +5=0
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Proof of Proposition

X :=Xp, Y := xp—1, make substitutions from criteria (i):

P(X,Y) = (Y?>4+A1Y+A)X?+(AL Y2 +B1 Y +Bo) X +(A Y3+ Bo Y +G).
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m-Recurrences

Proof of Proposition

X :=Xp, Y := xp—1, make substitutions from criteria (i):

P(X,Y) = (Y?>4+A1Y+A)X?+(AL Y2 +B1 Y +Bo) X +(A Y3+ Bo Y +G).
Induction on n:

Will assume x,_5, x,_1 € Q, and prove x, € Q.
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m-Recurrences

Proof of Proposition

X :=Xp, Y := xp—1, make substitutions from criteria (i):

P(X,Y) = (Y?>4+A1Y+A)X?+(AL Y2 +B1 Y +Bo) X +(A Y3+ Bo Y +G).

Induction on n:

Will assume x,_5, x,_1 € Q, and prove x, € Q.
Base case: Given that x; = 1, show x» € Q.
Values for x» are solutions to P(X,1) =0

(14 A1 + Ag)X? + (A1 + B1 + Bo)X + (Ao + By + Go) = 0.
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m-Recurrences

Proof of Proposition

X := Xp, Y := xp—1, make substitutions from criteria (i):

P(X,Y) = (Y?>4+A1Y+A)X?+(AL Y2 +B1 Y +Bo) X +(A Y3+ Bo Y +G).

Induction on n:
Will assume x,_5, x,_1 € Q, and prove x, € Q.
Base case: Given that x; = 1, show x» € Q.
Values for x» are solutions to P(X,1) =0

(14 A1 + Ag)X? + (AL + By + Bo)X + (Ag + Bo + Gy) = 0.
Discriminant, (Bx + By + Bg)? — 4(A1 + Ao + 1)(G + G + G), is

assumed to be square of rational in criteria (ii), so both values for
Xo are rational.
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Induction Step

)

@ Assume x,_» and its children x(l)

1 and x,”’; are rational:
L2} = (X P(X x02) =0} C @

@ P symmetric, so P(x,,_z,xr(,gl) =0 for both i =1,2
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Induction Step

(1)

@ Assume x,_> and its children x,

)

; and x,~’; are rational:

L = (X P(X, % 0) =0} CQ

P symmetric, so P(x,,_2,x,(21) =0 for both i =1,2

o Children of x,(,i_)1 for some i = 1,2 are

(D Y = (x: PX X ) = 0)

Clearly x,_2 is in this set (and is assumed to be rational) so the other
root must also be rational

O
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S
“Unfold” Somos-4 ratios

Recall 2-recurrence for f, := 5"53725"

n+1
2f2 1+ (a— 2a+ B+ 1)) for1 + af, + 8 =0.

Can make substitution to get 2-recurrence that annihilates generalized
Somos-4 sequence:

2.2 3 3 2 2
sashiat(asyiy — (2a 4 B+ 1)snSpi15n+2) Sn+3+asns,yo+8s5 1550 = 0.

This 2-recurrence is order 3.
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Sequence Tree: 2-Recurrence of Order 3 for Somos-4

2.2 3 3 2 2
Sn5n+3‘+’<5n+1 "45n5n+15n+2)5n+3 *’5n5n+2‘+’5n+15n+2:= 0.

{1,1,1}

Somos-4
2l(n—2)%/4]
2n—3
3n—4

Non-integer
rational numbers

64 48 32 16 % 27 23 %
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Sequence Tree: 2-Recurrence of Order 3 for Somos-4

2.2 3 3 2 2
Sn5n+3‘+’<5n+1 "45n5n+15n+2)5n+3 +75"Sn+2‘+’sn+15n+2:: 0.

{1,1,1}

Somos-4
2l(n—2)%/4]
2n—3
3n—4

Non-integer
rational numbers

64 48 32 16 %1 27 23 %
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Sequence Tree: 2-Recurrence of Order 3 for Somos-4

2.2 3 3 2 2
Sn5n+3‘+’<5n+1 "45n5n+15n+2)5n+3 +75"Sn+2‘+’sn+15n+2:: 0.

{1,1,1}

Somos-4
2l(n—2)%/4]

2n—3

3n—4
Non-integer
rational numbers

64 48 32 16 % 27 23 %
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“Unfold” Euler-Chasles

Substituting x, = 222" into Euler-Chasles correspondence we can create

a more general family of 2-recurrences of order 3:

2.2 2 4 2 2
(anan+2 + Alanan+lan+2 + A03n+1)an+lan+3+
2.2 2 4 2
+ (Arapa70 + Brana; 1ani2 + Bodp 1) ant1a, pans3t

2 2 2 4 4 _
+ (A03n3n+2 + Boanapqant2 + C03n+1)an+2 =0.
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“Unfold” Euler-Chasles

Substituting x, = 222" into Euler-Chasles correspondence we can create

a more general family of 2-recurrences of order 3:

2.2 2 4 2 2
(anan+2 + Alanan+1an+2 + A03n+1)an+lan+3+
2.2 2 4 2
+ (Arapa70 + Brana; 1ani2 + Bodp 1) ant1a, pans3t

2 92 2 4 4
+ (Aoapan o + Boanapy1ani2 + Coapig)ano = 0.

Can show
ay n—1_n—2 2
an+1 = an—l (Xl Xy 'an2Xn71) )
1

so a, € Q for all n since x, € Q and a1, a» assumed to be rational.
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2
~Lm°/4 Sequence Produced

Theorem (H. 2011)

The sequence a, = ’yL”Q/ 4 is annihilated by the more general 2-recurrence
of order 3 iff v is a solution to the following quadratic equation

(A1 + Ao+ 1)v? + (A1 + By + Bo)y + Ao + By + Co = 0.

To Prove:
Substitute a, = 'yL”Q/“J into 2-recurrence and simplify. The result is
exactly the quadratic equation given in the theorem.
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2
~Lm°/4 Sequence Produced

Theorem (H. 2011)

The sequence a, = ’yL”Q/ 4 is annihilated by the more general 2-recurrence
of order 3 iff v is a solution to the following quadratic equation

(A1 + Ao+ 1)v? + (A1 + By + Bo)y + Ao + By + Co = 0.

To Prove:

Substitute a, = 'yL”Q/“J into 2-recurrence and simplify. The result is

exactly the quadratic equation given in the theorem.

For Somos-4:

Let Ay = Ay =0, By = —4, By =1, and Cy = 1. Quadratic equation is
v —3y+2=0,

50 s, = 2L™/4] is annihilated (also s, = 117/4] = 1).
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1" Sequences Produced

Theorem (H. 2011)

For all ¢ € R, a, = 4" is a solution to the more general 2-recurrence of
order 3 iff

2A1 +2A0+ B1 + 2By + Co+1 =0.

To Prove:
Substitute a, = 9" and simplify. What remains is exactly the condition on
the parameters given in the theorem.
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1" Sequences Produced

Theorem (H. 2011)

For all ¢ € R, a, = 4" is a solution to the more general 2-recurrence of
order 3 iff

2A1 +2A0+ B1 + 2By + Co+1 =0.

To Prove:

Substitute a, = 9" and simplify. What remains is exactly the condition on
the parameters given in the theorem.

For Somos-4:

Let Ay = Ag=0, By =—4, By =1, and (y = 1. Criteria in theorem is

satisfied:
2:-0+42-0—-44+2-1+14+1=0,

so s, = ¥" is annihilated for all ¢ € R. In particular, since 2, 4, 8 and 3,
9, 27 appear consecutively, we see 2773 and 3"* in sequence tree.
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m-Recurrences

Comparing Order 3 and Order 4 Somos-4 Recurrences

@ Asymptotics
Order 4: s, ~ (]5”2

Order 3: s, ~ fy”z, 1", constant, etc.
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m-Recurrences

Comparing Order 3 and Order 4 Somos-4 Recurrences

@ Asymptotics

Order 4: s, ~ (]5”2

Order 3: s, ~ 7”2, Y", constant, etc.
@ Closed Form

Order 4: Weierstrass sigma functions
Order 3: Some branches are elementary functions
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Uses of Experimental Mathematics

@ Global asymptotic stability:
e Programmed general algorithm to solve large class of problems
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Uses of Experimental Mathematics

@ Global asymptotic stability:
e Programmed general algorithm to solve large class of problems
@ Integer sequences:

o Conjectured linear annihilators for sequences produced by non-linear
recurrences
o Proved initial conditions satisfy piecewise polynomial (Zeilberger)
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Uses of Experimental Mathematics

@ Global asymptotic stability:
e Programmed general algorithm to solve large class of problems
@ Integer sequences:
o Conjectured linear annihilators for sequences produced by non-linear
recurrences
o Proved initial conditions satisfy piecewise polynomial (Zeilberger)
@ Rational sequences:
o Conjectured criteria on coefficients in 2-recurrence of order 1
o Conjectured existence of exponential branches. Exponential sequences
were unexpected given the behavior of the 2-recurrence of order 1.
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Thank You

Any Questions?
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Conclusions

To get references to appear!
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