Experimental Mathematics Applied to the Study of Non-linear Recurrences

Emilie Hogan eahogan@math.rutgers.edu Rutgers University

April 7, 2011

Recurrence Definition

Definition

Given $F : \mathbb{R}^k \to \mathbb{R}$, and $\{x_1, \ldots, x_k\} \subset \mathbb{R}$, a recurrence is defined as follows:

$$r_n = F(r_{n-1}, \ldots, r_{n-k}), \quad r_1 = x_1, \ldots, r_k = x_k.$$

The order of the recurrence is k. Recurrence produces sequence $\{r_n\}_{n=1}^{\infty}$.

Recurrence Definition

Definition

Given $F : \mathbb{R}^k \to \mathbb{R}$, and $\{x_1, \ldots, x_k\} \subset \mathbb{R}$, a recurrence is defined as follows:

$$r_n = F(r_{n-1}, \ldots, r_{n-k}), \quad r_1 = x_1, \ldots, r_k = x_k.$$

The order of the recurrence is k. Recurrence produces sequence $\{r_n\}_{n=1}^{\infty}$.

Example:

• The Fibonacci recurrence, $f_n = f_{n-1} + f_{n-2}$, of order 2 is defined by F(x, y) = x + y, and $x_1 = x_2 = 1$.

$$1, 1, 2, 3, 5, 8, 13, 21, \ldots$$

Why Focus on Non-Linear?

Definition

If F is a linear function (addition and scalar multiplication) then we say the recurrence is **linear**, otherwise the recurrence is **non-linear**.

- Linear recurrences are very well behaved
- Given a linear recurrence we have a closed form formula for the *n*th term in the sequence
- No such general understanding for non-linear recurrences (not even for quadratic)

Three Interesting Phenomena

Global Asymptotic Stability:

 Sequence produced by recurrence defined from function *F*, converges for any set {x₁,..., x_k} of initial conditions.

Three Interesting Phenomena

Global Asymptotic Stability:

 Sequence produced by recurrence defined from function F, converges for any set {x₁,..., x_k} of initial conditions.

Surprising Integer Sequences:

• $\{r_n\}_{n=1}^{\infty} \subset \mathbb{Z}$ when expected to be rational

Three Interesting Phenomena

Global Asymptotic Stability:

• Sequence produced by recurrence defined from function *F*, converges for any set {*x*₁,...,*x_k*} of initial conditions.

Surprising Integer Sequences:

• $\{r_n\}_{n=1}^{\infty} \subset \mathbb{Z}$ when expected to be rational

Surprising Rational Sequences:

• $\{r_n\}_{n=1}^{\infty} \subset \mathbb{Q}$ when expected to be complex

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$x_{n+1}=R(x_n,x_{n-1},\ldots,x_{n-k}),$$

where $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is a rational function (ratio of polynomials).

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$x_{n+1}=R(x_n,x_{n-1},\ldots,x_{n-k}),$$

where $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is a rational function (ratio of polynomials).

We require that

- all coefficients in R are **positive**
- initial conditions, x_{-k}, \ldots, x_0 , are **positive**, and

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$x_{n+1}=R(x_n,x_{n-1},\ldots,x_{n-k}),$$

where $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is a rational function (ratio of polynomials).

We require that

- all coefficients in R are **positive**
- initial conditions, x_{-k}, \ldots, x_0 , are **positive**, and

$$x_{n+1} = \frac{4 + x_n}{1 + x_{n-1}}$$

Equilibrium & Stability

Definition

If $x_n = \bar{x}$ for all $n \ge -k$ then \bar{x} is called an **equilibrium**.

Equilibrium & Stability

Definition

If $x_n = \bar{x}$ for all $n \ge -k$ then \bar{x} is called an **equilibrium**.

We can find an equilibrium by solving the following equation and taking a positive solution

$$\bar{x} = R(\bar{x},\ldots,\bar{x})$$

For example

$$\bar{x} = \frac{4 + \bar{x}}{1 + \bar{x}} \Longrightarrow \bar{x} = 2 \text{ (or } - 2)$$

Equilibrium & Stability

Definition

If $x_n = \bar{x}$ for all $n \ge -k$ then \bar{x} is called an **equilibrium**.

We can find an equilibrium by solving the following equation and taking a positive solution

$$\bar{x} = R(\bar{x},\ldots,\bar{x})$$

For example

$$\bar{x} = \frac{4 + \bar{x}}{1 + \bar{x}} \Longrightarrow \bar{x} = 2 \text{ (or } -2 \text{)}$$

Definition

If $x_n \to \bar{x}$ for all positive initial conditions, then \bar{x} is globally asymptotically stable (GAS).

Approaches

- Current method to prove GAS given an $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R₁ and R₂, two rational difference equations, their proofs of GAS may be very different

Approaches

- Current method to prove GAS given an $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R₁ and R₂, two rational difference equations, their proofs of GAS may be very different
- My approach:
 - Teach a computer how to prove GAS.
 - Guarantees that given R_1 and R_2 , two rational difference equations, their proofs are "the same". They follow the same sequence of steps.

Approaches

- Current method to prove GAS given an $R : \mathbb{R}^{k+1} \to \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R_1 and R_2 , two rational difference equations, their proofs of GAS may be very different
- My approach:
 - Teach a computer how to prove GAS.
 - Guarantees that given R_1 and R_2 , two rational difference equations, their proofs are "the same". They follow the same sequence of steps.

Goal

Create an algorithm that takes as input a rational difference equation, R, and equilibrium, \bar{x} , conjectured to be GAS, and outputs a rigorous proof of its stability.

Instead of rational difference equation as a map, $R : \mathbb{R}^{k+1} \to \mathbb{R}$, consider vector valued map, $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$, defined from R as follows:

$$Q\left(\left[\begin{array}{c}x_n\\x_{n-1}\\\vdots\\x_{n-k}\end{array}\right]\right) = \left[\begin{array}{c}R(x_n,\ldots,x_{n-k})\\x_n\\\vdots\\x_{n-k+1}\end{array}\right]$$

Instead of rational difference equation as a map, $R : \mathbb{R}^{k+1} \to \mathbb{R}$, consider vector valued map, $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$, defined from R as follows:

$$Q(\mathcal{X}_n) = Q\left(\begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_{n-k} \end{bmatrix} \right) = \begin{bmatrix} R(x_n, \dots, x_{n-k}) \\ x_n \\ \vdots \\ x_{n-k+1} \end{bmatrix} = \mathcal{X}_{n+1}$$

Instead of rational difference equation as a map, $R : \mathbb{R}^{k+1} \to \mathbb{R}$, consider vector valued map, $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$, defined from R as follows:

$$Q^{n+1}(\mathcal{X}_0) = Q(\mathcal{X}_n) = Q\left(\begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_{n-k} \end{bmatrix} \right) = \begin{bmatrix} R(x_n, \dots, x_{n-k}) \\ x_n \\ \vdots \\ x_{n-k+1} \end{bmatrix} = \mathcal{X}_{n+1}$$

Instead of rational difference equation as a map, $R : \mathbb{R}^{k+1} \to \mathbb{R}$, consider vector valued map, $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$, defined from R as follows:

$$Q^{n+1}(\mathcal{X}_0) = Q(\mathcal{X}_n) = Q\left(\begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_{n-k} \end{bmatrix} \right) = \begin{bmatrix} R(x_n, \dots, x_{n-k}) \\ x_n \\ \vdots \\ x_{n-k+1} \end{bmatrix} = \mathcal{X}_{n+1}$$

For example:

$$Q\left(\left[\begin{array}{c}x_n\\x_{n-1}\end{array}\right]\right)=\left[\begin{array}{c}\frac{4+x_n}{1+x_{n-1}}\\x_n\end{array}\right].$$

Instead of rational difference equation as a map, $R : \mathbb{R}^{k+1} \to \mathbb{R}$, consider vector valued map, $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$, defined from R as follows:

$$Q^{n+1}(\mathcal{X}_0) = Q(\mathcal{X}_n) = Q\left(\begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_{n-k} \end{bmatrix} \right) = \begin{bmatrix} R(x_n, \dots, x_{n-k}) \\ x_n \\ \vdots \\ x_{n-k+1} \end{bmatrix} = \mathcal{X}_{n+1}$$

For example:

$$Q\left(\left[\begin{array}{c}x_n\\x_{n-1}\end{array}\right]\right) = \left[\begin{array}{c}\frac{4+x_n}{1+x_{n-1}}\\x_n\end{array}\right]$$

New Goal

Create an algorithm that takes as input a vectorized rational difference equation, Q, and equilibrium, $\overline{X} := \langle \overline{x}, \dots, \overline{x} \rangle$, conjectured to be GAS, and outputs a rigorous proof of its stability.

A Useful Theorem

Theorem (Kruse, Nesemann 1999)

Suppose for the difference equation

$$\mathcal{X}_{n+1} = Q(\mathcal{X}_n), \quad n = 0, 1, 2, \dots$$

with unique positive equilibrium \bar{X} , there exists an integer $K \ge 1$ such that the K^{th} iterate of Q satisfies

$$rac{\left\| \mathcal{Q}^{\mathcal{K}}(\mathcal{X}) - ar{\mathcal{X}}
ight\|}{\left\| \mathcal{X} - ar{\mathcal{X}}
ight\|} < 1 \hspace{1.5cm} ext{for all } \mathcal{X}
eq ar{\mathcal{X}} ext{ with all coordinates positive.}$$

Then $\bar{\mathcal{X}}$ is GAS.

 $\|\cdot\|$ is the Euclidean norm, i.e., $\|\langle x_0,\ldots,x_k
angle\|=\sqrt{x_0^2+\cdots+x_k^2}$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \to \mathbb{R}$ rational difference equation
- \bar{x} equilibrium, solution to $\bar{x} = R(\bar{x}, \dots, \bar{x})$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \to \mathbb{R}$ rational difference equation
- \bar{x} equilibrium, solution to $\bar{x} = R(\bar{x}, \dots, \bar{x})$

- $Q: \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$ vectorized rational difference equation
- $ar{\mathcal{X}}$ vectorized equilibrium, $\langle ar{x}, \dots, ar{x}
 angle$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \to \mathbb{R}$ rational difference equation
- \bar{x} equilibrium, solution to $\bar{x} = R(\bar{x}, \dots, \bar{x})$

- $Q: \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$ vectorized rational difference equation
- $ar{\mathcal{X}}$ vectorized equilibrium, $\langle ar{x}, \dots, ar{x}
 angle$

Find positive integer K so that

$$rac{ig\| \mathcal{Q}^{\mathcal{K}}(\mathcal{X}) - ar{\mathcal{X}} ig\|}{ig\| \mathcal{X} - ar{\mathcal{X}} ig\|} < 1 \;\;\;$$
 for all $\mathcal{X}
eq ar{\mathcal{X}}$ with all coordinates positive

Algorithm Idea

Given a positive integer K we create a polynomial:

$$P_{Q,\bar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) = \text{numerator}\left(\left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^2 - \left\|Q^{\mathcal{K}}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^2\right)$$

If $P_{Q,\bar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) > 0$ for all $\mathcal{X} \neq \bar{\mathcal{X}}$ with all coordinates positive (i.e., in the positive *orthant*, \mathbb{R}^{k+1}_+) then:

Algorithm Idea

Given a positive integer K we create a polynomial:

$$egin{split} & P_{Q,ar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) = ext{numerator}\left(\left\| \mathcal{X} - ar{\mathcal{X}}
ight\|^2 - \left\| Q^{\mathcal{K}}(\mathcal{X}) - ar{\mathcal{X}}
ight\|^2
ight) \end{split}$$

If $P_{Q,\bar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) > 0$ for all $\mathcal{X} \neq \bar{\mathcal{X}}$ with all coordinates positive (i.e., in the positive *orthant*, \mathbb{R}^{k+1}_+) then:

$$0 < \operatorname{numerator}\left(\left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^{2} - \left\|\mathcal{Q}^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^{2}\right)$$
$$0 < \left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^{2} - \left\|\mathcal{Q}^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^{2}$$

Algorithm Idea

Given a positive integer K we create a polynomial:

$$egin{split} & P_{Q,ar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) = ext{numerator}\left(\left\| \mathcal{X} - ar{\mathcal{X}}
ight\|^2 - \left\| Q^{\mathcal{K}}(\mathcal{X}) - ar{\mathcal{X}}
ight\|^2
ight) \end{split}$$

If $P_{Q,\bar{\mathcal{X}},\mathcal{K}}(\mathcal{X}) > 0$ for all $\mathcal{X} \neq \bar{\mathcal{X}}$ with all coordinates positive (i.e., in the positive *orthant*, \mathbb{R}^{k+1}_+) then:

$$0 < \operatorname{numerator}\left(\left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^{2} - \left\|Q^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^{2}\right)$$
$$0 < \left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^{2} - \left\|Q^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^{2}$$
$$\left\|Q^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|^{2} < \left\|\mathcal{X} - \bar{\mathcal{X}}\right\|^{2}$$
$$\frac{\left\|Q^{K}(\mathcal{X}) - \bar{\mathcal{X}}\right\|}{\left\|\mathcal{X} - \bar{\mathcal{X}}\right\|} < 1$$

Algorithm Part 2

Polynomial Positivity

New Goal

Create an algorithm that takes as input a polynomial $P(\mathcal{X})$ in *m* variables $(\mathcal{X} = \langle x_1, \ldots, x_m \rangle)$, and outputs a proof that $P(\mathcal{X}) \ge 0$ for $\mathcal{X} \in \mathbb{R}^m_+$.

Algorithm Part 2

Polynomial Positivity

New Goal

Create an algorithm that takes as input a polynomial $P(\mathcal{X})$ in *m* variables $(\mathcal{X} = \langle x_1, \ldots, x_m \rangle)$, and outputs a proof that $P(\mathcal{X}) \ge 0$ for $\mathcal{X} \in \mathbb{R}^m_+$.

Trivial algorithm ("PosCoeffs"): If all coefficients in $P(\mathcal{X})$ are positive then $P(\mathcal{X}) \ge 0$ for \mathcal{X} in the positive orthant.

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_i \cdot x_j$ then:

$$P := x^2 - xy + y^2 + x + y + 1$$

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_i \cdot x_j$ then:

• Consider the "sub-polynomial", \overline{P} , consisting of the terms x_h^2 and $x_i \cdot x_j$ for all $1 \le h, i, j \le m$, and their coefficients in P

$$P := x2 - xy + y2 + x + y + 1$$

$$\overline{P} = x2 - xy + y2$$

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_i \cdot x_j$ then:

- Consider the "sub-polynomial", \overline{P} , consisting of the terms x_h^2 and $x_i \cdot x_j$ for all $1 \le h, i, j \le m$, and their coefficients in P
- Consider \overline{P} as quadratic form and show it is positive definite (in 2 variables use discriminant)

$$P := x^2 - xy + y^2 + x + y + 1$$
$$\overline{P} = x^2 - xy + y^2$$
$$Disc(\overline{P}) = (-1)^2 - 4 \cdot 1 \cdot 1 = -3$$

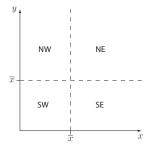
Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_i \cdot x_j$ then:

- Consider the "sub-polynomial", \overline{P} , consisting of the terms x_h^2 and $x_i \cdot x_j$ for all $1 \le h, i, j \le m$, and their coefficients in P
- Consider \overline{P} as quadratic form and show it is positive definite (in 2 variables use discriminant)
- If *P* is positive, then *P*(*X*) ≥ 0 for *X* in the positive orthant (since all other coefficients are positive)

$$P := x^2 - xy + y^2 + x + y + 1$$
$$\overline{P} = x^2 - xy + y^2$$
$$Disc(\overline{P}) = (-1)^2 - 4 \cdot 1 \cdot 1 = -3$$

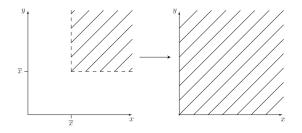
My Algorithm in Two Dimensions

Cut the positive quadrant into 4 regions using \bar{x} as the cut point:

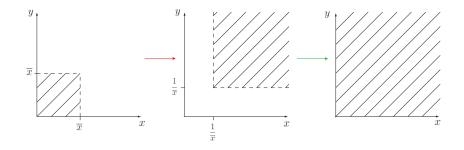


Create 4 new polynomials, from P, by transforming each of the 4 regions into the positive quadrant. The new polynomials will each be defined on the entire positive quadrant.

$P_{NE}(x,y)$



 $P_{NE}(x,y) = P(x + \bar{x}, y + \bar{x})$



$$P_{SW}(x,y) = P\left(\qquad , \qquad \right)$$

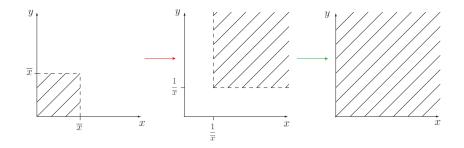


$$P_{SW}(x,y) = P\left(\frac{1}{x}, \frac{1}{y}\right)$$



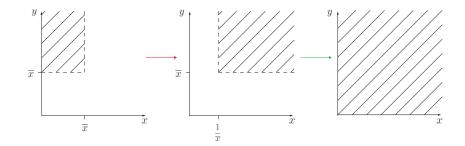
$$P_{SW}(x,y) = P\left(\frac{1}{x+\frac{1}{\bar{x}}}, \frac{1}{y+\frac{1}{\bar{x}}}\right)$$

Algorithm Part 2



$$P_{SW}(x,y) = P\left(\frac{1}{x+\frac{1}{\bar{x}}},\frac{1}{y+\frac{1}{\bar{x}}}\right) \left(x+\frac{1}{\bar{x}}\right)^{d_x} \left(y+\frac{1}{\bar{x}}\right)^{d_y}$$

$P_{NW}(x, y)$ and $P_{SE}(x, y)$



$$P_{NW}(x,y) = P\left(\frac{1}{x+\frac{1}{\bar{x}}}, y+\bar{x}\right) \left(x+\frac{1}{\bar{x}}\right)^{d_x}$$
$$P_{SE}(x,y) = P\left(x+\bar{x}, \frac{1}{y+\frac{1}{\bar{x}}}\right) \left(y+\frac{1}{\bar{x}}\right)^{d_y}$$

My Algorithm in Two Dimensions (cont.)

• If all polynomials are ≥ 0 on the positive quadrant then $P(\mathcal{X}) \geq 0$ on the positive quadrant

My Algorithm in Two Dimensions (cont.)

- If all polynomials are \geq 0 on the positive quadrant then $P(\mathcal{X}) \geq$ 0 on the positive quadrant
- Use PosCoeffs and SubP on each of the 4 polynomials to show that they are positive on the positive quadrant
- If PosCoeffs and SubP fail for one of the polynomials then we have to subdivide the associated region and try again

GAS Algorithm Summary

Given a rational difference equation $x_{n+1} = R(x_n, \ldots, x_{n-k})$ and a unique equilibrium \bar{x} :

Step 0: Create the function $Q : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$.

Step 1: Conjecture a K value that satisfies

$$rac{\left\| \mathcal{Q}^{\mathcal{K}}(\mathcal{X}) - ar{\mathcal{X}}
ight\|}{\left\| \mathcal{X} - ar{\mathcal{X}}
ight\|} < 1.$$

Step 2: Create the polynomial $P_{Q,\bar{\mathcal{X}},\mathcal{K}}(\mathcal{X})$.

Step 3: Prove $P_{Q,\bar{\mathcal{X}},K}(\mathcal{X}) > 0$ for all $\mathcal{X} \neq \bar{\mathcal{X}}$ in the positive orthant: find subdivision of positive orthant in which all associated polynomials (one for each sub-region) are positive in the positive orthant.

Demo

Use my maple code to prove GAS of the equilibrium $\bar{x} = 2$ in the running example

$$x_{n+1} = \frac{4 + x_n}{1 + x_{n-1}}$$

Code is available on my website as a link off the page for this project: http://math.rutgers.edu/~eahogan/GAS.html

Coefficients as Variables

- So far assumed coefficients are numerical, variables are x_n 's
- Can prove some cases in which coefficients are parameters as long as equilibrium is rational function of parameters
- Run positivity algorithm with x_n 's and parameters as variables

Coefficients as Variables

- So far assumed coefficients are numerical, variables are x_n's
- Can prove some cases in which coefficients are parameters as long as equilibrium is rational function of parameters
- Run positivity algorithm with x_n 's and parameters as variables

Example:

If
$$x_{n+1} = \frac{x_{n-1}}{A+Bx_n+x_{n-1}}$$
 for $A, B > 0$ then the equilibrium is

$$\bar{x} = \frac{1-A}{1+B}.$$

When we create $P_{Q,K,\bar{X}}$ it will be a polynomial in x_n , x_{n-1} , A, and B.

Select Results

$x_{n+1} =$	Parameter Values	Findings
$\frac{1}{4}\frac{M^2-1}{1+x_n}$	M-1 > 0, M+1 > 0	$\bar{x} = \frac{1}{2}(M-1)$ is GAS
	M - 1 < 0, M + 1 < 0	$ar{x}=-rac{1}{2}(M+1)$ is GAS
$\frac{\beta x_n}{1+x_n}$	$0 < eta \leq 1$	$\bar{x} = 0$ is GAS
	1 < eta	$ar{x}=eta-1$ is GAS
$\frac{x_{n-1}}{A+x_n}$	1 < A	$\bar{x} = 0$ is GAS
$\frac{x_{n-1}}{A+x_{n-1}}$	0 < A < 1	$\bar{x} = 1 - A$ is GAS
	1 < A	$ar{x} = 0$ is GAS
$q+rac{1}{4}rac{M^2-q^2}{x_n}$	M - q < 0, M + q < 0, q > 0	$ar{x}=-rac{1}{2}(M-q)$ is GAS
	M-q>0, M+q>0, q>0	$ar{x}=rac{1}{2}(M+q)$ is GAS
$\frac{1}{4}\frac{M^2-q^2+4x_n}{1+q+x_n}$	M-q>0, M+q>0, q>-1	$\bar{x} = \frac{1}{2}(M-q)$ is GAS
	M-q<0, M+q<0, q>-1	$\bar{x} = -\frac{1}{2}(M+q)$ is GAS
$\frac{x_{n-1}}{A+Bx_n+x_{n-1}}$	1 < A	$\bar{x} = 0$ is GAS

Emilie Hogan

eahogan@math.rutgers.edu

Somos Sequences

Michael Somos, in 1989, conjectured that sequence produced by

$$s_n s_{n-6} = s_{n-1} s_{n-5} + s_{n-2} s_{n-4} + s_{n-3}^2$$

with initial conditions $s_i = 1$ for $1 \le i \le 6$, consisted only of integers (A006722).

 $1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 5047, 41783, 281527, \ldots$

Somos' recurrence inspired many similar recurrences that possess the integrality property.

Family of Recurrences Inspired by Somos

Conjecture (Heideman, H. 2008)

Consider the quadratic recurrence

$$x_n x_{n-k} = x_{n-i} x_{n-k+i} + x_{n-j} + x_{n-k+j}$$

with initial conditions $x_m = 1$ for $1 \le m \le k$. This recurrence produces a sequence of integers iff one of the following holds:

$$x_n x_{n-k} = x_{n-i} x_{n-k+i} + x_{n-j} + x_{n-k+j}$$

In 2008 paper, Heideman and I proved:

k = 2K + 1, i = 1, and j = k-i/2 = K by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

$$x_n x_{n-k} = x_{n-i} x_{n-k+i} + x_{n-j} + x_{n-k+j}$$

In 2008 paper, Heideman and I proved:

• k = 2K + 1, i = 1, and $j = \frac{k-i}{2} = K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

•
$$k = 2K$$
, $i = 1$, and $j = \frac{k}{2} = K$

$$x_n x_{n-k} = x_{n-i} x_{n-k+i} + x_{n-j} + x_{n-k+j}$$

In 2008 paper, Heideman and I proved:

• k = 2K + 1, i = 1, and $j = \frac{k-i}{2} = K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

•
$$k = 2K$$
, $i = 1$, and $j = \frac{k}{2} = K$

•
$$k = (2K + 1)i$$
 and $j = Ki$

$$x_n x_{n-k} = x_{n-i} x_{n-k+i} + x_{n-j} + x_{n-k+j}$$

In 2008 paper, Heideman and I proved:

• k = 2K + 1, i = 1, and $j = \frac{k-i}{2} = K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

•
$$k = 2K$$
, $i = 1$, and $j = \frac{k}{2} = K$

•
$$k = (2K + 1)i$$
 and $j = Ki$

- *k* = 2*Ki* and *j* = *Ki*
- Entire conjecture (backwards direction) using "Laurent phenomenon": if initial conditions are symbolic, sequence consists only of *Laurent polynomials* in initial variables with integer coefficients

Definition

Recall, recurrence of order k defined as:

$$x_n = F(x_{n-1},\ldots,x_{n-k}).$$

Definition

Recall, recurrence of order k defined as:

$$x_n = F(x_{n-1},\ldots,x_{n-k}).$$

Consider *m*-recurrence (m an integer greater than 1) of order k:

$$x_n^m = F(x_n, x_{n-1}, \ldots, x_{n-k}).$$

Differences:

- Allow x_n as an argument to F (will assume F is a rational function, and exponent on x_n in F is strictly less than m)
- Raise x_n to integer power greater than 1

Definition

Recall, recurrence of order k defined as:

$$x_n = F(x_{n-1},\ldots,x_{n-k}).$$

Consider *m*-recurrence (m an integer greater than 1) of order k:

$$x_n^m = F(x_n, x_{n-1}, \ldots, x_{n-k}).$$

Differences:

- Allow x_n as an argument to F (will assume F is a rational function, and exponent on x_n in F is strictly less than m)
- Raise x_n to integer power greater than 1
- To compute x_n must solve degree m equation (so get m possibilities)
- Given initial conditions, produce infinitely many sequences
- Expect to produce complex numbers

Goal

Find *m*-recurrences that generate rational numbers:

- Let $\{g_n\}_{n=1}^{\infty}$ be integer (or rational) sequence
- Consider sequence of ratios of $\{g_n\}$, obviously a rational sequence
- Find *m*-recurrence that annihilates sequence of ratios of $\{g_n\}$
- Generalize the *m*-recurrence

Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by

$$s_n s_{n-4} = \alpha s_{n-1} s_{n-3} + \beta s_{n-2}^2$$

with initial conditions $s_i = 1$ for $1 \le i \le 4$. This recurrence is order 4.

Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by

$$s_n s_{n-4} = \alpha s_{n-1} s_{n-3} + \beta s_{n-2}^2$$

with initial conditions $s_i = 1$ for $1 \le i \le 4$. This recurrence is order 4.

Let $f_n := \frac{s_{n+2}s_n}{s_{n+1}^2}$ be the sequence of ratios of ratios of s_n .

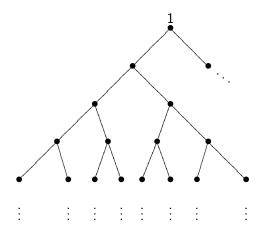
Proposition (H. 2011)

The following 2-recurrence annihilates the sequence $\{f_n\}_{n=1}^{\infty}$:

$$f_{n-1}^{2}f_{n}^{2} + (\alpha - (2\alpha + \beta + 1)f_{n-1})f_{n} + \alpha f_{n-1} + \beta = 0$$

Corollary of result due to Hone and Swart in 2008.

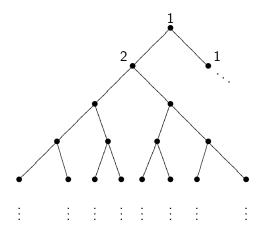
For every f_{n-1} there are two f_n 's, so we will store them in a binary tree:



If
$$f_1 = 1$$
:
 $1^2 f_2^2 + (1 - 4 \cdot 1) f_2 + 1 + 1 = 0$
 $f_2^2 - 3f_2 + 2 = 0.$

Then $f_2 = 2$ or 1.

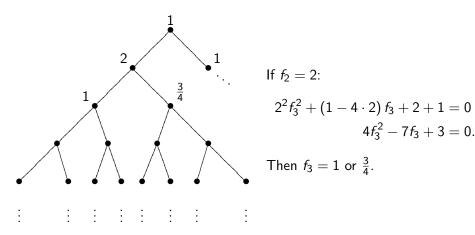
For every f_{n-1} there are two f_n 's, so we will store them in a binary tree:



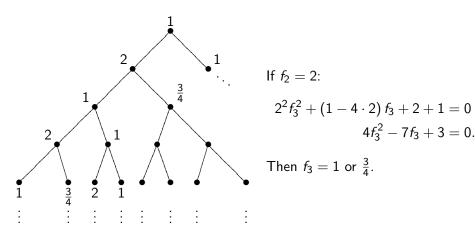
If
$$f_1 = 1$$
:
 $1^2 f_2^2 + (1 - 4 \cdot 1) f_2 + 1 + 1 = 0$
 $f_2^2 - 3f_2 + 2 = 0.$

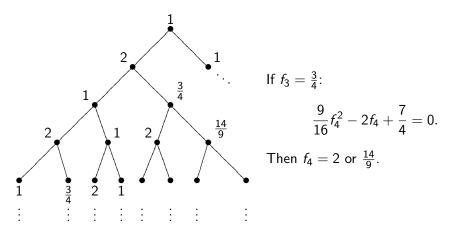
Then $f_2 = 2$ or 1.

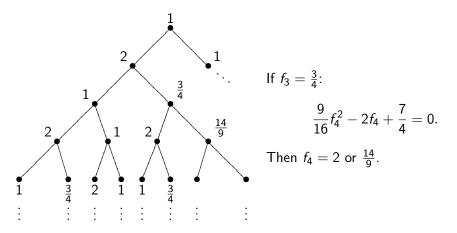
For every f_{n-1} there are two f_n 's, so we will store them in a binary tree:

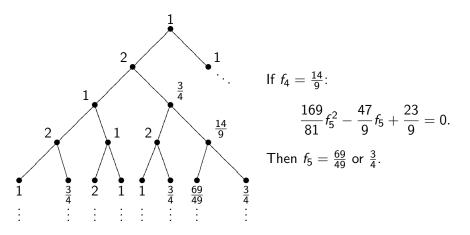


Emilie Hogan









Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X := x_n$ and $Y := x_{n-1}$. Consider the 2-recurrence

$$(Y^{2} + A_{1}Y + A_{0})X^{2} + (B_{2}Y^{2} + B_{1}Y + B_{0})X + (C_{2}Y^{2} + C_{1}Y + C_{0}) = 0,$$

with initial condition $x_1 = 1$. The corresponding sequence tree is rational if

(i)
$$A_1 = B_2$$
, $A_0 = C_2$, $B_0 = C_1$, and
(ii) $(B_2 + B_1 + B_0)^2 - 4(A_1 + A_0 + 1)(C_2 + C_1 + C_0) = q^2$, $q \in \mathbb{Q}$.

Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X := x_n$ and $Y := x_{n-1}$. Consider the 2-recurrence

 $(Y^{2} + A_{1}Y + A_{0})X^{2} + (B_{2}Y^{2} + B_{1}Y + B_{0})X + (C_{2}Y^{2} + C_{1}Y + C_{0}) = 0,$

with initial condition $x_1 = 1$. The corresponding sequence tree is rational if

(i)
$$A_1 = B_2$$
, $A_0 = C_2$, $B_0 = C_1$, and
(ii) $(B_2 + B_1 + B_0)^2 - 4(A_1 + A_0 + 1)(C_2 + C_1 + C_0) = q^2$, $q \in \mathbb{Q}$.

- Criteria (i) makes 2-recurrence symmetric in x_n and x_{n-1}
- 2-recurrence satisfying (i) known as *Euler-Chasles correspondence*

Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X := x_n$ and $Y := x_{n-1}$. Consider the 2-recurrence

$$(Y^2 + A_1Y + A_0)X^2 + (B_2Y^2 + B_1Y + B_0)X + (C_2Y^2 + C_1Y + C_0) = 0,$$

with initial condition $x_1 = 1$. The corresponding sequence tree is rational if

(i)
$$A_1 = B_2$$
, $A_0 = C_2$, $B_0 = C_1$, and
(ii) $(B_2 + B_1 + B_0)^2 - 4(A_1 + A_0 + 1)(C_2 + C_1 + C_0) = q^2$, $q \in \mathbb{Q}$.

- Criteria (i) makes 2-recurrence symmetric in x_n and x_{n-1}
- 2-recurrence satisfying (i) known as Euler-Chasles correspondence
- Generalized Somos-4 ratios of ratios: $A_1 = B_2 = A_0 = C_2 = 0$, $B_0 = C_1 = \alpha$, $B_1 = -(2\alpha + \beta + 1)$, and $C_0 = \beta$

$$Y^{2}X^{2} + (\alpha - (2\alpha + \beta + 1)Y)X + \alpha Y + \beta = 0$$

Proof of Proposition

 $X := x_n$, $Y := x_{n-1}$, make substitutions from criteria (i):

 $P(X,Y) := (Y^2 + A_1Y + A_0)X^2 + (A_1Y^2 + B_1Y + B_0)X + (A_0Y^2 + B_0Y + C_0).$

Proof of Proposition

 $X := x_n$, $Y := x_{n-1}$, make substitutions from criteria (i):

 $P(X,Y) := (Y^2 + A_1Y + A_0)X^2 + (A_1Y^2 + B_1Y + B_0)X + (A_0Y^2 + B_0Y + C_0).$

Induction on *n*:

Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_n \in \mathbb{Q}$.

Proof of Proposition

 $X := x_n$, $Y := x_{n-1}$, make substitutions from criteria (i):

 $P(X,Y) := (Y^2 + A_1Y + A_0)X^2 + (A_1Y^2 + B_1Y + B_0)X + (A_0Y^2 + B_0Y + C_0).$

Induction on *n*:

Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_n \in \mathbb{Q}$. **Base case:** Given that $x_1 = 1$, show $x_2 \in \mathbb{Q}$.

Values for x_2 are solutions to P(X, 1) = 0

$$(1 + A_1 + A_0)X^2 + (A_1 + B_1 + B_0)X + (A_0 + B_0 + C_0) = 0.$$

Proof of Proposition

 $X := x_n$, $Y := x_{n-1}$, make substitutions from criteria (i):

 $P(X,Y) := (Y^2 + A_1Y + A_0)X^2 + (A_1Y^2 + B_1Y + B_0)X + (A_0Y^2 + B_0Y + C_0).$

Induction on *n*:

Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_n \in \mathbb{Q}$. Base case: Given that $x_1 = 1$, show $x_2 \in \mathbb{Q}$.

Values for x_2 are solutions to P(X, 1) = 0

$$(1 + A_1 + A_0)X^2 + (A_1 + B_1 + B_0)X + (A_0 + B_0 + C_0) = 0.$$

Discriminant, $(B_2 + B_1 + B_0)^2 - 4(A_1 + A_0 + 1)(C_2 + C_1 + C_0)$, is assumed to be square of rational in criteria (ii), so both values for x_2 are rational.

Induction Step

• Assume x_{n-2} and its children $x_{n-1}^{(1)}$ and $x_{n-1}^{(2)}$ are rational:

$$\{x_{n-1}^{(1)}, x_{n-1}^{(2)}\} = \{X : P(X, x_{n-2}) = 0\} \subset \mathbb{Q}$$

• P symmetric, so $P(x_{n-2}, x_{n-1}^{(i)}) = 0$ for both i = 1, 2

Induction Step

• Assume x_{n-2} and its children $x_{n-1}^{(1)}$ and $x_{n-1}^{(2)}$ are rational:

$$\{x_{n-1}^{(1)}, x_{n-1}^{(2)}\} = \{X : P(X, x_{n-2}) = 0\} \subset \mathbb{Q}$$

- *P* symmetric, so $P(x_{n-2}, x_{n-1}^{(i)}) = 0$ for both i = 1, 2
- Children of $x_{n-1}^{(i)}$ for some i = 1, 2 are

$$\{x_n^{(i,1)}, x_n^{(i,2)}\} = \{X : P(X, x_{n-1}^{(i)}) = 0\}$$

 Clearly x_{n-2} is in this set (and is assumed to be rational) so the other root must also be rational

"Unfold" Somos-4 ratios

Recall 2-recurrence for $f_n := \frac{s_{n+2}s_n}{s_{n+1}^2}$,

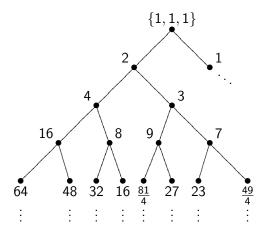
$$f_n^2 f_{n+1}^2 + (\alpha - (2\alpha + \beta + 1)f_n)f_{n+1} + \alpha f_n + \beta = 0.$$

Can make substitution to get 2-recurrence that annihilates generalized Somos-4 sequence:

$$s_n^2 s_{n+3}^2 + \left(\alpha s_{n+1}^3 - (2\alpha + \beta + 1)s_n s_{n+1} s_{n+2}\right) s_{n+3} + \alpha s_n s_{n+2}^3 + \beta s_{n+1}^2 s_{n+2}^2 = 0.$$

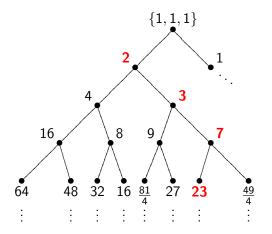
This 2-recurrence is order 3.

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



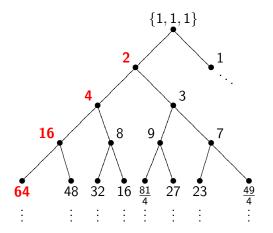
- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



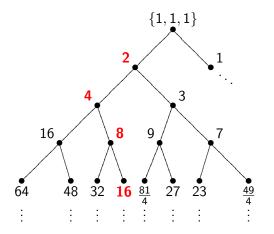
- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



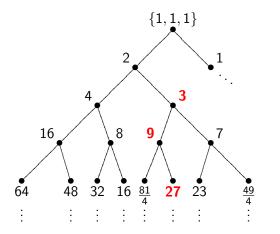
- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

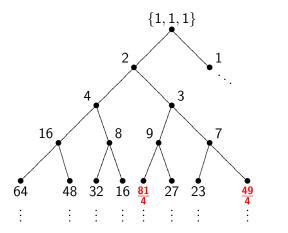
$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

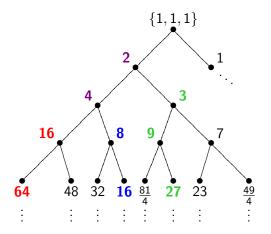
• 3^{*n*-4}

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}

$$s_n^2 s_{n+3}^2 + \left(s_{n+1}^3 - 4s_n s_{n+1} s_{n+2}\right) s_{n+3} + s_n s_{n+2}^3 + s_{n+1}^2 s_{n+2}^2 = 0.$$



- Somos-4
- $2^{\lfloor (n-2)^2/4 \rfloor}$
- 2^{*n*-3}
- 3^{*n*-4}
- Non-integer rational numbers

"Unfold" Euler-Chasles

Substituting $x_n = \frac{a_{n+2}a_n}{a_{n+1}}$ into Euler-Chasles correspondence we can create a more general family of 2-recurrences of order 3:

$$\begin{aligned} (a_n^2 a_{n+2}^2 + A_1 a_n a_{n+1}^2 a_{n+2} + A_0 a_{n+1}^4) a_{n+1}^2 a_{n+3}^2 + \\ &+ (A_1 a_n^2 a_{n+2}^2 + B_1 a_n a_{n+1}^2 a_{n+2} + B_0 a_{n+1}^4) a_{n+1} a_{n+2}^2 a_{n+3} + \\ &+ (A_0 a_n^2 a_{n+2}^2 + B_0 a_n a_{n+1}^2 a_{n+2} + C_0 a_{n+1}^4) a_{n+2}^4 = 0. \end{aligned}$$

"Unfold" Euler-Chasles

Substituting $x_n = \frac{a_{n+2}a_n}{a_{n+1}}$ into Euler-Chasles correspondence we can create a more general family of 2-recurrences of order 3:

$$\begin{aligned} (a_n^2 a_{n+2}^2 + A_1 a_n a_{n+1}^2 a_{n+2} + A_0 a_{n+1}^4) a_{n+1}^2 a_{n+3}^2 + \\ &+ (A_1 a_n^2 a_{n+2}^2 + B_1 a_n a_{n+1}^2 a_{n+2} + B_0 a_{n+1}^4) a_{n+1} a_{n+2}^2 a_{n+3} + \\ &+ (A_0 a_n^2 a_{n+2}^2 + B_0 a_n a_{n+1}^2 a_{n+2} + C_0 a_{n+1}^4) a_{n+2}^4 = 0. \end{aligned}$$

Can show

$$a_{n+1} = \frac{a_2^n}{a_1^{n-1}} \left(x_1^{n-1} x_2^{n-2} \cdots x_{n-2}^2 x_{n-1} \right),$$

so $a_n \in \mathbb{Q}$ for all *n* since $x_n \in \mathbb{Q}$ and a_1, a_2 assumed to be rational.

$\gamma^{\lfloor n^2/4 \rfloor}$ Sequence Produced

Theorem (H. 2011)

The sequence $a_n = \gamma^{\lfloor n^2/4 \rfloor}$ is annihilated by the more general 2-recurrence of order 3 iff γ is a solution to the following quadratic equation

$$(A_1 + A_0 + 1)\gamma^2 + (A_1 + B_1 + B_0)\gamma + A_0 + B_0 + C_0 = 0.$$

To Prove:

Substitute $a_n = \gamma^{\lfloor n^2/4 \rfloor}$ into 2-recurrence and simplify. The result is exactly the quadratic equation given in the theorem.

$\gamma^{\lfloor n^2/4 \rfloor}$ Sequence Produced

Theorem (H. 2011)

The sequence $a_n = \gamma^{\lfloor n^2/4 \rfloor}$ is annihilated by the more general 2-recurrence of order 3 iff γ is a solution to the following quadratic equation

$$(A_1 + A_0 + 1)\gamma^2 + (A_1 + B_1 + B_0)\gamma + A_0 + B_0 + C_0 = 0.$$

To Prove:

Substitute $a_n = \gamma^{\lfloor n^2/4 \rfloor}$ into 2-recurrence and simplify. The result is exactly the quadratic equation given in the theorem.

For Somos-4:

Let
$$A_1 = A_0 = 0$$
, $B_1 = -4$, $B_0 = 1$, and $C_0 = 1$. Quadratic equation is

$$\gamma^2 - 3\gamma + 2 = 0,$$

so $s_n = 2^{\lfloor n^2/4 \rfloor}$ is annihilated (also $s_n = 1^{\lfloor n^2/4 \rfloor} = 1$).

ψ^n Sequences Produced

Theorem (H. 2011)

For all $\psi \in \mathbb{R}$, $a_n = \psi^n$ is a solution to the more general 2-recurrence of order 3 iff

 $2A_1 + 2A_0 + B_1 + 2B_0 + C_0 + 1 = 0.$

To Prove:

Substitute $a_n = \psi^n$ and simplify. What remains is exactly the condition on the parameters given in the theorem.

ψ^n Sequences Produced

Theorem (H. 2011)

For all $\psi \in \mathbb{R}$, $a_n = \psi^n$ is a solution to the more general 2-recurrence of order 3 iff

 $2A_1 + 2A_0 + B_1 + 2B_0 + C_0 + 1 = 0.$

To Prove:

Substitute $a_n = \psi^n$ and simplify. What remains is exactly the condition on the parameters given in the theorem.

For Somos-4:

Let $A_1 = A_0 = 0$, $B_1 = -4$, $B_0 = 1$, and $C_0 = 1$. Criteria in theorem is satisfied:

 $2 \cdot 0 + 2 \cdot 0 - 4 + 2 \cdot 1 + 1 + 1 = 0,$

so $s_n = \psi^n$ is annihilated for all $\psi \in \mathbb{R}$. In particular, since 2, 4, 8 and 3, 9, 27 appear consecutively, we see 2^{n-3} and 3^{n-4} in sequence tree.

Comparing Order 3 and Order 4 Somos-4 Recurrences

Asymptotics

Order 4: $s_n \sim \phi^{n^2}$ Order 3: $s_n \sim \gamma^{n^2}$, ψ^n , constant, etc.

Comparing Order 3 and Order 4 Somos-4 Recurrences

Asymptotics

Order 4: $s_n \sim \phi^{n^2}$ Order 3: $s_n \sim \gamma^{n^2}$, ψ^n , constant, etc.

Closed Form

Order 4: Weierstrass sigma functions Order 3: Some branches are elementary functions

Uses of Experimental Mathematics

- Global asymptotic stability:
 - Programmed general algorithm to solve large class of problems

Uses of Experimental Mathematics

- Global asymptotic stability:
 - Programmed general algorithm to solve large class of problems
- Integer sequences:
 - Conjectured linear annihilators for sequences produced by non-linear recurrences
 - Proved initial conditions satisfy piecewise polynomial (Zeilberger)

Uses of Experimental Mathematics

- Global asymptotic stability:
 - Programmed general algorithm to solve large class of problems
- Integer sequences:
 - Conjectured linear annihilators for sequences produced by non-linear recurrences
 - Proved initial conditions satisfy piecewise polynomial (Zeilberger)
- Rational sequences:
 - Conjectured criteria on coefficients in 2-recurrence of order 1
 - Conjectured existence of exponential branches. Exponential sequences were unexpected given the behavior of the 2-recurrence of order 1.

References

- E. Camouzis and G. Ladas, *Dynamics of Third Order Rational Difference Equations*, Chapman and Hall/CRC press (2008).
- P. Heideman and E. Hogan, A new family of somos-like recurrences, *Electronic Journal of Combinatorics*, **15**(1).
- A. N. W. Hone and C. Swart, Integrality and the laurent phenomenon for somos 4 and somos 5 sequences, *Mathematical Proceedings of the Cambridge Philosophical Society*, **145**, (2008), 65–85.
- N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, *Journal of Mathematical Analysis and Applications*, **235**, (1999), 151–158.

OEIS Foundation Inc., The on-line encyclopedia of integer sequences (2011). URL http://oeis.org Conclusions

Thank You

Any Questions?

To get references to appear!

