Experimental Mathematics Applied to the Study of Non-linear Recurrences

Emilie Hogan
eahogan@math.rutgers.edu
Rutgers University

April 7, 2011

Recurrence Definition

Definition

Given $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$, and $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}$, a recurrence is defined as follows:

$$
r_{n}=F\left(r_{n-1}, \ldots, r_{n-k}\right), \quad r_{1}=x_{1}, \ldots, r_{k}=x_{k}
$$

The order of the recurrence is k. Recurrence produces sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$.

Recurrence Definition

Definition

Given $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$, and $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}$, a recurrence is defined as follows:

$$
r_{n}=F\left(r_{n-1}, \ldots, r_{n-k}\right), \quad r_{1}=x_{1}, \ldots, r_{k}=x_{k} .
$$

The order of the recurrence is k. Recurrence produces sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$.

Example:

- The Fibonacci recurrence, $f_{n}=f_{n-1}+f_{n-2}$, of order 2 is defined by $F(x, y)=x+y$, and $x_{1}=x_{2}=1$.

$$
1,1,2,3,5,8,13,21, \ldots
$$

Why Focus on Non-Linear?

Definition

If F is a linear function (addition and scalar multiplication) then we say the recurrence is linear, otherwise the recurrence is non-linear.

- Linear recurrences are very well behaved
- Given a linear recurrence we have a closed form formula for the $n^{\text {th }}$ term in the sequence
- No such general understanding for non-linear recurrences (not even for quadratic)

Three Interesting Phenomena

Global Asymptotic Stability:

- Sequence produced by recurrence defined from function F, converges for any set $\left\{x_{1}, \ldots, x_{k}\right\}$ of initial conditions.

Three Interesting Phenomena

Global Asymptotic Stability:

- Sequence produced by recurrence defined from function F, converges for any set $\left\{x_{1}, \ldots, x_{k}\right\}$ of initial conditions.

Surprising Integer Sequences:

- $\left\{r_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}$ when expected to be rational

Three Interesting Phenomena

Global Asymptotic Stability:

- Sequence produced by recurrence defined from function F, converges for any set $\left\{x_{1}, \ldots, x_{k}\right\}$ of initial conditions.
Surprising Integer Sequences:
- $\left\{r_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}$ when expected to be rational

Surprising Rational Sequences:

- $\left\{r_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Q}$ when expected to be complex

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$
x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

where $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is a rational function (ratio of polynomials).

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$
x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right),
$$

where $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is a rational function (ratio of polynomials).
We require that

- all coefficients in R are positive
- initial conditions, x_{-k}, \ldots, x_{0}, are positive, and

Rational Difference Equation

Definition

A rational difference equation is given by the equation

$$
x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right),
$$

where $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is a rational function (ratio of polynomials).
We require that

- all coefficients in R are positive
- initial conditions, x_{-k}, \ldots, x_{0}, are positive, and

Example:

$$
x_{n+1}=\frac{4+x_{n}}{1+x_{n-1}}
$$

Equilibrium \& Stability

Definition
 If $x_{n}=\bar{x}$ for all $n \geq-k$ then \bar{x} is called an equilibrium.

Equilibrium \& Stability

Definition

If $x_{n}=\bar{x}$ for all $n \geq-k$ then \bar{x} is called an equilibrium.
We can find an equilibrium by solving the following equation and taking a positive solution

$$
\bar{x}=R(\bar{x}, \ldots, \bar{x})
$$

For example

$$
\bar{x}=\frac{4+\bar{x}}{1+\bar{x}}, \Longrightarrow \bar{x}=2(\text { or }-2)
$$

Equilibrium \& Stability

Definition

If $x_{n}=\bar{x}$ for all $n \geq-k$ then \bar{x} is called an equilibrium.
We can find an equilibrium by solving the following equation and taking a positive solution

$$
\bar{x}=R(\bar{x}, \ldots, \bar{x})
$$

For example

$$
\bar{x}=\frac{4+\bar{x}}{1+\bar{x}}, \Longrightarrow \bar{x}=2(\text { or }-2)
$$

Definition

If $x_{n} \rightarrow \bar{x}$ for all positive initial conditions, then \bar{x} is globally asymptotically stable (GAS).

Approaches

- Current method to prove GAS given an $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R_{1} and R_{2}, two rational difference equations, their proofs of GAS may be very different

Approaches

- Current method to prove GAS given an $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R_{1} and R_{2}, two rational difference equations, their proofs of GAS may be very different
- My approach:
- Teach a computer how to prove GAS.
- Guarantees that given R_{1} and R_{2}, two rational difference equations, their proofs are "the same". They follow the same sequence of steps.

Approaches

- Current method to prove GAS given an $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is to verify that R satisfies one of many known sufficient conditions
- Given R_{1} and R_{2}, two rational difference equations, their proofs of GAS may be very different
- My approach:
- Teach a computer how to prove GAS.
- Guarantees that given R_{1} and R_{2}, two rational difference equations, their proofs are "the same". They follow the same sequence of steps.

Goal

Create an algorithm that takes as input a rational difference equation, R, and equilibrium, \bar{x}, conjectured to be GAS, and outputs a rigorous proof of its stability.

Notation

Instead of rational difference equation as a map, $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$, consider vector valued map, $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, defined from R as follows:

$$
Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
\vdots \\
x_{n-k}
\end{array}\right]\right)=\left[\begin{array}{c}
R\left(x_{n}, \ldots, x_{n-k}\right) \\
x_{n} \\
\vdots \\
x_{n-k+1}
\end{array}\right]
$$

Notation

Instead of rational difference equation as a map, $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$, consider vector valued map, $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, defined from R as follows:

$$
Q\left(\mathcal{X}_{n}\right)=Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
\vdots \\
x_{n-k}
\end{array}\right]\right)=\left[\begin{array}{c}
R\left(x_{n}, \ldots, x_{n-k}\right) \\
x_{n} \\
\vdots \\
x_{n-k+1}
\end{array}\right]=\mathcal{X}_{n+1}
$$

Notation

Instead of rational difference equation as a map, $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$, consider vector valued map, $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, defined from R as follows:

$$
Q^{n+1}\left(\mathcal{X}_{0}\right)=Q\left(\mathcal{X}_{n}\right)=Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
\vdots \\
x_{n-k}
\end{array}\right]\right)=\left[\begin{array}{c}
R\left(x_{n}, \ldots, x_{n-k}\right) \\
x_{n} \\
\vdots \\
x_{n-k+1}
\end{array}\right]=\mathcal{X}_{n+1}
$$

Notation

Instead of rational difference equation as a map, $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$, consider vector valued map, $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, defined from R as follows:

$$
Q^{n+1}\left(\mathcal{X}_{0}\right)=Q\left(\mathcal{X}_{n}\right)=Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
\vdots \\
x_{n-k}
\end{array}\right]\right)=\left[\begin{array}{c}
R\left(x_{n}, \ldots, x_{n-k}\right) \\
x_{n} \\
\vdots \\
x_{n-k+1}
\end{array}\right]=\mathcal{X}_{n+1}
$$

For example:

$$
Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1}
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{4+x_{n}}{1+x_{n-1}} \\
x_{n}
\end{array}\right] .
$$

Notation

Instead of rational difference equation as a map, $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$, consider vector valued map, $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, defined from R as follows:

$$
Q^{n+1}\left(\mathcal{X}_{0}\right)=Q\left(\mathcal{X}_{n}\right)=Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
\vdots \\
x_{n-k}
\end{array}\right]\right)=\left[\begin{array}{c}
R\left(x_{n}, \ldots, x_{n-k}\right) \\
x_{n} \\
\vdots \\
x_{n-k+1}
\end{array}\right]=\mathcal{X}_{n+1}
$$

For example:

$$
Q\left(\left[\begin{array}{c}
x_{n} \\
x_{n-1}
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{4+x_{n}}{1+x_{n-1}} \\
x_{n}
\end{array}\right] .
$$

New Goal

Create an algorithm that takes as input a vectorized rational difference equation, Q, and equilibrium, $\overline{\mathcal{X}}:=\langle\bar{x}, \ldots, \bar{x}\rangle$, conjectured to be GAS, and outputs a rigorous proof of its stability.

A Useful Theorem

Theorem (Kruse, Nesemann 1999)

Suppose for the difference equation

$$
\mathcal{X}_{n+1}=Q\left(\mathcal{X}_{n}\right), \quad n=0,1,2, \ldots
$$

with unique positive equilibrium $\overline{\mathcal{X}}$, there exists an integer $K \geq 1$ such that the $K^{\text {th }}$ iterate of Q satisfies

$$
\frac{\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|}{\|\mathcal{X}-\overline{\mathcal{X}}\|}<1 \quad \text { for all } \mathcal{X} \neq \overline{\mathcal{X}} \text { with all coordinates positive. }
$$

Then $\overline{\mathcal{X}}$ is GAS.
$\|\cdot\|$ is the Euclidean norm, i.e., $\left\|\left\langle x_{0}, \ldots, x_{k}\right\rangle\right\|=\sqrt{x_{0}{ }^{2}+\cdots+x_{k}{ }^{2}}$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ - rational difference equation
- \bar{x} - equilibrium, solution to $\bar{x}=R(\bar{x}, \ldots, \bar{x})$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ - rational difference equation
- \bar{x} - equilibrium, solution to $\bar{x}=R(\bar{x}, \ldots, \bar{x})$

- $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$ - vectorized rational difference equation
- $\overline{\mathcal{X}}$ - vectorized equilibrium, $\langle\bar{x}, \ldots, \bar{x}\rangle$

Algorithm Ingredients

- $R: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ - rational difference equation
- \bar{x} - equilibrium, solution to $\bar{x}=R(\bar{x}, \ldots, \bar{x})$

$$
\downarrow
$$

- $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$ - vectorized rational difference equation
- $\overline{\mathcal{X}}$ - vectorized equilibrium, $\langle\bar{x}, \ldots, \bar{x}\rangle$

Find positive integer K so that
$\frac{\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|}{\|\mathcal{X}-\overline{\mathcal{X}}\|}<1 \quad$ for all $\mathcal{X} \neq \overline{\mathcal{X}}$ with all coordinates positive

Algorithm Idea

Given a positive integer K we create a polynomial:

$$
P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})=\text { numerator }\left(\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}\right)
$$

If $P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})>0$ for all $\mathcal{X} \neq \overline{\mathcal{X}}$ with all coordinates positive (i.e., in the positive orthant, \mathbb{R}_{+}^{k+1}) then:

Algorithm Idea

Given a positive integer K we create a polynomial:

$$
P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})=\text { numerator }\left(\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}\right)
$$

If $P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})>0$ for all $\mathcal{X} \neq \overline{\mathcal{X}}$ with all coordinates positive (i.e., in the positive orthant, \mathbb{R}_{+}^{k+1}) then:

$$
\begin{aligned}
& 0<\text { numerator }\left(\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}\right) \\
& 0<\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}
\end{aligned}
$$

Algorithm Idea

Given a positive integer K we create a polynomial:

$$
P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})=\text { numerator }\left(\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}\right)
$$

If $P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})>0$ for all $\mathcal{X} \neq \overline{\mathcal{X}}$ with all coordinates positive (i.e., in the positive orthant, $\left.\mathbb{R}_{+}^{k+1}\right)$ then:

$$
\begin{aligned}
0 & <\text { numerator }\left(\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2}\right) \\
0 & <\|\mathcal{X}-\overline{\mathcal{X}}\|^{2}-\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2} \\
\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|^{2} & <\|\mathcal{X}-\overline{\mathcal{X}}\|^{2} \\
\frac{\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|}{\|\mathcal{X}-\overline{\mathcal{X}}\|} & <1
\end{aligned}
$$

Polynomial Positivity

New Goal

Create an algorithm that takes as input a polynomial $P(\mathcal{X})$ in m variables $\left(\mathcal{X}=\left\langle x_{1}, \ldots, x_{m}\right\rangle\right)$, and outputs a proof that $P(\mathcal{X}) \geq 0$ for $\mathcal{X} \in \mathbb{R}_{+}^{m}$.

Polynomial Positivity

New Goal

Create an algorithm that takes as input a polynomial $P(\mathcal{X})$ in m variables $\left(\mathcal{X}=\left\langle x_{1}, \ldots, x_{m}\right\rangle\right)$, and outputs a proof that $P(\mathcal{X}) \geq 0$ for $\mathcal{X} \in \mathbb{R}_{+}^{m}$.

Trivial algorithm ("PosCoeffs"): If all coefficients in $P(\mathcal{X})$ are positive then $P(\mathcal{X}) \geq 0$ for \mathcal{X} in the positive orthant.

Polynomial Positivity (cont.)

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_{i} \cdot x_{j}$ then:

Example:

$$
P:=x^{2}-x y+y^{2}+x+y+1
$$

Polynomial Positivity (cont.)

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_{i} \cdot x_{j}$ then:

- Consider the "sub-polynomial", \bar{P}, consisting of the terms x_{h}^{2} and $x_{i} \cdot x_{j}$ for all $1 \leq h, i, j \leq m$, and their coefficients in P

Example:

$$
\begin{aligned}
& P:=x^{2}-x y+y^{2}+x+y+1 \\
& \bar{P}=x^{2}-x y+y^{2}
\end{aligned}
$$

Polynomial Positivity (cont.)

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_{i} \cdot x_{j}$ then:

- Consider the "sub-polynomial", \bar{P}, consisting of the terms x_{h}^{2} and $x_{i} \cdot x_{j}$ for all $1 \leq h, i, j \leq m$, and their coefficients in P
- Consider \bar{P} as quadratic form and show it is positive definite (in 2 variables use discriminant)

Example:

$$
\begin{aligned}
P & :=x^{2}-x y+y^{2}+x+y+1 \\
\bar{P} & =x^{2}-x y+y^{2} \\
\operatorname{Disc}(\bar{P}) & =(-1)^{2}-4 \cdot 1 \cdot 1=-3
\end{aligned}
$$

Polynomial Positivity (cont.)

Less trivial algorithm ("SubP"): If the only negative coefficients are on terms of the form $x_{i} \cdot x_{j}$ then:

- Consider the "sub-polynomial", \bar{P}, consisting of the terms x_{h}^{2} and $x_{i} \cdot x_{j}$ for all $1 \leq h, i, j \leq m$, and their coefficients in P
- Consider \bar{P} as quadratic form and show it is positive definite (in 2 variables use discriminant)
- If \bar{P} is positive, then $P(\mathcal{X}) \geq 0$ for \mathcal{X} in the positive orthant (since all other coefficients are positive)

Example:

$$
\begin{aligned}
P & :=x^{2}-x y+y^{2}+x+y+1 \\
\bar{P} & =x^{2}-x y+y^{2} \\
\operatorname{Disc}(\bar{P}) & =(-1)^{2}-4 \cdot 1 \cdot 1=-3
\end{aligned}
$$

My Algorithm in Two Dimensions

Cut the positive quadrant into 4 regions using \bar{x} as the cut point:

Create 4 new polynomials, from P, by transforming each of the 4 regions into the positive quadrant. The new polynomials will each be defined on the entire positive quadrant.

$P_{N E}(x, y)$

$$
P_{N E}(x, y)=P(x+\bar{x}, y+\bar{x})
$$

$P_{S W}(x, y)$

$$
P_{S W}(x, y)=P(\quad, \quad)
$$

$P_{S W}(x, y)$

$$
P_{S W}(x, y)=P\left(\frac{1}{x}, \frac{1}{y}\right)
$$

$P_{S W}(x, y)$

$$
P_{S W}(x, y)=P\left(\frac{1}{x+\frac{1}{\bar{x}}}, \frac{1}{y+\frac{1}{\bar{x}}}\right)
$$

$P_{S W}(x, y)$

$$
P_{S W}(x, y)=P\left(\frac{1}{x+\frac{1}{\bar{x}}}, \frac{1}{y+\frac{1}{\bar{x}}}\right)\left(x+\frac{1}{\bar{x}}\right)^{d_{x}}\left(y+\frac{1}{\bar{x}}\right)^{d_{y}}
$$

$P_{N W}(x, y)$ and $P_{S E}(x, y)$

$$
\begin{aligned}
P_{N W}(x, y) & =P\left(\frac{1}{x+\frac{1}{\bar{x}}}, y+\bar{x}\right)\left(x+\frac{1}{\bar{x}}\right)^{d_{x}} \\
P_{S E}(x, y) & =P\left(x+\bar{x}, \frac{1}{y+\frac{1}{\bar{x}}}\right)\left(y+\frac{1}{\bar{x}}\right)^{d_{y}}
\end{aligned}
$$

My Algorithm in Two Dimensions (cont.)

- If all polynomials are ≥ 0 on the positive quadrant then $P(\mathcal{X}) \geq 0$ on the positive quadrant

My Algorithm in Two Dimensions (cont.)

- If all polynomials are ≥ 0 on the positive quadrant then $P(\mathcal{X}) \geq 0$ on the positive quadrant
- Use PosCoeffs and SubP on each of the 4 polynomials to show that they are positive on the positive quadrant
- If PosCoeffs and SubP fail for one of the polynomials then we have to subdivide the associated region and try again

GAS Algorithm Summary

Given a rational difference equation $x_{n+1}=R\left(x_{n}, \ldots, x_{n-k}\right)$ and a unique equilibrium \bar{x} :

Step 0: Create the function $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$.
Step 1: Conjecture a K value that satisfies

$$
\frac{\left\|Q^{K}(\mathcal{X})-\overline{\mathcal{X}}\right\|}{\|\mathcal{X}-\overline{\mathcal{X}}\|}<1 .
$$

Step 2: Create the polynomial $P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})$.
Step 3: Prove $P_{Q, \overline{\mathcal{X}}, K}(\mathcal{X})>0$ for all $\mathcal{X} \neq \overline{\mathcal{X}}$ in the positive orthant: find subdivision of positive orthant in which all associated polynomials (one for each sub-region) are positive in the positive orthant.

Demo

Use my maple code to prove GAS of the equilibrium $\bar{x}=2$ in the running example

$$
x_{n+1}=\frac{4+x_{n}}{1+x_{n-1}}
$$

Code is available on my website as a link off the page for this project: http://math.rutgers.edu/~eahogan/GAS.html

Coefficients as Variables

- So far assumed coefficients are numerical, variables are x_{n} 's
- Can prove some cases in which coefficients are parameters as long as equilibrium is rational function of parameters
- Run positivity algorithm with x_{n} 's and parameters as variables

Coefficients as Variables

- So far assumed coefficients are numerical, variables are x_{n} 's
- Can prove some cases in which coefficients are parameters as long as equilibrium is rational function of parameters
- Run positivity algorithm with x_{n} 's and parameters as variables

Example:

If $x_{n+1}=\frac{x_{n-1}}{A+B x_{n}+x_{n-1}}$ for $A, B>0$ then the equilibrium is

$$
\bar{x}=\frac{1-A}{1+B} .
$$

When we create $P_{Q, K, \overline{\mathcal{X}}}$ it will be a polynomial in x_{n}, x_{n-1}, A, and B.

Select Results

$x_{n+1}=$	Parameter Values	Findings
$\frac{1}{4} \frac{M^{2}-1}{1+x_{n}}$	$M-1>0, M+1>0$	$\bar{x}=\frac{1}{2}(M-1)$ is GAS
$\frac{\beta x_{n}}{1+x_{n}}$	$M-1<0, M+1<0$	$\bar{x}=-\frac{1}{2}(M+1)$ is GAS
$\frac{x_{n-1}}{A+x_{n}}$	$0<\beta \leq 1$	$\bar{x}=0$ is GAS
$\frac{x_{n-1}}{A+x_{n-1}}$	$1<\beta$	$\bar{x}=\beta-1$ is GAS
$q+\frac{1}{4} \frac{M^{2}-q^{2}}{x_{n}}$	$M-q<0, M+q<0, q>0$	$\bar{x}=0$ is GAS
$\frac{1}{4} \frac{M^{2}-q^{2}+4 x_{n}}{1+q+x_{n}}$	$M-q>0, \frac{1}{2}(M-q)$ is GAS	
$\frac{x_{n-1}}{A+B x_{n}+x_{n-1}}$	$M-q<0, M+q<0, q>-1$	$\bar{x}=1-A$ is GAS

Somos Sequences

Michael Somos, in 1989, conjectured that sequence produced by

$$
s_{n} s_{n-6}=s_{n-1} s_{n-5}+s_{n-2} s_{n-4}+s_{n-3}^{2}
$$

with initial conditions $s_{i}=1$ for $1 \leq i \leq 6$, consisted only of integers (A006722).

$$
1,1,1,1,1,1,3,5,9,23,75,421,1103,5047,41783,281527, \ldots
$$

Somos' recurrence inspired many similar recurrences that possess the integrality property.

Family of Recurrences Inspired by Somos

Conjecture (Heideman, H. 2008)

Consider the quadratic recurrence

$$
x_{n} x_{n-k}=x_{n-i} x_{n-k+i}+x_{n-j}+x_{n-k+j}
$$

with initial conditions $x_{m}=1$ for $1 \leq m \leq k$. This recurrence produces a sequence of integers iff one of the following holds:
(1) k is even, i is odd, and $j=\frac{k}{2}$,
(2) k is even, i is even, and $j=\frac{i}{2}, j=\frac{k}{2}$, or $j=\frac{k-i}{2}$,
(3) k is odd, i is odd, and $j=\frac{k-i}{2}$,
(9) k is odd, i is even, and $j=\frac{i}{2}$.

Progress on Conjecture

$$
x_{n} x_{n-k}=x_{n-i} x_{n-k+i}+x_{n-j}+x_{n-k+j}
$$

In 2008 paper, Heideman and I proved:

- $k=2 K+1, i=1$, and $j=\frac{k-i}{2}=K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

Progress on Conjecture

$$
x_{n} x_{n-k}=x_{n-i} x_{n-k+i}+x_{n-j}+x_{n-k+j}
$$

In 2008 paper, Heideman and I proved:

- $k=2 K+1, i=1$, and $j=\frac{k-i}{2}=K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

- $k=2 K, i=1$, and $j=\frac{k}{2}=K$

Progress on Conjecture

$$
x_{n} x_{n-k}=x_{n-i} x_{n-k+i}+x_{n-j}+x_{n-k+j}
$$

In 2008 paper, Heideman and I proved:

- $k=2 K+1, i=1$, and $j=\frac{k-i}{2}=K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

- $k=2 K, i=1$, and $j=\frac{k}{2}=K$
- $k=(2 K+1) i$ and $j=K i$
- $k=2 K i$ and $j=K i$

Progress on Conjecture

$$
x_{n} x_{n-k}=x_{n-i} x_{n-k+i}+x_{n-j}+x_{n-k+j}
$$

In 2008 paper, Heideman and I proved:

- $k=2 K+1, i=1$, and $j=\frac{k-i}{2}=K$ by showing sequence also satisfies linear recurrence with integer coefficients and initial conditions.

In thesis I proved:

- $k=2 K, i=1$, and $j=\frac{k}{2}=K$
- $k=(2 K+1) i$ and $j=K i$
- $k=2 K i$ and $j=K i$
- Entire conjecture (backwards direction) using "Laurent phenomenon": if initial conditions are symbolic, sequence consists only of Laurent polynomials in initial variables with integer coefficients

Definition

Recall, recurrence of order k defined as:

$$
x_{n}=F\left(x_{n-1}, \ldots, x_{n-k}\right) .
$$

Definition

Recall, recurrence of order k defined as:

$$
x_{n}=F\left(x_{n-1}, \ldots, x_{n-k}\right)
$$

Consider m-recurrence (m an integer greater than 1) of order k :

$$
x_{n}^{m}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

Differences:

- Allow x_{n} as an argument to F (will assume F is a rational function, and exponent on x_{n} in F is strictly less than m)
- Raise x_{n} to integer power greater than 1

Definition

Recall, recurrence of order k defined as:

$$
x_{n}=F\left(x_{n-1}, \ldots, x_{n-k}\right)
$$

Consider m-recurrence (m an integer greater than 1) of order k :

$$
x_{n}^{m}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

Differences:

- Allow x_{n} as an argument to F (will assume F is a rational function, and exponent on x_{n} in F is strictly less than m)
- Raise x_{n} to integer power greater than 1
- To compute x_{n} must solve degree m equation (so get m possibilities)
- Given initial conditions, produce infinitely many sequences
- Expect to produce complex numbers

Goal

Find m-recurrences that generate rational numbers:

- Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be integer (or rational) sequence
- Consider sequence of ratios of $\left\{g_{n}\right\}$, obviously a rational sequence
- Find m-recurrence that annihilates sequence of ratios of $\left\{g_{n}\right\}$
- Generalize the m-recurrence

Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by

$$
s_{n} s_{n-4}=\alpha s_{n-1} s_{n-3}+\beta s_{n-2}^{2}
$$

with initial conditions $s_{i}=1$ for $1 \leq i \leq 4$. This recurrence is order 4 .

Generalized Somos-4 Ratios

The generalized Somos-4 recurrence is given by

$$
s_{n} s_{n-4}=\alpha s_{n-1} s_{n-3}+\beta s_{n-2}^{2}
$$

with initial conditions $s_{i}=1$ for $1 \leq i \leq 4$. This recurrence is order 4 .
Let $f_{n}:=\frac{s_{n+2} s_{n}}{s_{n+1}^{2}}$ be the sequence of ratios of ratios of s_{n}.

Proposition (H. 2011)

The following 2-recurrence annihilates the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$:

$$
f_{n-1}^{2} f_{n}^{2}+\left(\alpha-(2 \alpha+\beta+1) f_{n-1}\right) f_{n}+\alpha f_{n-1}+\beta=0
$$

Corollary of result due to Hone and Swart in 2008.

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$

For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$

For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

If $f_{1}=1$:

$$
\begin{aligned}
1^{2} f_{2}^{2}+(1-4 \cdot 1) f_{2}+1+1 & =0 \\
f_{2}^{2}-3 f_{2}+2 & =0 .
\end{aligned}
$$

Then $f_{2}=2$ or 1 .

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$

For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

If $f_{1}=1$:

$$
\begin{aligned}
1^{2} f_{2}^{2}+(1-4 \cdot 1) f_{2}+1+1 & =0 \\
f_{2}^{2}-3 f_{2}+2 & =0 .
\end{aligned}
$$

Then $f_{2}=2$ or 1 .

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$

For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

If $f_{2}=2$:

$$
\begin{aligned}
2^{2} f_{3}^{2}+(1-4 \cdot 2) f_{3}+2+1 & =0 \\
4 f_{3}^{2}-7 f_{3}+3 & =0 .
\end{aligned}
$$

Then $f_{3}=1$ or $\frac{3}{4}$.

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$
For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

If $f_{2}=2$:

$$
\begin{aligned}
2^{2} f_{3}^{2}+(1-4 \cdot 2) f_{3}+2+1 & =0 \\
4 f_{3}^{2}-7 f_{3}+3 & =0 .
\end{aligned}
$$

Then $f_{3}=1$ or $\frac{3}{4}$.

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$
For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

$$
\begin{aligned}
& \text { If } f_{3}=\frac{3}{4}: \\
& \qquad \frac{9}{16} f_{4}^{2}-2 f_{4}+\frac{7}{4}=0 .
\end{aligned}
$$

Then $f_{4}=2$ or $\frac{14}{9}$.

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$
For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

$$
\begin{aligned}
& \text { If } f_{3}=\frac{3}{4}: \\
& \qquad \frac{9}{16} f_{4}^{2}-2 f_{4}+\frac{7}{4}=0 .
\end{aligned}
$$

Then $f_{4}=2$ or $\frac{14}{9}$.

Sequence Tree for $f_{n-1}^{2} f_{n}^{2}+\left(1-4 f_{n-1}\right) f_{n}+f_{n-1}+1=0$
For every f_{n-1} there are two f_{n} 's, so we will store them in a binary tree:

$$
\begin{aligned}
& \text { If } f_{4}=\frac{14}{9} \text { : } \\
& \qquad \frac{169}{81} f_{5}^{2}-\frac{47}{9} f_{5}+\frac{23}{9}=0 .
\end{aligned}
$$

Then $f_{5}=\frac{69}{49}$ or $\frac{3}{4}$.

Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X:=x_{n}$ and $Y:=x_{n-1}$. Consider the 2-recurrence
$\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(B_{2} Y^{2}+B_{1} Y+B_{0}\right) X+\left(C_{2} Y^{2}+C_{1} Y+C_{0}\right)=0$, with initial condition $x_{1}=1$. The corresponding sequence tree is rational if
(i) $A_{1}=B_{2}, A_{0}=C_{2}, B_{0}=C_{1}$, and
(ii) $\left(B_{2}+B_{1}+B_{0}\right)^{2}-4\left(A_{1}+A_{0}+1\right)\left(C_{2}+C_{1}+C_{0}\right)=q^{2}, q \in \mathbb{Q}$.

Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X:=x_{n}$ and $Y:=x_{n-1}$. Consider the 2-recurrence
$\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(B_{2} Y^{2}+B_{1} Y+B_{0}\right) X+\left(C_{2} Y^{2}+C_{1} Y+C_{0}\right)=0$, with initial condition $x_{1}=1$. The corresponding sequence tree is rational if
(i) $A_{1}=B_{2}, A_{0}=C_{2}, B_{0}=C_{1}$, and
(ii) $\left(B_{2}+B_{1}+B_{0}\right)^{2}-4\left(A_{1}+A_{0}+1\right)\left(C_{2}+C_{1}+C_{0}\right)=q^{2}, q \in \mathbb{Q}$.

- Criteria (i) makes 2-recurrence symmetric in x_{n} and x_{n-1}
- 2-recurrence satisfying (i) known as Euler-Chasles correspondence

Generalization of Somos-4 Ratios of Ratios

Proposition (H. 2011)

Let $X:=x_{n}$ and $Y:=x_{n-1}$. Consider the 2-recurrence
$\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(B_{2} Y^{2}+B_{1} Y+B_{0}\right) X+\left(C_{2} Y^{2}+C_{1} Y+C_{0}\right)=0$, with initial condition $x_{1}=1$. The corresponding sequence tree is rational if
(i) $A_{1}=B_{2}, A_{0}=C_{2}, B_{0}=C_{1}$, and
(ii) $\left(B_{2}+B_{1}+B_{0}\right)^{2}-4\left(A_{1}+A_{0}+1\right)\left(C_{2}+C_{1}+C_{0}\right)=q^{2}, q \in \mathbb{Q}$.

- Criteria (i) makes 2-recurrence symmetric in x_{n} and x_{n-1}
- 2-recurrence satisfying (i) known as Euler-Chasles correspondence
- Generalized Somos-4 ratios of ratios: $A_{1}=B_{2}=A_{0}=C_{2}=0$,

$$
\begin{aligned}
B_{0}=C_{1}= & \alpha, B_{1}=-(2 \alpha+\beta+1), \text { and } C_{0}=\beta \\
& Y^{2} X^{2}+(\alpha-(2 \alpha+\beta+1) Y) X+\alpha Y+\beta=0
\end{aligned}
$$

Proof of Proposition

$X:=x_{n}, Y:=x_{n-1}$, make substitutions from criteria (i):

$$
P(X, Y):=\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(A_{1} Y^{2}+B_{1} Y+B_{0}\right) X+\left(A_{0} Y^{2}+B_{0} Y+C_{0}\right) .
$$

Proof of Proposition

$X:=x_{n}, Y:=x_{n-1}$, make substitutions from criteria (i):
$P(X, Y):=\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(A_{1} Y^{2}+B_{1} Y+B_{0}\right) X+\left(A_{0} Y^{2}+B_{0} Y+C_{0}\right)$.
Induction on n :
Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_{n} \in \mathbb{Q}$.

Proof of Proposition

$X:=x_{n}, Y:=x_{n-1}$, make substitutions from criteria (i):
$P(X, Y):=\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(A_{1} Y^{2}+B_{1} Y+B_{0}\right) X+\left(A_{0} Y^{2}+B_{0} Y+C_{0}\right)$.
Induction on n :
Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_{n} \in \mathbb{Q}$.
Base case: Given that $x_{1}=1$, show $x_{2} \in \mathbb{Q}$.
Values for x_{2} are solutions to $P(X, 1)=0$

$$
\left(1+A_{1}+A_{0}\right) X^{2}+\left(A_{1}+B_{1}+B_{0}\right) X+\left(A_{0}+B_{0}+C_{0}\right)=0
$$

Proof of Proposition

$X:=x_{n}, Y:=x_{n-1}$, make substitutions from criteria (i):
$P(X, Y):=\left(Y^{2}+A_{1} Y+A_{0}\right) X^{2}+\left(A_{1} Y^{2}+B_{1} Y+B_{0}\right) X+\left(A_{0} Y^{2}+B_{0} Y+C_{0}\right)$.
Induction on n :
Will assume $x_{n-2}, x_{n-1} \in \mathbb{Q}$, and prove $x_{n} \in \mathbb{Q}$.
Base case: Given that $x_{1}=1$, show $x_{2} \in \mathbb{Q}$.
Values for x_{2} are solutions to $P(X, 1)=0$

$$
\left(1+A_{1}+A_{0}\right) X^{2}+\left(A_{1}+B_{1}+B_{0}\right) X+\left(A_{0}+B_{0}+C_{0}\right)=0
$$

Discriminant, $\left(B_{2}+B_{1}+B_{0}\right)^{2}-4\left(A_{1}+A_{0}+1\right)\left(C_{2}+C_{1}+C_{0}\right)$, is assumed to be square of rational in criteria (ii), so both values for x_{2} are rational.

Induction Step

- Assume x_{n-2} and its children $x_{n-1}^{(1)}$ and $x_{n-1}^{(2)}$ are rational:

$$
\left\{x_{n-1}^{(1)}, x_{n-1}^{(2)}\right\}=\left\{X: P\left(X, x_{n-2}\right)=0\right\} \subset \mathbb{Q}
$$

- P symmetric, so $P\left(x_{n-2}, x_{n-1}^{(i)}\right)=0$ for both $i=1,2$

Induction Step

- Assume x_{n-2} and its children $x_{n-1}^{(1)}$ and $x_{n-1}^{(2)}$ are rational:

$$
\left\{x_{n-1}^{(1)}, x_{n-1}^{(2)}\right\}=\left\{X: P\left(X, x_{n-2}\right)=0\right\} \subset \mathbb{Q}
$$

- P symmetric, so $P\left(x_{n-2}, x_{n-1}^{(i)}\right)=0$ for both $i=1,2$
- Children of $x_{n-1}^{(i)}$ for some $i=1,2$ are

$$
\left\{x_{n}^{(i, 1)}, x_{n}^{(i, 2)}\right\}=\left\{X: P\left(X, x_{n-1}^{(i)}\right)=0\right\}
$$

- Clearly x_{n-2} is in this set (and is assumed to be rational) so the other root must also be rational

"Unfold" Somos-4 ratios

Recall 2-recurrence for $f_{n}:=\frac{s_{n+2} s_{n}}{s_{n+1}^{2}}$,

$$
f_{n}^{2} f_{n+1}^{2}+\left(\alpha-(2 \alpha+\beta+1) f_{n}\right) f_{n+1}+\alpha f_{n}+\beta=0
$$

Can make substitution to get 2-recurrence that annihilates generalized Somos-4 sequence:
$s_{n}^{2} s_{n+3}^{2}+\left(\alpha s_{n+1}^{3}-(2 \alpha+\beta+1) s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+\alpha s_{n} s_{n+2}^{3}+\beta s_{n+1}^{2} s_{n+2}^{2}=0$.
This 2-recurrence is order 3.

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

Sequence Tree: 2-Recurrence of Order 3 for Somos-4

$$
s_{n}^{2} s_{n+3}^{2}+\left(s_{n+1}^{3}-4 s_{n} s_{n+1} s_{n+2}\right) s_{n+3}+s_{n} s_{n+2}^{3}+s_{n+1}^{2} s_{n+2}^{2}=0
$$

- Somos-4
- $2^{\left\lfloor(n-2)^{2} / 4\right\rfloor}$
- 2^{n-3}
- 3^{n-4}
- Non-integer rational numbers

"Unfold" Euler-Chasles

Substituting $x_{n}=\frac{a_{n+2} a_{n}}{a_{n+1}}$ into Euler-Chasles correspondence we can create a more general family of 2-recurrences of order 3:

$$
\begin{aligned}
& \left(a_{n}^{2} a_{n+2}^{2}+A_{1} a_{n} a_{n+1}^{2} a_{n+2}+A_{0} a_{n+1}^{4}\right) a_{n+1}^{2} a_{n+3}^{2}+ \\
& \quad+\left(A_{1} a_{n}^{2} a_{n+2}^{2}+B_{1} a_{n} a_{n+1}^{2} a_{n+2}+B_{0} a_{n+1}^{4}\right) a_{n+1} a_{n+2}^{2} a_{n+3}+ \\
& \quad \quad+\left(A_{0} a_{n}^{2} a_{n+2}^{2}+B_{0} a_{n} a_{n+1}^{2} a_{n+2}+C_{0} a_{n+1}^{4}\right) a_{n+2}^{4}=0
\end{aligned} \quad .
$$

"Unfold" Euler-Chasles

Substituting $x_{n}=\frac{a_{n+2} a_{n}}{a_{n+1}}$ into Euler-Chasles correspondence we can create a more general family of 2-recurrences of order 3:

$$
\begin{aligned}
& \left(a_{n}^{2} a_{n+2}^{2}+A_{1} a_{n} a_{n+1}^{2} a_{n+2}+A_{0} a_{n+1}^{4}\right) a_{n+1}^{2} a_{n+3}^{2}+ \\
& \quad+\left(A_{1} a_{n}^{2} a_{n+2}^{2}+B_{1} a_{n} a_{n+1}^{2} a_{n+2}+B_{0} a_{n+1}^{4}\right) a_{n+1} a_{n+2}^{2} a_{n+3}+ \\
& \quad \quad+\left(A_{0} a_{n}^{2} a_{n+2}^{2}+B_{0} a_{n} a_{n+1}^{2} a_{n+2}+C_{0} a_{n+1}^{4}\right) a_{n+2}^{4}=0
\end{aligned} \quad .
$$

Can show

$$
a_{n+1}=\frac{a_{2}^{n}}{a_{1}^{n-1}}\left(x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-2}^{2} x_{n-1}\right)
$$

so $a_{n} \in \mathbb{Q}$ for all n since $x_{n} \in \mathbb{Q}$ and a_{1}, a_{2} assumed to be rational.

$\gamma^{\left\lfloor n^{2} / 4\right]}$ Sequence Produced

Theorem (H. 2011)

The sequence $a_{n}=\gamma^{\left\lfloor n^{2} / 4\right\rfloor}$ is annihilated by the more general 2-recurrence of order 3 iff γ is a solution to the following quadratic equation

$$
\left(A_{1}+A_{0}+1\right) \gamma^{2}+\left(A_{1}+B_{1}+B_{0}\right) \gamma+A_{0}+B_{0}+C_{0}=0 .
$$

To Prove:

Substitute $a_{n}=\gamma^{\left\lfloor n^{2} / 4\right\rfloor}$ into 2-recurrence and simplify. The result is exactly the quadratic equation given in the theorem.

$\gamma^{\left\lfloor n^{2} / 4\right\rfloor}$ Sequence Produced

Theorem (H. 2011)

The sequence $a_{n}=\gamma^{\left\lfloor n^{2} / 4\right\rfloor}$ is annihilated by the more general 2-recurrence of order 3 iff γ is a solution to the following quadratic equation

$$
\left(A_{1}+A_{0}+1\right) \gamma^{2}+\left(A_{1}+B_{1}+B_{0}\right) \gamma+A_{0}+B_{0}+C_{0}=0
$$

To Prove:

Substitute $a_{n}=\gamma^{\left\lfloor n^{2} / 4\right\rfloor}$ into 2-recurrence and simplify. The result is exactly the quadratic equation given in the theorem.

For Somos-4:

Let $A_{1}=A_{0}=0, B_{1}=-4, B_{0}=1$, and $C_{0}=1$. Quadratic equation is

$$
\gamma^{2}-3 \gamma+2=0
$$

so $s_{n}=2^{\left\lfloor n^{2} / 4\right\rfloor}$ is annihilated (also $s_{n}=1^{\left\lfloor n^{2} / 4\right\rfloor}=1$).

ψ^{n} Sequences Produced

Theorem (H. 2011)

For all $\psi \in \mathbb{R}, a_{n}=\psi^{n}$ is a solution to the more general 2-recurrence of order 3 iff

$$
2 A_{1}+2 A_{0}+B_{1}+2 B_{0}+C_{0}+1=0 .
$$

To Prove:

Substitute $a_{n}=\psi^{n}$ and simplify. What remains is exactly the condition on the parameters given in the theorem.

ψ^{n} Sequences Produced

Theorem (H. 2011)

For all $\psi \in \mathbb{R}, a_{n}=\psi^{n}$ is a solution to the more general 2-recurrence of order 3 iff

$$
2 A_{1}+2 A_{0}+B_{1}+2 B_{0}+C_{0}+1=0
$$

To Prove:

Substitute $a_{n}=\psi^{n}$ and simplify. What remains is exactly the condition on the parameters given in the theorem.

For Somos-4:

Let $A_{1}=A_{0}=0, B_{1}=-4, B_{0}=1$, and $C_{0}=1$. Criteria in theorem is satisfied:

$$
2 \cdot 0+2 \cdot 0-4+2 \cdot 1+1+1=0
$$

so $s_{n}=\psi^{n}$ is annihilated for all $\psi \in \mathbb{R}$. In particular, since $2,4,8$ and 3 , 9,27 appear consecutively, we see 2^{n-3} and 3^{n-4} in sequence tree.

Comparing Order 3 and Order 4 Somos-4 Recurrences

- Asymptotics

Order 4: $s_{n} \sim \phi^{n^{2}}$
Order 3: $s_{n} \sim \gamma^{n^{2}}, \psi^{n}$, constant, etc.

Comparing Order 3 and Order 4 Somos-4 Recurrences

- Asymptotics

Order 4: $s_{n} \sim \phi^{n^{2}}$
Order 3: $s_{n} \sim \gamma^{n^{2}}, \psi^{n}$, constant, etc.

- Closed Form

Order 4: Weierstrass sigma functions
Order 3: Some branches are elementary functions

Uses of Experimental Mathematics

- Global asymptotic stability:
- Programmed general algorithm to solve large class of problems

Uses of Experimental Mathematics

- Global asymptotic stability:
- Programmed general algorithm to solve large class of problems
- Integer sequences:
- Conjectured linear annihilators for sequences produced by non-linear recurrences
- Proved initial conditions satisfy piecewise polynomial (Zeilberger)

Uses of Experimental Mathematics

- Global asymptotic stability:
- Programmed general algorithm to solve large class of problems
- Integer sequences:
- Conjectured linear annihilators for sequences produced by non-linear recurrences
- Proved initial conditions satisfy piecewise polynomial (Zeilberger)
- Rational sequences:
- Conjectured criteria on coefficients in 2-recurrence of order 1
- Conjectured existence of exponential branches. Exponential sequences were unexpected given the behavior of the 2-recurrence of order 1 .

References

固 E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations, Chapman and Hall/CRC press (2008).

目 P. Heideman and E. Hogan, A new family of somos-like recurrences, Electronic Journal of Combinatorics, 15(1).
(in A. N. W. Hone and C. Swart, Integrality and the laurent phenomenon for somos 4 and somos 5 sequences, Mathematical Proceedings of the Cambridge Philosophical Society, 145, (2008), 65-85.
N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, Journal of Mathematical Analysis and Applications, 235, (1999), 151-158.

OEIS Foundation Inc., The on-line encyclopedia of integer sequences (2011).

URL http://oeis.org

Thank You

Any Questions?

To get references to appear!

